1
|
Haynes EP, Canzano M, Tantama M. Excitation-Dependent pKa Extends the Sensing Range of Fluorescence Lifetime pH Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:7531. [PMID: 39686068 DOI: 10.3390/s24237531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Biological activity is strongly dependent on pH, which fluctuates within a variety of neutral, alkaline, and acidic local environments. The heterogeneity of tissue and subcellular pH has driven the development of sensors with different pKa values, and a huge assortment of fluorescent sensors have been created to measure and visualize pH in living cells and tissues. In particular, sensors that report based on fluorescence lifetime are advantageous for quantitation. Here, we apply a theoretical framework to derive how the apparent pKa of lifetime-based pH sensors depends on fluorescence excitation wavelength. We demonstrate that theory predicts the behavior of two different fluorescent protein-based pH sensors in solution as proofs-of-concept. Furthermore, we show that this behavior has great practical value in living cells because it extends the sensing range of a single sensor by simply choosing appropriate detection parameters to match the physiological pH range of interest. More broadly, our results show that the versatility of a single lifetime-based sensor has been significantly underappreciated, and our approach provides a means to use a single sensor across a range of pH environments.
Collapse
Affiliation(s)
- Emily P Haynes
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Mary Canzano
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| | - Mathew Tantama
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
- Biochemistry Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA
| |
Collapse
|
2
|
Sun P, Zhang Z, Wang B, Liu C, Chen C, Liu P, Li X. A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat Commun 2022; 13:6562. [PMID: 36333306 PMCID: PMC9636186 DOI: 10.1038/s41467-022-34306-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Itaconate is a newly discovered endogenous metabolite promoting an anti-inflammatory program during innate immune response, but the precise mechanisms underlying its effect remains poorly understood owing primarily to the limitations of available itaconate-monitoring techniques. Here, we develop and validate a genetically encoded fluorescent itaconate biosensor, BioITA, for directly monitoring itaconate dynamics in subcellular compartments of living macrophages. Utilizing BioITA, we monitor the itaconate dynamics in response to lipopolysaccharide (LPS) stimulation in the context of modulating itaconate transportation and metabolism. Moreover, we show that STING activation induces itaconate production, and injection of AAVs expressing cytosolic BioITA into mice allows directly reporting elevation of itaconate level in activated macrophages derived from LPS-injected mice. Thus, BioITA enables subcellular resolution imaging of itaconate in living macrophages.
Collapse
Affiliation(s)
- Pengkai Sun
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenxing Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Caiyun Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chao Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ping Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xinjian Li
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Denn ER, Schober JM. A single-wavelength flow cytometric approach using redox-sensitive green fluorescent protein probes for measuring redox stress in live cells. Biotechniques 2021; 70:278-284. [PMID: 33969703 DOI: 10.2144/btn-2020-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cellular redox changes are common in apoptosis, immune function, signaling pathways and cancer. The authors aimed to develop a single-wavelength method using the superior fluorescence sensitivity of a flow cytometer for measuring redox-sensitive green fluorescent protein signal during oxidative stress in cell lines. The single-wavelength method was able to discern small differences in oxidative stress between cell lines and between the cytoplasmic and mitochondrial compartments within the same cell line. In Chinese hamster ovary cells, the mitochondrial matrix compartment was more sensitive to oxidative stress compared with MDA-MB-231 cells, and the rapid changes in redox state were followed by a slow recovery phase. The authors conclude that this simplified method is useful and preferred for studies where alterations in overall redox-sensitive green fluorescent protein expression are controlled.
Collapse
Affiliation(s)
- Elizabeth R Denn
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL 62025, USA
| | - Joseph M Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL 62025, USA
| |
Collapse
|
4
|
Lovinger DM, Gremel CM. A Circuit-Based Information Approach to Substance Abuse Research. Trends Neurosci 2021; 44:122-135. [PMID: 33168235 PMCID: PMC7856012 DOI: 10.1016/j.tins.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 01/25/2023]
Abstract
Recent animal research on substance-use disorders (SUDs) has emphasized learning models and the identification of 'addiction-prone' animals. Meanwhile, basic neuroscientific research has elucidated molecular, cellular, and circuit functions with increasing sophistication. However, SUD-related research is hampered by continued arguments over which animal models are more 'addiction like', as well as the facile assignment of behaviors to a given brain region and vice versa. We argue that SUD-related research would benefit from a 'bottom-up' approach including: (i) the characterization of different brain circuits to understand their normal function as well as how they respond to drugs and contribute to SUDs; and (ii) a focus on the use patterns and neurobiological effects of different substances to understand the range of critical SUD-related in vivo phenotypes.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Christina M Gremel
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Werley CA, Boccardo S, Rigamonti A, Hansson EM, Cohen AE. Multiplexed Optical Sensors in Arrayed Islands of Cells for multimodal recordings of cellular physiology. Nat Commun 2020; 11:3881. [PMID: 32753572 PMCID: PMC7403318 DOI: 10.1038/s41467-020-17607-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Cells typically respond to chemical or physical perturbations via complex signaling cascades which can simultaneously affect multiple physiological parameters, such as membrane voltage, calcium, pH, and redox potential. Protein-based fluorescent sensors can report many of these parameters, but spectral overlap prevents more than ~4 modalities from being recorded in parallel. Here we introduce the technique, MOSAIC, Multiplexed Optical Sensors in Arrayed Islands of Cells, where patterning of fluorescent sensor-encoding lentiviral vectors with a microarray printer enables parallel recording of multiple modalities. We demonstrate simultaneous recordings from 20 sensors in parallel in human embryonic kidney (HEK293) cells and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and we describe responses to metabolic and pharmacological perturbations. Together, these results show that MOSAIC can provide rich multi-modal data on complex physiological responses in multiple cell types.
Collapse
Affiliation(s)
- Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Q-State Biosciences, Cambridge, MA, 02139, USA
| | - Stefano Boccardo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Nobel Biocare AG, Kloten, Switzerland
| | - Alessandra Rigamonti
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
| | - Emil M Hansson
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
6
|
Lerchundi R, Huang N, Rose CR. Quantitative Imaging of Changes in Astrocytic and Neuronal Adenosine Triphosphate Using Two Different Variants of ATeam. Front Cell Neurosci 2020; 14:80. [PMID: 32372916 PMCID: PMC7186936 DOI: 10.3389/fncel.2020.00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded nanosensors such as the FRET-based adenosine triphosphate (ATP) sensor ATeam enable the measurement of changes in ATP levels inside cells, promoting our understanding of metabolic interactions between astrocytes and neurons. The sensors are usually well characterized in vitro but display altered properties when expressed inside cells, precluding a meaningful conversion of changes in FRET ratios into changes in intracellular ATP concentrations ([ATP]) on the basis of their in vitro properties. Here, we present an experimental strategy for the intracellular calibration of two different variants of ATeam in organotypic tissue slice culture of the mouse brain. After cell-type-specific expression of the sensors in astrocytes or neurons, slices were first perfused with a saline containing the saponin β-escin to permeabilize plasma membranes for ATP. Next, cells were depleted of ATP by perfusion with ATP-free saline containing metabolic inhibitors. Finally, ATP was re-added at defined concentrations and resulting changes in the FRET ratio recorded. When employing this protocol, ATeam1.03 expressed in astrocytes reliably responds to changes in [ATP], exhibiting an apparent KD of 9.4 mM. The high-affinity sensor ATeam1.03YEMK displayed a significantly lower intracellular KD of 2.7 mM. On the basis of these calibrations, we found that induction of a recurrent neuronal network activity resulted in an initial transient increase in astrocytic [ATP] by ~0.12 mM as detected by ATeam1.03YEMK, a result confirmed using ATeam1.03. In neurons, in contrast, [ATP] immediately started to decline upon initiation of a network activity, amounting to a decrease by an average of 0.29 mM after 2 min. Taken together, our results demonstrate that ATeam1.03YEMK and ATeam1.03 display a significant increase in their apparent KD when expressed inside cells as compared with in vitro. Moreover, they show that both ATeam variants enable the quantitative detection of changes of astrocytic and neuronal [ATP] in the physiological range. ATeam1.03YEMK, however, seems preferable because its KD is close to baseline ATP levels. Finally, our data support the idea that synchronized neuronal activity initially stimulates the generation of ATP in astrocytes, presumably through increased glycolysis, whereas ATP levels in neurons decline.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Na Huang
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Scida K, Plaxco KW, Jamieson BG. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Transl Res 2019; 213:50-66. [PMID: 31361988 DOI: 10.1016/j.trsl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies. In this review, we briefly summarize the advancements made over the past 10 years to decode the brain's neurochemistry and neuropharmacology in situ, at the site of interest in the brain, with special focus on what we consider game-changing emerging technologies (eg, genetically encoded indicators and electrochemical aptamer-based sensors) and the challenges these must overcome before chronic, in situ chemosensing measurements become routine.
Collapse
Affiliation(s)
- Karen Scida
- Diagnostic Biochips, Inc., Glen Burnie, Maryland
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | | |
Collapse
|
8
|
Gerkau NJ, Lerchundi R, Nelson JSE, Lantermann M, Meyer J, Hirrlinger J, Rose CR. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. J Physiol 2019; 597:5687-5705. [PMID: 31549401 DOI: 10.1113/jp278658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Employing quantitative Na+ -imaging and Förster resonance energy transfer-based imaging with ATeam1.03YEMK (ATeam), we studied the relation between activity-induced Na+ influx and intracellular ATP in CA1 pyramidal neurons of the mouse hippocampus. Calibration of ATeam in situ enabled a quantitative estimate of changes in intracellular ATP concentrations. Different paradigms of stimulation that induced global Na+ influx into the entire neuron resulted in decreases in [ATP] in the range of 0.1-0.6 mm in somata and dendrites, while Na+ influx that was locally restricted to parts of dendrites did not evoke a detectable change in dendritic [ATP]. Our data suggest that global Na+ transients require global cellular activation of the Na+ /K+ -ATPase resulting in a consumption of ATP that transiently overrides its production. For recovery from locally restricted Na+ influx, ATP production as well as fast intracellular diffusion of ATP and Na+ might prevent a local drop in [ATP]. ABSTRACT Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+ ]i ) is mainly mediated by the Na+ /K+ -ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+ ]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i ) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+ ]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3-0.4 mm in both compartments. Global [Na+ ]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i . Our results suggest that ATP consumption by the NKA following global [Na+ ]i transients temporarily overrides its availability, causing a decrease in [ATP]i . Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i , suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Joel S E Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Marina Lantermann
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, 37075, Goettingen, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| |
Collapse
|
9
|
Nguyen C, Upadhyay H, Murphy M, Borja G, Rozsahegyi EJ, Barnett A, Brookings T, McManus OB, Werley CA. Simultaneous voltage and calcium imaging and optogenetic stimulation with high sensitivity and a wide field of view. BIOMEDICAL OPTICS EXPRESS 2019; 10:789-806. [PMID: 30800515 PMCID: PMC6377900 DOI: 10.1364/boe.10.000789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Transmembrane voltage and intracellular calcium concentration are coupled parameters essential to the function of neurons, cardiomyocytes, and other excitable cells. Here we introduce the Firefly-HR microscope for simultaneous optogenetic stimulation and voltage and calcium imaging with fluorescent proteins using three spectrally distinct visible color bands. Firefly-HR combines patterned stimulation, near-total internal reflection laser excitation through a prism located between the sample and a water-immersion objective, and concurrent imaging of three color channels. The microscope has efficient light collection, low fluorescent background, and a large field of view (0.24 x 1.2 mm @ 1000 frames/sec). We characterize optical crosstalk and demonstrate capabilities with three applications: (1) probing synaptically connected neuronal microcircuits, (2) examining the coupling between neuronal action potentials and calcium influx, and (3) studying the pharmacology of paced human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) via simultaneous recordings of voltage, calcium, and contraction.
Collapse
|
10
|
Lerchundi R, Kafitz KW, Winkler U, Färfers M, Hirrlinger J, Rose CR. FRET-based imaging of intracellular ATP in organotypic brain slices. J Neurosci Res 2018; 97:933-945. [PMID: 30506574 DOI: 10.1002/jnr.24361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Active neurons require a substantial amount of adenosine triphosphate (ATP) to re-establish ion gradients degraded by ion flux across their plasma membranes. Despite this fact, neurons, in contrast to astrocytes, do not contain any significant stores of energy substrates. Recent work has provided evidence for a neuro-metabolic coupling between both cell types, in which increased glycolysis and lactate production in astrocytes support neuronal metabolism. Here, we established the cell type-specific expression of the Förster resonance energy transfer (FRET) based nanosensor ATeam1.03YEMK ("Ateam") for dynamic measurement of changes in intracellular ATP levels in organotypic brain tissue slices. To this end, adeno-associated viral vectors coding for Ateam, driven by either the synapsin- or glial fibrillary acidic protein (GFAP) promoter were employed for specific transduction of neurons or astrocytes, respectively. Chemical ischemia, induced by perfusion of tissue slices with metabolic inhibitors of cellular glycolysis and mitochondrial respiration, resulted in a rapid decrease in the cellular Ateam signal to a new, low level, indicating nominal depletion of intracellular ATP. Increasing the extracellular potassium concentration to 8 mM, thereby mimicking the release of potassium from active neurons, did not alter ATP levels in neurons. It, however, caused in an increase in ATP levels in astrocytes, a result which was confirmed in acutely isolated tissue slices. In summary, our results demonstrate that organotypic cultured slices are a reliable tool for FRET-based dynamic imaging of ATP in neurons and astrocytes. They moreover provide evidence for an increased ATP synthesis in astrocytes, but not neurons, during periods of elevated extracellular potassium concentrations.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marcel Färfers
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
12
|
Uhlirova H, Tian P, Kılıç K, Thunemann M, Sridhar VB, Chmelik R, Bartsch H, Dale AM, Devor A, Saisan PA. Neurovascular Network Explorer 2.0: A Simple Tool for Exploring and Sharing a Database of Optogenetically-evoked Vasomotion in Mouse Cortex In Vivo. J Vis Exp 2018. [PMID: 29782006 DOI: 10.3791/57214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website1. The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.
Collapse
Affiliation(s)
- Hana Uhlirova
- Department of Radiology, University of California, San Diego; Central European Institute of Technology, Brno University of Technology;
| | - Peifang Tian
- Department of Neurosciences, University of California, San Diego; Department of Physics, John Carroll University
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego; Department of Biomedical Engineering, Boston University
| | | | - Vishnu B Sridhar
- Bioengineering Undergraduate Program, University of California, San Diego
| | - Radim Chmelik
- Central European Institute of Technology, Brno University of Technology; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology
| | - Hauke Bartsch
- Department of Radiology, University of California, San Diego
| | - Anders M Dale
- Department of Radiology, University of California, San Diego; Department of Neurosciences, University of California, San Diego
| | - Anna Devor
- Department of Radiology, University of California, San Diego; Department of Neurosciences, University of California, San Diego; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - Payam A Saisan
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
13
|
Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, Minguet M, Distor K, Rocha-Gregg BL, Coloff JL, Keibler MA, Stephanopoulos G, Yellen G, Brugge JS, Albeck JG. Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. eLife 2017; 6:27293. [PMID: 29239720 PMCID: PMC5730373 DOI: 10.7554/elife.27293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Cells use multiple feedback controls to regulate metabolism in response to nutrient and signaling inputs. However, feedback creates the potential for unstable network responses. We examined how concentrations of key metabolites and signaling pathways interact to maintain homeostasis in proliferating human cells, using fluorescent reporters for AMPK activity, Akt activity, and cytosolic NADH/NAD+ redox. Across various conditions, including glycolytic or mitochondrial inhibition or cell proliferation, we observed distinct patterns of AMPK activity, including both stable adaptation and highly dynamic behaviors such as periodic oscillations and irregular fluctuations that indicate a failure to reach a steady state. Fluctuations in AMPK activity, Akt activity, and cytosolic NADH/NAD+ redox state were temporally linked in individual cells adapting to metabolic perturbations. By monitoring single-cell dynamics in each of these contexts, we identified PI3K/Akt regulation of glycolysis as a multifaceted modulator of single-cell metabolic dynamics that is required to maintain metabolic stability in proliferating cells.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Cell Biology, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Carolyn Teragawa
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Marta Minguet
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Kevin Distor
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Briana L Rocha-Gregg
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Jonathan L Coloff
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Mark A Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| |
Collapse
|
14
|
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 2017; 25:542-572. [PMID: 29229998 PMCID: PMC5864235 DOI: 10.1038/s41418-017-0020-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium (www.cebiond.org), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Collapse
|
15
|
Werley CA, Chien MP, Cohen AE. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. BIOMEDICAL OPTICS EXPRESS 2017; 8:5794-5813. [PMID: 29296505 PMCID: PMC5745120 DOI: 10.1364/boe.8.005794] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 05/08/2023]
Abstract
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Christopher A. Werley
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Miao-Ping Chien
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
17
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|
18
|
Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med 2017; 109:167-188. [PMID: 27939954 DOI: 10.1016/j.freeradbiomed.2016.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
19
|
Lu FM, Hilgemann DW. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes. J Gen Physiol 2017; 149:727-749. [PMID: 28606910 PMCID: PMC5496509 DOI: 10.1085/jgp.201711780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022] Open
Abstract
The Na/K pump exports cytoplasmic Na ions while importing K ions, and its activity is thought to be affected by restricted intracellular Na diffusion in cardiac myocytes. Lu and Hilgemann find instead that the pump can enter an inactivated state and that inactivation can be relieved by cytoplasmic Na. Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when cytoplasmic Na rises and suppresses pump activity when cytoplasmic Na declines.
Collapse
Affiliation(s)
- Fang-Min Lu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
20
|
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc Natl Acad Sci U S A 2017; 114:E1866-E1874. [PMID: 28223521 DOI: 10.1073/pnas.1615375114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation.
Collapse
|
21
|
Genetically Encoded Voltage Indicators: Opportunities and Challenges. J Neurosci 2016; 36:9977-89. [PMID: 27683896 DOI: 10.1523/jneurosci.1095-16.2016] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions.
Collapse
|
22
|
Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH. Biosensor reveals multiple sources for mitochondrial NAD⁺. Science 2016; 352:1474-7. [PMID: 27313049 DOI: 10.1126/science.aad5168] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases (PARPs), which are NAD(+)-consuming enzymes localized in the nucleus, cytosol, and mitochondria. Fluctuations in NAD(+) concentrations within these subcellular compartments are thought to regulate the activity of NAD(+)-consuming enzymes; however, the challenge in measuring compartmentalized NAD(+) in cells has precluded direct evidence for this type of regulation. We describe the development of a genetically encoded fluorescent biosensor for directly monitoring free NAD(+) concentrations in subcellular compartments. We found that the concentrations of free NAD(+) in the nucleus, cytoplasm, and mitochondria approximate the Michaelis constants for sirtuins and PARPs in their respective compartments. Systematic depletion of enzymes that catalyze the final step of NAD(+) biosynthesis revealed cell-specific mechanisms for maintaining mitochondrial NAD(+) concentrations.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - DongHo Kim
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amber M Jones-Brunette
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rory K Morgan
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S Cohen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard H Goodman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
23
|
Okano H, Miyawaki A, Kasai K. Brain/MINDS: brain-mapping project in Japan. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0310. [PMID: 25823872 PMCID: PMC4387516 DOI: 10.1098/rstb.2014.0310] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.
Collapse
Affiliation(s)
- Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
24
|
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu JR, Del Rio T, Enquist LW. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015; 7:5933-61. [PMID: 26610544 PMCID: PMC4664988 DOI: 10.3390/v7112915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
Collapse
Affiliation(s)
- Ian B Hogue
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jens B Bosse
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Esteban A Engel
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Julian Scherer
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jiun-Ruey Hu
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Tony Del Rio
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Zhao M, Alleva R, Ma H, Daniel AGS, Schwartz TH. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 2015; 116:15-26. [PMID: 26354163 PMCID: PMC4567692 DOI: 10.1016/j.eplepsyres.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Abstract
Epilepsy affects roughly 1% of the population worldwide. Although effective treatments with antiepileptic drugs are available, more than 20% of patients have seizures that are refractory to medical therapy and many patients experience adverse effects. Hence, there is a continued need for novel therapies for those patients. A new technique called "optogenetics" may offer a new hope for these refractory patients. Optogenetics is a technology based on the combination of optics and genetics, which can control or record neural activity with light. Following delivery of light-sensitive opsin genes such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and others into brain, excitation or inhibition of specific neurons in precise brain areas can be controlled by illumination at different wavelengths with very high temporal and spatial resolution. Neuromodulation with the optogenetics toolbox have already been shown to be effective at treating seizures in animal models of epilepsy. This review will outline the most recent advances in epilepsy research with optogenetic techniques and discuss how this technology can contribute to our understanding and treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Rose Alleva
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Andy G S Daniel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Otolaryngology, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
26
|
NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proc Natl Acad Sci U S A 2015; 112:11090-5. [PMID: 26286989 DOI: 10.1073/pnas.1508259112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.
Collapse
|
27
|
Benjamin Kacerovsky J, Murai KK. Stargazing: Monitoring subcellular dynamics of brain astrocytes. Neuroscience 2015; 323:84-95. [PMID: 26162237 DOI: 10.1016/j.neuroscience.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain.
Collapse
Affiliation(s)
- J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - K K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada.
| |
Collapse
|
28
|
Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 2015; 93:1079-92. [PMID: 25801286 PMCID: PMC4720126 DOI: 10.1002/jnr.23583] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
The vertebrate retina has specific functions and structures that give it a unique set of constraints on the way in which it can produce and use metabolic energy. The retina's response to illumination influences its energy requirements, and the retina's laminated structure influences the extent to which neurons and glia can access metabolic fuels. There are fundamental differences between energy metabolism in retina and that in brain. The retina relies on aerobic glycolysis much more than the brain does, and morphological differences between retina and brain limit the types of metabolic relationships that are possible between neurons and glia. This Mini-Review summarizes the unique metabolic features of the retina with a focus on the role of lactate shuttling.
Collapse
Affiliation(s)
- James B. Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Kenneth J. Lindsay
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Jianhai Du
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Ast C, De Michele R, Kumke MU, Frommer WB. Single-fluorophore membrane transport activity sensors with dual-emission read-out. eLife 2015; 4:e07113. [PMID: 26090909 PMCID: PMC4491562 DOI: 10.7554/elife.07113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/18/2015] [Indexed: 01/28/2023] Open
Abstract
We recently described a series of genetically encoded, single-fluorophore-based sensors, termed AmTrac and MepTrac, which monitor membrane transporter activity in vivo (De Michele et al., 2013). However, being intensiometric, AmTrac and Meptrac are limited in their use for quantitative studies. Here, we characterized the photophysical properties (steady-state and time-resolved fluorescence spectroscopy as well as anisotropy decay analysis) of different AmTrac sensors with diverging fluorescence properties in order to generate improved, ratiometric sensors. By replacing key amino acid residues in AmTrac we constructed a set of dual-emission AmTrac sensors named deAmTracs. deAmTracs show opposing changes of blue and green emission with almost doubled emission ratio upon ammonium addition. The response ratio of the deAmTracs correlated with transport activity in mutants with altered capacity. Our results suggest that partial disruption of distance-dependent excited-state proton transfer is important for the successful generation of single-fluorophore-based dual-emission sensors.
Collapse
Affiliation(s)
- Cindy Ast
- Department of Plant Biology, Carnegie Institution for Science, Stanford California, United States
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, Italian National Research Council, Palermo, Italy
| | - Michael U Kumke
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford California, United States
| |
Collapse
|
30
|
Hirai Y, Nishino E, Ohmori H. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo. J Neurophysiol 2015; 113:3930-42. [PMID: 25761950 DOI: 10.1152/jn.00005.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022] Open
Abstract
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices.
Collapse
Affiliation(s)
- Yasuharu Hirai
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Eri Nishino
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and
| | - Harunori Ohmori
- Department of Neurobiology and Physiology, Faculty of Medicine, Kyoto University, Kyoto, Kyoto, Japan; and
| |
Collapse
|
31
|
St Clair JR, Sharpe EJ, Proenza C. Culture and adenoviral infection of sinoatrial node myocytes from adult mice. Am J Physiol Heart Circ Physiol 2015; 309:H490-8. [PMID: 26001410 DOI: 10.1152/ajpheart.00068.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Pacemaker myocytes in the sinoatrial node of the heart initiate each heartbeat by firing spontaneous action potentials. However, the molecular processes that underlie pacemaking are incompletely understood, in part because of our limited ability to manipulate protein expression within the native cellular context of sinoatrial node myocytes (SAMs). Here we describe a new method for the culture of fully differentiated SAMs from adult mice, and we demonstrate that robust expression of introduced proteins can be achieved within 24-48 h in vitro via adenoviral gene transfer. Comparison of morphological and electrophysiological characteristics of 48 h-cultured versus acutely isolated SAMs revealed only minor changes in vitro. Specifically, we found that cells tended to flatten in culture but retained an overall normal morphology, with no significant changes in cellular dimensions or membrane capacitance. Cultured cells beat spontaneously and, in patch-clamp recordings, the spontaneous action potential firing rate did not differ between cultured and acutely isolated cells, despite modest changes in a subset of action potential waveform parameters. The biophysical properties of two membrane currents that are critical for pacemaker activity in SAMs, the "funny current" (If) and voltage-gated Ca(2+) currents (ICa), were also indistinguishable between cultured and acutely isolated cells. This new method for culture and adenoviral infection of fully-differentiated SAMs from the adult mouse heart expands the range of experimental techniques that can be applied to study the molecular physiology of cardiac pacemaking because it will enable studies in which protein expression levels can be modified or genetically encoded reporter molecules expressed within SAMs.
Collapse
Affiliation(s)
- Joshua R St Clair
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, Colorado; and
| | - Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, Colorado; and
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, Colorado; and Department of Medicine, Division of Cardiology - Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
32
|
Abstract
Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.
Collapse
|
33
|
Tarrago L, Péterfi Z, Lee BC, Michel T, Gladyshev VN. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 2015; 11:332-8. [PMID: 25799144 PMCID: PMC4402147 DOI: 10.1038/nchembio.1787] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly permuted yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, respectively named MetSOx and MetROx for their ability to detect S and R forms of MetO, were used for targeted analysis of protein oxidation, regulation and repair as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO and examining responses to physiological stimuli.
Collapse
Affiliation(s)
- Lionel Tarrago
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zalán Péterfi
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-712, South Korea
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A. Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 2015; 10:2083-95. [PMID: 25818295 DOI: 10.1016/j.celrep.2015.02.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 01/18/2023] Open
Abstract
Drosophila represents a key model organism for dissecting neuronal circuits that underlie innate and adaptive behavior. However, this task is limited by a lack of tools to monitor physiological parameters of spatially distributed, central synapses in identified neurons. We generated transgenic fly strains that express functional fluorescent reporters targeted to either pre- or postsynaptic compartments. Presynaptic Ca(2+) dynamics are monitored using synaptophysin-coupled GCaMP3, synaptic transmission is monitored using red fluorescent synaptophysin-pHTomato, and postsynaptic Ca(2+) dynamics are visualized using GCaMP3 fused with the postsynaptic matrix protein, dHomer. Using two-photon in vivo imaging of olfactory projection neurons, odor-evoked activity across populations of synapses is visualized in the antennal lobe and the mushroom body calyx. Prolonged odor exposure causes odor-specific and differential experience-dependent changes in pre- and postsynaptic activity at both levels of olfactory processing. The approach advances the physiological analysis of synaptic connections across defined groups of neurons in intact Drosophila.
Collapse
Affiliation(s)
- Ulrike Pech
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Natalia H Revelo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Humboldtallee 23, 37073 Göttingen, Germany
| | - Katharina J Seitz
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Humboldtallee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Humboldtallee 23, 37073 Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
35
|
Abstract
Recent advances in nanotechnology have provided new tools for measuring enzymatic activities that are relevant for the assessment of physiological and pathological processes. Caspases, the enzymes intimately linked with cell death and inflammation, are cysteine-dependent aspartate-directed proteases. The measurement of caspase activity requires assays that can provide data with specificity, precision and sensitivity. Several nanoparticle-based assays are now beginning to emerge. This article will first provide a brief discussion of conventional methods of measuring caspase activity and their limitations, followed by an overview of the advantages and limitations of nanoparticle-based strategies for sensing caspase enzymatic activity in vitro and in vivo.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC H3G 1Y6, Canada
| | - Eliza Hutter
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
36
|
Murphey DK, Herman AM, Arenkiel BR. Dissecting inhibitory brain circuits with genetically-targeted technologies. Front Neural Circuits 2014; 8:124. [PMID: 25368555 PMCID: PMC4201106 DOI: 10.3389/fncir.2014.00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022] Open
Abstract
The evolution of genetically targeted tools has begun to allow us to dissect anatomically and functionally heterogeneous interneurons, and to probe circuit function from synapses to behavior. Over the last decade, these tools have been used widely to visualize neurons in a cell type-specific manner, and engage them to activate and inactivate with exquisite precision. In this process, we have expanded our understanding of interneuron diversity, their functional connectivity, and how selective inhibitory circuits contribute to behavior. Here we discuss the relative assets of genetically encoded fluorescent proteins (FPs), viral tracing methods, optogenetics, chemical genetics, and biosensors in the study of inhibitory interneurons and their respective circuits.
Collapse
Affiliation(s)
- Dona K Murphey
- Department of Neurology, Baylor College of Medicine Houston, TX, USA
| | - Alexander M Herman
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston, TX, USA
| |
Collapse
|
37
|
Connolly NMC, Prehn JHM. The metabolic response to excitotoxicity - lessons from single-cell imaging. J Bioenerg Biomembr 2014; 47:75-88. [PMID: 25262286 DOI: 10.1007/s10863-014-9578-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Niamh M C Connolly
- Department of Physiology and Medical Physics, 123 St Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
38
|
Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 2014; 158:54-68. [PMID: 24995978 DOI: 10.1016/j.cell.2014.06.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 02/20/2014] [Accepted: 04/28/2014] [Indexed: 01/17/2023]
Abstract
Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Dong Kong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Rossignol E, Kobow K, Simonato M, Loeb JA, Grisar T, Gilby KL, Vinet J, Kadam SD, Becker AJ. WONOEP appraisal: new genetic approaches to study epilepsy. Epilepsia 2014; 55:1170-86. [PMID: 24965021 PMCID: PMC4126888 DOI: 10.1111/epi.12692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 12/19/2022]
Abstract
New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming, and optogenetic manipulations within epileptic networks are progressively unraveling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiologic effects of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy (WONOEP 2013) in Quebec, Canada. Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and has revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knock-down approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type-specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. In addition, genetically encoded cell-type labeling is providing new means to assess the role of the nonneuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and noncoding ribonucleic acid (RNA) involved in modifying gene expression following seizures. In addition, genetically based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient induced pluripotent stem cells and genetically modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Genetics has changed the field of epilepsy research considerably, and is paving the way for better diagnosis and therapies for patients with epilepsy.
Collapse
Affiliation(s)
- Elsa Rossignol
- Pediatric & Neuroscience Dept. & Brain Disease Research Group, CHU Ste-Justine, Montreal, Canada
| | - Katja Kobow
- Dept. of Neuropathology, Univ. Hospital Erlangen, Germany
| | - Michele Simonato
- Dept. of Medical Sciences (Pharmacology), Univ. of Ferrara, Italy
| | - Jeffrey A. Loeb
- Dept. of Neurology & Rehabilitation, Univ. of Illinois, Chicago, USA
| | | | - Krista L. Gilby
- Dept. of Medicine, Royal Hospital, The Melbourne Brain Centre, Univ. of Melbourne, Australia
| | - Jonathan Vinet
- Dept. of Neural, Biomedical, Metabolic & Neural Sciences, Univ. of Modena, Italy
| | - Shilpa D. Kadam
- Depts. of Neuroscience and Neurology, Kennedy Krieger & Johns Hopkins Univ. School of Medicine of Baltimore, USA
| | | |
Collapse
|
40
|
San Martín A, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I, Ceballo S, Valdebenito R, Baeza-Lehnert F, Alegría K, Contreras-Baeza Y, Garrido-Gerter P, Romero-Gómez I, Barros LF. Single-cell imaging tools for brain energy metabolism: a review. NEUROPHOTONICS 2014; 1:011004. [PMID: 26157964 PMCID: PMC4478754 DOI: 10.1117/1.nph.1.1.011004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/03/2023]
Abstract
Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.
Collapse
Affiliation(s)
- Alejandro San Martín
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Sotelo-Hitschfeld
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Lerchundi
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Fernández-Moncada
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Ceballo
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Rocío Valdebenito
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Romero-Gómez
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - L. Felipe Barros
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Address all correspondence to: L. Felipe Barros, E-mail:
| |
Collapse
|
41
|
Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A 2014; 111:5508-13. [PMID: 24706792 DOI: 10.1073/pnas.1402723111] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Collapse
|
42
|
Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J Cell Sci 2014; 127:1151-60. [PMID: 24634506 PMCID: PMC3953811 DOI: 10.1242/jcs.099994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.
Collapse
Affiliation(s)
- Vedangi Sample
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Pollock JD, Wu DY, Satterlee JS. Molecular neuroanatomy: a generation of progress. Trends Neurosci 2014; 37:106-23. [PMID: 24388609 PMCID: PMC3946666 DOI: 10.1016/j.tins.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022]
Abstract
The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade.
Collapse
Affiliation(s)
- Jonathan D Pollock
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA.
| | - Da-Yu Wu
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - John S Satterlee
- Division of Basic Neurobiology and Behavioral Research, Genetics and Molecular Neurobiology Research Branch, National Institute on Drug Abuse/National Institutes of Health (NIH), 6001 Executive Boulevard, Bethesda, MD 20850, USA
| |
Collapse
|
44
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Hung YP, Yellen G. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor. Methods Mol Biol 2014; 1071:83-95. [PMID: 24052382 PMCID: PMC4330558 DOI: 10.1007/978-1-62703-622-1_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
NADH is an essential redox cofactor in numerous metabolic reactions, and the cytosolic NADH-NAD(+) redox state is a key parameter in glycolysis. Conventional NADH measurements rely on chemical determination or autofluorescence imaging, which cannot assess NADH specifically in the cytosol of individual live cells. By combining a bacterial NADH-binding protein and a fluorescent protein variant, we have created a genetically encoded fluorescent biosensor of the cytosolic NADH-NAD(+) redox state, named Peredox (Hung et al., Cell Metab 14:545-554, 2011). Here, we elaborate on imaging methods and technical considerations of using Peredox to measure cytosolic NADH:NAD(+) ratios in individual live cells.
Collapse
Affiliation(s)
- Yin Pun Hung
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | | |
Collapse
|
46
|
Ozyurt C, Evran S, Telefoncu A. Development of a novel fluorescent protein construct by genetically fusing green fluorescent protein to the N-terminal of aspartate dehydrogenase. Biotechnol Appl Biochem 2013; 60:399-404. [PMID: 24033594 DOI: 10.1002/bab.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 11/11/2022]
Abstract
We developed a fluorescent protein construct by genetically fusing green fluorescent protein (GFP) to aspartate dehydrogenase from Thermotoga maritima. The fusion protein was cloned, heterologously expressed in Escherichia coli cells, and purified by Ni-chelate affinity chromatography. It was then introduced into a measurement cuvette to monitor its fluorescence signal. Aspartate dehydrogenase functioned as the biorecognition element, and aspartate-induced conformational change was converted to a fluorescence signal by GFP. The recombinant protein responded to l-aspartate (l-Asp) linearly within the concentration range of 1-50 mM, and it was capable of giving a fluorescence signal in 1 Min. Although a linear response was also observed for l-Glu, the fluorescence signal was 2.7 times lower than that observed for l-Asp. In the present study, we describe two novelties: development of a genetically encoded fluorescent protein construct for monitoring of l-Asp in vitro, and employment of aspartate dehydrogenase scaffold as a biorecognition element. A few genetically encoded amino-acid biosensors have been described in the literature, but to our knowledge, a protein has not been constructed solely for determination of l-Asp. Periplasmic ligand binding proteins offer high binding affinity in the micromolar range, and they are frequently used as biorecognition elements. Instead of choosing a periplasmic l-Asp binding protein, we attempted to use the substrate specificity of aspartate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Canan Ozyurt
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724;
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98103;
| |
Collapse
|
48
|
Probes of the mitochondrial cAMP-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1359-63. [PMID: 23410952 DOI: 10.1016/j.bbapap.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/02/2013] [Accepted: 02/02/2013] [Indexed: 11/22/2022]
Abstract
The development of a fluorescent assay to detect activity of the mitochondrial cAMP-dependent protein kinase (PKA) is described. A peptide-based sensor was utilized to quantify the relative amount of PKA activity present in each compartment of the mitochondria (the outer membrane, the intermembrane space, and the matrix). In the process of validating this assay, we discovered that PKA activity is regulated by the protease calpain. Upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a variety of electron transport chain inhibitors, the regulatory subunits of the PKA holoenzyme (R2C2) are digested, releasing active catalytic subunits. This proteolysis is attenuated by calpain inhibitor I (ALLN). This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
|
49
|
Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 2012; 36:32-40. [PMID: 23228828 DOI: 10.1016/j.tins.2012.11.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 12/25/2022]
Abstract
A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use during the past decade. Although the underlying mechanism of the diet remains unknown, modern scientific approaches, such as the genetic disruption of glucose metabolism, are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet, including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here, we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy.
Collapse
Affiliation(s)
- Andrew Lutas
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Mitochondrial ‘flashes’: a radical concept repHined. Trends Cell Biol 2012; 22:503-8. [DOI: 10.1016/j.tcb.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
|