1
|
Sallee CJ, Maddux AB, Hippensteel JA, Markovic D, Oshima K, Schwingshackl A, Mourani PM, Schmidt EP, Sapru A. CIRCULATING HEPARAN SULFATE PROFILES IN PEDIATRIC ACUTE RESPIRATORY DISTRESS SYNDROME. Shock 2024; 62:496-504. [PMID: 39331799 DOI: 10.1097/shk.0000000000002421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
ABSTRACT Introduction: Sepsis-induced degradation of endothelial glycocalyx heparan sulfate (HS) contributes to the pulmonary microvascular endothelial injury characteristic of acute respiratory distress syndrome (ARDS) pathogenesis. Our objectives were to (1) examine relationships between plasma indices of HS degradation and protein biomarkers of endothelial injury and (2) identify patient subgroups characterized by distinct profiles of HS degradation in children with ARDS. Methods: We analyzed prospectively collected plasma (2018-2020) from a cohort of invasively mechanically ventilated children (aged >1 month to <18 years) with ARDS. Mass spectrometry characterized and quantified patterns of HS disaccharide sulfation. Protein biomarkers reflective of endothelial injury (e.g., angiopoietin-2, vascular cell adhesion molecule-1, soluble thrombomodulin) were measured with a multiplex immunoassay. Pearson correlation coefficients were used to construct a biomarker correlation network. Centrality metrics detected influential biomarkers (i.e., network hubs). K-means clustering identified unique patient subgroups based on HS disaccharide profiles. Results: We evaluated 36 patients with pediatric ARDS. HS disaccharide sulfation patterns, 6S, NS, and NS2S, positively correlated with all biomarkers of endothelial injury (all P < 0.05) and were classified as network hubs. We identified three patient subgroups, with cluster 3 (n = 5) demonstrating elevated levels of 6S and N-sulfated HS disaccharides. In cluster 3, 60% of children were female and nonpulmonary sepsis accounted for 60% of cases. Relative to cluster 1 (n = 12), cluster 3 was associated with higher oxygen saturation index (P = 0.029) and fewer 28-day ventilator-free days (P = 0.016). Conclusions: Circulating highly sulfated HS fragments may represent emerging mechanistic biomarkers of endothelial injury and disease severity in pediatric ARDS.
Collapse
Affiliation(s)
- Colin J Sallee
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| | - Aline B Maddux
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Joseph A Hippensteel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniela Markovic
- Department of Medicine, Biostatistics Core, University of California Los Angeles, Los Angeles, California
| | - Kaori Oshima
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Andreas Schwingshackl
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| | - Peter M Mourani
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas
| | - Eric P Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Anil Sapru
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| |
Collapse
|
2
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
3
|
Richter RP, Odum JD, Margaroli C, Cardenas JC, Zheng L, Tripathi K, Wang Z, Arnold K, Sanderson RD, Liu J, Richter JR. Trauma promotes heparan sulfate modifications and cleavage that disrupt homeostatic gene expression in microvascular endothelial cells. Front Cell Dev Biol 2024; 12:1390794. [PMID: 39114570 PMCID: PMC11303185 DOI: 10.3389/fcell.2024.1390794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Heparan sulfate (HS) in the vascular endothelial glycocalyx (eGC) is a critical regulator of blood vessel homeostasis. Trauma results in HS shedding from the eGC, but the impact of trauma on HS structural modifications that could influence mechanisms of vascular injury and repair has not been evaluated. Moreover, the effect of eGC HS shedding on endothelial cell (EC) homeostasis has not been fully elucidated. The objectives of this work were to characterize the impact of trauma on HS sulfation and determine the effect of eGC HS shedding on the transcriptional landscape of vascular ECs. Methods: Plasma was collected from 25 controls and 49 adults admitted to a level 1 trauma center at arrival and 24 h after hospitalization. Total levels of HS and angiopoietin-2, a marker of pathologic EC activation, were measured at each time point. Enzymatic activity of heparanase, the enzyme responsible for HS shedding, was determined in plasma from hospital arrival. Liquid chromatography-tandem mass spectrometry was used to characterize HS di-/tetrasaccharides in plasma. In vitro work was performed using flow conditioned primary human lung microvascular ECs treated with vehicle or heparinase III to simulate human heparanase activity. Bulk RNA sequencing was performed to determine differentially expressed gene-enriched pathways following heparinase III treatment. Results: We found that heparanase activity was increased in trauma plasma relative to controls, and HS levels at arrival were elevated in a manner proportional to injury severity. Di-/tetrasaccharide analysis revealed lower levels of 3-O-sulfated tetramers with a concomitant increase in ΔIIIS and ΔIIS disaccharides following trauma. Admission levels of total HS and specific HS sulfation motifs correlated with 24-h angiopoietin-2 levels, suggesting an association between HS shedding and persistent, pathological EC activation. In vitro pathway analysis demonstrated downregulation of genes that support cell junction integrity, EC polarity, and EC senescence while upregulating genes that promote cell differentiation and proliferation following HS shedding. Discussion: Taken together, our findings suggest that HS cleavage associated with eGC injury may disrupt homeostatic EC signaling and influence biosynthetic mechanisms governing eGC repair. These results require validation in larger, multicenter trauma populations coupled with in vivo EC-targeted transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James D. Odum
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camilla Margaroli
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica C. Cardenas
- Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Lei Zheng
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaushlendra Tripathi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhangjie Wang
- Glycan Therapeutics Corp, Raleigh, NC, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Kravitz MS, Kattouf N, Stewart IJ, Ginde AA, Schmidt EP, Shapiro NI. Plasma for prevention and treatment of glycocalyx degradation in trauma and sepsis. Crit Care 2024; 28:254. [PMID: 39033135 PMCID: PMC11265047 DOI: 10.1186/s13054-024-05026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
The endothelial glycocalyx, a gel-like layer that lines the luminal surface of blood vessels, is composed of proteoglycans, glycoproteins, and glycosaminoglycans. The endothelial glycocalyx plays an essential role in vascular homeostasis, and its degradation in trauma and sepsis can lead to microvascular dysfunction and organ injury. While there are no proven therapies for preventing or treating endothelial glycocalyx degradation, some initial literature suggests that plasma may have a therapeutic role in trauma and sepsis patients. Overall, the literature suggesting the use of plasma as a therapy for endothelial glycocalyx degradation is non-clinical basic science or exploratory. Plasma is an established therapy in the resuscitation of patients with hemorrhage for restoration of coagulation factors. However, plasma also contains other bioactive components, including sphingosine-1 phosphate, antithrombin, and adiponectin, which may protect and restore the endothelial glycocalyx, thereby helping to maintain or restore vascular homeostasis. This narrative review begins by describing the endothelial glycocalyx in health and disease: we discuss the overlapping disease mechanisms in trauma and sepsis that lead to its damage and introduce plasma transfusion as a potential therapy for prevention and treatment of endothelial glycocalyx degradation. Second, we review the literature on plasma as an exploratory therapy for endothelial glycocalyx degradation in trauma and sepsis. Third, we discuss the safety of plasma transfusion by reviewing the adverse events associated with plasma and other blood product transfusions, and we examine modern transfusion precautions that have enhanced the safety of plasma transfusion. We conclude that the literature proposes that plasma may have the potential to prevent and treat endothelial glycocalyx degradation in trauma and sepsis, indicating the need for further research.
Collapse
Affiliation(s)
- M S Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - N Kattouf
- Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - I J Stewart
- Department of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - A A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicines, Aurora, CO, USA
| | - E P Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Taghavi S, Engelhardt D, Campbell A, Goldvarg-Abud I, Duchesne J, Shaheen F, Pociask D, Kolls J, Jackson-Weaver O. Dimethyl sulfoxide as a novel therapy in a murine model of acute lung injury. J Trauma Acute Care Surg 2024; 97:32-38. [PMID: 38444065 DOI: 10.1097/ta.0000000000004293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
INTRODUCTION The endothelial glycocalyx on the luminal surface of endothelial cells contributes to the permeability barrier of the pulmonary vasculature. Dimethyl sulfoxide (DMSO) has a disordering effect on plasma membranes, which prevents the formation of ordered membrane domains important in the shedding of the endothelial glycocalyx. We hypothesized that DMSO would protect against protein leak by preserving the endothelial glycocalyx in a murine model of acute respiratory distress syndrome (ARDS). METHODS C57BL/6 mice were given ARDS via intratracheally administered lipopolysaccharide (LPS). Dimethyl sulfoxide (220 mg/kg) was administered intravenously for 4 days. Animals were sacrificed postinjury day 4 after bronchoalveolar lavage (BAL). Bronchoalveolar lavage cell counts and protein content were quantified. Lung sections were stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify the endothelial glycocalyx. Human umbilical vein endothelial cells (HUVECs) were exposed to LPS. Endothelial glycocalyx was measured using fluorescein isothiocyanate-labeled wheat germ agglutinin, and co-immunoprecipitation was performed to measure interaction between sheddases and syndecan-1. RESULTS Dimethyl sulfoxide treatment resulted in greater endothelial glycocalyx staining intensity in the lung when compared with sham (9,641 vs. 36,659 arbitrary units, p < 0.001). Total BAL cell counts were less for animals receiving DMSO (6.93 × 10 6 vs. 2.49 × 10 6 cells, p = 0.04). The treated group had less BAL macrophages (189.2 vs. 76.9 cells, p = 0.02) and lymphocytes (527.7 vs. 200.0 cells, p = 0.02). Interleukin-6 levels were lower in DMSO treated. Animals that received DMSO had less protein leak in BAL (1.48 vs. 1.08 μg/μL, p = 0.02). Dimethyl sulfoxide prevented LPS-induced endothelial glycocalyx loss in HUVECs and reduced the interaction between matrix metalloproteinase 16 and syndecan-1. CONCLUSION Systemically administered DMSO protects the endothelial glycocalyx in the pulmonary vasculature, mitigating pulmonary capillary leak after acute lung injury. Dimethyl sulfoxide also results in decreased inflammatory response. Dimethyl sulfoxide reduced the interaction between matrix metalloproteinase 16 and syndecan-1 and prevented LPS-induced glycocalyx damage in HUVECs. Dimethyl sulfoxide may be a novel therapeutic for ARDS.
Collapse
Affiliation(s)
- Sharven Taghavi
- From the Department of Surgery (S.T., D.E., A.C., I.G.-A., J.D., F.S., O.J.-W.), Department of Medicine (D.P.), and Center for Translational Research in Infection and Inflammation (J.K.), Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen Q, Xu X, Xie S, Sheng A, Han N, Tian Z, Wang X, Li F, Linhardt RJ, Zhang F, Jin L, Zhang Q, Chi L. Improving impact of heparan sulfate on the endothelial glycocalyx abnormalities in atherosclerosis as revealed by glycan-protein interactome. Carbohydr Polym 2024; 330:121834. [PMID: 38368111 DOI: 10.1016/j.carbpol.2024.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.
Collapse
Affiliation(s)
- Qingqing Chen
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohui Xu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Shaoshuai Xie
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Naihan Han
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Lan Jin
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China.
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
8
|
Sallee CJ, Hippensteel JA, Miller KR, Oshima K, Pham AT, Richter RP, Belperio J, Sierra YL, Schwingshackl A, Mourani PM, Schmidt EP, Sapru A, Maddux AB. Endothelial Glycocalyx Degradation Patterns in Sepsis-Associated Pediatric Acute Respiratory Distress Syndrome: A Single Center Retrospective Observational Study. J Intensive Care Med 2024; 39:277-287. [PMID: 37670670 PMCID: PMC10845819 DOI: 10.1177/08850666231200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Sepsis-associated destruction of the pulmonary microvascular endothelial glycocalyx (EGCX) creates a vulnerable endothelial surface, contributing to the development of acute respiratory distress syndrome (ARDS). Constituents of the EGCX shed into circulation, glycosaminoglycans and proteoglycans, may serve as biomarkers of endothelial dysfunction. We sought to define the patterns of plasma EGCX degradation products in children with sepsis-associated pediatric ARDS (PARDS), and test their association with clinical outcomes. METHODS We retrospectively analyzed a prospective cohort (2018-2020) of children (≥1 month to <18 years of age) receiving invasive mechanical ventilation for acute respiratory failure for ≥72 h. Children with and without sepsis-associated PARDS were selected from the parent cohort and compared. Blood was collected at time of enrollment. Plasma glycosaminoglycan disaccharide class (heparan sulfate, chondroitin sulfate, and hyaluronan) and sulfation subtypes (heparan sulfate and chondroitin sulfate) were quantified using liquid chromatography tandem mass spectrometry. Plasma proteoglycans (syndecan-1) were measured through an immunoassay. RESULTS Among the 39 mechanically ventilated children (29 with and 10 without sepsis-associated PARDS), sepsis-associated PARDS patients demonstrated higher levels of heparan sulfate (median 639 ng/mL [interquartile range, IQR 421-902] vs 311 [IQR 228-461]) and syndecan-1 (median 146 ng/mL [IQR 32-315] vs 8 [IQR 8-50]), both p = 0.01. Heparan sulfate subtype analysis demonstrated greater proportions of N-sulfated disaccharide levels among children with sepsis-associated PARDS (p = 0.01). Increasing N-sulfated disaccharide levels by quartile were associated with severe PARDS (n = 9/29) with the highest quartile including >60% of the severe PARDS patients (test for trend, p = 0.04). Higher total heparan sulfate and N-sulfated disaccharide levels were independently associated with fewer 28-day ventilator-free days in children with sepsis-associated PARDS (all p < 0.05). CONCLUSIONS Children with sepsis-associated PARDS exhibited higher plasma levels of heparan sulfate disaccharides and syndecan-1, suggesting that EGCX degradation biomarkers may provide insights into endothelial dysfunction and PARDS pathobiology.
Collapse
Affiliation(s)
- Colin J. Sallee
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Joseph A. Hippensteel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen R. Miller
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Kaori Oshima
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T. Pham
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert P. Richter
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - John Belperio
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, David Geffen School of Medicine at University of California Los Angeles and Ronald Reagan Medical Center, Los Angeles, CA, USA
| | - Yamila L. Sierra
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Peter M. Mourani
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Eric P. Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Aline B. Maddux
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
9
|
Li L, Xu S, Li M, Yin X, Xi H, Yang P, Ma L, Zhang L, Li X. Combined gestational age and serum fucose for early prediction of risk for bronchopulmonary dysplasia in premature infants. BMC Pediatr 2024; 24:107. [PMID: 38347448 PMCID: PMC10860215 DOI: 10.1186/s12887-024-04556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.
Collapse
Affiliation(s)
- Liangliang Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Shimin Xu
- Division of Neonatology, Beijing jingdu Children's Hospital, Beijing, China
| | - Miaomiao Li
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xiangyun Yin
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Hongmin Xi
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Ping Yang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lili Ma
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lijuan Zhang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Xianghong Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
10
|
Feng K, Wang K, Zhou Y, Xue H, Wang F, Jin H, Zhao W. Non-Anticoagulant Activities of Low Molecular Weight Heparins-A Review. Pharmaceuticals (Basel) 2023; 16:1254. [PMID: 37765064 PMCID: PMC10537022 DOI: 10.3390/ph16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Low molecular weight heparins (LMWHs) are derived from heparin through chemical or enzymatic cleavage with an average molecular weight (Mw) of 2000-8000 Da. They exhibit more selective activities and advantages over heparin, causing fewer side effects, such as bleeding and heparin-induced thrombocytopenia. Due to different preparation methods, LMWHs have diverse structures and extensive biological activities. In this review, we describe the basic preparation methods in this field and compare the main principles and advantages of these specific methods in detail. Importantly, we focus on the non-anticoagulant pharmacological effects of LMWHs and their conjugates, such as preventing glycocalyx shedding, anti-inflammatory, antiviral infection, anti-fibrosis, inhibiting angiogenesis, inhibiting cell adhesion and improving endothelial function. LMWHs are effective in various diseases at the animal level, including cancer, some viral diseases, fibrotic diseases, and obstetric diseases. Finally, we briefly summarize their usage and potential applications in the clinic to promote the development and utilization of LMWHs.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Yu Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Haoyu Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Fang Wang
- Department of Stomatology, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| |
Collapse
|
11
|
Hernández-Jiménez C, Martínez-Cortés J, Olmos-Zuñiga JR, Jasso-Victoria R, López-Pérez MT, Díaz-Martínez NE, Alonso-Gómez M, Guzmán-Cedillo AE, Baltazares-Lipp M, Gaxiola-Gaxiola M, Méndez-Bernal A, Polo-Jeréz A, Vázquez-Minero JC, Hernández-Pérez O, Fernández-Solís CO. Changes in the levels of free sialic acid during ex vivo lung perfusion do not correlate with pulmonary function. Experimental model. BMC Pulm Med 2023; 23:326. [PMID: 37667267 PMCID: PMC10478437 DOI: 10.1186/s12890-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) constitutes a tool with great research potential due to its advantages over in vivo and in vitro models. Despite its important contribution to lung reconditioning, this technique has the disadvantage of incurring high costs and can induce pulmonary endothelial injury through perfusion and ventilation. The pulmonary endothelium is made up of endothelial glycocalyx (EG), a coating of proteoglycans (PG) on the luminal surface. PGs are glycoproteins linked to terminal sialic acids (Sia) that can affect homeostasis with responses leading to edema formation. This study evaluated the effect of two ex vivo perfusion solutions on lung function and endothelial injury. METHODS We divided ten landrace swine into two groups and subjected them to EVLP for 120 min: Group I (n = 5) was perfused with Steen® solution, and Group II (n = 5) was perfused with low-potassium dextran-albumin solution. Ventilatory mechanics, histology, gravimetry, and sialic acid concentrations were evaluated. RESULTS Both groups showed changes in pulmonary vascular resistance and ventilatory mechanics (p < 0.05, Student's t-test). In addition, the lung injury severity score was better in Group I than in Group II (p < 0.05, Mann-Whitney U); and both groups exhibited a significant increase in Sia concentrations in the perfusate (p < 0.05 t-Student) and Sia immunohistochemical expression. CONCLUSIONS Sia, as a product of EG disruption during EVLP, was found in all samples obtained in the system; however, the changes in its concentration showed no apparent correlation with lung function.
Collapse
Affiliation(s)
- Claudia Hernández-Jiménez
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico.
| | - Javier Martínez-Cortés
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - J Raúl Olmos-Zuñiga
- Experimental Lung Transplant Unit of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Rogelio Jasso-Victoria
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - María Teresa López-Pérez
- Nursing Research Coordination of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, Jalisco, Mexico
| | - Marcelino Alonso-Gómez
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Axel Edmundo Guzmán-Cedillo
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Matilde Baltazares-Lipp
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Miguel Gaxiola-Gaxiola
- Laboratory of Morphology of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Adriana Méndez-Bernal
- Electron Microscopy Unit, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Adrián Polo-Jeréz
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan Carlos Vázquez-Minero
- Cardiothoracic Surgery Service of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Oscar Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Christopher O Fernández-Solís
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
12
|
Mohseni Afshar Z, Tavakoli Pirzaman A, Hosseinzadeh R, Babazadeh A, Taghizadeh Moghadam MA, Miri SR, Sio TT, Sullman MJM, Barary M, Ebrahimpour S. Anticoagulant therapy in COVID-19: A narrative review. Clin Transl Sci 2023; 16:1510-1525. [PMID: 37326220 PMCID: PMC10499427 DOI: 10.1111/cts.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can manifest itself in several ways, including coagulopathy and thrombosis. These complications can be the first and sometimes only manifestations of SARS-CoV-2 infection and can occur early or late in the course of the disease. However, these symptoms are more prevalent in hospitalized patients with venous thromboembolism, particularly those admitted to intensive care units. Moreover, various forms of arterial and venous thrombosis, or micro- or macro-vasculature embolisms, have been reported during the current pandemic. They have led to harmful consequences, such as neurological and cardiac events, nearly all resulting from the hypercoagulable state caused by this viral infection. The severe hypercoagulability observed in patients with COVID-19 accounts for most cases of the disease that become critical. Therefore, anticoagulants seem to be one of the most vital therapeutics for treating this potentially life-threatening condition. In the current paper, we present a thorough review of the pathophysiology of COVID-19-induced hypercoagulable state and the use of anticoagulants to treat SARS-CoV-2 infections in different patient groups, as well as their pros and cons.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | | | | | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | | | - Seyed Rouhollah Miri
- Cancer Research CenterCancer Institute of Iran, Tehran University of Medical ScienceTehranIran
| | - Terence T. Sio
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Mark J. M. Sullman
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus
- Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and ManagementShahid Beheshti University of Medical SciencesTehranIran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| |
Collapse
|
13
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Cao J, Ding C, Huang J, Chen Y, Chen Y. PULMONARY VASCULAR ENDOTHELIAL GLYCOCALYX DEGRADATION CONTRIBUTES TO ACUTE LUNG INJURY IN EXPERIENCING HEATSTROKE. Shock 2023; 59:966-972. [PMID: 37040184 DOI: 10.1097/shk.0000000000002130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ABSTRACT Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. The vascular endothelial structures of the lungs were examined using electron microscopy. The concentration of Evans blue dye in the lungs and arterial blood gas were assessed. An enzyme-linked immunosorbent assay was used to quantify the plasma concentration of heparan sulfate proteoglycan. The expression of glypican-1 and syndecan-1 in pulmonary vessels was measured using immunofluorescence. Western blots were used to detect the expression of TNF-α, IL-6, and vascular endothelial biomarkers in the rat lungs. Pulmonary apoptosis was assessed using a TUNEL (terminal dUTP nick end labeling) assay, and the concentrations of malondialdehyde were measured. Results: Glycocalyx shedding aggravated lung injuries. Severe histopathological damage was observed, and indexes of lung function deviated from abnormal ranges. In addition, pulmonary vascular endothelial cells were disrupted. Compared with the HS group, the plasma concentration of heparan sulfate proteoglycan significantly increased in the HPSE group ( P < 0.05). The expression of glypican-1 and syndecan-1 decreased, and the extravasation of Evans blue dye increased ( P < 0.01). Endothelial biomarker expression increased in the lung tissue, whereas occludin expression decreased. Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Chengjia Ding
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Jieen Huang
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Yanzhu Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Yi Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| |
Collapse
|
15
|
Vassiliou AG, Vrettou CS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE. Endotheliopathy in Acute COVID-19 and Long COVID. Int J Mol Sci 2023; 24:8237. [PMID: 37175942 PMCID: PMC10179170 DOI: 10.3390/ijms24098237] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| | | | | | | | | | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
16
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
17
|
Liang Z, Yue H, Xu C, Wang Q, Jin S. Protectin DX Relieve Hyperoxia-induced Lung Injury by Protecting Pulmonary Endothelial Glycocalyx. J Inflamm Res 2023; 16:421-431. [PMID: 36755970 PMCID: PMC9900492 DOI: 10.2147/jir.s391765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants with limited treatments and poor prognosis. Damaged endothelial glycocalyx leads to vascular permeability, lung edema and inflammation. However, whether hyperoxia increases neonatal pulmonary microvascular permeability by degrading the endothelial glycocalyx remains unknown. Methods Newborn mice were maintained in 60-70% O2 for 7 days. Protectin DX (PDX), an endogenous lipid mediator, was injected intraperitoneally on postnatal d 0, 2, 4 and 6. Lung samples and bronchoalveolar lavage fluid were taken at the end of the study. Primary human umbilical vein endothelial cells (HUVECs) were cultured in 80%O2. Results Hyperoxia exposure for 7 days led to neonatal mice alveolar simplification with less radial alveolar count (RAC), mean linear intercept (MLI) and mean alveolar diameter (MAD) compared to the control group. Hyperoxia exposure increased lung vascular permeability with more fluid and proteins and inflammatory factors, including TNF-α and IL-1β, in bronchoalveolar lavage fluid while reducing the heparan sulfate (HS), the most abundant component of the endothelial glycocalyx, in the pulmonary endothelial cells. PDX relieve these changes. PDX attenuated hyperoxia-induced high expression of heparanase (HPA), the endoglycosidase that shed endothelial glycocalyx, p-P65, P65, and low expression of SIRT1. BOC-2 and EX527 abolished the affection of PDX both in vivo and intro. Conclusion In summary, our findings indicate that PDX treatment relieves hyperoxia-induced alveolar simplification, vascular leakage and lung inflammation by attenuating pulmonary endothelial glycocalyx injury via the SIRT1/NF-κB/ HPA pathway.
Collapse
Affiliation(s)
- Zhongjie Liang
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China,Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Huilin Yue
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Congcong Xu
- Department of Neonatology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Qian Wang
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China,Correspondence: Qian Wang; Shengwei Jin, Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province, 325027, People’s Republic of China, Tel +86 577-88002806, Fax +86 577-88832693, Email ;
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China,Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Heparanase is the possible link between monkeypox and Covid-19: robust candidature in the mystic and present perspective. AMB Express 2023; 13:13. [PMID: 36705773 PMCID: PMC9880376 DOI: 10.1186/s13568-023-01517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase cleaves heparan sulfate (HS) and this contributes to the degradation and remodeling of the extracellular matrix. HS cleaved by HPSE induces activation of autophagy and formation of autophagosommes which facilitate binding of HPSE to the HS and subsequent release of growth factors. The interaction between HPSE and HS triggers releases of chemokines and cytokines which affect inflammatory response and cell signaling pathways with development of hyperinflammation, cytokine storm (CS) and coagulopathy. HPSE expression is induced by both SARS-CoV-2 and monkeypox virus (MPXV) leading to induction release of pro-inflammatory cytokines, endothelial dysfunction and thrombotic events. Co-infection of MPX with SARS-CoV-2 may occur as we facing many outbreaks of MPX cases during Covid-19 pandemic. Therefore, targeting of HPSE by specific inhibitors may reduce the risk of complications in both SARS-CoV-2 and MPXV infections. Taken together, HPSE could be a potential link between MPX with SARS-CoV-2 in Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
19
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
20
|
Wang W, Wang Z, Yang X, Song W, Chen P, Gao Z, Wu J, Huang F. Rhein ameliorates septic lung injury and intervenes in macrophage metabolic reprogramming in the inflammatory state by Sirtuin 1. Life Sci 2022; 310:121115. [DOI: 10.1016/j.lfs.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
21
|
Sauer A, Seeliger B, Jandl K, Erfinanda L, Wilhelm J, Alexopoulos I, Baal N, Birnhuber A, David S, Welte T, Barreto G, Gaertner U, Kwapiszewska G, Seeger W, Kuebler WM, Schaefer L, Wygrecka M. Circulating hyaluronic acid signature in CAP and ARDS - the role of pneumolysin in hyaluronic acid shedding. Matrix Biol 2022; 114:67-83. [PMID: 36456058 DOI: 10.1016/j.matbio.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Shedding of hyaluronan (HA), the component of endothelial cell (EC) glycocalyx, has been associated with acute lung injury. HA degradation allows plasma proteins and fluid to penetrate across the vascular wall leading to lung edema formation and leukocyte recruitment. Here, we analyzed sHA levels and size in patients with community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), correlated them to disease severity, and evaluated the impact of pneumolysin (PLY), the Streptococcus pneumoniae (S.p.) exotoxin, on HA shedding from human pulmonary microvascular EC (HPMVEC). sHA levels were elevated in CAP and ARDS and correlated with the CRB65 severity score and with markers of inflammation (interleukin-6), EC activation (E-selectin), and basement membrane destruction (collagen IV). Furthermore, sHA levels were associated with an increase in 28-day mortality. Small and large sHA fragments were detected in plasma of most severe CAP or ARDS patients, and the presence of large sHA fragments was accompanied by the elevated levels of circulating collagen IV. In vitro, PLY induced sHA release from HPMVEC. This effect was dependent on reactive oxygen species (ROS) production and was not associated with endothelial barrier dysfunction. Conversely, HA shedding was impaired following HPMVEC infection with a S.p. PLY-deficient mutant. Our study identifies association between the severity of CAP and ARDS and the levels and size of sHA in plasma. It links sHA levels with, inflammation, EC activation status and basement membrane disassembly in ARDS and provides insights into the mechanism of HA shedding during infection.
Collapse
Affiliation(s)
- Agnes Sauer
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jochen Wilhelm
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Ioannis Alexopoulos
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany; Multiscale Imaging Platform, Institute for Lung Health (ILH), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; Nancy, France; Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Gaertner
- Institute of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | | |
Collapse
|
22
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
23
|
Feng Q, Si Y, Zhu L, Wang F, Fang J, Pan C, Gao X, Liu W. Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115262. [PMID: 35398243 DOI: 10.1016/j.jep.2022.115262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcandra glabra (Thunb.) Nakai, a valuable dietetic Chinese herb, is still widely used today. Multiple ingredients of S. glabra with a variety of activities such as anti-inflammatory, antiviral, and antitumor were studied. However, the Sarcandra glabra (Thunb.) Nakai polysaccharide hasn't been reported for its anti-inflammatory effect. AIM OF THE STUDY In this study, the anti-inflammatory activity of Sarcandra glabra (Thunb.) Nakai polysaccharide was assessed in LPS-induced ARDS mice. MATERIALS AND METHODS A polysaccharide coded as SERP 30 was obtained by water extraction, alcohol precipitation, and gel filtration. After the physicochemical properties determination and structural characterization, LPS induced-mice ARDS model was used to evaluate the anti-inflammatory and associated antioxidant activities of SERP 30. H&E staining was used to observe the seriousness of lung injury in mice. The ELISA method was used to measure the expression of inflammatory factors (TNF-α and IL-6) in the serum of the mice. The TBA method and the WST-1 method were used to evaluate the oxidative stress injury. Immunohistochemistry was used to distinguish the expression of metalloproteinase-9 (MMP-9), heparinase (HPA), syndecan-1, and decorin in ARDS-mice lung tissue. Western blotting was used to confirm the expression of related proteins in mouse lung tissue. RESULTS SERP 30 had a potential role in improving lung damage, reducing inflammation, and preventing oxidative stress. Moreover, SERP 30 significantly attenuated the damage to the endothelial glycocalyx and maintained the integrity of the glycocalyx. The western blotting result implied that the main anti-inflammatory mechanism is directed towards NF-κB and MAPK signaling pathways with inhibiting the activation of associated proteins. CONCLUSION This research provides a theoretical basis for treating ARDS by using a byproduct from food resource.
Collapse
Affiliation(s)
- Qi Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lingling Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing, 210042, PR China
| | - Junqiang Fang
- Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, 250000, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
24
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
25
|
Zha D, Fu M, Qian Y. Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in COVID-19. Cells 2022; 11:cells11121972. [PMID: 35741101 PMCID: PMC9221624 DOI: 10.3390/cells11121972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a highly infectious respiratory disease caused by a new coronavirus known as SARS-CoV-2. COVID-19 is characterized by progressive respiratory failure resulting from diffuse alveolar damage, inflammatory infiltrates, endotheliitis, and pulmonary and systemic coagulopathy forming obstructive microthrombi with multi-organ dysfunction, indicating that endothelial cells (ECs) play a central role in the pathogenesis of COVID-19. The glycocalyx is defined as a complex gel-like layer of glycosylated lipid–protein mixtures, which surrounds all living cells and acts as a buffer between the cell and the extracellular matrix. The endothelial glycocalyx layer (EGL) plays an important role in vascular homeostasis via regulating vascular permeability, cell adhesion, mechanosensing for hemodynamic shear stresses, and antithrombotic and anti-inflammatory functions. Here, we review the new findings that described EGL damage in ARDS, coagulopathy, and the multisystem inflammatory disease associated with COVID-19. Mechanistically, the inflammatory mediators, reactive oxygen species (ROS), matrix metalloproteases (MMPs), the glycocalyx fragments, and the viral proteins may contribute to endothelial glycocalyx damage in COVID-19. In addition, the potential therapeutic strategies targeting the EGL for the treatment of severe COVID-19 are summarized and discussed.
Collapse
Affiliation(s)
- Duoduo Zha
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China;
- Correspondence:
| |
Collapse
|
26
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
27
|
Histone H4 induces heparan sulfate degradation by activating heparanase in chlorine gas-induced acute respiratory distress syndrome. Respir Res 2022; 23:14. [PMID: 35073921 PMCID: PMC8785471 DOI: 10.1186/s12931-022-01932-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background Heparan sulfate (HS) degradation mediates pulmonary endothelial hyper-permeability and acute pulmonary edema during acute respiratory distress syndrome (ARDS). The aim of this study was to examine whether histone H4 induced HS degradation by activating heparanase (HPSE) in chlorine gas (Cl2)-induced ARDS. Methods Acute lung injury was induced by Cl2 exposure or histone H4 injection in C57BL/6 mice. Histone H4 in bronchoalveolar lavage fluid (BALF) and plasma was measured by ELISA. HS degradation was measured by immunostaining, ELISA, and flow cytometry. HPSE mRNA and protein were measured by real-time qPCR and western blot analysis, respectively, at preset timepoints. The HPSE inhibitor OGT2115 and specific siRNAs were used to study the role of HPSE during HS degradation caused by Cl2 exposure or histone H4 challenge. Blocking antibodies against TLR1, TLR2, TLR4, or TLR6 were used in vitro to investigate which signaling pathway was involved. The transcriptional regulation of HPSE was studied vis-à-vis NF-κB, which was assessed by nuclear translocation of NF-κB p65 and phosphorylation of I-κBα protein. Results Histone H4 in BALF and plasma increased evidently after Cl2 inhalation. Cl2 exposure or histone H4 challenge caused obvious acute lung injury in mice, and the pulmonary glycocalyx was degraded evidently as observed from endothelial HS staining and measurement of plasma HS fragments. Pretreatment with OGT2115, an HPSE inhibitor, relieved the acute lung injury and HS degradation caused by Cl2 exposure or histone H4 challenge. Targeted knockdown of HPSE by RNA interference (RNAi) significantly inhibited histone H4 induced HS degradation in HPMECs, as measured by immunofluorescence and flow cytometry. By inducing phosphorylation of I-κB α and nuclear translocation of NF-κB p65, histone H4 directly promoted mRNA transcription and protein expression of HPSE in a dose-dependent manner. Additionally, a blocking antibody against TLR4 markedly inhibited both activation of NF-κB and expression of HPSE induced by histone H4. Conclusions Histone H4 is a major pro-inflammatory mediator in Cl2-induced ARDS in mice, and induces HS degradation by activating HPSE via TLRs- and NF-κB-signaling pathways.
Collapse
|
28
|
Thomas R, Liu T, Schad A, Ruemmler R, Kamuf J, Rissel R, Ott T, David M, Hartmann EK, Ziebart A. Hyaluronic acid plasma levels during high versus low tidal volume ventilation in a porcine sepsis model. PeerJ 2022; 9:e12649. [PMID: 35036142 PMCID: PMC8742546 DOI: 10.7717/peerj.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Shedding of the endothelial glycocalyx can be observed regularly during sepsis. Moreover, sepsis may be associated with acute respiratory distress syndrome (ARDS), which requires lung protective ventilation with the two cornerstones of application of low tidal volume and positive end-expiratory pressure. This study investigated the effect of a lung protective ventilation on the integrity of the endothelial glycocalyx in comparison to a high tidal volume ventilation mode in a porcine model of sepsis-induced ARDS. Methods After approval by the State and Institutional Animal Care Committee, 20 male pigs were anesthetized and received a continuous infusion of lipopolysaccharide to induce septic shock. The animals were randomly assigned to either low tidal volume ventilation, high tidal volume ventilation, or no-LPS-group groups and observed for 6 h. In addition to the gas exchange parameters and hematologic analyses, the serum hyaluronic acid concentrations were determined from central venous blood and from pre- and postpulmonary and pre- and postcerebral circulation. Post-mortem analysis included histopathological evaluation and determination of the pulmonary and cerebral wet-to-dry ratios. Results Both sepsis groups developed ARDS within 6 h of the experiment and showed significantly increased serum levels of hyaluronic acid in comparison to the no-LPS-group. No significant differences in the hyaluronic acid concentrations were detected before and after pulmonary and cerebral circulation. There was also no significant difference in the serum hyaluronic acid concentrations between the two sepsis groups. Post-mortem analysis showed no significant difference between the two sepsis groups. Conclusion In a porcine model of septic shock and ARDS, the serum hyaluronic acid levels were significantly elevated in both sepsis groups in comparison to the no-LPS-group. Intergroup comparison between lung protective ventilated and high tidal ventilated animals revealed no significant differences in the serum hyaluronic acid levels.
Collapse
Affiliation(s)
- Rainer Thomas
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Tanghua Liu
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Arno Schad
- Institute of Pathology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - René Rissel
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Ott
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias David
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
29
|
Masola V, Greco N, Gambaro G, Franchi M, Onisto M. Heparanase as active player in endothelial glycocalyx remodeling. Matrix Biol Plus 2022; 13:100097. [PMID: 35036899 PMCID: PMC8749438 DOI: 10.1016/j.mbplus.2021.100097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
The surface of all animal cells is coated with a layer of carbohydrates linked in various ways to the outer side of the plasma membrane. These carbohydrates are mainly bound to proteins in the form of glycoproteins and proteoglycans and together with the glycolipids constitute the so-called glycocalyx. In particular, the endothelial glycocalyx that covers the luminal layer of the endothelium is composed of glycosaminoglycans (heparan sulphate -HS and hyaluronic acid -HA), proteoglycans (syndecans and glypicans) and adsorbed plasma proteins. Thanks to its ability to absorb water, this structure contributes to making the surface of the vessels slippery but at the same time acts by modulating the mechano-transduction of the vessels, the vascular permeability and the adhesion of leukocytes in thus regulating several physiological and pathological events. Among the various enzymes involved in the degradation of the glycocalyx, heparanase (HPSE) has been shown to be particularly involved. This enzyme is responsible for the cutting of heparan sulfate (HS) chains at the level of the proteoglycans of the endothelial glycocalyx whose dysfunction appears to have a role in organ fibrosis, sepsis and viral infection. In this mini-review, we describe the mechanisms by which HPSE contributes to glycocalyx remodeling and then examine the role of glycocalyx degradation in the development of pathological conditions and pharmacological strategies to preserve glycocalyx during disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy.,Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Nicola Greco
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giovanni Gambaro
- Renal Unit, Dept. of Medicine, University Hospital of Verona, Verona, Italy
| | - Marco Franchi
- Dept. of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Dept. of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Association between plasma glycocalyx component levels and poor prognosis in severe influenza type A (H1N1). Sci Rep 2022; 12:163. [PMID: 34997090 PMCID: PMC8741814 DOI: 10.1038/s41598-021-04146-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus infection causes a series of diseases, but the factors associated with disease severity are not fully understood. Disruption of the endothelial glycocalyx contributes to acute lung injury in sepsis, but has not been well studied in H1N1 influenza. We aim to determine whether the plasma glycocalyx components levels are predictive of disease severity in H1N1 influenza. This prospective observational study included 53 patients with influenza A (H1N1) during the influenza season, and 30 healthy controls in our hospital. Patients were grouped by severity and survival. We collected clinical data and blood samples at admission. Inflammatory factors (tumor necrosis factor-α, interleukin-6, interleukin-10) and endothelial glycocalyx components (syndecan-1, hyaluronan, heparan sulfate) were measured. The plasma levels of syndecan-1, hyaluronan, and heparan sulfate were significantly higher in patients with severe influenza A (H1N1) than in mild cases. Syndecan-1 and hyaluronan were positively correlated with disease severity, which was indicated by the APACHE II and SOFA scores and lactate levels, and negatively correlated with albumin levels. At a cutoff point ≥ 173.9 ng/mL, syndecan-1 had a 81.3% sensitivity and 70.3% specificity for predicting of 28-day mortality. Kaplan–Meier analysis demonstrated a strong association between syndecan-1 levels and 28-day mortality (log-rank 11.04, P = 0.001). Elevated plasma levels of syndecan-1 has a potential role in systemic organ dysfunction and may be indicative of disease severity in patients with influenza A (H1N1).
Collapse
|
31
|
Tiboldi A, Führer J, Schaubmayr W, Hunyadi-Gulyas E, Zach ML, Hochreiter B, Spittler A, Ullrich R, Markstaller K, Altmann F, Klein KU, Tretter V. Oxygen-Dependent Changes in the N-Glycome of Murine Pulmonary Endothelial Cells. Antioxidants (Basel) 2021; 10:1947. [PMID: 34943050 PMCID: PMC8750181 DOI: 10.3390/antiox10121947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are still insufficiently understood. The lung endothelium is covered with an exceptionally broad glycocalyx, carrying N- and O-glycans, proteoglycans, glycolipids and glycosaminoglycans. Glycan structures are not genetically determined but depend on the metabolic state and the expression level and activity of biosynthetic and glycan remodeling enzymes, which can be influenced by oxygen and the redox status of the cell. Altered glycan structures can affect cell interactions and signaling. In this study, we investigated the effect of different oxygen conditions on aspects of the glycobiology of the pulmonary endothelium with an emphasis on N-glycans and terminal sialylation using an in vitro cell culture system. We combined a proteomic approach with N-glycan structure analysis by LC-MS, qRT-PCR, sialic acid analysis and lectin binding to show that constant and intermittent hyperoxia induced time dependent changes in global and surface glycosylation. An siRNA approach identified St6gal1 as being primarily responsible for the early transient increase of α2-6 sialylated structures in response to hyperoxia.
Collapse
Affiliation(s)
- Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Johannes Führer
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, 1090 Vienna, Austria; (J.F.); (F.A.)
| | - Wolfgang Schaubmayr
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, Biological Research Centre, 6726 Szeged, Hungary;
| | - Marie Louise Zach
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Beatrix Hochreiter
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University Vienna, 1090 Vienna, Austria;
| | - Roman Ullrich
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Friedrich Altmann
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, 1090 Vienna, Austria; (J.F.); (F.A.)
| | - Klaus Ulrich Klein
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| |
Collapse
|
32
|
Rando HM, MacLean AL, Lee AJ, Lordan R, Ray S, Bansal V, Skelly AN, Sell E, Dziak JJ, Shinholster L, D’Agostino McGowan L, Ben Guebila M, Wellhausen N, Knyazev S, Boca SM, Capone S, Qi Y, Park Y, Mai D, Sun Y, Boerckel JD, Brueffer C, Byrd JB, Kamil JP, Wang J, Velazquez R, Szeto GL, Barton JP, Goel RR, Mangul S, Lubiana T, Gitter A, Greene CS. Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. mSystems 2021; 6:e0009521. [PMID: 34698547 PMCID: PMC8547481 DOI: 10.1128/msystems.00095-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Ashwin N. Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John J. Dziak
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Lucy D’Agostino McGowan
- Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Simina M. Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen Capone
- St. George’s University School of Medicine, St. George’s, Grenada
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - Joel D. Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - John P. Barton
- Department of Physics and Astronomy, University of California-Riverside, Riverside, California, USA
| | - Rishi Raj Goel
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Tiago Lubiana
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen, Germany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, University Park, Pennsylvania, USA
- Mercer University, Macon, Georgia, USA
- Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
- Georgia State University, Atlanta, Georgia, USA
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- St. George’s University School of Medicine, St. George’s, Grenada
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Clinical Sciences, Lund University, Lund, Sweden
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
- Azimuth1, McLean, Virginia, USA
- Allen Institute for Immunology, Seattle, Washington, USA
- Department of Physics and Astronomy, University of California-Riverside, Riverside, California, USA
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Early Effects of Low Molecular Weight Heparin Therapy with Soft-Mist Inhaler for COVID-19-Induced Hypoxemia: A Phase IIb Trial. Pharmaceutics 2021; 13:pharmaceutics13111768. [PMID: 34834183 PMCID: PMC8618458 DOI: 10.3390/pharmaceutics13111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
In COVID-19-induced acute respiratory distress syndrome, the lungs are incapable of filling with sufficient air, leading to hypoxemia that results in high mortality among hospitalized patients. In clinical trials, low-molecular-weight heparin was administered via a specially designed soft-mist inhaler device in an investigator initiated, single-center, open-label, phase-IIb clinical trial. Patients with evidently worse clinical presentations were classed as the “Device Group”; 40 patients were given low-molecular-weight heparin via a soft mist inhaler at a dose of 4000 IU per administration, twice a day. The Control Group, also made up of 40 patients, received the standard therapy. The predetermined severity of hypoxemia and the peripheral oxygen saturation of patients were measured on the 1st and 10th days of treatment. The improvement was particularly striking in cases of severe hypoxemia. In the 10-day treatment, low-molecular-weight heparin was shown to significantly improve breathing capability when delivered via a soft-mist inhaler.
Collapse
|
34
|
Giergiel M, Malek-Zietek KE, Konior J, Targosz-Korecka M. Endothelial glycocalyx detection and characterization by means of atomic force spectroscopy: Comparison of various data analysis approaches. Micron 2021; 151:103153. [PMID: 34627108 DOI: 10.1016/j.micron.2021.103153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
In recent years, atomic force spectroscopy (AFS) has been used to detect and characterize the endothelial glycocalyx (eGlx) in in vitro and ex vivo experiments. Several analysis methods were proposed, which differ not only in the numerical implementations, but also in physical models of glycocalyx description. Therefore, it is difficult to directly relate the experiments performed by different groups. In this work, we compared different models used for quantitative analysis of atomic force spectroscopy datasets recorded for eGlx. To capture glycocalyx at various structural conditions, we used basic enzymatic protocols for glycocalyx removal and restoration in human aortal endothelial cells (HAEC). Nanoindentation experiments for this model system were performed for (i) untreated cells, (ii) for cells after heparinase incubation, which enzymatically removes glycocalyx, (iii) for cells with successive heparin treatment, which partially restores the glycocalyx layer. Analysis of nanoindentation data was performed using different models: (a) a single-layer contact mechanics, (b) a double-layer model contact mechanics, (c) a polymer "brush" two-layer model based on the Alexander - de Gennes theory and (d) a simple single-layer "mechanical spring" model. Although different physical parameters are evaluated in methods (a-d), we show that all approaches revealed similar qualitative changes of the glycocalyx layer, which reflected the processes of glycocalyx degradation and its partial restoration. This paper may facilitate a direct comparison of past and future glycocalyx oriented AFS experiments that are analysed with different approaches.
Collapse
Affiliation(s)
- Magdalena Giergiel
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348, Krakow, Poland.
| | - Katarzyna Ewa Malek-Zietek
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Jerzy Konior
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Marta Targosz-Korecka
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348, Krakow, Poland
| |
Collapse
|
35
|
Protectin conjugates in tissue regeneration 1 restores lipopolysaccharide-induced pulmonary endothelial glycocalyx loss via ALX/SIRT1/NF-kappa B axis. Respir Res 2021; 22:193. [PMID: 34217286 PMCID: PMC8254367 DOI: 10.1186/s12931-021-01793-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. Methods PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. Results In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. Conclusion PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.
Collapse
|
36
|
Qi F, Zhou H, Gu P, Tang ZH, Zhu BF, Chen JR, Zhang JS, Li F. Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg Med 2021; 21:52. [PMID: 33879092 PMCID: PMC8056622 DOI: 10.1186/s12873-021-00446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) abnormal degradation were widely found in critical illness. However, data of EG degradation in multiple traumas is limited. We performed a study to assess the EG degradation and the correlation between the degradation and organ functions in polytrauma patients. METHODS A prospective observational study was conducted to enroll health participants (control group) and polytrauma patients (trauma group) at a University affiliated hospital between Feb 2020 and Oct 2020. Syndecan1 (SDC1) and heparin sulfate (HS) were detected in serum sample of both groups. In trauma group, injury severity scores (ISS) and sequential organ failure assessments (SOFA) were calculated. Occurrences of acute kidney injury (AKI), trauma-induced coagulopathy (TIC) within 48 h and 28-day all-cause mortality in trauma group were recorded. Serum SDC1 and HS levels were compared between two groups. Correlations between SDC1/HS and the indicators of organ systems in the trauma group were analyzed. ROC analyses were performed to assess the predictive value of SDC1 and HS for AKI, TIC within 48 h, and 28-day mortality in trauma group. RESULTS There were 45 polytrauma patients and 15 healthy participants were collected, totally. SDC1 and HS were significantly higher in trauma group than in control group (69.39 [54.18-130.80] vs. 24.15 [13.89-32.36], 38.92 [30.47-67.96] vs. 15.55 [11.89-23.24], P < 0.001, respectively). Trauma group was divided into high degradation group and low degradation group according to SDC1 median. High degradation group had more severe ISS, SOFA scores, worse organ functions (respiratory, kidney, coagulation and metabolic system), and higher incidence of hypothermia, acidosis and shock. The area under the receiver operator characteristic curves (AUC) of SDC1 to predict AKI, TIC occurrence within 48 h and 28-day mortality were 0.838 (95%CI: 0.720-0.957), 0.700 (95%CI: 0.514-0.885) and 0.764 (95%CI: 0.543-0.984), respectively. CONCLUSIONS EG degradation was elevated significantly in polytrauma patients, and the degradation was correlated with impaired respiratory, kidney, coagulation and metabolic systems in early stage. Serum SDC1 is a valuable predictive indicator of early onset of AKI, TIC, and 28-day mortality in polytrauma patients.
Collapse
Affiliation(s)
- Feng Qi
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Hao Zhou
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Gu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Zhi-He Tang
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Bao-Feng Zhu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jian-Rong Chen
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jin-Song Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
37
|
Paget TL, Parkinson-Lawrence EJ, Trim PJ, Autilio C, Panchal MH, Koster G, Echaide M, Snel MF, Postle AD, Morrison JL, Pérez-Gil J, Orgeig S. Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells 2021; 10:849. [PMID: 33918094 PMCID: PMC8070179 DOI: 10.3390/cells10040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Collapse
Affiliation(s)
- Tamara L. Paget
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Emma J. Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Paul J. Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Madhuriben H. Panchal
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Grielof Koster
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Marten F. Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Anthony D. Postle
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Janna L. Morrison
- Early Origins Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Jésus Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| |
Collapse
|
38
|
Oshima K, King SI, McMurtry SA, Schmidt EP. Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Semin Thromb Hemost 2021; 47:274-282. [PMID: 33794552 DOI: 10.1055/s-0041-1725064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing recognition of the importance of the endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer, in vascular homeostasis. Heparan sulfate proteoglycans (HSPGs) are a major structural constituent of the endothelial glycocalyx and serve to regulate vascular permeability, microcirculatory tone, leukocyte and platelet adhesion, and hemostasis. During sepsis, endothelial HSPGs are shed through the induction of "sheddases" such as heparanase and matrix metalloproteinases, leading to loss of glycocalyx integrity and consequent vascular dysfunction. Less well recognized is that glycocalyx degradation releases HSPG fragments into the circulation, which can shape the systemic consequences of sepsis. In this review, we will discuss (1) the normal, homeostatic functions of HSPGs within the endothelial glycocalyx, (2) the pathological changes in HSPGs during sepsis and their consequences on the local vascular bed, and (3) the systemic consequences of HSPG degradation. In doing so, we will identify potential therapeutic targets to improve vascular function during sepsis as well as highlight key areas of uncertainty that require further mechanistic investigation.
Collapse
Affiliation(s)
- Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samantha I King
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah A McMurtry
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric P Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
39
|
Li J, Qi Z, Li D, Huang X, Qi B, Feng J, Qu J, Wang X. Alveolar epithelial glycocalyx shedding aggravates the epithelial barrier and disrupts epithelial tight junctions in acute respiratory distress syndrome. Biomed Pharmacother 2021; 133:111026. [PMID: 33378942 PMCID: PMC7685063 DOI: 10.1016/j.biopha.2020.111026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The main pathophysiological mechanism of acute respiratory distress syndrome (ARDS) invovles the increase in alveolar barrier permeability that is primarily caused by epithelial glycocalyx and tight junction (TJ) protein destruction. This study was performed to explore the effects of the alveolar epithelial glycocalyx on the epithelial barrier, specifically on TJ proteins, in ARDS. We used C57BL/6 mice and human lung epithelial cell models of lipopolysaccharide (LPS)-induced ARDS. Changes in alveolar permeability were evaluated via pulmonary histopathology analysis and by measuring the wet/dry weight ratio of the lungs. Degradation of heparan sulfate (HS), an important component of the epithelial glycocalyx, and alterations in levels of the epithelial TJ proteins (occludin, zonula occludens 1, and claudin 4) were assessed via ELISA, immunofluorescence analysis, and western blotting analysis. Real-time quantitative polymerase chain reaction was used to detect the mRNA of the TJ protein. Changes in glycocalyx and TJ ultrastructures in alveolar epithelial cells were evaluated through electron microscopy. In vivo and in vitro, LPS increased the alveolar permeability and led to HS degradation and TJ damage. After LPS stimulation, the expression of the HS-degrading enzyme heparanase (HPA) in the alveolar epithelial cells was increased. The HPA inhibitor N-desulfated/re-N-acetylated heparin alleviated LPS-induced HS degradation and reduced TJ damage. In vitro, recombinant HPA reduced the expression of the TJ protein zonula occludens-1 (ZO-1) and inhibited its mRNA expression in the alveolar epithelial cells. Taken together, our results demonstrate that shedding of the alveolar epithelial glycocalyx aggravates the epithelial barrier and damages epithelial TJ proteins in ARDS, with the underlying mechanism involving the effect of HPA on ZO-1.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Zhijiang Qi
- Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Dongxiao Li
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiao Huang
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Boyang Qi
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jiali Feng
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jianyu Qu
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiaozhi Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
40
|
Astapenko D, Ticha A, Tomasova A, Hyspler R, Zadak Z, Lehmann C, Cerny V. Evaluation of endothelial glycocalyx in healthy volunteers - An observational study. Clin Hemorheol Microcirc 2020; 75:257-265. [PMID: 31683466 DOI: 10.3233/ch-190581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endothelial glycocalyx (EG) is a carbohydrate-rich gel-like mesh covering the apical surface of endothelial cells. It has been linked to the microvascular pathophysiology and tissue metabolism. However, little is known about its condition in young healthy adults. OBJECTIVE We aimed to describe the condition of EG in young healthy adults by in vivo EG imaging and measurement of syndecan-1, a plasma marker of EG integrity in order to obtain reference values. METHODS For in vivo EG studies we used Side-stream Dark Field imaging of the sublingual microcirculation. Recordings were analysed automatically by GlycoCheck software providing the Perfused Boundary Region (PBR) as a marker of EG thickness. Levels of syndecan-1 were analysed in plasma samples by ELISA. RESULTS 21 volunteers were included in the study. Median of the PBR value was 1.82 μm (interquartile range 1.69-2.01, 95% CI 1.79-1.97). Median concentration of syndecan-1 was 0.3 ng/ml (interquartile range 0.23-0.39, 95% CI 0.27-0.49). CONCLUSION This study provides a comparison for cohorts of patients with a particular disease where the EG is presumably damaged. Our findings do not entirely comply with already published data in healthy individuals.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic.,Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Alena Ticha
- Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Adela Tomasova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Radomir Hyspler
- Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic
| | - Zdenek Zadak
- Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Christian Lehmann
- Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Vladimir Cerny
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic.,Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Jan Evangelista Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic
| |
Collapse
|
41
|
Buijsers B, Yanginlar C, de Nooijer A, Grondman I, Maciej-Hulme ML, Jonkman I, Janssen NAF, Rother N, de Graaf M, Pickkers P, Kox M, Joosten LAB, Nijenhuis T, Netea MG, Hilbrands L, van de Veerdonk FL, Duivenvoorden R, de Mast Q, van der Vlag J. Increased Plasma Heparanase Activity in COVID-19 Patients. Front Immunol 2020; 11:575047. [PMID: 33123154 PMCID: PMC7573491 DOI: 10.3389/fimmu.2020.575047] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aline de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa L. Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico A. F. Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Deparment of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
42
|
Benatti MN, Fabro AT, Miranda CH. Endothelial glycocalyx shedding in the acute respiratory distress syndrome after flu syndrome. J Intensive Care 2020; 8:72. [PMID: 32974033 PMCID: PMC7503444 DOI: 10.1186/s40560-020-00488-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scientific evidence indicates that endothelial glycocalyx (EG) shedding contributes to the pathophysiological installation of acute respiratory distress syndrome (ARDS) after bacterial sepsis. The aim was to evaluate the EG shedding in ARDS installation after flu syndrome. METHODS This cross-sectional study included patients with flu syndrome during the influenza outbreak divided into two groups: patients with and without ARDS. Healthy subjects without flu syndrome were included in a control group. We measured EG damage biomarkers (hyaluronan, syndecan-1) and endothelial cell injury biomarker (soluble thrombomodulin) during the first medical evaluation. Histological assessment of the perimeter of the hyaline membrane and the number of neutrophils infiltrated in the alveolar septum was performed in patients who died. RESULTS ARDS group had 30 patients (44 ± 16 years old, 57% men), the non-ARDS group had 36 patients (39 ± 17 years old, 42% men), and the control group had 35 individuals (44 ± 9 years old, 51% men). Hyaluronan levels were significantly higher in the ARDS group than the two groups [31 ng/ml (interquartile range-IQR 12-56) vs. 5 ng/ml (IQR 3-10) vs. 5 ng/ml (IQR 2-8); p < 0.0001]. Hyaluronan levels above 19 ng/ml in patients with flu syndrome were associated with a significant increase in 28-day mortality rate: relative risk (RR): 6.95; (95% confidence interval 1.88-25.67); p = 0.0017. A positive correlation was observed between hyaline membrane perimeter and soluble thrombomodulin levels (r = 0.89; p = 0.05) as well as between the number of neutrophils in the alveolar septum and hyaluronan levels (r = 0.89; p = 0.05). CONCLUSIONS Evidence of EG shedding was found in ARDS established after flu syndrome.
Collapse
Affiliation(s)
- Maira Nilson Benatti
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| |
Collapse
|
43
|
Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine 2020; 59:102969. [PMID: 32853989 PMCID: PMC7445140 DOI: 10.1016/j.ebiom.2020.102969] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include: (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Huang X, Hu H, Sun T, Zhu W, Tian H, Hao D, Wang T, Wang X. Plasma Endothelial Glycocalyx Components as a Potential Biomarker for Predicting the Development of Disseminated Intravascular Coagulation in Patients With Sepsis. J Intensive Care Med 2020; 36:1286-1295. [PMID: 32799720 DOI: 10.1177/0885066620949131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sepsis coagulopathy or disseminated intravascular coagulation (DIC) mainly due to progressive endothelial disruption and damage. The glycocalyx is expressed on the endothelial cell surface and contributes to anti-thrombogenicity, anti-inflammatory, and regulates vascular permeability. We aimed to evaluate the clinical utility of plasma glycocalyx components as biomarkers in predicting the onset of DIC in sepsis. MATERIALS AND METHODS This was a prospective observational study of 45 patients with sepsis (June to December 2018). Demographic, clinical (Acute Physiology, Age, Chronic Health Evaluation II [APACHE II], Sequential Organ Failure Assessment [SOFA]), and laboratory data from medical records were analyzed. Endothelial glycocalyx components (syndecan-1, heparan sulfate, hyaluronan) were measured using an ELISA kit. RESULTS Among the 45 patients (23, sepsis; 22, septic shock), plasma syndecan-1, heparan sulfate, and hyaluronan levels were higher in those with septic shock and were positively correlated with disease severity as determined by the APACHE II and SOFA scores and lactate levels. Receiver operating characteristic curve analysis revealed high sensitivity and specificity of syndecan-1 for predicting septic shock. Further, these levels were compared between patients with or without the development of DIC. Plasma syndecan-1 and hyaluronan levels were significantly elevated in patients with DIC compared to those in patients without DIC and were strongly associated with activated partial thromboplastin time, prothrombin time, and platelet counts. Area under the curve values for predicting DIC based on syndecan-1 and hyaluronan levels measurements were 0.774 and 0.740, respectively. CONCLUSIONS Increased plasma syndecan-1 and hyaluronan levels may be indicators of disease severity and useful predictors for DIC development in sepsis.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haoran Hu
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ting Sun
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Huanhuan Tian
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dong Hao
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tao Wang
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaozhi Wang
- Department of Pulmonary and Critical Care Medicine and Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
45
|
Ochs M, Hegermann J, Lopez-Rodriguez E, Timm S, Nouailles G, Matuszak J, Simmons S, Witzenrath M, Kuebler WM. On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx. Int J Mol Sci 2020; 21:ijms21093075. [PMID: 32349261 PMCID: PMC7246550 DOI: 10.3390/ijms21093075] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Correspondence:
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Geraldine Nouailles
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Jasmin Matuszak
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Martin Witzenrath
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Wolfgang M. Kuebler
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| |
Collapse
|
46
|
LaRivière WB, Liao S, McMurtry SA, Oshima K, Han X, Zhang F, Yan S, Haeger SM, Ransom M, Bastarache JA, Linhardt RJ, Schmidt EP, Yang Y. Alveolar heparan sulfate shedding impedes recovery from bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1198-L1210. [PMID: 32320623 DOI: 10.1152/ajplung.00063.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pulmonary epithelial glycocalyx, an anionic cell surface layer enriched in glycosaminoglycans such as heparan sulfate and chondroitin sulfate, contributes to the alveolar barrier. Direct injury to the pulmonary epithelium induces shedding of heparan sulfate into the air space; the impact of this shedding on recovery after lung injury is unknown. Using mass spectrometry, we found that heparan sulfate was shed into the air space for up to 3 wk after intratracheal bleomycin-induced lung injury and coincided with induction of matrix metalloproteinases (MMPs), including MMP2. Delayed inhibition of metalloproteinases, beginning 7 days after bleomycin using the nonspecific MMP inhibitor doxycycline, attenuated heparan sulfate shedding and improved lung function, suggesting that heparan sulfate shedding may impair lung recovery. While we also observed an increase in air space heparanase activity after bleomycin, pharmacological and transgenic inhibition of heparanase in vivo failed to attenuate heparan sulfate shedding or protect against bleomycin-induced lung injury. However, experimental augmentation of airway heparanase activity significantly worsened post-bleomycin outcomes, confirming the importance of epithelial glycocalyx integrity to lung recovery. We hypothesized that MMP-associated heparan sulfate shedding contributed to delayed lung recovery, in part, by the release of large, highly sulfated fragments that sequestered lung-reparative growth factors such as hepatocyte growth factor. In vitro, heparan sulfate bound hepatocyte growth factor and attenuated growth factor signaling, suggesting that heparan sulfate shed into the air space after injury may directly impair lung repair. Accordingly, administration of exogenous heparan sulfate to mice after bleomycin injury increased the likelihood of death due to severe lung dysfunction. Together, our findings demonstrate that alveolar epithelial heparan sulfate shedding impedes lung recovery after bleomycin.
Collapse
Affiliation(s)
- W B LaRivière
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S Liao
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S A McMurtry
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - K Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - X Han
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - F Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - S Yan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - S M Haeger
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - M Ransom
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - J A Bastarache
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R J Linhardt
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - E P Schmidt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Y Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
47
|
Li H, Hao Y, Yang LL, Wang XY, Li XY, Bhandari S, Han J, Liu YJ, Gong YQ, Scott A, Smith FG, Jin SW. MCTR1 alleviates lipopolysaccharide-induced acute lung injury by protecting lung endothelial glycocalyx. J Cell Physiol 2020; 235:7283-7294. [PMID: 32037554 DOI: 10.1002/jcp.29628] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Endothelial glycocalyx degradation, critical for increased pulmonary vascular permeability, is thought to facilitate the development of sepsis into the multiple organ failure. Maresin conjugates in tissue regeneration 1 (MCTR1), a macrophage-derived lipid mediator, which exhibits potentially beneficial effects via the regulation of bacterial phagocytosis, promotion of inflammation resolution, and regeneration of tissue. In this study, we show that MCTR1 (100 ng/mouse) enhances the survival of mice with lipopolysaccharide (LPS)-induced (15 mg/kg) sepsis. MCTR1 alleviates LPS (10 mg/kg)-induced lung dysfunction and lung tissue inflammatory response by decreasing inflammatory cytokines (tumor necrosis factor-α, interleukin-1β [IL-1β], and IL-6) expression in serum and reducing the serum levels of heparan sulfate (HS) and syndecan-1. In human umbilical vein endothelial cells (HUVECs) experiments, MCTR1 (100 nM) was added to the culture medium with LPS for 6 hr. MCTR1 treatment markedly inhibited HS degradation by downregulating heparanase (HPA) protein expression in vivo and in vitro. Further analyses indicated that MCTR1 upregulates sirtuin 1 (SIRT1) expression and decreases NF-κB p65 phosphorylation. In the presence of BOC-2 or EX527, the above effects of MCTR1 were abolished. These results suggest that MCTR1 protects against LPS-induced sepsis in mice by attenuating pulmonary endothelial glycocalyx injury via the ALX/SIRT1/NF-κB/HPA pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Li-Li Yang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-Yang Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-Yu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jun Han
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yong-Jian Liu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu-Qiang Gong
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Aaron Scott
- The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Sheng-Wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|