1
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Li CP, Wu S, Sun YQ, Peng XQ, Gong M, Du HZ, Zhang J, Teng ZQ, Wang N, Liu CM. Lhx2 promotes axon regeneration of adult retinal ganglion cells and rescues neurodegeneration in mouse models of glaucoma. Cell Rep Med 2024; 5:101554. [PMID: 38729157 PMCID: PMC11148806 DOI: 10.1016/j.xcrm.2024.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Maolei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
3
|
Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res 2024; 19:92-99. [PMID: 37488850 PMCID: PMC10479832 DOI: 10.4103/1673-5374.375319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Gene therapies, despite of being a relatively new therapeutic approach, have a potential to become an important alternative to current treatment strategies in glaucoma. Since glaucoma is not considered a single gene disease, the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells, especially, in intraocular-pressure-independent manner. The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tropism to retinal ganglion cells, resulting in long-term expression and low immunogenic profile. The gene therapy studies recruit inducible and genetic animal models of optic neuropathy, like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model. Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors (i.e., brain derived neurotrophic factor, and its receptor TrkB), regulation of apoptosis and neurodegeneration (i.e., Bcl-xl, Xiap, FAS system, nicotinamide mononucleotide adenylyl transferase 2, Digit3 and Sarm1), immunomodulation (i.e., Crry, C3 complement), modulation of neuroinflammation (i.e., erythropoietin), reduction of excitotoxicity (i.e., CamKIIα) and transcription regulation (i.e., Max, Nrf2). On the other hand, some of gene therapy studies focus on lowering intraocular pressure, by impacting genes involved in both, decreasing aqueous humor production (i.e., aquaporin 1), and increasing outflow facility (i.e., COX2, prostaglandin F2α receptor, RhoA/RhoA kinase signaling pathway, MMP1, Myocilin). The goal of this review is to summarize the current state-of-art and the direction of development of gene therapy strategies for glaucomatous neuropathy.
Collapse
Affiliation(s)
- Robert Sulak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
4
|
The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. eNeuro 2022; 9:ENEURO.0477-21.2022. [PMID: 35131866 PMCID: PMC8874952 DOI: 10.1523/eneuro.0477-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Regeneration can occur in peripheral neurons after injury, but the mechanisms involved are not fully delineated. Macrophages in dorsal root ganglia (DRGs) are involved in the enhanced regeneration that occurs after a conditioning lesion (CL), but how macrophages stimulate this response is not known. Oncomodulin (Ocm) has been proposed as a proregenerative molecule secreted by macrophages and neutrophils, is expressed in the DRG after axotomy, and stimulates neurite outgrowth by DRG neurons in culture. Wild-type (WT) and Ocm knock-out (KO) mice were used to investigate whether Ocm plays a role in the CL response in DRG neurons after sciatic nerve transection. Neurite outgrowth was measured after 24 and 48 h in explant culture 7 d after a CL. Sciatic nerve regeneration was also measured in vivo 7 d after a CL and 2 d after a subsequent sciatic nerve crush. The magnitude of the increased neurite outgrowth following a CL was significantly smaller in explants from Ocm KO mice than in explants from WT mice. In vivo after a CL, increased regeneration was found in WT animals but not in KO animals. Macrophage accumulation and levels of interleukin-6 (IL-6) mRNA were measured in axotomized DRG from WT and Ocm KO animals, and both were significantly higher than in sham-operated ganglia. At 6 h after axotomy, Il-6 mRNA was higher in WT than in Ocm KO mice. Our data support the hypothesis that Ocm plays a necessary role in producing a normal CL response and that its effects possibly result in part from stimulation of the expression of proregenerative macrophage cytokines such as IL-6.
Collapse
|
5
|
Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1276. [PMID: 34532413 PMCID: PMC8421956 DOI: 10.21037/atm-20-5351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.
Collapse
Affiliation(s)
- Lindsay Fague
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Yin Allison Liu
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Nicholas Marsh-Armstrong
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Van Dyck A, Bollaerts I, Beckers A, Vanhunsel S, Glorian N, van Houcke J, van Ham TJ, De Groef L, Andries L, Moons L. Müller glia-myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia 2021; 69:1444-1463. [PMID: 33502042 DOI: 10.1002/glia.23972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.
Collapse
Affiliation(s)
- Annelies Van Dyck
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nynke Glorian
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jessie van Houcke
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Lien Andries
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Mendonça HR, Villas Boas COG, Heringer LDS, Oliveira JT, Martinez AMB. Myelination of regenerating optic nerve axons occurs in conjunction with an increase of the oligodendrocyte precursor cell population in the adult mice. Brain Res Bull 2020; 166:150-160. [PMID: 33232742 DOI: 10.1016/j.brainresbull.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
Recently, regeneration of CNS tracts has been partially accomplished by strategies of intrinsic neuronal growth stimulation. However, restoration of function is dependent on proper myelination of regenerating axons. Previous work from our group (Goulart et al., 2018) has shown an increase in oligodendrocyte staining in the regenerating optic nerve, 2 weeks after crush, in animals that were submitted to conditional deletion of pten gene in retinal ganglion cells and intravitreal injection of zymosan + cAMP. Thus, in the present study we aimed to investigate the maturation of the oligodendroglial lineage and myelination during the regeneration of the optic nerve under the same conditions of our previous work. We showed that the combined treatment promoted an increase of myelinated fibers within the optic nerve, 12 weeks after lesion, as well as an increase in Sox10 positive cells. Early-OPCs, positive to A2B5, were also increased at 12 weeks, whereas O4 positive, late-OPCs, were increased from 2 until 12 weeks after crush. At 12 weeks after crush, the optic nerve of Regenerating group presented more CC1 positive oligodendrocytes and increased MRF positive myelinating oligodendrocytes, culminating in CTB traced regenerating axons superimposed to MBP staining, suggestive of myelination. Thus, our work showed that conditional deletion of pten gene in retinal ganglion cells and intravitreal inflammatory stimuli + cAMP stimulate full maturation of the olidodendroglial lineage, from OPC proliferation and differentiation to myelination of regenerating CNS axons.
Collapse
Affiliation(s)
- Henrique Rocha Mendonça
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade, Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas - SBFis, Núcleo de Pesquisas Ecológicas de Macaé, Federal University of Rio de Janeiro, Macaé, Brazil.
| | - Camila Oliveira Goulart Villas Boas
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Dos Santos Heringer
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Teixeira Oliveira
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Krucoff MO, Miller JP, Saxena T, Bellamkonda R, Rahimpour S, Harward SC, Lad SP, Turner DA. Toward Functional Restoration of the Central Nervous System: A Review of Translational Neuroscience Principles. Neurosurgery 2020; 84:30-40. [PMID: 29800461 DOI: 10.1093/neuros/nyy128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Injury to the central nervous system (CNS) can leave patients with devastating neurological deficits that may permanently impair independence and diminish quality of life. Recent insights into how the CNS responds to injury and reacts to critically timed interventions are being translated into clinical applications that have the capacity to drastically improve outcomes for patients suffering from permanent neurological deficits due to spinal cord injury, stroke, or other CNS disorders. The translation of such knowledge into practical and impactful treatments involves the strategic collaboration between neurosurgeons, clinicians, therapists, scientists, and industry. Therefore, a common understanding of key neuroscientific principles is crucial. Conceptually, current approaches to CNS revitalization can be divided by scale into macroscopic (systems-circuitry) and microscopic (cellular-molecular). Here we review both emerging and well-established tenets that are being utilized to enhance CNS recovery on both levels, and we explore the role of neurosurgeons in developing therapies moving forward. Key principles include plasticity-driven functional recovery, cellular signaling mechanisms in axonal sprouting, critical timing for recovery after injury, and mechanisms of action underlying cellular replacement strategies. We then discuss integrative approaches aimed at synergizing interventions across scales, and we make recommendations for the basis of future clinical trial design. Ultimately, we argue that strategic modulation of microscopic cellular behavior within a macroscopic framework of functional circuitry re-establishment should provide the foundation for most neural restoration strategies, and the early involvement of neurosurgeons in the process will be crucial to successful clinical translation.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Jonathan P Miller
- Department of Neurosurgery, Case Western Reserve University, Cleve-land, Ohio
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen C Harward
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Mechan-ical Engineering and Material Sciences, Pratt School of Engineering, Duke Uni-versity, Durham, North Carolina.,Duke Institute for Brain Sciences, Duke Univer-sity, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Depart-ment of Neurobiology, Duke University, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.
Collapse
|
10
|
Andries L, De Groef L, Moons L. Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players? Curr Eye Res 2019; 45:397-409. [PMID: 31567007 DOI: 10.1080/02713683.2019.1669664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Neurodegenerative diseases and central nervous system (CNS) trauma are highly irreversible, in part because adult mammals lack a robust regenerative capacity. A multifactorial problem underlies the limited axonal regeneration potential. Strikingly, neuroinflammation seems able to induce axonal regrowth in the adult mammalian CNS. It is increasingly clear that both blood-borne and resident inflammatory cells as well as reactivated glial cells affect axonal regeneration. The scope of this review is to give a comprehensive overview of the knowledge that links inflammation (with a focus on the innate immune system) to axonal regeneration and to critically reflect on the controversy that still prevails about the cells, molecules and pathways that are dominating the scene. Also, a brief overview is given of what is already known about the crosstalk between and the heterogeneity of cell types that might play a role in axonal regeneration. Recent research indicates that inflammation-induced axonal regrowth is not solely driven by a single-cell population but probably relies on the crosstalk between multiple cell types and the strong regulation of these cell populations in time and space. Moreover, there is growing evidence that the different cell populations are highly heterogeneous and as such can react differently upon injury. This could explain the controversial results that have been obtained over the past years. The primary focus of this manuscript is the retinofugal system of adult mammals, however, when relevant, insights or examples of the spontaneous regenerating zebrafish model and spinal cord research are added.
Collapse
Affiliation(s)
- Lien Andries
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Abstract
Introduction: A multitude of cellular and physiological functions have been attributed to the biological activity of PTEN (Phosphatase and tensin homolog) such as inhibiting angiogenesis, promoting apoptosis, preventing cell proliferation, and maintaining cellular homeostasis. Based on whether cell growth is needed to be initiated or to be inhibited, enhancing PTEN expression or seeking to inhibit it was pursued. Areas covered: Here the authors provide recent updates to their previous publication on 'PTEN modulators: A patent review', and discuss on new specificities that affirm the therapeutic potential of PTEN in promoting neuro-regeneration, stem cell regeneration, autophagy, bone and cartilage regeneration. Also, targeting PTEN appears to be effective in developing new treatment strategies for Parkinson's disease, Alzheimer's disease, macular degeneration, immune disorders, asthma, arthritis, lupus, Crohn's disease, and several cancer types. Expert opinion: PTEN mainly inhibits the PI3k/Akt pathway. However, the PI3k/Akt pathway can be activated by other signaling proteins. Thus, novel treatment strategies that can regulate PTEN alone, or combinational treatment approaches that can induce PTEN and simultaneously affect downstream mediators in the PI3K/Akt pathway, are needed, which were not investigated in detail. Commercial interests associated with molecules that regulate PTEN are discussed here, along with limitations and new possibilities to improve them.
Collapse
Affiliation(s)
- Chandra S Boosani
- Department of Translational Research, Western University of Health Sciences , Pomona , CA , USA
| | - Palanikumar Gunasekar
- Department of Clinical & Translational Science, Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
12
|
Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res 2019; 71:57-67. [DOI: 10.1016/j.preteyeres.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
13
|
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness - a review. Restor Neurol Neurosci 2019; 36:767-791. [PMID: 30412515 PMCID: PMC6294586 DOI: 10.3233/rnn-180880] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Vision loss due to ocular diseases such as glaucoma, optic neuropathy, macular degeneration, or diabetic retinopathy, are generally considered an exclusive affair of the retina and/or optic nerve. However, the brain, through multiple indirect influences, has also a major impact on functional visual impairment. Such indirect influences include intracerebral pressure, eye movements, top-down modulation (attention, cognition), and emotionally triggered stress hormone release affecting blood vessel dysregulation. Therefore, vision loss should be viewed as the result of multiple interactions within a “brain-eye-vascular triad”, and several eye diseases may also be considered as brain diseases in disguise. While the brain is part of the problem, it can also be part of the solution. Neuronal networks of the brain can “amplify” residual vision through neuroplasticity changes of local and global functional connectivity by activating, modulating and strengthening residual visual signals. The activation of residual vision can be achieved by different means such as vision restoration training, non-invasive brain stimulation, or blood flow enhancing medications. Modulating brain functional networks and improving vascular regulation may offer new opportunities to recover or restore low vision by increasing visual field size, visual acuity and overall functional vision. Hence, neuroscience offers new insights to better understand vision loss, and modulating brain and vascular function is a promising source for new opportunities to activate residual vision to achieve restoration and recovery to improve quality of live in patients suffering from low vision.
Collapse
Affiliation(s)
- Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lotfi B Merabet
- Department of Ophthalmology, The Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| |
Collapse
|
14
|
Prior Exposure to Immunosuppressors Sensitizes Retinal Microglia and Accelerates Optic Nerve Regeneration in Zebrafish. Mediators Inflamm 2019; 2019:6135795. [PMID: 30881223 PMCID: PMC6387731 DOI: 10.1155/2019/6135795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
As adult mammals lack the capacity to replace or repair damaged neurons, degeneration and trauma (and subsequent dysfunction) of the central nervous system (CNS) seriously constrains the patient's life quality. Recent work has shown that appropriate modulation of acute neuroinflammation upon CNS injury can trigger a regenerative response; yet, the underlying cellular and molecular mechanisms remain largely elusive. In contrast to mammals, zebrafish retain high regenerative capacities into adulthood and thus form a powerful model to study the contribution of neuroinflammation to successful regeneration. Here, we used pharmacological immunosuppression methods to study the role of microglia/macrophages during optic nerve regeneration in adult zebrafish. We first demonstrated that systemic immunosuppression with dexamethasone (dex) impedes regeneration after optic nerve injury. Secondly, and strikingly, local intravitreal application of dex or clodronate liposomes prior to injury was found to sensitize retinal microglia. Consequently, we observed an exaggerated inflammatory response to subsequent optic nerve damage, along with enhanced tectal reinnervation. In conclusion, we found a strong positive correlation between the acute inflammatory response in the retina and the regenerative capacity of the optic nerve in adult zebrafish subjected to nerve injury.
Collapse
|
15
|
Stark DT, Anderson DMG, Kwong JMK, Patterson NH, Schey KL, Caprioli RM, Caprioli J. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. Invest Ophthalmol Vis Sci 2018; 59:212-222. [PMID: 29340649 PMCID: PMC5770179 DOI: 10.1167/iovs.17-22509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mammalian central nervous system axons fail to regenerate after injury. Contributing factors include limited intrinsic growth capacity and an inhibitory glial environment. Inflammation-induced optic nerve regeneration (IIR) is thought to boost retinal ganglion cell (RGC) intrinsic growth capacity through progrowth gene expression, but effects on the inhibitory glial environment of the optic nerve are unexplored. To investigate progrowth molecular changes associated with reactive gliosis during IIR, we developed an imaging mass spectrometry (IMS)-based approach that identifies discriminant molecular signals in and around optic nerve crush (ONC) sites. Methods ONC was performed in rats, and IIR was established by intravitreal injection of a yeast cell wall preparation. Optic nerves were collected at various postcrush intervals, and longitudinal sections were analyzed with matrix-assisted laser desorption/ionization (MALDI) IMS and data mining. Immunohistochemistry and confocal microscopy were used to compare discriminant molecular features with cellular features of reactive gliosis. Results IIR increased the area of the crush site that was occupied by a dense cellular infiltrate and mass spectral features consistent with lysosome-specific lipids. IIR also increased immunohistochemical labeling for microglia and macrophages. IIR enhanced clearance of lipid sulfatide myelin-associated inhibitors of axon growth and accumulation of simple GM3 gangliosides in a spatial distribution consistent with degradation of plasma membrane from degenerated axons. Conclusions IIR promotes a robust phagocytic response that improves clearance of myelin and axon debris. This growth-permissive molecular remodeling of the crush injury site extends our current understanding of IIR to include mechanisms extrinsic to the RGC.
Collapse
Affiliation(s)
- David T Stark
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - David M G Anderson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jacky M K Kwong
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Nathan Heath Patterson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Kevin L Schey
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard M Caprioli
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Joseph Caprioli
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
16
|
Liu FY, Li GW, Sun CH, Chen S, Cao JF, Ma QQ, Fang SY. Effects of bone marrow mesenchymal stem cells transfected with Ang-1 gene on hyperoxia-induced optic nerve injury in neonatal mice. J Cell Physiol 2018; 233:8567-8577. [PMID: 29377123 DOI: 10.1002/jcp.26501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Optic nerve injury triggered retinal ganglion cell (RGC) death and optic nerve atrophy lead to visual loss. Bone marrow mesenchymal stem cells (BMSCs) are stromal cells, capable of proliferating and differentiating into different types of tissues. This aims of this study is to investigate the role of BMSCs transfected with angiopoietin-1 (Ang-1) in optic nerve injury induced by hyperoxia in a neonatal mice model. Ang-1 overexpression vector was constructed and used to transfect BMSCs. Reverse transcription-quantitative polymerase chain reaction was performed to detect Ang-1 expression in BMSCs. The hyperoxia-induced optic nerve injury model was established. The optic nerves at 6-7 mm posterior to the eyeball were extracted, and were treated with luxol fast blue staining, immunohistochemistry, immunofluorescence, and transmission electron microscopy to examine the effects of Ang-1-modified BMSCs on optic nerve injury induced by hyperoxia. The mice in the Ang-1 + BMSCs and BMSCs groups showed remarkably improved myelin sheaths of nerve fibers compared to the hyperoxia saline group. The positive expression and integrated optic density of Ang-1 in the Ang-1 + BMSCs group were significantly higher compared to the air control, hyperoxia saline and BMSCs groups. The number and diameter of myelinated nerve fibers, the diameter of axons and the thickness of myelin sheath in the air control and Ang-1 + BMSCs groups were higher compared to the hyperoxia saline group. Our study provides evidence supporting that Ang-1-modified BMSCs may have preventive and therapeutic effects on hyperoxia-induced optic nerve injury in neonatal mice.
Collapse
Affiliation(s)
- Fang-Yu Liu
- Institute of Neurobiology, School of Basic Medical Science, Anhui Medical University, Hefei, P.R. China
| | - Guang-Wu Li
- Institute of Neurobiology, School of Basic Medical Science, Anhui Medical University, Hefei, P.R. China
| | - Chang-Hua Sun
- Department of Clinical Laboratory, Affiliated Hospital of Binzhou Medical College, Binzhou, P.R. China
| | - Sha Chen
- Institute of Neurobiology, School of Basic Medical Science, Anhui Medical University, Hefei, P.R. China
| | - Jun-Fei Cao
- Institute of Neurobiology, School of Basic Medical Science, Anhui Medical University, Hefei, P.R. China
| | - Qian-Qian Ma
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Binzhou Medical College, Binzhou, P.R. China
| | - Sheng-Yun Fang
- Institute of Neurobiology, School of Basic Medical Science, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
17
|
Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, Malik MTA, Anzak N, Chen DF. IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades. Sci Rep 2018; 8:2054. [PMID: 29391597 PMCID: PMC5794803 DOI: 10.1038/s41598-018-20463-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of axonal growth program is a critical step in successful optic nerve regeneration following injury. Yet the molecular mechanisms that orchestrate this developmental transition are not fully understood. Here we identified a novel regulator, insulin-like growth factor binding protein-like 1 (IGFBPL1), for the growth of retinal ganglion cell (RGC) axons. Expression of IGFBPL1 correlates with RGC axon growth in development, and acute knockdown of IGFBPL1 with shRNA or IGFBPL1 knockout in vivo impaired RGC axon growth. In contrast, administration of IGFBPL1 promoted axon growth. Moreover, IGFBPL1 bound to insulin-like growth factor 1 (IGF-1) and subsequently induced calcium signaling and mammalian target of rapamycin (mTOR) phosphorylation to stimulate axon elongation. Blockage of IGF-1 signaling abolished IGFBPL1-mediated axon growth, and vice versa, IGF-1 required the presence of IGFBPL1 to promote RGC axon growth. These data reveal a novel element in the control of RGC axon growth and suggest an unknown signaling loop in the regulation of the pleiotropic functions of IGF-1. They suggest new therapeutic target for promoting optic nerve and axon regeneration and repair of the central nervous system.
Collapse
Affiliation(s)
- Chenying Guo
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yingqian Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kissauo Tchedre
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Christian Antolik
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jie Ma
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Justin Chew
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Pritzker School of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, 0407, Oslo, Norway
| | - Xizhong A Huang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Oncology Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, 02138, USA
| | - Honghua Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Muhammad Taimur A Malik
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Nada Anzak
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Guys, Kings & St Thomas' School of Medicine, Hodgkin Building, Guy's Campus, King's College London, London, UK
| | - Dong Feng Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
- Boston VA Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA.
| |
Collapse
|
18
|
Trakhtenberg EF, Li Y, Feng Q, Tso J, Rosenberg PA, Goldberg JL, Benowitz LI. Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Exp Neurol 2018; 300:22-29. [PMID: 29106981 PMCID: PMC5745290 DOI: 10.1016/j.expneurol.2017.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
The inability of axons to regenerate over long-distances in the central nervous system (CNS) limits the recovery of sensory, motor, and cognitive functions after various CNS injuries and diseases. Although pre-clinical studies have identified a number of manipulations that stimulate some degree of axon growth after CNS damage, the extent of recovery remains quite limited, emphasizing the need for improved therapies. Here, we used traumatic injury to the mouse optic nerve as a model system to test the effects of combining several treatments that have recently been found to promote axon regeneration without the risks associated with manipulating known tumor suppressors or oncogenes. The treatments tested here include TPEN, a chelator of mobile (free) zinc (Zn2+); shRNA against the axon growth-suppressing transcription factor Klf9; and the atypical growth factor oncomodulin combined with a cAMP analog. Whereas some combinatorial treatments produced only marginally stronger effects than the individual treatments alone, co-treatment with TPEN and Klf9 knockdown had a substantially stronger effect on axon regeneration than either one alone. This combination also promoted a high level of cell survival at longer time points. Thus, Zn2+ chelation in combination with Klf9 suppression holds therapeutic potential for promoting axon regeneration after optic nerve injury, and may also be effective for treating other CNS injuries and diseases.
Collapse
Affiliation(s)
- Ephraim F Trakhtenberg
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Qian Feng
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Janice Tso
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Paul A Rosenberg
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, United States
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Faust A, Kandakatla A, van der Merwe Y, Ren T, Huleihel L, Hussey G, Naranjo JD, Johnson S, Badylak S, Steketee M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J Biomater Appl 2017; 31:1277-1295. [PMID: 28447547 DOI: 10.1177/0885328217698062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.
Collapse
Affiliation(s)
- Anne Faust
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Apoorva Kandakatla
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,3 Swanson School of Engineering, Department of Bioengineering University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanchen Ren
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Luai Huleihel
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Hussey
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Diego Naranjo
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Johnson
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Steketee
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,5 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
22
|
Cen LP, Liang JJ, Chen JH, Harvey AR, Ng TK, Zhang M, Pang CP, Cui Q, Fan YM. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration. Neuroscience 2016; 343:472-482. [PMID: 28017835 DOI: 10.1016/j.neuroscience.2016.12.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 12/09/2022]
Abstract
The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. Two weeks later, the ON was completely crushed. Three weeks after ONC, RGC survival was estimated by counting βIII-tubulin-positive neurons in retinal whole mounts. Axon regeneration was evaluated by counting GAP-43-positive axons in the crushed ON. It was found that AAV-RhoA shRNA decreased RhoA expression levels and promoted neurite outgrowth in vitro. In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China.
| | - Jia-Jian Liang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Jian-Huan Chen
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Chi Pui Pang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Qi Cui
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - You-Ming Fan
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Neurology, Affiliated Hospital of Hubei University for Nationalities, Enshi, PR China.
| |
Collapse
|
23
|
de Lima S, Mietto BS, Paula C, Muniz T, Martinez AMB, Gardino PF. Rescuing axons from degeneration does not affect retinal ganglion cell death. Braz J Med Biol Res 2016; 49:e5106. [PMID: 27007653 PMCID: PMC4819409 DOI: 10.1590/1414-431x20155106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022] Open
Abstract
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.
Collapse
Affiliation(s)
- S de Lima
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - B S Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - C Paula
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - T Muniz
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - A M B Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - P F Gardino
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
24
|
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Exp Eye Res 2015; 141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
|
25
|
Lemmens K, Bollaerts I, Bhumika S, de Groef L, Van Houcke J, Darras VM, Van Hove I, Moons L. Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system. J Comp Neurol 2015; 524:1472-93. [PMID: 26509469 DOI: 10.1002/cne.23920] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/01/2023]
Abstract
Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kim Lemmens
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Lies de Groef
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Jessie Van Houcke
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Biology Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Pires LR, Pêgo AP. Bridging the lesion-engineering a permissive substrate for nerve regeneration. Regen Biomater 2015; 2:203-14. [PMID: 26816642 PMCID: PMC4669012 DOI: 10.1093/rb/rbv012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023] Open
Abstract
Biomaterial-based strategies to restore connectivity after lesion at the spinal cord are focused on bridging the lesion and providing an favourable substrate and a path for axonal re-growth. Following spinal cord injury (SCI) a hostile environment for neuronal cell growth is established by the activation of multiple inhibitory mechanisms that hamper regeneration to occur. Implantable scaffolds can provide mechanical support and physical guidance for axon re-growth and, at the same time, contribute to alleviate the hostile environment by the in situ delivery of therapeutic molecules and/or relevant cells. Basic research on SCI has been contributing with the description of inhibitory mechanisms for regeneration as well as identifying drugs/molecules that can target inhibition. This knowledge is the background for the development of combined strategies with biomaterials. Additionally, scaffold design is significantly evolving. From the early simple hollow conduits, scaffolds with complex architectures that can modulate cell fate are currently being tested. A number of promising pre-clinical studies combining scaffolds, cells, drugs and/or nucleic acids are reported in the open literature. Overall, it is considered that to address the multi-factorial inhibitory environment of a SCI, a multifaceted therapeutic approach is imperative. The progress in the identification of molecules that target inhibition after SCI and its combination with scaffolds and/or cells are described and discussed in this review.
Collapse
Affiliation(s)
- Liliana R. Pires
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
| | - Ana P. Pêgo
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Xiong W, MacColl Garfinkel AE, Li Y, Benowitz LI, Cepko CL. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. J Clin Invest 2015; 125:1433-45. [PMID: 25798616 DOI: 10.1172/jci79735] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress contributes to the loss of neurons in many disease conditions as well as during normal aging; however, small-molecule agents that reduce oxidation have not been successful in preventing neurodegeneration. Moreover, even if an efficacious systemic reduction of reactive oxygen and/or nitrogen species (ROS/NOS) could be achieved, detrimental side effects are likely, as these molecules regulate normal physiological processes. A more effective and targeted approach might be to augment the endogenous antioxidant defense mechanism only in the cells that suffer from oxidation. Here, we created several adeno-associated virus (AAV) vectors to deliver genes that combat oxidation. These vectors encode the transcription factors NRF2 and/or PGC1a, which regulate hundreds of genes that combat oxidation and other forms of stress, or enzymes such as superoxide dismutase 2 (SOD2) and catalase, which directly detoxify ROS. We tested the effectiveness of this approach in 3 models of photoreceptor degeneration and in a nerve crush model. AAV-mediated delivery of NRF2 was more effective than SOD2 and catalase, while expression of PGC1a accelerated photoreceptor death. Since the NRF2-mediated neuroprotective effects extended to photoreceptors and retinal ganglion cells, which are 2 very different types of neurons, these results suggest that this targeted approach may be broadly applicable to many diseases in which cells suffer from oxidative damage.
Collapse
|
29
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Chapter 5 - Restoring Vision to the Blind: Endogenous Regeneration. Transl Vis Sci Technol 2014; 3:7. [DOI: 10.1167/tvst.3.7.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
31
|
Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9:e110722. [PMID: 25347773 PMCID: PMC4210195 DOI: 10.1371/journal.pone.0110722] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2013] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.
Collapse
Affiliation(s)
- Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Beatriz Padilha de Figueirêdo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Luiza Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Bruno D. Paredes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Teixeira
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
32
|
Semba K, Namekata K, Guo X, Harada C, Harada T, Mitamura Y. Renin-angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis 2014; 5:e1333. [PMID: 25032856 PMCID: PMC4123089 DOI: 10.1038/cddis.2014.296] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2013] [Revised: 04/13/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
Abstract
Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). In the present study, we found that expressions of angiotensin II type 1 receptor (AT1-R) and Toll-like receptor 4 (TLR4) are increased in RGCs and retinal Müller glia in EAAC1-deficient (KO) mice. The orally active AT1-R antagonist candesartan suppressed TLR4 and lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expressions in the EAAC1 KO mouse retina. Sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with candesartan was effective for RGC protection in EAAC1 KO mice without affecting IOP. In cultured Müller glia, candesartan suppressed LPS-induced iNOS production by inhibiting the TLR4-apoptosis signal-regulating kinase 1 pathway. These results suggest that the renin–angiotensin system is involved in the innate immune responses in both neural and glial cells, which accelerate neural cell death. Our findings raise intriguing possibilities for the management of glaucoma by utilizing widely prescribed drugs for the treatment of high blood pressure, in combination with conventional treatments to lower IOP.
Collapse
Affiliation(s)
- K Semba
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Harada
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Y Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
33
|
Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. J Neurosci 2014; 34:7361-74. [PMID: 24849368 DOI: 10.1523/jneurosci.3658-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation.
Collapse
|
34
|
Sagawa H, Terasaki H, Nakanishi K, Tokita Y, Watanabe M. Regeneration of optic nerve fibers with unoprostone, a prostaglandin-related antiglaucoma drug, in adult cats. Jpn J Ophthalmol 2013; 58:100-9. [PMID: 24129676 DOI: 10.1007/s10384-013-0282-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE We investigated the effects of unoprostone on neurite extension of cultured retinal pieces and axonal regeneration of retinal ganglion cells in the crushed optic nerve of adult cats. METHODS The retinal pieces were cultured with unoprostone or its primary metabolite, M1, dissolved in DMSO or polysorbate for 14 days, and the number and length of Tau-1-positive neurites and glial processes labeled with anti-glial fibrillary acidic protein antibodies were examined. After the optic nerve was crushed, unoprostone was injected into the vitreous body and the crushed site. On day 12, wheat germ agglutinin-conjugated horseradish peroxidase was injected into the vitreous body to anterogradely label the regenerated axons. On day 14, the optic nerve was excised and longitudinally sectioned. After peroxidase reaction, the number of axons regenerating beyond the crush site was examined. RESULTS The greatest number of neurites protruded from the cultured retinal pieces in 3 μM unoprostone and 3 μM M1. The neurite length was also the longest at 3 μM unoprostone and 3 μM M1, in which no glial processes were detected. After injections of 3 μM unoprostone, the final concentration in the vitreous humor, into the vitreous body and the crush site, the optic nerve fibers regenerated and extended beyond the crush site. In contrast, almost no fibers extended beyond the crush site after injection of phosphate-buffered saline. CONCLUSIONS The results indicate that intravitreal injection of unoprostone promotes regeneration of crushed optic nerve fibers in adult cats.
Collapse
Affiliation(s)
- Hiroe Sagawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|