1
|
Yusoff MA, Mohammadi P, Ahmad F, Sanusi NA, Hosseinzadeh-Bandbafha H, Vatanparast H, Aghbashlo M, Tabatabaei M. Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175810. [PMID: 39197788 DOI: 10.1016/j.scitotenv.2024.175810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.
Collapse
Affiliation(s)
- Mohd Azman Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Pouya Mohammadi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Azura Sanusi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Homa Hosseinzadeh-Bandbafha
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mortaza Aghbashlo
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
2
|
Cao X, Xu M, Feng T, Li R, Song Y, Meng N, Fan X, Zeng J, Xu J. A comparative lipid profile of four fish species: From muscle to industrial by-products based on RPLC-Q-TOF-MS/MS. Food Res Int 2024; 191:114725. [PMID: 39059921 DOI: 10.1016/j.foodres.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Fish are crucial for the fishing industry and essential nutrient provision, including lipids. This study employed a high-throughput lipidomic approach to evaluate and contrast the lipid profiles of three marine fish species (P. crocea, S. fuscens, and C. saira) and one freshwater species (H. molitrix) across head, muscle, and viscera. Over 1000 molecular lipid species across 17 subclasses were identified. Notably, acylated monogalactosyldiacylglycerol (acMGDG) was detected for the first time in these species, with a high prevalence of saturated fatty acids (44.7 %-87.7 %). Glycerolipids (67.7 - 86.3 %) and PLs (10.7 - 31.8 %) were identified as the dominant lipid classes. Marine fish muscles displayed higher PL content than freshwater species, and P. crocea viscera contained over 30 % PLs of total lipids. In particular, ether phosphatidyl ethanolamine incorporated more DHA than ether phosphatidylcholine. The viscera of four fish species also exhibited a significant abundance of diacylglycerol (DG), indicating their potential as functional lipid sources. Multivariate analysis identified triglyceride (TG) (59:13), DG (16:1/22:5), and MGDG (16:0/18:2) as potential biomarkers for differentiating among fish anatomical parts. This study deepens the understanding of the nutritional values of these fish, providing guidance for consumer dietary choices and paving the way for transforming previously underutilized by-products into resources with high-value potential.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Mengjie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Tingyu Feng
- Qingdao Institute of Marine Resources for Nutrition & Health Innovation, No. 106 Xiangyang Road, Qingdao, Shandong Province 266109, China.
| | - Ruoshu Li
- Qingdao Institute of Marine Resources for Nutrition & Health Innovation, No. 106 Xiangyang Road, Qingdao, Shandong Province 266109, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
3
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
4
|
Torres B, Pérez A, García P, Jiménez P, Abrigo K, Valencia P, Ramírez C, Pinto M, Almonacid S, Ruz M. Fish Bones as Calcium Source: Bioavailability of Micro and Nano Particles. Foods 2024; 13:1840. [PMID: 38928782 PMCID: PMC11203225 DOI: 10.3390/foods13121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The amount of by-products/waste in the fish industry is roughly 50%. Fish bones could be used to produce nanoparticles, which may have potential use in the food industry as a novel calcium source and at the same time, contribute to reduce waste production. The objective of this study was to evaluate the bioavailability of nano-size salmon fish bone particles compared to micro-size salmon fish bone particles, and calcium carbonate. The study was carried out in 21-28-day-old C57BL/6 male mice fed for 21 days with the experimental diets. The groups were as follows: CaCO3 0.5% Ca (CN 0.5); CaCO3 1.0% Ca (CN 1.0); salmon fish bone (SFB) microparticles 0.5% Ca (MP 0.5); SFB microparticles 1.0% Ca (MP 1.0); SFB nanoparticles 0.5% Ca (NP 0.5); and SFB nanoparticles 1.0% Ca (NP 1.0). Calcium bioavailability, defined as the percent calcium in femur showed an increasing trend from CN 0.5 to NP 1.0 group. According to ANCOVA, the greatest Ca content was observed in the NP 1.0 group compared with all groups but NP 0.5. In conclusion, in a murine model, salmon fish bone nanoparticles present higher calcium bioavailability than salmon fish bone microparticles, and both, in turn, have better bioavailability than calcium carbonate.
Collapse
Affiliation(s)
- Benjamín Torres
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Paula García
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Paula Jiménez
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Karen Abrigo
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| | - Pedro Valencia
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Marlene Pinto
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Sergio Almonacid
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; (C.R.); (M.P.); (S.A.)
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (B.T.); (A.P.); (P.G.); (P.J.); (K.A.)
| |
Collapse
|
5
|
Tsai MF, Nargotra P, Liao KT, Wang HMD, Tsai YH, Liu YC, Kuo CH. High oxidative stability of a complex fish liver oil nano-capsules in response to long-term storage, and to hyperthermal and sunlight exposure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3594-3605. [PMID: 38149759 DOI: 10.1002/jsfa.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In this study, a biocompatible nano-carrying platform using chitosan (ChI) and chondroitin sulfate (ChS) was developed for the encapsulation of cobia liver oil (CBLO) to prevent its oxidation and improve its absorption. An ionic gelation method was applied to encapsulate CBLO with different weight ratios (from 1.0 to 1.5) to obtain ChS-ChI nano-capsules (ChS-ChI@CBLO NCs). RESULTS Morphological observations of the nano-capsules revealed a spherical shape and diameter around 267-381 nm. The maximum loading capacity (LC) and encapsulation efficiency (EE) for ChS-ChI@CBLO NCs estimated by thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis were 25.7% and 56.2%, respectively. The structural stability of ChS-ChI@CBLO NCs was confirmed through differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis; moreover DSC also further confirmed the oxidative stability of ChS-ChI@CBLO NCs. Fourier-transform infrared (FTIR) spectra confirmed the excellent stability of ChS-ChI@CBLO NCs against high temperature and sunlight exposure. Biocompatibility analysis also verified the non-toxicity of ChS-ChI@CBLO NCs, further indicating safety and potential application in complex-nutritional supplements. CONCLUSION Nano-degree of ChS-ChI@CBLO NCs has a loading capacity and encapsulation efficiency of around 16.5 ~ 25.7% and 33.4 ~ 56.2%, respectively, for encapsulation of CBLO. Characterization results also indicate that ChS-ChI@CBLO NCs display high oxidative stability against long-term, hyperthermal, and sunlight exposure. Bioassay results confirm that the ChS-ChI@CBLO NCs are safe and non-toxic. This study demonstrates that nano-capsules are also beneficial in preventing sensitive compounds from metamorphosis, and are non-toxic. These materials are suitable for use in the food and pharmaceutical industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Fong Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Ting Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Ito T, Rojasawasthien T, Takeuchi SY, Okamoto H, Okumura N, Shirakawa T, Matsubara T, Kawamoto T, Kokabu S. Royal Jelly Enhances the Ability of Myoblast C2C12 Cells to Differentiate into Multilineage Cells. Molecules 2024; 29:1449. [PMID: 38611729 PMCID: PMC11013243 DOI: 10.3390/molecules29071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Royal jelly (RJ) is recognized as beneficial to mammalian health. Multilineage differentiation potential is an important property of mesenchymal stem cells (MSCs). C2C12 cells have an innate ability to differentiate into myogenic cells. Like MSCs, C2C12 cells can also differentiate into osteoblast- and adipocyte-lineage cells. We recently reported that RJ enhances the myogenic differentiation of C2C12 cells. However, the effect of RJ on osteoblast or adipocyte differentiation is still unknown. Here in this study, we have examined the effect of RJ on the osteoblast and adipocyte differentiation of C2C12 cells. Protease-treated RJ was used to reduce the adverse effects caused by RJ supplementation. To induce osteoblast or adipocyte differentiation, cells were treated with bone morphogenetic proteins (BMP) or peroxisome proliferator-activated receptor γ (PPARγ) agonist, respectively. RNA-seq was used to analyze the effect of RJ on gene expression. We found that RJ stimulates osteoblast and adipocyte differentiation. RJ regulated 279 genes. RJ treatment upregulated glutathione-related genes. Glutathione, the most abundant antioxidative factor in cells, has been shown to promote osteoblast differentiation in MSC and MSC-like cells. Therefore, RJ may promote osteogenesis, at least in part, through the antioxidant effects of glutathione. RJ enhances the differentiation ability of C2C12 cells into multiple lineages, including myoblasts, osteoblasts, and adipocytes.
Collapse
Affiliation(s)
- Takumi Ito
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| |
Collapse
|
7
|
M D S, Balange AK, Layana P, Naidu BC. Harnessing value and sustainability: Fish waste valorization and the production of valuable byproducts. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:175-192. [PMID: 37898539 DOI: 10.1016/bs.afnr.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The valorization of by-products, that are residual materials resulting from commercial product manufacturing, holds significant potential in various industries such as food, agrochemical, medical, and pharmaceutical sectors. This chapter explores the utilization of fish waste as a means to achieve sustainability in fish resources and enhance the production of profitable products. By developing cost-effective technologies, the abundant global supply of fish by-products can be transformed into low-cost sources of proteins and functional hydrolysates. This alternative approach in the food industry utilizes fish and seafood waste to generate valuable compounds with nutritional and functional properties, surpassing those found in traditional mammal products. Despite being commonly discarded, fish heads, viscera, skin, tails, blood, and seafood shells contain a wealth ofminerals, lipids, amino acids, polysaccharides, and proteins suitable for human health applications. This chapter presents an exploration of the various products and bioactive compounds that can be derived from seafood waste, contributing to a more sustainable and value-driven future.
Collapse
Affiliation(s)
- Sahana M D
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| | - Amjad K Balange
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India.
| | - P Layana
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| | - Bejawada Chanikya Naidu
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Sasidharan A, Rustad T, Cusimano GM. Tuna sidestream valorization: a circular blue bioeconomy approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28610-w. [PMID: 37434051 DOI: 10.1007/s11356-023-28610-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Tuna is an economically significant seafood, harvested throughout the world, and is heavily traded due to its high nutritional quality and consumer acceptance. Tuna meat is rich in essential nutrients such as amino acids, polyunsaturated fatty acids (PUFA), and trace minerals. The huge volume of solid and liquid sidestreams generated during the processing stages of tuna is creating environmental and socioeconomic challenges in coastal areas. Different products such as fish meal, protein hydrolysates, collagen, enzymes, oil, and bone powder can be produced from tuna sidestreams. Using different nutrient recovery technologies like enzymatic hydrolysis, chemical processing, and green technologies, various categories of product value chains can be created in line with the conventional processing industry. This review attempts to provide a route map for the tuna industry for achieving the circular blue-bioeconomic objectives and reorient the irregular utilization pattern into a sustainable and inclusive path.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Fish Processing Technology, KUFOS, Kerala, India
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | | |
Collapse
|
9
|
Alizadeh-Ghamsari AH, Shaviklo AR, Hosseini SA. Effects of a new generation of fish protein hydrolysate on performance, intestinal microbiology, and immunity of broiler chickens. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:804-817. [PMID: 37970503 PMCID: PMC10640943 DOI: 10.5187/jast.2022.e99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2023]
Abstract
This study was conducted to evaluate the effects of co-dried fish protein hydrolysate (CFPH) on broilers performance, intestinal microbiology, and cellular immune responses. Five hundred one-day-old (Ross 308) male broilers were allocated to four treatments with five replicates of 25 birds in a completely randomized design. The experimental treatments included four levels of CFPH (0% as the control, 2.5%, 5%, and 7.5%) in the isonitrogenous and isocaloric diets. During the experiment, body weight (BW) and feed intake (FI) were periodically recorded in addition to calculating average daily gain (ADG), feed conversion ratio (FCR), liveability index, and European broiler index (EBI). In addition, cellular immune responses were evaluated at 30 days of age. On day 42, ileal contents were obtained to examine the microbial population. Based on the findings, Dietary supplementation of 5 and 7.5% CFPH increased the percentage of the thigh while decreasing the relative weight of the gizzard compared to the control group. The highest relative length of jejunum was observed in birds receiving 2.5 and 5% CFPH, and its highest relative weight belonged to birds fed with 5% CFPH. The number of coliforms, enterobacters, and total gram-negative bacteria in the intestines of birds receiving CFPH was less than that of the control group. In general, the application of CFPH in broiler nutrition can decrease the level of soybean meal in diet and it can be considered as a new protein supplement in poultry production. It is suggested to study the incorporation of this new supplement in other livestock's diets.
Collapse
Affiliation(s)
- Amir Hossein Alizadeh-Ghamsari
- Department of Animal and Poultry Nutrition
and Physiology, Animal Science Research Institute of Iran, Agricultural
Research, Education and Extension Organization (AREEO), Karaj
3146618361, Iran
| | - Amir Reza Shaviklo
- Department of Animal Processing, Animal
Science Research Institute of Iran, Agricultural Research, Education and
Extension Organization (AREEO), Karaj 3146618361, Iran
| | - Seyyed Abdullah Hosseini
- Department of Animal and Poultry Nutrition
and Physiology, Animal Science Research Institute of Iran, Agricultural
Research, Education and Extension Organization (AREEO), Karaj
3146618361, Iran
| |
Collapse
|
10
|
Pérez-Marroquín XA, Estrada-Fernández AG, García-Ceja A, Aguirre-Álvarez G, León-López A. Agro-Food Waste as an Ingredient in Functional Beverage Processing: Sources, Functionality, Market and Regulation. Foods 2023; 12:foods12081583. [PMID: 37107379 PMCID: PMC10137751 DOI: 10.3390/foods12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Waste generated from the agro-food industry represents a concerning environmental, social and economic issue. The Food and Agriculture Organization of the United Nations defines food waste as all food that decreases in quantity or quality to the extent that it is thrown out by food service providers and consumers. The FAO reports that 17% of worldwide food production may be wasted. Food waste may include fresh products, food close to the expiration date discarded by retailers and food products from household kitchens and eating establishments. However, food waste offers different possibilities to extract functional ingredients from different sources, such as dairy, cereals, fruits, vegetables, fibers, oils, dye and bioactive compounds. The optimization of agro-food waste as an ingredient will help in the development and innovation of food products to generate functional food and beverages to prevent and treat several diseases in consumers.
Collapse
Affiliation(s)
- Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico
| | - Adelfo García-Ceja
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Arely León-López
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| |
Collapse
|
11
|
Torres J, Pereira JM, Marques-Oliveira R, Costa I, Gil-Martins E, Silva R, Remião F, Peixoto AF, Sousa Lobo JM, Silva AC. An In Vitro Evaluation of the Potential Neuroprotective Effects of Intranasal Lipid Nanoparticles Containing Astaxanthin Obtained from Different Sources: Comparative Studies. Pharmaceutics 2023; 15:pharmaceutics15041035. [PMID: 37111521 PMCID: PMC10142572 DOI: 10.3390/pharmaceutics15041035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The intranasal route has been suggested as a promising alternative to improve the direct transport of molecules to the brain, avoiding the need to cross the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has been highlighted as a promising strategy to improve the treatment of neurodegenerative diseases. In this work, formulations containing SLN and NLC that were loaded with astaxanthin that was obtained from different sources (astaxanthin extract (AE) from the algae Haematococcus pluvialis and pure astaxanthin (PA) from the fungi Blakeslea trispora) were prepared for nose-to-brain administration, and comparative in vitro experiments were performed to evaluate the biocompatibility of the formulations with nasal (RPMI 2650) and neuronal (SH-SY5Y) cells. Afterwards, the antioxidant activity of the formulations was evaluated for its potential neuroprotective effects, using different chemical aggressors. Finally, the cellular uptake of the astaxanthin was evaluated for the formulations that showed the greatest neuroprotection of the neuronal cells against chemical-induced damage. On the production day, all the formulations showed a particle size, a high encapsulation efficiency (EE), the presence of nanoparticles with a typical spherical shape, and a polydispersity index (PDI) and zeta potential (ZP) that are suitable for nose-to-brain administration. After three months of storage at room temperature, no significant changes were observed in the characterization parameters, predicting a good long-term stability. Furthermore, these formulations were shown to be safe with concentrations of up to 100 µg/mL in differentiated SH-SY5Y and RPMI 2650 cells. Regarding neuroprotection studies, the PA-loaded SLN and NLC formulations showed an ability to counteract some mechanisms of neurodegeneration, including oxidative stress. Moreover, when compared with the PA-loaded SLN, the PA-loaded NLC showed greater neuroprotective effects against the cytotoxicity induced by aggressors. In contrast, the AE-loaded SLN and NLC formulations showed no significant neuroprotective effects. Although further studies are needed to confirm these neuroprotective effects, the results of this study suggest that the intranasal administration of PA-loaded NLC may be a promising alternative to improve the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - José Miguel Pereira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Andreia Filipa Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4099-002 Porto, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4099-002 Porto, Portugal
| |
Collapse
|
12
|
Rocha-Pimienta J, Navajas-Preciado B, Barraso-Gil C, Martillanes S, Delgado-Adámez J. Optimization of the Extraction of Chitosan and Fish Gelatin from Fishery Waste and Their Antimicrobial Potential as Active Biopolymers. Gels 2023; 9:gels9030254. [PMID: 36975703 PMCID: PMC10048293 DOI: 10.3390/gels9030254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Fishery residues are abundant raw materials that also provide numerous metabolites with high added value. Their classic valorization includes energy recovery, composting, animal feed, and direct deposits in landfills or oceans along with the environmental impacts that this entails. However, through extraction processes, they can be transformed into new compounds with high added value, offering a more sustainable solution. The aim of this study was to optimize the extraction process of chitosan and fish gelatin from fishery waste and their revalorization as active biopolymers. We successfully optimized the chitosan extraction process, achieving a yield of 20.45% and a deacetylation degree of 69.25%. For the fish gelatin extraction process, yields of 11.82% for the skin and 2.31% for the bone residues were achieved. In addition, it was demonstrated that simple purification steps using activated carbon improve the gelatin's quality significantly. Finally, biopolymers based on fish gelatin and chitosan showed excellent bactericidal capabilities against Escherichia coli and Listeria innocua. For this reason, these active biopolymers can stop or decrease bacterial growth in their potential food packaging applications. In view of the low technological transfer and the lack of information about the revalorization of fishery waste, this work offers extraction conditions with good yields that can be easily implemented in the existing industrial fabric, reducing costs and supporting the economic development of the fish processing sector and the creation of value from its waste.
Collapse
Affiliation(s)
- Javier Rocha-Pimienta
- Scientific and Technological Research Center of Extremadura (CICYTEX), Technological Agri-Food Institute of Extremadura (INTAEX), Avda. Adolfo Suárez s/n, 06071 Badajoz, Spain
| | - Bruno Navajas-Preciado
- Scientific and Technological Research Center of Extremadura (CICYTEX), Technological Agri-Food Institute of Extremadura (INTAEX), Avda. Adolfo Suárez s/n, 06071 Badajoz, Spain
| | - Carmen Barraso-Gil
- Scientific and Technological Research Center of Extremadura (CICYTEX), Technological Agri-Food Institute of Extremadura (INTAEX), Avda. Adolfo Suárez s/n, 06071 Badajoz, Spain
| | - Sara Martillanes
- Scientific and Technological Research Center of Extremadura (CICYTEX), Technological Agri-Food Institute of Extremadura (INTAEX), Avda. Adolfo Suárez s/n, 06071 Badajoz, Spain
| | - Jonathan Delgado-Adámez
- Scientific and Technological Research Center of Extremadura (CICYTEX), Technological Agri-Food Institute of Extremadura (INTAEX), Avda. Adolfo Suárez s/n, 06071 Badajoz, Spain
| |
Collapse
|
13
|
Tommonaro G, Paris D, Guerriero G, Majdoubi FZ, Grieco G, Iodice C, Caso L, Ouizgane A, El Moujtahid A, El Ghizi S, Bousseba M, Hasnaoui M, Iodice A, Tramice A. Fatty Acids in Waste Tissues: The Nutraceutical Value of Gonads and Livers from the Moroccan Hypophthalmichthys molitrix and Cyprinus carpio Fishes. Mar Drugs 2023; 21:md21030188. [PMID: 36976237 PMCID: PMC10059766 DOI: 10.3390/md21030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Fishes are an important component of human nutrition, mainly acting as source of essential fatty acids in the prevention of cardiovascular disorders. The increase in their consumption has led to a growth of fishes waste; therefore, the disposal and recycling of waste has become a key issue to address, in accordance with circular economy principles. The Moroccan Hypophthalmichthys molitrix and Cyprinus carpio fishes, living in freshwater and marine environments, were collected at mature and immature stages. The fatty acid (FA) profiles of liver and ovary tissues were investigated by GC-MS and compared with edible fillet tissues. The gonadosomatic index, the hypocholesterolemic/hypercholesterolemic ratio, and the atherogenicity and thrombogenicity indexes were measured. Polyunsaturated fatty acids were found to be abundant in the mature ovary and fillet of both species, with a polyunsaturated fatty acids/saturated fatty acids ratio ranging from 0.40 to 1.06 and a monounsaturated fatty acids/polyunsaturated fatty acids ratio between 0.64 and 1.84. Saturated fatty acids were found to be highly abundant in the liver and gonads of both species (range 30-54%), as well as monounsaturated fatty acids (range 35-58%). The results suggested that the exploitation of fish wastes, such as the liver and ovary, may represent a sustainable strategy for the achievement of high value-added molecules with nutraceutical potential.
Collapse
Affiliation(s)
- Giuseppina Tommonaro
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| | - Debora Paris
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| | - Giulia Guerriero
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fatima-Zahra Majdoubi
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Gaetano Grieco
- Comparative Endocrinology Laboratories (EClab), Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Carmine Iodice
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| | - Lucio Caso
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| | - Anouar Ouizgane
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Aziz El Moujtahid
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
- Deraoua Fisheries Farm, National Hydrobiology and Fisheries Center, National Agency for Water and Forests, Rabat-Chellah 10002, Morocco
| | - Sara El Ghizi
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Meriem Bousseba
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Mustapha Hasnaoui
- Environmental, Ecological and Agro-Industrial Engineering Laboratory (LGEEAI), Department of Biology, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Annalaura Iodice
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| | - Annabella Tramice
- National Research Council-Institute of Biomolecular Chemistry CNR-ICB, 80078 Pozzuoli, Italy
| |
Collapse
|
14
|
Intranasal Lipid Nanoparticles Containing Bioactive Compounds Obtained from Marine Sources to Manage Neurodegenerative Diseases. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Marine sources contain several bioactive compounds with high therapeutic potential, such as remarkable antioxidant activity that can reduce oxidative stress related to the pathogenesis of neurodegenerative diseases. Indeed, there has been a growing interest in these natural sources, especially those resulting from the processing of marine organisms (i.e., marine bio-waste), to obtain natural antioxidants as an alternative to synthetic antioxidants in a sustainable approach to promote circularity by recovering and creating value from these bio-wastes. However, despite their expected potential to prevent, delay, or treat neurodegenerative diseases, antioxidant compounds may have difficulty reaching the brain due to the need to cross the blood–brain barrier (BBB). In this regard, alternative delivery systems administered by different routes have been proposed, including intranasal administration of lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which have shown promising results. Intranasal administration shows several advantages, including the fact that molecules do not need to cross the BBB to reach the central nervous system (CNS), as they can be transported directly from the nasal cavity to the brain (i.e., nose-to-brain transport). The benefits of using SLN and NLC for intranasal delivery of natural bioactive compounds for the treatment of neurodegenerative diseases have shown relevant outcomes through in vitro and in vivo studies. Noteworthy, for bioactive compounds obtained from marine bio-waste, few studies have been reported, showing the open potential of this research area. This review updates the state of the art of using SLN and NLC to transport bioactive compounds from different sources, in particular, those obtained from marine bio-waste, and their potential application in the treatment of neurodegenerative diseases.
Collapse
|
15
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
16
|
Pérez A, Ruz M, García P, Jiménez P, Valencia P, Ramírez C, Pinto M, Nuñez SM, Park JW, Almonacid S. Nutritional Properties of Fish Bones: Potential Applications in the Food Industry. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2153136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paula García
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paula Jiménez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro Valencia
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Cristian Ramírez
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Marlene Pinto
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Suleivys M. Nuñez
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| | - Jae W. Park
- Department of Food Science & Technology, Oregon State University Seafood Research and Education Center, Astoria, OR, USA
| | - Sergio Almonacid
- Departamento de Ingeniería Quimica y Ambiental, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
| |
Collapse
|
17
|
Martins E, Reis RL, Silva TH. In Vivo Skin Hydrating Efficacy of Fish Collagen from Greenland Halibut as a High-Value Active Ingredient for Cosmetic Applications. Mar Drugs 2023; 21:md21020057. [PMID: 36827098 PMCID: PMC9960085 DOI: 10.3390/md21020057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The industrial processing of fish for food purposes also generates a considerable number of by-products such as viscera, bones, scales, and skin. From a value-added perspective, fish by-products can act also as raw materials, especially because of their collagen content (particularly in fish skin). Interestingly, the potential of marine collagen for cosmetic applications is enormous and, remarkably, the extraction of this protein from fish skins has been established for different species. Using this approach, we investigated the integration of marine collagen (COLRp_I) extracted from the skin of the Greenland halibut as an active ingredient in a cosmetic hydrogel formulation. In this study, extracts of marine collagen at concentrations up to 10 mg/mL showed a non-cytotoxic effect when cultured with fibroblast cells for 3 days. In addition, marine collagen extract, when incorporated into a cosmetic hydrogel formulation, met criterion A of ISO 11930:2019 regarding the efficacy of the preservative system (challenge test). In addition, the cosmetic formulations based on marine collagen at dosages of 0.1, 0.25 and 0.5% were tested in a clinical study on the skin of the forearms of 23 healthy volunteers, showing a sightly hydration effect, suggesting its potential for beauty applications. Moreover, this work illustrates that the circular economy concept applied to the fish processing industry can represent important benefits, at innovation, environmental and economic levels.
Collapse
Affiliation(s)
- Eva Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (E.M.); (T.H.S.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: (E.M.); (T.H.S.)
| |
Collapse
|
18
|
Yesiltas B, Robert C, Petersen HO, Jessen F, Ajalloueian F, Mohammadifar MA, Jacobsen C, Sloth JJ, Jakobsen G, Casanova F. Gelatin from Saithe ( Pollachius virens) Skin: Biochemical Characterization and Oxidative Stability in O/W Emulsions. Mar Drugs 2022; 20:739. [PMID: 36547886 PMCID: PMC9785016 DOI: 10.3390/md20120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
This study performed the extraction of gelatin from saithe (Pollachius virens) skin and compared it to commercial marine gelatin. As a first stage, we investigated the physicochemical and biochemical properties of the gelatin. SDS-PAGE analysis revealed the presence of α-chains, β-chains, and other high-molecular-weight aggregates. DSC thermograms showed typical gelatin behavior, while the FTIR spectra were mainly situated in the amide band region (amide A, amide B, amide I, amide II, and amide III). In the second stage, we produced O/W emulsions and analyzed their physical and oxidative stability over 9 days. Oil droplets stabilized with the gelatins obtained from saithe fish skin had a size of ~500 nm and a ζ-potential ~+25 mV, which is comparable to oil droplets stabilized with commercial gelatin products. Moreover, the oxidative stability of the emulsions stabilized with gelatin from saithe fish skin showed promising results in terms of preventing the formation of some volatile compounds towards the end of the storage period compared to when using the commercial gelatins. This study indicates the potential application of fish skin gelatin in the fields of food and cosmetics, as well as suggesting that further investigations of their techno-functional properties.
Collapse
Affiliation(s)
- Betül Yesiltas
- Research Group for Bioactives—Analysis and Application, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Chloé Robert
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Agrocampus Ouest, UMR 1253, F-35042 Rennes, France
| | - Heidi Olander Petersen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Flemming Jessen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives—Analysis and Application, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jens J. Sloth
- Research Group for Analytical Food Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Greta Jakobsen
- Danish Fish Protein, Adelvej 11, Hoejmark, 6940 Lem, Denmark
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar Drugs 2022; 20:md20120734. [PMID: 36547881 PMCID: PMC9787341 DOI: 10.3390/md20120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The market demand for marine-based cosmetics has shown a tremendous growth rate in the last decade. Marine resources represent a promising source of novel bioactive compounds for new cosmetic ingredient development. However, concern about sustainability also becomes an issue that should be considered in developing cosmetic ingredients. The fisheries industry (e.g., fishing, farming, and processing) generates large amounts of leftovers containing valuable substances, which are potent sources of cosmeceutical ingredients. Several bioactive substances could be extracted from the marine by-product that can be utilized as a potent ingredient to develop cosmetics products. Those bioactive substances (e.g., collagen from fish waste and chitin from crustacean waste) could be utilized as anti-photoaging, anti-wrinkle, skin barrier, and hair care products. From this perspective, this review aims to approach the potential active ingredients derived from marine by-products for cosmetics and discuss the possible activity of those active ingredients in promoting human beauty. In addition, this review also covers the prospect and challenge of using marine by-products toward the emerging concept of sustainable blue cosmetics.
Collapse
|
20
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
21
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
22
|
Aenglong C, Wang YM, Limpawattana M, Sukketsiri W, Tang QJ, Klaypradit W, Kerdpiboon S. Synthesis of soluble calcium compound from skipjack tuna bones using edible weak acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Geahchan S, Baharlouei P, Rahman A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar Drugs 2022; 20:61. [PMID: 35049916 PMCID: PMC8780088 DOI: 10.3390/md20010061] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Parnian Baharlouei
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Physiology and Human Biology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Azizur Rahman
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- A.R. Environmental Solutions Inc., ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
24
|
Hydroxyapatite in Oral Care Products-A Review. MATERIALS 2021; 14:ma14174865. [PMID: 34500955 PMCID: PMC8432723 DOI: 10.3390/ma14174865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Calcium phosphate compounds form the inorganic phases of our mineralised tissues such as bone and teeth, playing an important role in hard tissue engineering and regenerative medicine. In dentistry and oral care products, hydroxyapatite (HA) is a stable and biocompatible calcium phosphate with low solubility being used for various applications such as tooth remineralisation, reduction of tooth sensitivity, oral biofilm control, and tooth whitening. Clinical data on these products is limited with varied results; additionally, the effectiveness of these apatite compounds versus fluoride, which has conventionally been used in toothpaste, has not been established. Therefore, this review critically evaluates current research on HA oral care, and discusses the role and mechanism of HA in remineralisation of both enamel and dentine and for suppressing dentine sensitivity. Furthermore, we position HA’s role in biofilm management and highlight the role of HA in dental applications by summarising the recent achievement and providing an overview of commercialised HA dental products. The review also indicates the existing limitations and provides direction for future research and commercialisation of apatite-based oral care products.
Collapse
|
25
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
26
|
Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct 2021; 12:7108-7125. [PMID: 34223585 DOI: 10.1039/d1fo01265g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioactive peptides are a class of peptides with special physiological functions and have potential applications in human health and disease prevention. Bioactive peptides have gained much research attention because they affect the cardiovascular, endocrine, immune, and nervous systems. Recent research has reported that bioactive peptides are of great value for physiological function regulation, including antioxidation, anti-hypertension, antithrombosis, antibacterial properties, anti-cancer, anti-inflammation, anti-diabetic, anti-obesity, cholesterol-lowering, immunoregulation, mineral binding and opioid activities. The production of food-derived bioactive peptides is mainly through the hydrolysis of digestive enzymes and proteolytic enzymes or microbial fermentation. The purpose of this review is to introduce the production, function, application, challenges, and prospects of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Liting Jia
- Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | | | | | | | | |
Collapse
|
27
|
Seafood Intake as a Method of Non-Communicable Diseases (NCD) Prevention in Adults. Nutrients 2021; 13:nu13051422. [PMID: 33922600 PMCID: PMC8146377 DOI: 10.3390/nu13051422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Seafood (fish in particular) is one of the main food groups in nutrition models with proven health benefits. Seafood has long been considered a very valuable dietary component, mainly due to presence of n-3 polyunsaturated fatty acids (n-3 PUFA) but it is also an important source of protein (including collagen), anserine, taurine, iodine, selenium, vitamin A, vitamin K, vitamin D, tocopherols, B vitamins and astaxanthin. Considering the beneficial effects of these ingredients on blood pressure, lipid profile and the inflammatory process, seafood should be an essential component of the diet. Non-communicable diseases (NCD) such as cardiovascular diseases, cancer, diabetes and mental disorder, chronic respiratory diseases are common diseases associated with advanced age. Promotion of a healthy lifestyle (including proper nutritional behavior) and prevention of diseases are the most effective and efficient ways to decrease premature mortality from NCD and to maintain mental health and well-being. This review article shows the potential preventive and therapeutic effects of seafood with an emphasis on fish. Our narrative review presents the results of systematic reviews and meta-analysis.
Collapse
|
28
|
Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food. Mar Drugs 2021; 19:md19050233. [PMID: 33919462 PMCID: PMC8143521 DOI: 10.3390/md19050233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Rapid population growth and increasing food demand have impacts on the environment due to the generation of residues, which could be managed using sustainable solutions such as the circular economy strategy (waste generated during food processing must be kept within the food chain). Reusing discarded fish remains is part of this management strategy, since they contain high-value ingredients and bioactive compounds that can be used for the development of nutraceuticals and functional foods. Fish side streams such as the head, liver, or skin or the cephalothorax, carapace, and tail from shellfish are important sources of oils rich in omega-3. In order to resolve the disadvantages associated with conventional methods, novel extraction techniques are being optimized to improve the quality and the oxidative stability of these high-value oils. Positive effects on cardiovascular and vision health, diabetes, cancer, anti-inflammatory and neuroprotective properties, and immune system improvement are among their recognized properties. Their incorporation into different model systems could contribute to the development of functional foods, with market benefits for consumers. These products improve the nutritional needs of specific population groups in a scenario where noncommunicable diseases and pandemic crises are responsible for several deaths worldwide.
Collapse
|
29
|
Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes (Basel) 2021. [DOI: 10.3390/pr9040703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cucumaria frondosa is the main sea cucumber species harvested from Newfoundland waters. During processing, the viscera of sea cucumber are usually discarded as waste. As a matter of fact, sea cucumber viscera are abundant in various nutrients and promising for valorization. In the present study, sea cucumber viscera were pretreated by air drying and freeze drying, and the nutritional compositions of the dried products were investigated, including proximate composition, lipid class, fatty acid profile, and amino acid composition. The dried viscera had similar levels of ash, lipids, and proteins compared to fresh viscera. Both air- and freeze-dried viscera had total fatty acid composition similar to fresh viscera, with high levels of omega-3 polyunsaturated fatty acids (PUFAs) (30–31%), especially eicosapentaenoic acid (27–28%), and low levels of omega-6 PUFAs (~1%). The dried samples were abundant in essential amino acids (46–51%). Compared to air-dried viscera, freeze-dried viscera contained a lower content of moisture and free fatty acids, and higher content of glycine and omega-3 PUFAs in phospholipid fraction. The high content of nutritious components in dried viscera of Cucumaria frondosa indicates their great potential for valorization into high-value products.
Collapse
|
30
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
31
|
Henriet P, Jessen F, Vall-llosera M, Marie R, Jahromi M, Mohammadifar MA, Stampe-Villadsen HL, Olander Petersen H, Sloth JJ, Loft Eybye K, Jakobsen G, Casanova F. Physical Stability of Oil-In-Water Emulsion Stabilized by Gelatin from Saithe (Pollachius virens) Skin. Foods 2020; 9:E1718. [PMID: 33238407 PMCID: PMC7700494 DOI: 10.3390/foods9111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/02/2022] Open
Abstract
The objective of the present study was to investigate the physical stability of an oil-in-water (O/W) emulsion stabilized with gelatin from saithe (Pollachius virens) skin obtained with three different extraction protocols compared to two commercial fish skin gelatins. We first investigated the gelatin powder composition, and then produced the O/W emulsions at pH 3 by mechanical dispersion followed by an ultrasonication process. Sodium dodecyl sulfate (SDS) profiles for commercial samples indicated that extensive and unspecific hydrolysis of collagen occurred during the production process, whereas gelatin extracted from saithe fish skin showed typical electrophoresis patterns of type I collagen, with the presence of γ- and β-chains. Emulsions obtained with commercial samples presented high physical stability over 7 days, with particle size of ~200 nm. However, emulsions obtained with saithe fish skin presented particle size between 300 and 450 nm. Slight differences were observed in viscosity, with values between ~1 and ~4 mPa·s. Interfacial tension measurements presented values between 13 and 17 mN·m-1 with three different regimes for all the systems.
Collapse
Affiliation(s)
- Pauline Henriet
- Agrocampus Ouest, UMR 1253, F-35042 Rennes, France;
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Flemming Jessen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Mar Vall-llosera
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800 Kongens Lyngby, Denmark;
| | - Mastaneh Jahromi
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Hanne Lilian Stampe-Villadsen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Heidi Olander Petersen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| | - Jens J. Sloth
- Research Group for Nano-Bio Science, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark;
| | - Karin Loft Eybye
- Technological Institute, Kongsvang Alle 29, DK-8000 Aarhus C, Denmark;
| | - Greta Jakobsen
- Danish Fish Protein, Adelvej 11, Hoejmark, DK-6940 Lem St, Denmark;
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (F.J.); (M.V.-l.); (M.J.); (M.A.M.); (H.L.S.-V.); (H.O.P.)
| |
Collapse
|
32
|
Understanding the role of atmospheric cold plasma (ACP) in maintaining the quality of hairtail (Trichiurus Lepturus). Food Chem 2020; 343:128418. [PMID: 33160769 DOI: 10.1016/j.foodchem.2020.128418] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Impacts of atmospheric cold plasma (ACP) on the properties of muscle protein and performance of extracted crude enzyme of hairtail (Trichiurus Lepturus) fish have been evaluated. A decrease in extracted crude enzyme activity with increasing the ACP treatment time has been found, and the highest reduction (p < 0.05) value of 0.035 units/mg proteins was obtained after 240 s. A considerable increase in the carbonyl content in the treated sample for about three times higher than the control sample was found, and a decrease of total sulfhydryl content to 0.34 nmol/mg protein. Texture profile analysis, water holding capacity, and the color properties of the muscle protein improved significantly in the samples treated with ACP. SDS-PAGE pattern showed an increase in the band intensity of cross-linked myosin heavy chains and actin proteins. Based on these outcomes, ACP could play a significant role as a promising non-thermal method to prolong the shelf-life of hairtail fish.
Collapse
|
33
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
34
|
The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020; 12:nu12082434. [PMID: 32823615 PMCID: PMC7468851 DOI: 10.3390/nu12082434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fish protein represents one of the most widely consumed dietary protein sources by humans. The processing of material from the fishing industry generates substantial unexploited waste products, many of which possess high biological value. Protein hydrolysates, such as fish protein hydrolysates (FPH), containing predominantly di- and tripeptides, are more readily absorbed than free amino acids and intact protein. Furthermore, in animal models, FPH have been shown to possess numerous beneficial properties for cardiovascular, neurological, intestinal, renal, and immune health. Ageing is associated with the loss of skeletal muscle mass and function, as well as increased oxidative stress, compromised vascularisation, neurological derangements, and immunosenescence. Thus, there appears to be a potential application for FPH in older persons as a high-quality protein source that may also confer additional health benefits. Despite this, there remains a dearth of information concerning the impact of FPH on health outcomes in humans. The limited evidence from human interventional trials suggests that FPH may hold promise for supporting optimal body composition and maintaining gut integrity. FPH also provide a high-quality source of dietary protein without negatively impacting on subjective appetite perceptions or regulatory hormones. Further studies are needed to assess the impact and utility of FPH on skeletal muscle health in older persons, ideally comparing FPH to ‘established’ protein sources or a non-bioactive, nitrogen-matched control. In particular, the effects of acute and chronic FPH consumption on post-exercise aminoacidaemia, skeletal muscle protein synthesis, and intramyocellular anabolic signalling in older adults are worthy of investigation. FPH may represent beneficial and sustainable alternative sources of high-quality protein to support skeletal muscle health and anabolism in ageing, without compromising appetite and subsequent energy intake.
Collapse
|
35
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Functional and Bioactive Properties of Gelatin Extracted from Aquatic Bioresources – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1747486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
36
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
37
|
Pateiro M, Munekata PES, Domínguez R, Wang M, Barba FJ, Bermúdez R, Lorenzo JM. Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream ( Sparus aurata). Mar Drugs 2020; 18:E101. [PMID: 32033070 PMCID: PMC7073831 DOI: 10.3390/md18020101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fish processing industries generate a large volume of discards. In order to fulfil with the principles of a sustainable circular economy, it is necessary to maintain aquaculture by-products in the food chain through the production of high-value biomolecules that can be used as novel ingredients. In this study, we try to give value to the gilthead sea bream by-products, evaluating the composition and the nutritional value of the muscle and six discards commonly obtained from the fish processing industry (fishbone, gills, guts, heads, liver, and skin), which represent ≈ 61% of the whole fish. Significant differences were detected among muscle and by-products for fatty acid and amino acid profile, as well as mineral content. The discards studied were rich in protein (10%-25%), showing skin and fishbone to have the highest contents. The amino acid profile reflected the high quality of its protein, with 41%-49% being essential amino acids-lysine, leucine, and arginine were the most abundant amino acids. Guts, liver, and skin were the fattiest by-products (25%-35%). High contents of polyunsaturated fatty acids (PUFAs) (31%-34%), n-3 fatty acids (12%-14%), and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (6%-8%) characterized these discards. The head displayed by far the highest ash content (9.14%), which was reflected in the mineral content, especially in calcium and phosphorous. These results revealed that gilthead sea bream by-products can be used as source of value-added products such as protein, oils, and mineral supplements.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Min Wang
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (M.W.); (F.J.B.)
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (M.W.); (F.J.B.)
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| |
Collapse
|
38
|
Sangtitanu T, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Karnchanatat A. Peptides obtained from edible mushrooms: Hericium erinaceus offers the ability to scavenge free radicals and induce apoptosis in lung cancer cells in humans. Food Funct 2020; 11:4927-4939. [DOI: 10.1039/d0fo00227e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This research examined the antioxidant abilities of peptides derived from the Hericium erinaceus mushroom produced via three microbial proteases at varying concentrations.
Collapse
Affiliation(s)
- Taniya Sangtitanu
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
39
|
Marine Collagen Peptides Promote Cell Proliferation of NIH-3T3 Fibroblasts via NF-κB Signaling Pathway. Molecules 2019; 24:molecules24224201. [PMID: 31752414 PMCID: PMC6891425 DOI: 10.3390/molecules24224201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Marine collagen peptides (MCPs) with the ability to promote cell proliferation and migration were obtained from the skin of Nibea japonica. The purpose of MCPs isolation was an attempt to convert the by-products of the marine product processing industry to high value-added items. MCPs were observed to contain many polypeptides with molecular weights ≤ 10 kDa and most amino acid residues were hydrophilic. MCPs (0.25–10 mg/mL) also exhibited 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide anion, and 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities. Furthermore, MCPs promoted the proliferation of NIH-3T3 cells. In vitro scratch assays indicated that MCPs significantly enhanced the scratch closure rate and promoted the migration of NIH-3T3 cells. To further determine the signaling mechanism of MCPs, western blotting was used to study the expression levels of nuclear factor kappa-B (NF-κB) p65, IκB kinase α (IKKα), and IκB kinase β (IKKβ) proteins of the NF-κB signaling pathway. Our results indicated protein levels of NF-κB p65, IKKα and IKKβ increased in MCPs-treated NIH-3T3 cells. In addition, MCPs increased the expression of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-β) in NIH-3T3 cells. Therefore, MCPs, a by-product of N. japonica, exhibited potential wound healing abilities in vitro.
Collapse
|
40
|
Shaviklo AR, Etemadian Y. Overcoming current challenges in commercial applications of fish protein isolates in food and feed systems: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4775-4784. [PMID: 31741501 PMCID: PMC6828918 DOI: 10.1007/s13197-019-03966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022]
Abstract
Over the past 2 decades, the number of scientific papers on properties of fish proteins recovered from various aquatic resources, including the rest raw materials obtained from seafood processing have grown dramatically. Whereas the fish protein isolate (FPI) is a new source of animal protein that can be used to develop value-added food products as well as animal feed enrichment. But to date, very few practical studies have been done on the application of FPI in food and feed systems, and it may have caused the lack of commercial development of this product. Therefore, in order to optimal utilization of aquatic and raw materials in addition to the fight against malnutrition and protein deficiency in poor countries more attention to this technology will be caused this product commercialized. However, for realizing this potential in FPI, several challenges have to be solved. Therefore, this article explores in depth the researches into the use of FPI in food systems and discusses the challenges that this protein source is faced in developing food products. The authors believe that in order to overcome the current challenges in commercial applications of protein isolates in food systems, the following issues should be paying attention and further researches being carried out based on them: industrial process scale-up, production costs, choosing the optimum pH for protein extraction, solubility of proteins, lipid and protein oxidation, the ratio of FPI in food systems, storage stability, sensory defects of FPI, marketing, and economic aspects and future trends of the use of FPI.
Collapse
Affiliation(s)
- Amir Reza Shaviklo
- Department of Animal Products Processing, Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yasaman Etemadian
- Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
41
|
Tsoupras A, O'Keeffe E, Lordan R, Redfern S, Zabetakis I. Bioprospecting for Antithrombotic Polar Lipids from Salmon, Herring, and Boarfish By-Products. Foods 2019; 8:foods8090416. [PMID: 31540159 PMCID: PMC6769463 DOI: 10.3390/foods8090416] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Marine polar lipids (PLs) have exhibited promising cardioprotection. In this study, marine by-products such as salmon heads (SHs), their brain, eyes and main optic nerves (SBEON), and head-remnants after SBEON removal (RemSH), as well as herring fillets (HFs), herring heads (HHs) and minced boarfish (MB), were evaluated as potential sustainable sources of such bioactive PLs. The antithrombotic bioactivities of PLs derived from these marine by-products were assessed for the first time in human platelets against platelet-activating factor (PAF), thrombin, collagen, and adenosine diphosphate (ADP), while their fatty acid composition was evaluated by gas chromatography–mass spectrometry (GC-MS). PLs from all marine by-products tested possess strong antithrombotic activities against aggregation of human platelets induced by all platelet agonists tested. RemSH, SBEON, HHs, HFs, and MB exhibited strong anti-PAF effects, similar to those previously reported for salmon fillets. PLs from MB had the strongest anti-collagen effects and PLs from SHs and SBEON were the most active against thrombin and ADP. PLs from HHs had similar antithrombotic effects with those from HFs in all agonists. RemSH was less active in all agonists, suggesting that SBEON is the main source of bioactive PLs in SHs. All PLs were rich in omega-3 polyunsaturated fatty acids (ω3PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid, with favourable low values of the ω6/ω3 ratio. Salmon, herring, and boarfish by-products are rich sources of bioactive marine PLs with potent antithrombotic and cardioprotective properties.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Eoin O'Keeffe
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland.
| | - Shane Redfern
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|