1
|
Farias Cardozo SJ, Lawrence AJ, Anversa RG. Sex- and age-dependent impacts of nicotine and ethanol binge drinking on the brain: Insights from preclinical research. J Neurochem 2024. [PMID: 39449196 DOI: 10.1111/jnc.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Electronic cigarette use among adolescents is a growing concern, not only due to the high incidence of co-use with other substances, such as alcohol, but also due to the fact brain is still maturing during this period. Combined exposure to alcohol and nicotine leads to plastic adaptation of crucial circuits in the brain, which can contribute to the development of addiction. It is well established that nicotine exposure can facilitate alcohol binge drinking, and vice-versa, in a sex-, age- and exposure-dependent manner. Nonetheless, the central mechanisms underlying the synergistic relationship between these two substances and the emergence of differential behavioural traits dependent on these factors remain underexplored. Preclinical studies continue to provide valuable insights into such mechanisms. Here, we discuss recent preclinical findings that report behavioural changes characteristic of addiction following nicotine consumption, primarily in models of vaping and alcohol use; and insights into the neural mechanisms impacted by intake of these two substances, with a focus on the adolescent brain.
Collapse
Affiliation(s)
- Stella J Farias Cardozo
- Centre for Technology Development (CDTec), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Clites BL, Frohock B, Koury EJ, Andersen EC, Pierce JT. Natural variation in protein kinase D modifies alcohol sensitivity in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598102. [PMID: 38895441 PMCID: PMC11185769 DOI: 10.1101/2024.06.09.598102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode Caenorhabditis elegans. We performed a genome-wide association study to identify loci that underlie natural variation in alcohol sensitivity. We identified five quantitative trait loci (QTL) and further show that variants in the C. elegans ortholog of protein kinase D, dkf-2, likely underlie the chromosome V QTL. We found that resistance to intoxication was conferred by dkf-2 loss-of-function mutations as well as partly by a PKD inhibitor in a dkf-2-dependent manner. Protein kinase D might represent a conserved, druggable target to modify alcohol sensitivity with application towards AUD.
Collapse
Affiliation(s)
- Benjamin L Clites
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Brooke Frohock
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Emily J Koury
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Jonathan T Pierce
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| |
Collapse
|
3
|
Leonard J, Wei X, Browning J, Gudenschwager-Basso EK, Li J, Harris EA, Olsen ML, Theus MH. Transcriptomic alterations in cortical astrocytes following the development of post-traumatic epilepsy. Sci Rep 2024; 14:8367. [PMID: 38600221 PMCID: PMC11006850 DOI: 10.1038/s41598-024-58904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.
Collapse
Affiliation(s)
- John Leonard
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jack Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Jiang T, Zheng T, Li R, Sun J, Luan X, Wang M. The role of NPY signaling pathway in diagnosis, prognosis and treatment of stroke. Neuropeptides 2024; 104:102412. [PMID: 38330680 DOI: 10.1016/j.npep.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Neuropeptide Y (NPY), an extensively distributed neurotransmitter within the central nervous system (CNS), was initially detected and isolated from the brain of a pig in 1982. By binding to its G protein-coupled receptors, NPY regulates immune responses and contributes to the pathogenesis of numerous inflammatory diseases. The hippocampus contained the maximum concentration in the CNS, with the cerebral cortex, hypothalamus, thalamus, brainstem, and cerebellum following suit. This arrangement suggests that the substance has a specific function within the CNS. More and more studies have shown that NPY is involved in the physiological and pathological mechanism of stroke, and its serum concentration can be one of the specific biomarkers of stroke and related complications because of its high activity, broad and complex effects. By summarizing relevant literature, this article aims to gain a thorough understanding of the potential clinical applications of NPY in the treatment of stroke, identification of stroke and its related complications, and assessment of prognosis.
Collapse
Affiliation(s)
- Taotao Jiang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ting Zheng
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Rundong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Jingjing Sun
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoqing Luan
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
5
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
6
|
Robinson SL, Bendrath SC, Yates EM, Thiele TE. Basolateral amygdala neuropeptide Y system modulates binge ethanol consumption. Neuropsychopharmacology 2024; 49:690-698. [PMID: 37758802 PMCID: PMC10876546 DOI: 10.1038/s41386-023-01742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used "drinking-in-the-dark" (DID) procedures in C57BL6J mice to address these questions. First, the impact of intra-BLA administration of NPY on binge-like ethanol intake was assessed. Next, the impact of repeated cycles of DID intake on NPY1R expression in the BLA was assessed with use of immunohistochemistry (IHC). Finally, chemogenetic inhibition of BLA→mPFC NPY1R+ projections was assessed to determine if limbic communication with the mPFC was specifically involved in binge-like ethanol intake. Importantly, as both the BLA and NPY system are sexually dimorphic, both sexes were assessed in these studies. Intra-BLA NPY dose-dependently decreased binge-like ethanol intake in males only. Repeated DID reduced NPY1R expression in the BLA of both sexes. Silencing of BLA→mPFC NPY1R+ neurons significantly reduced binge-like ethanol intake in both sexes in a dose-dependent manner. We provide novel evidence that (1) intra-BLA NPY reduces binge-like ethanol intake in males; (2) binge-like ethanol intake reduces NPY1R levels in the BLA; and (3) chemogenetic inhibition of BLA→mPFC NPY1R+ neurons blunts binge-like drinking in male and female mice. These observations provide the first direct evidence that NPY signaling in the BLA, and specifically BLA communication with the mPFC, modulates binge-like ethanol consumption.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Sophie C Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Elizabeth M Yates
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA.
| |
Collapse
|
7
|
Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci U S A 2023; 120:e2311118120. [PMID: 37695892 PMCID: PMC10515152 DOI: 10.1073/pnas.2311118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Elaine N. Miller
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - Danielle N. Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Heather N. Smith
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio, TX78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX78245
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX78602
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| |
Collapse
|
8
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Brancato A, Castelli V, Cannizzaro C, Tringali G. Adolescent binge-like alcohol exposure dysregulates NPY and CGRP in rats: Behavioural and immunochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110699. [PMID: 36565980 DOI: 10.1016/j.pnpbp.2022.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking during adolescence impacts affective behaviour, possibly impinging on developing neural substrates processing affective states, including calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY). Here, we modelled binge-like alcohol exposure in adolescence, by administering 3.5 g/kg alcohol per os, within 1 h, to male adolescent rats every other day, from postnatal day 35 to 54. The effects on positive and negative affective behaviour during abstinence were explored including: consummatory behaviour and weight gain; social behaviour in the modified social interaction test; thermal nociception in the tail-flick test; psychosocial stress coping in the resident-intruder paradigm. Moreover, CGRP and NPY levels were evaluated in functionally relevant brain regions. Our data shows that binge-like intermittent alcohol administration during adolescence decreased weight gain, social preference and motivation, nociception, and active psychosocial stress coping during abstinence. In addition, intermittent alcohol-exposed rats displayed increased expression of CGRP and NPY in the prefrontal cortex and nucleus accumbens; decreased NPY levels in the amygdala; opposite changes in CGRP levels in the hypothalamus and brainstem. Overall, our data shows that adolescent binge-like alcohol exposure, through the allostatic load of alternate intoxication and withdrawal, produces long-term consequences in sensory and affective processes and dysregulated complementary neuropeptidergic systems. Thus, neuropeptide-targeted interventions hold promising potential for addressing negative affect during prolonged withdrawal in young subjects.
Collapse
Affiliation(s)
- Anna Brancato
- University of Palermo, Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", piazza delle Cliniche 2, 90127 Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
10
|
Römer SS, Bliokas V, Teo JT, Thomas SJ. Food addiction, hormones and blood biomarkers in humans: A systematic literature review. Appetite 2023; 183:106475. [PMID: 36716820 DOI: 10.1016/j.appet.2023.106475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Food addiction may play a role in rising obesity rates in connection with obesogenic environments and processed food availability, however the concept of food addiction remains controversial. While animal studies show evidence for addictive processes in relation to processed foods, most human studies are psychologically focussed and there is a need to better understand evidence for biological mechanisms of food addiction in humans. Several key hormones are implicated in models of food addiction, due to their key roles in feeding, energy metabolism, stress and addictive behaviours. This systematic literature review examines evidence for relationships between food addiction, hormones and other blood biomarkers. METHODS A series of literature searches was performed in Scopus, PsychInfo, MedLine, ProQuest, CINAHL and Web of Science. A total of 3111 articles were found, of which 1045 were duplicates. Articles were included if they contained a psychometric measurement of food addiction, such as the Yale Food Addiction Scale, as well as addressed the association between FA and hormones or blood biomarkers in humans. Articles were assessed for eligibility by two independent reviewers. RESULTS Sixteen studies were identified that examined relationships between food addiction and blood biomarkers, published between 2015 and 2021. Significant findings were reported for leptin, ghrelin, cortisol, insulin and glucose, oxytocin, cholesterol, plasma dopamine, thyroid stimulating hormone (TSH), haemoglobin A1c (HbA1c), triglyceride (TG), amylin, tumour necrosis factor alpha (TNF- α) and cholecystokinin (CCK). Methodological issues included small sample sizes and variation in obesity status, sex and mental health-related comorbidities. Due to methodological limitations, definite connections between FA, hormones and other blood biomarkers cannot yet be determined. CONCLUSION This systematic review identified preliminary evidence linking FA symptoms to hormones and other blood biomarkers related to feeding, addiction, and stress. However, due to the small number of studies and methodological limitations, further research is needed to evaluate biopsychosocial models of FA and to resolve controversies.
Collapse
Affiliation(s)
- Stephanie Sophie Römer
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Vida Bliokas
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia.
| | - Jillian Terese Teo
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Susan J Thomas
- Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Australia.
| |
Collapse
|
11
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Rockville, MD, USA
| | - Marisa Roberto
- Molecular Medicine Department, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
12
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
14
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
15
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
16
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Melkumyan M, Silberman Y. Subregional Differences in Alcohol Modulation of Central Amygdala Neurocircuitry. Front Mol Neurosci 2022; 15:888345. [PMID: 35866156 PMCID: PMC9294740 DOI: 10.3389/fnmol.2022.888345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder is a highly significant medical condition characterized by an impaired ability to stop or control alcohol use, compulsive alcohol seeking behavior, and withdrawal symptoms in the absence of alcohol. Understanding how alcohol modulates neurocircuitry critical for long term and binge-like alcohol use, such as the central amygdala (CeA), may lead to the development of novel therapeutic strategies to treat alcohol use disorder. In clinical studies, reduction in the volume of the amygdala has been linked with susceptibility to relapse to alcohol use. Preclinical studies have shown the involvement of the CeA in the effects of alcohol use, with lesions of the amygdala showing a reduction in alcohol drinking, and manipulations of cells in the CeA altering alcohol drinking. A great deal of work has shown that acute alcohol, as well as chronic alcohol exposure via intake or dependence models, alters glutamatergic and GABAergic transmission in the CeA. The CeA, however, contains heterogeneous cell populations and distinct subregional differences in neurocircuit architecture which may influence the mechanism by which alcohol modulates CeA function overall. The current review aimed to parse out the differences in alcohol effects on the medial and lateral subregions of the CeA, and what role neuroinflammatory cells and markers, the endocannabinoid system, and the most commonly studied neuropeptide systems play in mediating these effects. A better understanding of alcohol effects on CeA subregional cell type and neurocircuit function may lead to development of more selective pharmacological interventions for alcohol use disorder.
Collapse
Affiliation(s)
- Mariam Melkumyan
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Colon-Perez L, Montesinos J, Monsivais M. The Future of Neuroimaging and Gut-Brain Axis Research for Substance Use Disorders. Brain Res 2022; 1781:147835. [DOI: 10.1016/j.brainres.2022.147835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
|
20
|
Santos DS, Stein DJ, Medeiros HR, Dos Santos Pereira F, de Macedo IC, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation alters anxious-like behavior and neural parameters in rats with chronic pain exposed to alcohol. J Psychiatr Res 2021; 144:369-377. [PMID: 34735841 DOI: 10.1016/j.jpsychires.2021.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effects of transcranial direct current stimulation (tDCS) on anxiety-like behavior and neural parameters in rats with chronic pain exposed to alcohol. Thirty-six adult male Wistar rats were randomly assigned to control (CT), neuropathic pain (NP), NPtDCS, NP + alcohol (NPAL), or NPALtDCS groups, subjected to sciatic nerve chronic constriction injury (CCI) and exposed to alcohol (20% v/v solution, 4 g/kg) or vehicle by gavage for 15 days. Afterward, rats were treated using bimodal tDCS (0.5 mA/20 min/8 days) and tested in the open field. Rats were killed 24 h after the last behavioral assessment, and brain and spinal cord tissue samples were collected and processed for NPY immunohistochemistry, expression of Il1a and Il1b in the spinal cord, cerebellum, and hippocampus, and levels of IL-1α and IL-1β in the same brain structures and the striatum. tDCS reverted the anxiety-like behavior induced by CCI and alcohol, and the increased expression of Il1a in the spinal cord induced by alcohol, which increased the expression of Il1b in the cerebellum. In addition, tDCS modulated the hypothalamic NPY-immunoreactivity, increased the levels of IL-1α in the hippocampus (like NP and AL), and increased the expression of Il1b in the spinal cord (like AL). Thus, this study shows that tDCS changes NP and alcohol-induced anxiety-like behavior, possibly through its central modulatory effect of NPY and spinal cord expression of Il1a and Il1b, being considered a treatment option for alcohol and NP-induced anxiety symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Pereira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Isabel Cristina de Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: An Update on the Mechanism Underlying Chronic Intermittent Hypoxia-Induced Endothelial Dysfunction. Front Physiol 2021; 12:712281. [PMID: 34512386 PMCID: PMC8430344 DOI: 10.3389/fphys.2021.712281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.
Collapse
Affiliation(s)
- Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
22
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
23
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
24
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
25
|
Dulman RS, Zhang H, Banerjee R, Krishnan HR, Dong B, Hungund BL, Vinod KY, Pandey SC. CB1 receptor neutral antagonist treatment epigenetically increases neuropeptide Y expression and decreases alcohol drinking. Neuropharmacology 2021; 195:108623. [PMID: 34048869 DOI: 10.1016/j.neuropharm.2021.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala. Alcohol drinking behavior was measured in adult male C57BL/6J mice treated with a CB1 receptor neutral antagonist AM4113 using a two-bottle choice paradigm while anxiety-like behavior was assessed in the light-dark box (LDB) test. The CB1 receptor-mediated changes in the protein levels of phosphorylated cAMP-responsive element binding protein (pCREB), CREB binding protein (CBP), H3K9ac, H3K14ac and NPY, and the mRNA levels of Creb1, Cbp, and Npy were measured in amygdaloid brain structures. Npy-specific changes in the levels of acetylated histone (H3K9/14ac) and CBP in the amygdala were also measured. We found that the pharmacological blockade of CB1 receptors with AM4113 reduced alcohol consumption and, in an ethanol-naïve cohort, reduced anxiety-like behavior in the LDB test. Treatment with AM4113 also increased the mRNA levels of Creb1 and Cbp in the amygdala as well as the protein levels of pCREB, CBP, H3K9ac and H3K14ac in the central and medial nucleus of amygdala, but not in the basolateral amygdala. Additionally, AM4113 treatment increased occupancy of CBP and H3K9/14ac at the Npy gene promoter, leading to an increase in both mRNA and protein levels of NPY in the amygdala. These novel findings suggest that CB1 receptor-mediated CREB signaling plays an important role in the modulation of NPY function through an epigenetic mechanism and further support the potential use of CB1 receptor neutral antagonists for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ritabrata Banerjee
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Basalingappa L Hungund
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; Emotional Brain Institute, Orangeburg, NY, 10962, USA; Department of Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
26
|
Shi L, Wang Y, Li C, Zhang K, Du Q, Zhao M. AddictGene: An integrated knowledge base for differentially expressed genes associated with addictive substance. Comput Struct Biotechnol J 2021; 19:2416-2422. [PMID: 34025933 PMCID: PMC8113760 DOI: 10.1016/j.csbj.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Addiction, a disorder of maladaptive brain plasticity, is associated with changes in numerous gene expressions. Nowadays, high-throughput sequencing data on addictive substance-induced gene expression have become widely available. A resource for comprehensive annotation of genes that show differential expression in response to commonly abused substances is necessary. So, we developed AddictGene by integrating gene expression, gene-gene interaction, gene-drug interaction and epigenetic regulatory annotation for over 70,156 items of differentially expressed genes associated with 7 commonly abused substances, including alcohol, nicotine, cocaine, morphine, heroin, methamphetamine, and amphetamine, across three species (human, mouse, rat). We also collected 1,141 addiction-related experimentally validated genes by techniques such as RT-PCR, northern blot and in situ hybridization. The easy-to-use web interface of AddictGene (http://159.226.67.237/sun/addictgedb/) allows users to search and browse multidimensional data on DEGs of their interest: 1) detailed gene-specific information extracted from the original studies; 2) basic information about the specific gene extracted from NCBI; 3) SNP associated with substance dependence and other psychiatry disorders; 4) expression alteration of specific gene in other psychiatric disorders; 5) expression patterns of interested gene across 31 primary and 54 secondary human tissues; 6) functional annotation of interested gene; 7) epigenetic regulators involved in the alteration of specific genes, including histone modifications and DNA methylation; 8) protein-protein interaction for functional linkage with interested gene; 9) drug-gene interaction for potential druggability. AddictGene offers a valuable repository for researchers to study the molecular mechanisms underlying addiction, and might provide valuable insights into potential therapies for drug abuse and relapse.
Collapse
Affiliation(s)
- Leisheng Shi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kunlin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
27
|
Nwachukwu KN, Evans WA, Sides TR, Trevisani CP, Davis A, Marshall SA. Chemogenetic manipulation of astrocytic signaling in the basolateral amygdala reduces binge-like alcohol consumption in male mice. J Neurosci Res 2021; 99:1957-1972. [PMID: 33844860 DOI: 10.1002/jnr.24841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
Binge drinking is a common occurrence in the United States, but a high concentration of alcohol in the blood has been shown to have reinforcing and reciprocal effects on the neuroimmune system in both dependent and non-dependent scenarios. The first part of this study examined alcohol's effects on the astrocytic response in the central amygdala and basolateral amygdala (BLA) in a non-dependent model. C57BL/6J mice were given access to either ethanol, water, or sucrose during a "drinking in the dark" paradigm, and astrocyte number and astrogliosis were measured using immunohistochemistry. Results indicate that non-dependent consumption increased glial fibrillary acidic protein (GFAP) density but not the number of GFAP+ cells, suggesting that non-dependent ethanol is sufficient to elicit astrocyte activation. The second part of this study examined how astrocytes impacted behaviors and the neurochemistry related to alcohol using the chemogenetic tool, DREADDs (designer receptors exclusively activated by designer drugs). Transgenic GFAP-hM3Dq mice were administered clozapine N-oxide both peripherally, affecting the entire central nervous system (CNS), or directly into the BLA. In both instances, GFAP-Gq-signaling activation significantly reduced ethanol consumption and correlating blood ethanol concentrations. However, GFAP-Gq-DREADD activation throughout the CNS had more broad effects resulting in decreased locomotor activity and sucrose consumption. More targeted GFAP-Gq-signaling activation in the BLA only impacted ethanol consumption. Finally, a glutamate assay revealed that after GFAP-Gq-signaling activation glutamate concentrations in the amygdala were partially normalized to control levels. Altogether, these studies support the theory that astrocytes represent a viable target for alcohol use disorder therapies.
Collapse
Affiliation(s)
- Kala N Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - William A Evans
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Tori R Sides
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Christopher P Trevisani
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Ambryia Davis
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA.,Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, NC, USA.,Department of Psychology & Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Ryvkin J, Bentzur A, Shmueli A, Tannenbaum M, Shallom O, Dokarker S, Benichou JIC, Levi M, Shohat-Ophir G. Transcriptome Analysis of NPFR Neurons Reveals a Connection Between Proteome Diversity and Social Behavior. Front Behav Neurosci 2021; 15:628662. [PMID: 33867948 PMCID: PMC8044454 DOI: 10.3389/fnbeh.2021.628662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Social behaviors are mediated by the activity of highly complex neuronal networks, the function of which is shaped by their transcriptomic and proteomic content. Contemporary advances in neurogenetics, genomics, and tools for automated behavior analysis make it possible to functionally connect the transcriptome profile of candidate neurons to their role in regulating behavior. In this study we used Drosophila melanogaster to explore the molecular signature of neurons expressing receptor for neuropeptide F (NPF), the fly homolog of neuropeptide Y (NPY). By comparing the transcription profile of NPFR neurons to those of nine other populations of neurons, we discovered that NPFR neurons exhibit a unique transcriptome, enriched with receptors for various neuropeptides and neuromodulators, as well as with genes known to regulate behavioral processes, such as learning and memory. By manipulating RNA editing and protein ubiquitination programs specifically in NPFR neurons, we demonstrate that the proper expression of their unique transcriptome and proteome is required to suppress male courtship and certain features of social group interaction. Our results highlight the importance of transcriptome and proteome diversity in the regulation of complex behaviors and pave the path for future dissection of the spatiotemporal regulation of genes within highly complex tissues, such as the brain.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Anat Shmueli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Miriam Tannenbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Shallom
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Dokarker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jennifer I. C. Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mali Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
29
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
30
|
Robinson SL, Dornellas APS, Burnham NW, Houck CA, Luhn KL, Bendrath SC, Companion MA, Brewton HW, Thomas RD, Navarro M, Thiele TE. Distinct and Overlapping Patterns of Acute Ethanol-Induced C-Fos Activation in Two Inbred Replicate Lines of Mice Selected for Drinking to High Blood Ethanol Concentrations. Brain Sci 2020; 10:brainsci10120988. [PMID: 33333877 PMCID: PMC7765285 DOI: 10.3390/brainsci10120988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
The inbred high drinking in the dark (iHDID1 and iHDID2) strains are two replicate lines bred from the parent HS/Npt (HS) line for achieving binge levels of blood ethanol concentration (≥80 mg/dL BEC) in a four-hour period. In this work, we sought to evaluate differences in baseline and ethanol-induced c-Fos activation between the HS, iHDID1, and iHDID2 genetic lines in brain regions known to process the aversive properties of ethanol. Methods: Male and female HS, iHDID1, and iHDID2 mice underwent an IP saline 2 3 g/kg ethanol injection. Brain sections were then stained for c-Fos expression in the basolateral/central amygdala (BLA/CeA), bed nucleus of the stria terminals (BNST), A2, locus coeruleus (LC), parabrachial nucleus (PBN), lateral/medial habenula (LHb/MHb), paraventricular nucleus of the thalamus (PVT), periaqueductal gray (PAG), Edinger–Westphal nuclei (EW), and rostromedial tegmental nucleus (RMTg). Results: The iHDID1 and iHDID2 lines showed similar and distinct patterns of regional c-Fos; however, in no region did the two both significantly differ from the HS line together. Conclusions: Our findings lend further support to the hypothesis the iHDID1 and the iHDID2 lines arrive at a similar behavior phenotype through divergent genetic mechanisms.
Collapse
Affiliation(s)
- Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ana Paula S. Dornellas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nathan W. Burnham
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Christa A. Houck
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendall L. Luhn
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
| | - Sophie C. Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Honoreé W. Brewton
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rhiannon D. Thomas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-1519; Fax: +1-919-962-2537
| |
Collapse
|
31
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
32
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
33
|
Powers KG, Ma XM, Eipper BA, Mains RE. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. GENES BRAIN AND BEHAVIOR 2020; 20:e12699. [PMID: 32902163 DOI: 10.1111/gbb.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Neuropeptides and peptide hormones play a crucial role in integrating the many factors that affect physiologic and cognitive processes. The potency of many of these peptides requires an amidated amino acid at the C-terminus; a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), catalyzes this modification. Anxiety-like behavior is known to be altered in mice with a single functional Pam allele (Pam+/- ) and in mice unable to express Pam in excitatory forebrain neurons (PamEmx1-cKO/cKO ) or in cardiomyocytes (PamMyh6-cKO/cKO ). Examination of PAM-positive and glutamic acid decarboxylase 67 (GAD)-positive cells in the amygdala of PamEmx1-cKO/cKO mice demonstrated the absence of PAM in pyramidal neurons and its continued presence in GAD-positive interneurons, suggestive of altered excitatory/inhibitory balance. Additional behavioral tests were used to search for functional alterations in these cell-type specific knockout mice. PamEmx1-cKO/cKO mice exhibited a less focused search pattern for the Barnes Maze escape hole than control or PamMyh6-cKO/cKO mice. While wildtype mice favor interacting with novel objects as opposed to familiar objects, both PamEmx1-cKO/cKO and PamMyh6-cKO/cKO mice exhibited significantly less interest in the novel object. Since PAM levels in the central nervous system of PamMyh6-cKO/cKO mice are unaltered, the behavioral effect observed in these mice may reflect their inability to produce atrial granules and the resulting reduction in serum levels of atrial natriuretic peptide. In the sociability test, male mice of all three genotypes spent more time with same-sex stranger mice; while control females showed no preference for stranger mice, female PamEmx1-cKO/cKO mice showed preference for same-sex stranger mice in all trials.
Collapse
Affiliation(s)
- Kathryn G Powers
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
34
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
35
|
Alcohol, Tobacco, and Substance Use and Association with Opioid Use Disorder in Patients with Non-malignant and Cancer Pain: a Review. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00415-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Shiraishi JI, Yanagita K, Tanizawa H, Bungo T. Glycyl-l-glutamine attenuates NPY-induced hyperphagia via the melanocortin system. Neurosci Lett 2020; 736:135303. [PMID: 32800923 DOI: 10.1016/j.neulet.2020.135303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
This study aimed to determine whether glycyl-l-glutamine (Gly-Gln; β-endorphin (30-31)), a non-opioid peptide derived from β-endorphin processing, modulates neuropeptide Y (NPY)-induced feeding and hypothalamic mRNA expression of peptide hormones in male broiler chicks. Intracerebroventricular injection of NPY (235 pmol) generated a hyperphagic response in ad libitum chicks within 30 min. Co-administration of Gly-Gln (100 nmol) attenuated this response, inducing a 30 % decrease. This was not attributable to Gly-Gln hydrolysis because co-administration of glycine (Gly) and glutamine (Gln) had no effect on NPY-induced hyperphagia. Gly-Gln injected alone also showed no effect. The hypothalamic pro-opiomelanocortin mRNA expression in the co-injection group was significantly higher than that in the NPY alone group. These data indicate that endogenous Gly-Gln may contribute to regulate feeding behavior via the central melanocortin system in chicks and acts as a counter regulator of the neural activity in energy metabolism.
Collapse
Affiliation(s)
- Jun-Ichi Shiraishi
- Laboratory of Applied Animal Biochemistry, Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan.
| | - Kouichi Yanagita
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroshi Tanizawa
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
37
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
38
|
The role of neuropeptides in drug and ethanol abuse: Medication targets for drug and alcohol use disorders. Brain Res 2020; 1740:146876. [DOI: 10.1016/j.brainres.2020.146876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Brancato A, Castelli V, Lavanco G, Marino RAM, Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J Psychopharmacol 2020; 34:663-679. [PMID: 32338122 DOI: 10.1177/0269881120916135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosa Anna Maria Marino
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, USA
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Li Y, Zhang J. The Effect of Acute Erythromycin Exposure on the Swimming Ability of Zebrafish ( Danio rerio) and Medaka ( Oryzias latipes). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103389. [PMID: 32414023 PMCID: PMC7277679 DOI: 10.3390/ijerph17103389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
Erythromycin is a widely used antibiotic, and erythromycin contamination may pose a threat to aquatic organisms. However, little is known about the adverse effects of erythromycin on swimming ability. To quantify erythromycin-induced damage to fish swimming ability, Oryzias latipes and Danio rerio were acutely exposed to erythromycin. The swimming ability of the experimental fish was measured after exposure to varying doses of erythromycin (2 µg/L, 20 µg/L, 200 µg/L, and 2 mg/L) for 96 h. Burst speed (Uburst) and critical swimming speed (Ucrit) of experimental fish significantly decreased. In addition, gene expression analysis of O. latipes and D. rerio under erythromycin treatment (2 mg/L) showed that the expression of genes related to energy metabolism in the muscle was significantly reduced in both species of fish. However, the gene expression pattern in the head of the two species was differentially impacted; D. rerio showed endocrine disruption, while phototransduction was impacted in O. latipes. The results of our study may be used as a reference to control erythromycin pollution in natural rivers.
Collapse
|
41
|
Chauhan N, Soni S, Agrawal P, Balhara YPS, Jain U. Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
43
|
Koob GF. Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement. Biol Psychiatry 2020; 87:44-53. [PMID: 31400808 DOI: 10.1016/j.biopsych.2019.05.023] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023]
Abstract
Opioids are powerful drugs that usurp and overpower the reward function of endogenous opioids and engage dramatic tolerance and withdrawal via molecular and neurocircuitry neuroadaptations within the same reward system. However, they also engage the brain systems for stress and pain (somatic and emotional) while producing hyperalgesia and hyperkatifeia, which drive pronounced drug-seeking behavior via processes of negative reinforcement. Hyperkatifeia (derived from the Greek "katifeia" for dejection or negative emotional state) is defined as an increase in intensity of the constellation of negative emotional or motivational signs and symptoms of withdrawal from drugs of abuse. In animal models, repeated extended access to drugs or opioids results in negative emotion-like states, reflected by the elevation of reward thresholds, lower pain thresholds, anxiety-like behavior, and dysphoric-like responses. Such negative emotional states that drive negative reinforcement are hypothesized to derive from the within-system dysregulation of key neurochemical circuits that mediate incentive-salience and/or reward systems (dopamine, opioid peptides) in the ventral striatum and from the between-system recruitment of brain stress systems (corticotropin-releasing factor, dynorphin, norepinephrine, hypocretin, vasopressin, glucocorticoids, and neuroimmune factors) in the extended amygdala. Hyperkatifeia can extend into protracted abstinence and interact with learning processes in the form of conditioned withdrawal to facilitate relapse to compulsive-like drug seeking. Compelling evidence indicates that plasticity in the brain pain emotional systems is triggered by acute excessive drug intake and becomes sensitized during the development of compulsive drug taking with repeated withdrawal. It then persists into protracted abstinence and contributes to the development and persistence of compulsive opioid-seeking behavior.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
44
|
Anapindi KDB, Yang N, Romanova EV, Rubakhin SS, Tipton A, Dripps I, Sheets Z, Sweedler JV, Pradhan AA. PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models. Mol Cell Proteomics 2019; 18:2447-2458. [PMID: 31649062 PMCID: PMC6885698 DOI: 10.1074/mcp.ra119.001767] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions. The known pro-migraine molecule, calcitonin-gene related peptide, was among seven peptides associated with chronic migraine, with several pain-processing neuropeptides among the nine other peptides affected in OIH. Further, composite peptide complements Pituitary adenylate cyclase-activating polypeptide (PACAP), Vasoactive intestinal peptide (VIP) and Secretogranin (SCG) showed significant changes in both chronic migraine and OIH. In a follow-up pharmacological study, we confirmed the role of PACAP in models of these two disorders, validating the effectiveness of our peptidomic approach, and identifying PACAP as a mechanistic link between chronic migraine and OIH. Data are available via ProteomeXchange with identifier PXD013362.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 60612.
| |
Collapse
|
45
|
Abstract
Despite accumulating evidence demonstrating the essential roles played by neuropeptides, it has proven challenging to use this information to develop therapeutic strategies. Peptidergic signaling can involve juxtacrine, paracrine, endocrine, and neuronal signaling, making it difficult to define physiologically important pathways. One of the final steps in the biosynthesis of many neuropeptides requires a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), and lack of amidation renders most of these peptides biologically inert. PAM, an ancient integral membrane enzyme that traverses the biosynthetic and endocytic pathways, also affects cytoskeletal organization and gene expression. While mice, zebrafish, and flies lacking Pam (PamKO/KO ) are not viable, we reasoned that cell type-specific elimination of Pam expression would generate mice that could be screened for physiologically important and tissue-specific deficits. Conditional PamcKO/cKO mice, with loxP sites flanking the 2 exons deleted in the global PamKO/KO mouse, were indistinguishable from wild-type mice. Eliminating Pam expression in excitatory forebrain neurons reduced anxiety-like behavior, increased locomotor responsiveness to cocaine, and improved thermoregulation in the cold. A number of amidated peptides play essential roles in each of these behaviors. Although atrial natriuretic peptide (ANP) is not amidated, Pam expression in the atrium exceeds levels in any other tissue. Eliminating Pam expression in cardiomyocytes increased anxiety-like behavior and improved thermoregulation. Atrial and serum levels of ANP fell sharply in PAM myosin heavy chain 6 conditional knockout mice, and RNA sequencing analysis identified changes in gene expression in pathways related to cardiac function. Use of this screening platform should facilitate the development of therapeutic approaches targeted to peptidergic pathways.
Collapse
|
46
|
Robinson SL, Marrero IM, Perez-Heydrich CA, Sepulveda-Orengo MT, Reissner KJ, Thiele TE. Medial prefrontal cortex neuropeptide Y modulates binge-like ethanol consumption in C57BL/6J mice. Neuropsychopharmacology 2019; 44:1132-1140. [PMID: 30647448 PMCID: PMC6461999 DOI: 10.1038/s41386-018-0310-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) signaling via limbic NPY1 and 2 receptors (NPY1R and NPY2R, respectively) is known to modulate binge-like ethanol consumption in rodents. However, the role of NPY signaling in the medial prefrontal cortex (mPFC), which provides top-down modulation of the limbic system, is unknown. Here, we used "drinking-in-the-dark" (DID) procedures in C57BL/6J mice to address this gap in the literature. First, the impact of DID on NPY immunoreactivity (IR) was assessed in the mPFC. Next, the role of NPY1R and NPY2R signaling in the mPFC on ethanol consumption was evaluated through site-directed pharmacology. Chemogenetic inhibition of NPY1R+ neurons in the mPFC was performed to further evaluate the role of this population. To determine the potential role of NPY1R+ neurons projecting from the mPFC to the basolateral amygdala (BLA) this efferent population was selectively silenced. Three, 4-day cycles of DID reduced NPY IR in the mPFC. Intra-mPFC activation of NPY1R and antagonism of NPY2R resulted in decreased binge-like ethanol intake. Silencing of mPFC NPY1R+ neurons overall, and specifically NPY1R+ neurons projecting to the BLA, significantly reduced binge-like ethanol intake. We provide novel evidence that (1) binge-like ethanol intake reduces NPY levels in the mPFC; (2) activation of NPY1R or blockade of NPY2R reduces binge-like ethanol intake; and (3) chemogenetic inhibition of NPY1R+ neurons in the mPFC and NPY1R+ mPFC neurons projecting to the BLA blunts binge-like drinking. These observations provide the first direct evidence that NPY signaling in the mPFC modulates binge-like ethanol consumption.
Collapse
Affiliation(s)
- Stacey L. Robinson
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA ,0000 0001 1034 1720grid.410711.2Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Isabel M. Marrero
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Carlos A. Perez-Heydrich
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Marian T. Sepulveda-Orengo
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Kathryn J. Reissner
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Todd E. Thiele
- 0000 0001 1034 1720grid.410711.2Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599 USA ,0000 0001 1034 1720grid.410711.2Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
47
|
Kögler LM, Stichel J, Kaiser A, Beck-Sickinger AG. Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y 2 Receptor. Front Pharmacol 2019; 10:176. [PMID: 30881304 PMCID: PMC6405639 DOI: 10.3389/fphar.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
48
|
Shende P, Desai D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:37-47. [PMID: 31468359 DOI: 10.1007/5584_2019_427] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY), an amino acid, used for various physiological processes for management and treatment of various ailments related to central nervous system, cardiovascular system, respiratory system, gastro-intestinal system and endocrinal system. In nasal mucosa, high concentrations of NPY are stored with noradrenaline in sympathetic nerve fibers. NPY Y1 receptor mediates nitric oxide levels and reduction in blood flow in nasal mucosa of the human. NPY plays a role in dietary consumption via various factors like signaling the CNS for a prerequisite of energy in hypothalamus by mediating appetite and shows orexigenic effect. NPY emerges as a natural ligand of G-protein coupled receptors which activates the Y-receptors (Y1-Y6). But applications of NPY are limited due to shows the cost inefficiency and stability issues in the formulation design and development. In this review, authors present the findings on various therapeutic applications of NPY on different organ systems. Moreover, its role in food intake, sexual behavior, blood pressure, etc. by inhibiting calcium and activating potassium channels. The combination therapies of drugs with neuropeptide Y and its receptors will show new targets for treating diseases. Further evaluation and detection of NPY needs to be investigated for animal models of various diseases like retinal degeneration and immune mechanisms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India.
| | - Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Abstract
In this review, the effects of stress on alcohol drinking are discussed. The interactions between biological stress systems and alcohol drinking are examined, with a focus on the hypothalamic pituitary adrenal axis, corticotropin releasing factor, dynorphin, neuropeptide Y, and norepinephrine systems. Findings from animal models suggest that these biological stress systems may be useful targets for medications development for alcohol use disorder and co-occurring stress-related disorders in humans.
Collapse
Affiliation(s)
- Marcus M Weera
- Marcus M. Weera, Ph.D., is a postdoctoral fellow in the Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Nicholas W. Gilpin, Ph.D., is a professor in the Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Marcus M. Weera, Ph.D., is a postdoctoral fellow in the Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Nicholas W. Gilpin, Ph.D., is a professor in the Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
50
|
Zhou Y, Kreek MJ. Involvement of Activated Brain Stress Responsive Systems in Excessive and "Relapse" Alcohol Drinking in Rodent Models: Implications for Therapeutics. J Pharmacol Exp Ther 2018; 366:9-20. [PMID: 29669731 PMCID: PMC5988024 DOI: 10.1124/jpet.117.245621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Addictive diseases, including addiction to alcohol, pose massive public health costs. Addiction is a chronic relapsing disease caused by both the direct effects induced by drugs and persistent neuroadaptations at the molecular, cellular, and behavioral levels. These drug-type specific neuroadaptations are brought on largely by the reinforcing effects of drugs on the central nervous system and environmental stressors. Results from animal experiments have demonstrated important interactions between alcohol and stress-responsive systems. Addiction to specific drugs such as alcohol, psychostimulants, and opioids shares some common direct or downstream effects on the brain's stress-responsive systems, including arginine vasopressin and its V1b receptors, dynorphin and the κ-opioid receptors, pro-opiomelanocortin/β-endorphin and the μ-opioid receptors, and the endocannabinoids. Further study of these systems through laboratory-based and translational research could lead to the discovery of novel treatment targets and the early optimization of interventions (for example, combination) for the pharmacologic therapy of alcoholism.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|