1
|
Ding X, Zheng Z, Zhao G, Wang L, Wang H, Wang P. Adaptive laboratory evolution for improved tolerance of vitamin K in Bacillus subtilis. Appl Microbiol Biotechnol 2024; 108:75. [PMID: 38194140 DOI: 10.1007/s00253-023-12877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024]
Abstract
Menaquinone-7 (MK-7), a subtype of vitamin K2 (VK2), assumes crucial roles in coagulation function, calcium homeostasis, and respiratory chain transmission. The production of MK-7 via microbial fermentation boasts mild technological conditions and high biocompatibility. Nevertheless, the redox activity of MK-7 imposes constraints on its excessive accumulation in microorganisms. To address this predicament, an adaptive laboratory evolution (ALE) protocol was implemented in Bacillus subtilis BS011, utilizing vitamin K3 (VK3) as a structural analog of MK-7. The resulting strain, BS012, exhibited heightened tolerance to high VK3 concentrations and demonstrated substantial enhancements in biofilm formation and total antioxidant capacity (T-AOC) when compared to BS011. Furthermore, MK-7 production in BS012 exceeded that of BS011 by 76% and 22% under static and shaking cultivation conditions, respectively. The molecular basis underlying the superior performance of BS012 was elucidated through genome and transcriptome analyses, encompassing observations of alterations in cell morphology, variations in central carbon and nitrogen metabolism, spore formation, and antioxidant systems. In summation, ALE technology can notably enhance the tolerance of B. subtilis to VK and increase MK-7 production, thus offering a theoretical framework for the microbial fermentation production of other VK2 subtypes. Additionally, the evolved strain BS012 can be developed for integration into probiotic formulations within the food industry to maintain intestinal flora homeostasis, mitigate osteoporosis risk, and reduce the incidence of cardiovascular disease. KEY POINTS: • Bacillus subtilis was evolved for improved vitamin K tolerance and menaquinone-7 (MK-7) production • Evolved strains formed wrinkled biofilms and elongated almost twofold in length • Evolved strains induced sporulation to improve tolerance when carbon was limited.
Collapse
Affiliation(s)
- Xiumin Ding
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, China
- University of Science and Technology of China, Hefei, China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
2
|
Kim SH, Lee JI, Kang DH. Effects of Na + adaptation on Bacillus cereus endospores inactivation and transcriptome changes. Food Res Int 2024; 195:114975. [PMID: 39277241 DOI: 10.1016/j.foodres.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
As Bacillus cereus endospores exist in various vegetables grown in soil, the possibility of contamination in food products with high salt concentrations cannot be ignored. Recent studies revealed that harsh conditions affect the resistance of bacteria; thus, we investigated the developmental aspect of heat resistance of B. cereus after sporulation with high NaCl concentration. RNA sequencing was conducted for transcriptomic changes when B. cereus endospores formed at high salinity, and membrane fluidity and hydrophobicity were measured to verify the transcriptomic analysis. Our data showed that increasing NaCl concentration in sporulation media led to a decrease in heat resistance. Also, endospore hydrophobicity, membrane fluidity, and endospore density decreased with sporulation at higher NaCl concentrations. When the transcript changes of B. cereus sporulated at NaCl concentrations of 0.5 and 7% were analyzed by transcriptome analysis, it was confirmed that the NaCl 7% endospores had significantly lower expression levels (FDR<0.05) of genes related to sporulation stages 3 and 4, which led to a decrease in expression of spore-related genes such as coat proteins and small acid-soluble proteins. Our findings indicated that high NaCl concentrations inhibited sporulation stages 3 and 4, thereby preventing proper cell maturation in the forespores and adequate formation of the coat protein and cortex. This inhibition led to decreased endospore density and hydrophobicity, ultimately resulting in reduced heat resistance.resistanceWe expect that this study will be utilized as a baseline for further studies and enhance sterilization strategies.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
3
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
4
|
Idris AL, Li W, Huang F, Lin F, Guan X, Huang T. Impacts of UV radiation on Bacillus biocontrol agents and their resistance mechanisms. World J Microbiol Biotechnol 2024; 40:58. [PMID: 38165488 DOI: 10.1007/s11274-023-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Bacillus biocontrol agent(s) BCA(s) such as Bacillus cereus, Bacillus thuringiensis and Bacillus subtilis have been widely applied to control insects' pests of plants and pathogenic microbes, improve plant growth, and facilitate their resistance to environmental stresses. In the last decade, researchers have shown that, the application of Bacillus biocontrol agent(s) BCA(s) optimized agricultural production yield, and reduced disease risks in some crops. However, these bacteria encountered various abiotic stresses, among which ultraviolet (UV) radiation severely decrease their efficiency. Researchers have identified several strategies by which Bacillus biocontrol agents resist the negative effects of UV radiation, including transcriptional response, UV mutagenesis, biochemical and artificial means (addition of protective agents). These strategies are governed by distinct pathways, triggered by UV radiation. Herein, the impact of UV radiation on Bacillus biocontrol agent(s) BCA(s) and their mechanisms of resistance were discussed.
Collapse
Affiliation(s)
- Aisha Lawan Idris
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fugui Huang
- Fujian Polytechnic of Information Technology, Fuzhou, 350003, China
| | - Fuyong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianpei Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Valdivia-Anistro JA, Eguiarte LE, Souza V. A Metagenomic Time-Series Approach to Assess the Ecological Stability of Microbial Mats in a Seasonally Fluctuating Environment. MICROBIAL ECOLOGY 2023; 86:2252-2270. [PMID: 37393557 PMCID: PMC10640475 DOI: 10.1007/s00248-023-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Microbial mats are complex ecological assemblages that have been present in the rock record since the Precambrian and can still be found in extant marginalized environments. These structures are considered highly stable ecosystems. In this study, we evaluate the ecological stability of dome-forming microbial mats in a modern, water-level fluctuating, hypersaline pond located in the Cuatro Ciénegas Basin, Mexico. We conducted metagenomic sampling of the site from 2016 to 2019 and detected 2250 genera of Bacteria and Archaea, with only <20 belonging to the abundant taxa (>1%). The microbial community was dominated by Proteobacteria, Euryarchaeota, Bacteroidetes, Firmicutes, and Cyanobacteria, and was compositionally sensitive to disturbances, leading to high taxonomic replacement even at the phylum level, with a significant increase in Archaea from [Formula: see text]1-4% to [Formula: see text]33% throughout the 2016-2019 study period. Although a core community represented most of the microbial community (>75%), relative abundances shifted significantly between samples, as demonstrated by changes in the abundance of Coleofasciculus from 10.2% in 2017 to 0.05% in 2019. Although functional differences between seasons were subtle, co-occurrence networks suggest differential ecological interactions between the seasons, with the addition of a new module during the rainy season and the potential shift in hub taxa. Functional composition was slightly more similar between samples, but basic processes such as carbohydrate, amino acid, and nucleic acid metabolisms were widely distributed among samples. Major carbon fixation processes included sulfur oxidation, nitrogen fixation, and photosynthesis (both oxygenic and anoxygenic), as well as the Wood-Ljundgahl and Calvin cycles.
Collapse
Affiliation(s)
- David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jorge A Valdivia-Anistro
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico.
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile.
| |
Collapse
|
6
|
Mirmajidi SH, Irajie C, Savardashtaki A, Negahdaripour M, Nezafat N, Ghasemi Y. Identification of potential RapJ hits as sporulation pathway inducer candidates in Bacillus coagulans via structure-based virtual screening and molecular dynamics simulation studies. J Mol Model 2023; 29:256. [PMID: 37464224 DOI: 10.1007/s00894-023-05664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND The bacterium Bacillus coagulans has attracted interest because of its ability to produce spores and advantageous probiotic traits, such as facilitating food digestion in the intestine, managing some disorders, and controlling the symbiotic microbiota. Spore-forming probiotic bacteria are especially important in the probiotic industry compared to non-spore-forming bacteria due to their stability during production and high resistance to adverse factors such as stomach acid. When spore-forming bacteria are exposed to environmental stresses, they enter the sporulation pathway to survive. This pathway is activated by the final phosphorylation of the master regulator of spore response, Spo0A, and upon achieving the phosphorylation threshold. Spo0A is indirectly inhibited by some enzymes of the aspartate response regulator phosphatase (Rap) family, such as RapJ. RapJ is one of the most important Rap enzymes in the sporogenesis pathway, which is naturally inhibited by the pentapeptides. METHODS This study used structure-based virtual screening and molecular dynamics (MD) simulation studies to find potential RapJ hits that could induce the sporulation pathway. The crystal structures of RapJ complexed with pentapeptide clearly elucidated their interactions with the enzyme active site. RESULTS Based on the binding compartment, through molecular docking, MD simulation, hydrogen bonds, and binding-free energy calculations, a series of novel hits against RapJ named tandutinib, infigratinib, sitravatinib, linifanib, epertinib, surufatinib, and acarbose were identified. Among these compounds, acarbose obtained the highest score, especially in terms of the number of hydrogen bonds, which plays a major role in stabilizing RapJ-ligand complexes, and also according to the occupancy percentages of hydrogen bonds, its hydrogen bonds were more stable during the simulation time. Consequently, acarbose is probably the most suitable hit for RapJ enzyme. Notably, experimental validation is crucial to confirm the effectiveness of the selected ligands.
Collapse
Affiliation(s)
- Seyedeh Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
7
|
Konstantinidi S, Skiadas IV, Gavala HN. Microbial Enrichment Techniques on Syngas and CO2 Targeting Production of Higher Acids and Alcohols. Molecules 2023; 28:molecules28062562. [PMID: 36985533 PMCID: PMC10056454 DOI: 10.3390/molecules28062562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
(1) Background: Microbial conversion of gaseous molecules, such as CO2, CO and H2, to valuable compounds, has come to the forefront since the beginning of the 21st century due to increasing environmental concerns and the necessity to develop alternative technologies that contribute to a fast transition to a more sustainable era. Research efforts so far have focused on C1–C2 molecules, i.e., ethanol and methane, while interest in molecules with higher carbon atoms has also started to emerge. Research efforts have already started to pay off, and industrial installments on ethanol production from steel-mill off-gases as well as methane production from the CO2 generated in biogas plants are a reality. (2) Methodology: The present study addresses C4–C6 acids and butanol as target molecules and responds to how the inherent metabolic potential of mixed microbial consortia could be revealed and exploited based on the application of different enrichment methods (3) Results and Conclusions: In most of the enrichment series, the yield of C4–C6 acids was enhanced with supplementation of acetic acid and ethanol together with the gas substrates, resulting in a maximum of 43 and 68% (e-mol basis) for butyric and caproic acid, respectively. Butanol formation was also enhanced, to a lesser degree though and up to 9% (e-mol basis). Furthermore, the microbial community exhibited significant shifts depending on the enrichment conditions applied, implying that a more profound microbial analysis on the species level taxonomy combined with the development of minimal co-cultures could set the basis for discovering new microbial co-cultures and/or co-culturing schemes.
Collapse
|
8
|
Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:6. [PMID: 36627716 PMCID: PMC9832610 DOI: 10.1186/s13068-022-02253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bacillus subtilis is generally regarded as a ubiquitous facultative anaerobe. Oxygen is the major electron acceptor of B. subtilis, and when oxygen is absent, B. subtilis can donate electrons to nitrate or perform fermentation. An anode electrode can also be used by microorganisms as the electron sink in systems called anodic electro-fermentation. The facultative anaerobic character of B. subtilis makes it an excellent candidate to explore with different electron acceptors, such as an anode. This study aimed to optimise industrial aerobic bioprocesses using alternative electron acceptors. In particular, different end product spectrum of B. subtilis with various electron acceptors, including anode from the electro-fermentation system, was investigated. RESULTS B. subtilis was grown using three electron acceptors, i.e. oxygen, nitrate and anode (poised at a potential of 0.7 V vs. standard hydrogen electrode). The results showed oxygen had a crucial role for cells to remain metabolically active. When nitrate or anode was applied as the sole electron acceptor anaerobically, immediate cell lysis and limited glucose consumption were observed. In anode-assisted electro-fermentation with a limited aeration rate, acetoin, as the main end product showed the highest yield of 0.78 ± 0.04 molproduct/molglucose, two-fold higher than without poised potential (0.39 ± 0.08 molproduct/molglucose). CONCLUSIONS Oxygen controls B. subtilis biomass growth, alternative electron acceptors utilisation and metabolites formation. Limited oxygen/air supply enabled the bacteria to donate excess electrons to nitrate or anode, leading to steered product spectrum. The anode-assisted electro-fermentation showed its potential to boost acetoin production for future industrial biotechnology applications.
Collapse
Affiliation(s)
- Yu Sun
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Marika Kokko
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Igor Vassilev
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
9
|
Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X. Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 2022; 64:1701-1714. [PMID: 36066454 DOI: 10.1080/10408398.2022.2118659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacillus probiotics have a sporulation capacity that makes them more suitable for processing and storage and for surviving passage through the gastrointestinal tract. The probiotic functions and regulatory mechanisms of different Bacillus have been exploited in many reports, but little is known about how various Bacillus probiotics perform different functions. This knowledge gap results in a lack of specificity in the selection and application of Bacillus. The probiotic properties are strain-specific and cell-type-specific, and are related to the germination potential and to the diversity of metabolites produced following intestinal germination, as this causes the variation in probiotic function and mechanisms. In this review, we discuss the Bacillus metabolites produced during germination and sporulation in the GI tract, as well as possible processes affecting intestinal homeostasis. We conclude that the oxygen-capturing capability and the production of antimicrobials, exoenzymes, competence and sporulation factors (CSF), exopolysaccharides, lactic acid, and cell components are specifically associated with the functional mechanisms of probiotic Bacillus. The aim of this review is to guide the screening of potential Bacillus strains for probiotics and their application in nutrition research. The information provided will also promote further research on Bacillus-derived functional metabolites in human nutrition.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Ying Fang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Hubei Province, China
| |
Collapse
|
10
|
Microaerobic conditions enhance laccase production from Rheinheimera sp. in an economical medium. Arch Microbiol 2022; 204:562. [PMID: 35980477 DOI: 10.1007/s00203-022-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 12/06/2022]
Abstract
Statistical optimization of aeration conditions viz. aerobic, microaerobic and anaerobic, was performed using response surface methodology (RSM) utilizing soybean meal as medium to enhance the production of laccase from Rheinheimera sp. Maximum laccase yield (18.48 × 105 U/L) was obtained under microaerobic (static) conditions sustained for 12 h in tandem with 26 h aerobically (150 rpm) grown culture, which was 17.03-fold higher than laccase production in the starting M162 medium under aerobic conditions (150 rpm). The reduction in incubation time from 72 to 38 h and utilization of cost-effective soybean meal as medium, which is easily available from local market, have provided a promising, eco-friendly method of laccase enzyme production. Enhanced expression of laccase gene under microaerobic conditions corresponded to the increased expression of fnr (fumarate nitrate reductase) gene, the oxygen sensing global regulator. The putative FNR-binding site upstream of laccase transcription initiation site was predicted to play an imperative role in Rheinheimera sp. adaptation from aerobic to microaerobic conditions and for enhanced laccase production.
Collapse
|
11
|
Gudiña EJ, Teixeira JA. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 2022; 60:108013. [PMID: 35752271 DOI: 10.1016/j.biotechadv.2022.108013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Okoye CO, Dong K, Wang Y, Gao L, Li X, Wu Y, Jiang J. Comparative genomics reveals the organic acid biosynthesis metabolic pathways among five lactic acid bacterial species isolated from fermented vegetables. N Biotechnol 2022; 70:73-83. [PMID: 35525431 DOI: 10.1016/j.nbt.2022.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Lactic acid bacteria (LAB) comprise a widespread bacterial group, inhabiting the niches of fermented vegetables and capable of producing beneficial organic acids. In the present study, several bioinformatics approaches were used to perform whole-genome sequencing and comparative genomics of five LAB species, Lactobacillus plantarum PC1-1, Pediococcus pentosaceus PC2-1(F2), Weissella hellenica PC1A, Lactobacillus buchneri PC-C1, and Enterococcus sp. YC2-6, to enhance understanding of their different genetic functionalities and organic acid biosynthesis. The results revealed major carbohydrate-active enzymes, putative operons and unique mobile genetic elements, including plasmids, resistance genes, insertion sequences and composite transposons involved in organic acid biosynthesis. The metabolic pathways of organic acid biosynthesis emphasize the key genes encoding specific enzymes required for organic acid metabolism. The five genomes were found to contain various regions of secondary metabolite biosynthetic gene clusters, including the type III polyketide synthases (T3PKS) enriched with unique genes encoding a hydroxymethylglutaryl-CoA synthase, capable of exhibiting specific antimicrobial activity with biopreservative potential, and a cyclic AMP receptor protein (CPR) transcription factor acting as a glucose sensor in organic acid biosynthesis. This could enable the organisms to prevail in the fermentation process, suggesting potential industrial applications.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Ke Dong
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Quinones: More Than Electron Shuttles. Res Microbiol 2022; 173:103953. [DOI: 10.1016/j.resmic.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
|
14
|
Distinct Interaction Mechanism of RNAP and ResD and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilisψ. J Bacteriol 2021; 204:e0043221. [PMID: 34898263 DOI: 10.1128/jb.00432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD, and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD likely participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new-type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors including the ubiquitous response regulators of two-component regulatory systems particularly in Gram-positive bacteria.
Collapse
|
15
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
16
|
Durand S, Callan-Sidat A, McKeown J, Li S, Kostova G, Hernandez-Fernaud JR, Alam MT, Millard A, Allouche D, Constantinidou C, Condon C, Denham EL. Identification of an RNA sponge that controls the RoxS riboregulator of central metabolism in Bacillus subtilis. Nucleic Acids Res 2021; 49:6399-6419. [PMID: 34096591 PMCID: PMC8216469 DOI: 10.1093/nar/gkab444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA-mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adam Callan-Sidat
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Josie McKeown
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Stephen Li
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gergana Kostova
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Juan R Hernandez-Fernaud
- School of Life Sciences, Proteomics Research Technology Platform, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Mohammad Tauqeer Alam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Andrew Millard
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Delphine Allouche
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chrystala Constantinidou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Ciarán Condon
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emma L Denham
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| |
Collapse
|
17
|
Hoffmann M, Braig A, Fernandez Cano Luna DS, Rief K, Becker P, Treinen C, Klausmann P, Morabbi Heravi K, Henkel M, Lilge L, Hausmann R. Evaluation of an oxygen-dependent self-inducible surfactin synthesis in B. subtilis by substitution of native promoter P srfA by anaerobically active P narG and P nasD. AMB Express 2021; 11:57. [PMID: 33876328 PMCID: PMC8055807 DOI: 10.1186/s13568-021-01218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
A novel approach targeting self-inducible surfactin synthesis under oxygen-limited conditions is presented. Because both the nitrate (NarGHI) and nitrite (NasDE) reductase are highly expressed during anaerobic growth of B. subtilis, the native promoter PsrfA of the surfactin operon in strain B. subtilis JABs24 was replaced by promoters PnarG and PnasD to induce surfactin synthesis anaerobically. Shake flask cultivations with varying oxygen availabilities indicated no significant differences in native PsrfA expression. As hypothesized, activity of PnarG and PnasD increased with lower oxygen levels and surfactin was not produced by PsrfA::PnarG as well as PsrfA::PnasD mutant strains under conditions with highest oxygen availability. PnarG showed expressions similar to PsrfA at lowest oxygen availability, while maximum value of PnasD was more than 5.5-fold higher. Although the promoter exchange PsrfA::PnarG resulted in a decreased surfactin titer at lowest oxygen availability, the strain carrying PsrfA::PnasD reached a 1.4-fold increased surfactin concentration with 696 mg/L and revealed an exceptional high overall YP/X of 1.007 g/g. This value also surpassed the YP/X of the reference strain JABs24 at highest and moderate oxygen availability. Bioreactor cultivations illustrated that significant cell lysis occurred when the process of "anaerobization" was performed too fast. However, processes with a constantly low agitation and aeration rate showed promising potential for process improvement, especially by employing the strain carrying PsrfA::PnasD promoter exchange. Additionally, replacement of other native promoters by nitrite reductase promoter PnasD represents a promising tool for anaerobic-inducible bioprocesses in Bacillus.
Collapse
Affiliation(s)
- Mareen Hoffmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Alina Braig
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Diana Stephanie Fernandez Cano Luna
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Katharina Rief
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Philipp Becker
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Chantal Treinen
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Peter Klausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| |
Collapse
|
18
|
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 2020; 11:6338. [PMID: 33311500 PMCID: PMC7732839 DOI: 10.1038/s41467-020-20153-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use unsupervised machine learning to modularize the transcriptome and quantitatively describe regulatory activity under diverse conditions, creating an unbiased summary of gene expression. We obtain 83 independently modulated gene sets that explain most of the variance in expression and demonstrate that 76% of them represent the effects of known regulators. The TRN structure and its condition-dependent activity uncover putative or recently discovered roles for at least five regulons, such as a relationship between histidine utilization and quorum sensing. The TRN also facilitates quantification of population-level sporulation states. As this TRN covers the majority of the transcriptome and concisely characterizes the global expression state, it could inform research on nearly every aspect of transcriptional regulation in B. subtilis. The systems-level regulatory structure underlying gene expression in bacteria can be inferred using machine learning algorithms. Here we show this structure for Bacillus subtilis, present five hypotheses gleaned from it, and analyse the process of sporulation from its perspective.
Collapse
|
19
|
Hoffmann M, Fernandez Cano Luna DS, Xiao S, Stegemüller L, Rief K, Heravi KM, Lilge L, Henkel M, Hausmann R. Towards the Anaerobic Production of Surfactin Using Bacillus subtilis. Front Bioeng Biotechnol 2020; 8:554903. [PMID: 33324620 PMCID: PMC7726195 DOI: 10.3389/fbioe.2020.554903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The anaerobic growth of B. subtilis to synthesize surfactin poses an alternative strategy to conventional aerobic cultivations. In general, the strong foam formation observed during aerobic processes represents a major obstacle. Anaerobic processes have, amongst others, the distinct advantage that the total bioreactor volume can be exploited as foaming does not occur. Recent studies also reported on promising product per biomass yields. However, anaerobic growth in comparison to aerobic processes has several disadvantages. For example, the overall titers are comparably low and cultivations are time-consuming due to low growth rates. B. subtilis JABs24, a derivate of strain 168 with the ability to synthesize surfactin, was used as model strain in this study. Ammonium and nitrite were hypothesized to negatively influence anaerobic growth. Ammonium with initial concentrations up to 0.2 mol/L was shown to have no significant impact on growth, but increasing concentrations resulted in decreased surfactin titers and reduced nitrate reductase expression. Anaerobic cultivations spiked with increasing nitrite concentrations resulted in prolonged lag-phases. Indeed, growth rates were in a similar range after the lag-phase indicating that nitrite has a neglectable effect on the observed decreasing growth rates. In bioreactor cultivations, the specific growth rate decreased with increasing glucose concentrations during the time course of both batch and fed-batch processes to less than 0.05 1/h. In addition, surfactin titers, overall Y P/X and Y P/S were 53%, ∼42%, and ∼57% lower than in serum flask with 0.190 g/L, 0.344 g/g and 0.015 g/g. The Y X/S, on the contrary, was 30% lower in the serum flask with 0.044 g/g. The productivities q were similar with ∼0.005 g/(g⋅h). However, acetate strongly accumulated during cultivation and was posed as further metabolite that might negatively influence anaerobic growth. Acetate added to anaerobic cultivations in a range from 0 g/L up to 10 g/L resulted in a reduced maximum and overall growth rate μ by 44% and 30%, respectively. To conclude, acetate was identified as a promising target for future process enhancement and strain engineering. Though, the current study demonstrates that the anaerobic cultivation to synthesize surfactin represents a reasonable perspective and feasible alternative to conventional processes.
Collapse
Affiliation(s)
- Mareen Hoffmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | | | - Shengbin Xiao
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Lars Stegemüller
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Katharina Rief
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
21
|
The SrrAB two-component system regulates Staphylococcus aureus pathogenicity through redox sensitive cysteines. Proc Natl Acad Sci U S A 2020; 117:10989-10999. [PMID: 32354997 DOI: 10.1073/pnas.1921307117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.
Collapse
|
22
|
Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat Commun 2020; 11:1859. [PMID: 32313019 PMCID: PMC7171179 DOI: 10.1038/s41467-020-15758-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). In Bacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. Here, we study further the roles played by TasA in B. subtilis physiology and biofilm formation on plant leaves and in vitro. We show that ΔtasA cells exhibit a range of cytological symptoms indicative of excessive cellular stress leading to increased cell death. TasA associates to the detergent-resistant fraction of the cell membrane, and the distribution of the flotillin-like protein FloT is altered in ΔtasA cells. We propose that, in addition to a structural function during ECM assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics as cells enter stationary phase. The amyloid protein TasA is a main component of the extracellular matrix in Bacillus subtilis biofilms. Here the authors show that, in addition to a structural function during biofilm assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics during stationary phase.
Collapse
|
23
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
24
|
Sousa J, Westhoff P, Methling K, Lalk M. The Absence of Pyruvate Kinase Affects Glucose-Dependent Carbon Catabolite Repression in Bacillus subtilis. Metabolites 2019; 9:metabo9100216. [PMID: 31590319 PMCID: PMC6835821 DOI: 10.3390/metabo9100216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Pyruvate is a key intermediate of diverse metabolic pathways of central carbon metabolism. In addition to being the end product of glycolysis, pyruvate is an essential carbon distribution point to oxidative metabolism, amino acid and fatty acid syntheses, and overflow metabolite production. Hence, a tight regulation of pyruvate kinase (Pyk) activity is of great importance. This study aimed to analyze targeted metabolites from several pathways and possible changes in Bacillus subtilis lacking Pyk. Wild type and Δpyk cells were cultivated in chemically defined medium with glucose and pyruvate as carbon sources, and the extracted metabolites were analyzed by 1H-NMR, GC-MS, HPLC-MS, and LC-MS/MS. The results showed that the perturbation created in the pyruvate node drove an adaptation to new conditions by altering the nutritional compounds’ consumption. In Δpyk, pyruvate, which is subject to glucose-dependent carbon catabolite repression, did not comply with the hierarchy in carbon source utilization. Other metabolic alterations were observed such as the higher secretion of the overflow metabolites acetoin and 2,3-butanediol by Δpyk. Our results help to elucidate the regulatory transport of glucose and pyruvate in B. subtilis and possible metabolic reroute to alternative pathways in the absence of Pyk.
Collapse
Affiliation(s)
- Joana Sousa
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
- Innovayt S/A, Av. João Paulo II 30, 4715-213 Braga, Portugal.
| | - Philipp Westhoff
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
- Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany.
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
25
|
Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci 2019; 20:ijms20184477. [PMID: 31514281 PMCID: PMC6769796 DOI: 10.3390/ijms20184477] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 01/29/2023] Open
Abstract
The glycerol fermentation of probiotic Staphylococcus epidermidis (S. epidermidis) in the skin microbiome produced butyric acid in vitro at concentrations in the millimolar range. The exposure of dorsal skin of mice to ultraviolet B (UVB) light provoked a significant increased production of pro-inflammatory interleukin (IL)-6 cytokine. Topical application of butyric acid alone or S. epidermidis with glycerol remarkably ameliorated the UVB-induced IL-6 production. In vivo knockdown of short-chain fatty acid receptor 2 (FFAR2) in mouse skin considerably blocked the probiotic effect of S. epidermidis on suppression of UVB-induced IL-6 production. These results demonstrate that butyric acid in the metabolites of fermenting skin probiotic bacteria mediates FFAR2 to modulate the production of pro-inflammatory cytokines induced by UVB.
Collapse
|
26
|
Eckweiler D, Dudek CA, Hartlich J, Brötje D, Jahn D. PRODORIC2: the bacterial gene regulation database in 2018. Nucleic Acids Res 2019; 46:D320-D326. [PMID: 29136200 PMCID: PMC5753277 DOI: 10.1093/nar/gkx1091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/21/2017] [Indexed: 12/05/2022] Open
Abstract
Bacteria adapt to changes in their environment via differential gene expression mediated by DNA binding transcriptional regulators. The PRODORIC2 database hosts one of the largest collections of DNA binding sites for prokaryotic transcription factors. It is the result of the thoroughly redesigned PRODORIC database. PRODORIC2 is more intuitive and user-friendly. Besides significant technical improvements, the new update offers more than 1000 new transcription factor binding sites and 110 new position weight matrices for genome-wide pattern searches with the Virtual Footprint tool. Moreover, binding sites deduced from high-throughput experiments were included. Data for 6 new bacterial species including bacteria of the Rhodobacteraceae family were added. Finally, a comprehensive collection of sigma- and transcription factor data for the nosocomial pathogen Clostridium difficile is now part of the database. PRODORIC2 is publicly available at http://www.prodoric2.de.
Collapse
Affiliation(s)
- Denitsa Eckweiler
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| | - Christian-Alexander Dudek
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| | - Juliane Hartlich
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| | - David Brötje
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| | - Dieter Jahn
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| |
Collapse
|
27
|
van der Stel AX, Wösten MMSM. Regulation of Respiratory Pathways in Campylobacterota: A Review. Front Microbiol 2019; 10:1719. [PMID: 31417516 PMCID: PMC6682613 DOI: 10.3389/fmicb.2019.01719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The Campylobacterota, previously known as Epsilonproteobacteria, are a large group of Gram-negative mainly, spiral-shaped motile bacteria. Some members like the Sulfurospirillum spp. are free-living, while others such as Helicobacter spp. can only persist in strict association with a host organism as commensal or as pathogen. Species of this phylum colonize diverse habitats ranging from deep-sea thermal vents to the human stomach wall. Despite their divergent environments, they share common energy conservation mechanisms. The Campylobacterota have a large and remarkable repertoire of electron transport chain enzymes, given their small genomes. Although members of recognized families of transcriptional regulators are found in these genomes, sofar no orthologs known to be important for energy or redox metabolism such as ArcA, FNR or NarP are encoded in the genomes of the Campylobacterota. In this review, we discuss the strategies that members of Campylobacterota utilize to conserve energy and the corresponding regulatory mechanisms that regulate the branched electron transport chains in these bacteria.
Collapse
Affiliation(s)
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Marincola G, Wencker FDR, Ziebuhr W. The Many Facets of the Small Non-coding RNA RsaE (RoxS) in Metabolic Niche Adaptation of Gram-Positive Bacteria. J Mol Biol 2019; 431:4684-4698. [PMID: 30914292 DOI: 10.1016/j.jmb.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Small regulatory RNAs (sRNAs) are increasingly recognized as players in the complex regulatory networks governing bacterial gene expression. RsaE (synonym RoxS) is an sRNA that is highly conserved in bacteria of the Bacillales order. Recent analyses in Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis identified RsaE/RoxS as a potent riboregulator of central carbon metabolism and energy balance with many molecular RsaE/RoxS functions and targets being shared across species. Similarities and species-specific differences in cellular processes modulated by RsaE/RoxS suggest that this sRNA plays a prominent role in the adaptation of Gram-positive bacteria to niches with varying nutrient availabilities and environmental cues. This review summarizes recent findings on the molecular function of RsaE/RoxS and its interaction with mRNA targets. Special emphasis will be on the integration of RsaE/RoxS into metabolic regulatory circuits and, derived from this, the role of RsaE/RoxS as a putative driver to generate phenotypic heterogeneity in bacterial populations. In this respect, we will particularly discuss heterogeneous RsaE expression in S. epidermidis biofilms and its possible contribution to metabolic niche diversification, programmed bacterial lysis and biofilm matrix production.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| |
Collapse
|
29
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
31
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
32
|
Liu W, Rochat T, Toffano-Nioche C, Le Lam TN, Bouloc P, Morvan C. Assessment of Bona Fide sRNAs in Staphylococcus aureus. Front Microbiol 2018. [PMID: 29515534 PMCID: PMC5826253 DOI: 10.3389/fmicb.2018.00228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial regulatory RNAs have been extensively studied for over a decade, and are progressively being integrated into the complex genetic regulatory network. Transcriptomic arrays, recent deep-sequencing data and bioinformatics suggest that bacterial genomes produce hundreds of regulatory RNAs. However, while some have been authenticated, the existence of the others varies according to strains and growth conditions, and their detection fluctuates with the methodologies used for data acquisition and interpretation. For example, several small RNA (sRNA) candidates are now known to be parts of UTR transcripts. Accurate annotation of regulatory RNAs is a complex task essential for molecular and functional studies. We defined bona fide sRNAs as those that (i) likely act in trans and (ii) are not expressed from the opposite strand of a coding gene. Using published data and our own RNA-seq data, we reviewed hundreds of Staphylococcus aureus putative regulatory RNAs using the DETR'PROK computational pipeline and visual inspection of expression data, addressing the question of which transcriptional signals correspond to sRNAs. We conclude that the model strain HG003, a NCTC8325 derivative commonly used for S. aureus genetic regulation studies, has only about 50 bona fide sRNAs, indicating that these RNAs are less numerous than commonly stated. Among them, about half are associated to the S. aureus sp. core genome and a quarter are possibly expressed in other Staphylococci. We hypothesize on their features and regulation using bioinformatic approaches.
Collapse
Affiliation(s)
- Wenfeng Liu
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Rochat
- VIM, Institut National de la Recherche Agronomique, Université Paris-Saclay, Institut National de la Recherche Agronomique Centre Jouy-en-Josas, Jouy-en-Josas, France
| | - Claire Toffano-Nioche
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thao Nguyen Le Lam
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Claire Morvan
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol 2018; 185:958-970. [PMID: 29388009 DOI: 10.1007/s12010-018-2693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
35
|
Ebert M, Schweyen P, Bröring M, Laass S, Härtig E, Jahn D. Heme and nitric oxide binding by the transcriptional regulator DnrF from the marine bacterium Dinoroseobacter shibae increases napD promoter affinity. J Biol Chem 2017; 292:15468-15480. [PMID: 28765283 DOI: 10.1074/jbc.m117.798728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Indexed: 12/27/2022] Open
Abstract
Under oxygen-limiting conditions, the marine bacterium Dinoroseobacter shibae DFL12T generates energy via denitrification, a respiratory process in which nitric oxide (NO) is an intermediate. Accumulation of NO may cause cytotoxic effects. The response to this nitrosative (NO-triggered) stress is controlled by the Crp/Fnr-type transcriptional regulator DnrF. We analyzed the response to NO and the mechanism of NO sensing by the DnrF regulator. Using reporter gene fusions and transcriptomics, here we report that DnrF selectively repressed nitrate reductase (nap) genes, preventing further NO formation. In addition, DnrF induced the expression of the NO reductase genes (norCB), which promote NO consumption. We used UV-visible and EPR spectroscopy to characterize heme binding to DnrF and subsequent NO coordination. DnrF detects NO via its bound heme cofactor. We found that the dimeric DnrF bound one molecule of heme per subunit. Purified recombinant apo-DnrF bound its target promoter sequences (napD, nosR2, norC, hemA, and dnrE) in electromobility shift assays, and we identified a specific palindromic DNA-binding site 5'-TTGATN4ATCAA-3' in these target sequences via mutagenesis studies. Most importantly, successive addition of heme as well as heme and NO to purified recombinant apo-DnrF protein increased affinity of the holo-DnrF for its specific binding motif in the napD promoter. On the basis of these results, we propose a model for the DnrF-mediated NO stress response of this marine bacterium.
Collapse
Affiliation(s)
- Matthias Ebert
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig
| | - Peter Schweyen
- the Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig
| | - Martin Bröring
- the Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig
| | - Sebastian Laass
- the Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, and
| | - Elisabeth Härtig
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig,
| | - Dieter Jahn
- the Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| |
Collapse
|
36
|
Abstract
Staphylococcus aureus is known to generate small colony variants (SCVs) that are resistant to aminoglycoside antibiotics and can cause persistent and recurrent infections. The SCV phenotype is unstable, and compensatory mutations lead to restored growth, usually with loss of resistance. However, the evolution of improved growth, by mechanisms that avoid loss of antibiotic resistance, is very poorly understood. By selection with serial passaging, we isolated and characterized different classes of extragenic suppressor mutations that compensate for the slow growth of small colony variants. Compensation occurs by two distinct bypass mechanisms: (i) translational suppression of the initial SCV mutation by mutant tRNAs, ribosomal protein S5, or release factor 2 and (ii) mutations that cause the constitutive activation of the SrrAB global transcriptional regulation system. Although compensation by translational suppression increases growth rate, it also reduces antibiotic susceptibility, thus restoring a pseudo-wild-type phenotype. In contrast, an evolutionary pathway that compensates for the SCV phenotype by activation of SrrAB increases growth rate without loss of antibiotic resistance. RNA sequence analysis revealed that mutations activating the SrrAB pathway cause upregulation of genes involved in peptide transport and in the fermentation pathways of pyruvate to generate ATP and NAD+, thus explaining the increased growth. By increasing the growth rate of SCVs without the loss of aminoglycoside resistance, compensatory evolution via the SrrAB activation pathway represents a threat to effective antibiotic therapy of staphylococcal infections.IMPORTANCE Small colony variants (SCVs) of Staphylococcus aureus are a significant clinical problem, causing persistent and antibiotic-resistant infections. However, SCVs are unstable and can rapidly evolve growth-compensated mutants. Previous data suggested that growth compensation only occurred with the loss of antibiotic resistance. We have used selection with serial passaging to uncover four distinct pathways of growth compensation accessible to SCVs. Three of these paths (reversion, intragenic suppression, and translational suppression) increase growth at the expense of losing antibiotic resistance. The fourth path activates an alternative transcriptional program and allows the bacteria to produce the extra ATP required to support faster growth, without losing antibiotic resistance. The importance of this work is that it shows that drug-resistant SCVs can evolve faster growth without losing antibiotic resistance.
Collapse
|
37
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
38
|
Ebert M, Laaß S, Thürmer A, Roselius L, Eckweiler D, Daniel R, Härtig E, Jahn D. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae. Front Microbiol 2017; 8:642. [PMID: 28473807 PMCID: PMC5398030 DOI: 10.3389/fmicb.2017.00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated.
Collapse
Affiliation(s)
- Matthias Ebert
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Sebastian Laaß
- Institute for Molecular Biosciences, Goethe-University FrankfurtFrankfurt, Germany
| | - Andrea Thürmer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Louisa Roselius
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| |
Collapse
|
39
|
A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci Rep 2017; 7:43404. [PMID: 28230096 PMCID: PMC5322528 DOI: 10.1038/srep43404] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis.
Collapse
|
40
|
Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Appl Biochem Biotechnol 2016; 179:321-31. [DOI: 10.1007/s12010-016-1996-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
41
|
Mania D, Heylen K, van Spanning RJM, Frostegård Å. Regulation of nitrogen metabolism in the nitrate-ammonifying soil bacteriumBacillus viretiand evidence for its ability to grow using N2O as electron acceptor. Environ Microbiol 2016; 18:2937-50. [DOI: 10.1111/1462-2920.13124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Daniel Mania
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| | - Kim Heylen
- Laboratory of Microbiology; Department of Biochemistry and Microbiology; University of Ghent; Gent Belgium
| | - Rob J. M. van Spanning
- Department of Molecular Cell Biology; Faculty of Earth and Life Science; VU University; Amsterdam The Netherlands
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| |
Collapse
|
42
|
Popova TG, Teunis A, Vaseghi H, Zhou W, Espina V, Liotta LA, Popov SG. Nitric oxide as a regulator of B. anthracis pathogenicity. Front Microbiol 2015; 6:921. [PMID: 26388860 PMCID: PMC4557104 DOI: 10.3389/fmicb.2015.00921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) is a key physiological regulator in eukaryotic and prokaryotic organisms. It can cause a variety of biological effects by reacting with its targets or/and indirectly inducing oxidative stress. NO can also be produced by bacteria including the pathogenic Bacillus anthracis; however, its role in the infectious process only begins to emerge. NO incapacitates macrophages by S-nitrosylating the intracellular proteins and protects B. anthracis from oxidative stress. It is also implicated in the formation of toxic peroxynitrite. In this study we further assessed the effects of B. anthracis NO produced by the NO synthase (bNOS) on bacterial metabolism and host cells in experiments with the bNOS knockout Sterne strain. The mutation abrogated accumulation of nitrite and nitrate as tracer products of NO in the culture medium and markedly attenuated growth in both aerobic and microaerobic conditions. The regulatory role of NO was also suggested by the abnormally high rate of nitrate denitrification by the mutant in the presence of oxygen. Anaerobic regulation mediated by NO was reflected in reduced fermentation of glucose by the mutant correlating with the reduced toxicity of bacteria toward host cells in culture. The toxic effect of NO required permeabilization of the target cells as well as the activity of fermentation-derived metabolite in the conditions of reduced pH. The host cells demonstrated increased phosphorylation of major survivor protein kinase AKT correlating with reduced toxicity of the mutant in comparison with Sterne. Our global proteomic analysis of lymph from the lymph nodes of infected mice harboring bacteria revealed numerous changes in the pattern and levels of proteins associated with the activity of bNOS influencing key cell physiological processes relevant to energy metabolism, growth, signal transduction, stress response, septic shock, and homeostasis. This is the first in vivo observation of the bacterial NO effect on the lymphatic system.
Collapse
Affiliation(s)
- Taissia G Popova
- National Center for Biodefense and Infectious Disease, College of Science, George Mason University, Manassas, VA USA ; Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, VA USA
| | - Allison Teunis
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, VA USA
| | - Haley Vaseghi
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, VA USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, VA USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, College of Science, George Mason University, Manassas, VA USA
| | - Serguei G Popov
- National Center for Biodefense and Infectious Disease, College of Science, George Mason University, Manassas, VA USA
| |
Collapse
|
43
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
44
|
Hämmerle H, Amman F, Večerek B, Stülke J, Hofacker I, Bläsi U. Impact of Hfq on the Bacillus subtilis transcriptome. PLoS One 2014; 9:e98661. [PMID: 24932523 PMCID: PMC4059632 DOI: 10.1371/journal.pone.0098661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Abstract
The RNA chaperone Hfq acts as a central player in post-transcriptional gene regulation in several Gram-negative Bacteria, whereas comparatively little is known about its role in Gram-positive Bacteria. Here, we studied the function of Hfq in Bacillus subtilis, and show that it confers a survival advantage. A comparative transcriptome analysis revealed mRNAs with a differential abundance that are governed by the ResD-ResE system required for aerobic and anaerobic respiration. Expression of resD was found to be up-regulated in the hfq- strain. Furthermore, several genes of the GerE and ComK regulons were de-regulated in the hfq- background. Surprisingly, only six out of >100 known and predicted small RNAs (sRNAs) showed altered abundance in the absence of Hfq. Moreover, Hfq positively affected the transcript abundance of genes encoding type I toxin-antitoxin systems. Taken the moderate effect on sRNA levels and mRNAs together, it seems rather unlikely that Hfq plays a central role in RNA transactions in Bacillus subtilis.
Collapse
Affiliation(s)
- Hermann Hämmerle
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Branislav Večerek
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
45
|
Exposure of Bacillus subtilis to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response. Appl Environ Microbiol 2014; 80:4788-94. [PMID: 24878601 DOI: 10.1128/aem.00885-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Studies of how microorganisms respond to pressure have been limited mostly to the extreme high pressures of the deep sea (i.e., the piezosphere). In contrast, despite the fact that the growth of most bacteria is inhibited at pressures below ∼2.5 kPa, little is known of microbial responses to low pressure (LP). To study the global LP response, we performed transcription microarrays on Bacillus subtilis cells grown under normal atmospheric pressure (∼101 kPa) and a nearly inhibitory LP (5 kPa), equivalent to the pressure found at an altitude of ∼20 km. Microarray analysis revealed altered levels of 363 transcripts belonging to several global regulons (AbrB, CcpA, CodY, Fur, IolR, ResD, Rok, SigH, Spo0A). Notably, the highest number of upregulated genes, 86, belonged to the SigB-mediated general stress response (GSR) regulon. Upregulation of the GSR by LP was confirmed by monitoring the expression of the SigB-dependent ctc-lacZ reporter fusion. Measuring transcriptome changes resulting from exposure of bacterial cells to LP reveals insights into cellular processes that may respond to LP exposure.
Collapse
|
46
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|