1
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
2
|
Shao K, Chen X, Yu X, Yang J, Wei M, Zhang M, Li R, Wang X, Wei Y, Chao-Gan Yan FTSSG, Han Y. Functional connectivity changes in two cortico-hippocampal networks of Alzheimer's disease continuum and their correlations with cognition: A SILCODE study. J Alzheimers Dis 2024; 102:801-814. [PMID: 39544016 DOI: 10.1177/13872877241291236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND The anterior-temporal (AT) and posterior-medial (PM) networks have been proposed to play pivotal roles in the memory processing associated with Alzheimer's disease (AD). Nevertheless, these two networks' intrinsic functional coupling characteristics are still vague in different AD stages. OBJECTIVE To explore the functional connectivity (FC) alterations within and across the AT&PM networks in patients with dementia of the Alzheimer's type (DAT), mild cognitive impairment (MCI), subjective cognitive decline (SCD), and normal controls (NC). METHODS A total of 368 participants over 50 years old from the SILCODE study were recruited, including 99 NC, 134 SCD, 67 MCI, and 68 DAT patients. All the participants underwent a resting-state functional magnetic resonance imaging scan and a battery of neuropsychological tests. The 56 regions-of-interest of the AT&PM networks were defined broadly following existing literature. The FCs were calculated using DPABINet and compared among these four groups. Correlation analyses were performed on FCs and cognitive tests. RESULTS Analysis of variance of all four groups showed significant alteration, mainly in the PM networks. Compared to NC, globally decreased FCs regarding AT&PM networks were observed in DAT and MCI patients, while globally increased FCs regarding AT&PM networks were observed in SCD. The decreased FCs in DAT were significantly correlated with the neuropsychological test on the memory domain. CONCLUSIONS The FC alteration showed different patterns across the AD continuum, especially in individuals with SCD. The elevated FCs in the AT&PM networks of SCD may implicate certain compensating processes in the early stage of AD.
Collapse
Affiliation(s)
- Kai Shao
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University of Bonn Medical Center, Bonn, Germany
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Yu
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Yang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Ruixian Li
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Xuanqian Wang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Yongzhe Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - For The Silcode Study Group Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
- Alliance of Pre AD, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Department of Neurology, The Central Hospital of Karamay, Xinjiang, China
| |
Collapse
|
3
|
Ziontz J, Harrison TM, Fonseca C, Giorgio J, Han F, Lee J, Jagust WJ. Connectivity, Pathology, and ApoE4 Interactions Predict Longitudinal Tau Spatial Progression and Memory. Hum Brain Mapp 2024; 45:e70083. [PMID: 39651679 PMCID: PMC11626484 DOI: 10.1002/hbm.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Tau pathology spread into neocortex indicates a transition from healthy aging to Alzheimer's disease (AD). Connectivity between tau epicenters and later accumulating regions of cortex has been proposed as a mechanism of tau spread, but how this relationship changes with greater AD pathology burden or genotype is not understood. We investigated tau accumulation in two key regions, precuneus and inferior temporal cortex, using resting state functional connectivity (rsFC) and longitudinal PET imaging from a multicohort sample of cognitively unimpaired older adults. We examined how baseline tau PET, Aβ PET, and ApoE4 genotype status interact with rsFC between hippocampus and these downstream regions to predict rate of tau accumulation in neocortex. We found that the 3-way interaction between connectivity, baseline tau, and baseline Aβ or ApoE4 status was associated with neocortical tau accumulation in precuneus and inferior temporal cortex. In addition, baseline tau, Aβ, and ApoE4 status also moderated the association between connectivity and rate of memory decline. Together, these results suggest that the extent and distribution of future tau accumulation may be predicted by the interaction of baseline connectivity, AD pathology, and genetic risk.
Collapse
Affiliation(s)
- Jacob Ziontz
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | | | | | - Joseph Giorgio
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of NewcastleNewcastleNew South WalesAustralia
| | - Feng Han
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | - JiaQie Lee
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | - William J. Jagust
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | |
Collapse
|
4
|
Rait LI, Hutchinson JB. Recall as a Window into Hippocampally Defined Events. J Cogn Neurosci 2024; 36:2386-2400. [PMID: 38820552 DOI: 10.1162/jocn_a_02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.
Collapse
|
5
|
Xie H, Illapani VSP, Reppert LT, You X, Krishnamurthy M, Bai Y, Berl MM, Gaillard WD, Hong SJ, Sepeta LN. Longitudinal hippocampal axis in large-scale cortical systems underlying development and episodic memory. Proc Natl Acad Sci U S A 2024; 121:e2403015121. [PMID: 39436664 PMCID: PMC11536083 DOI: 10.1073/pnas.2403015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.
Collapse
Affiliation(s)
- Hua Xie
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Lauren T. Reppert
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Xiaozhen You
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Yutong Bai
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Madison M. Berl
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - William D. Gaillard
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| |
Collapse
|
6
|
Schwarb H, Dulas M, Cohen N. The influence of categorical stimuli on relational memory binding. Learn Mem 2024; 31:a054006. [PMID: 39481887 PMCID: PMC11606515 DOI: 10.1101/lm.054006.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound-often the information that is consistent with task goals or expectations about what information may be required later-other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance.
Collapse
Affiliation(s)
- Hillary Schwarb
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Michael Dulas
- Department of Psychology, Binghamton University, Binghamton, New York 13902, USA
| | - Neal Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| |
Collapse
|
7
|
Liu XL, Ranganath C, O'Reilly RC. A complementary learning systems model of how sleep moderates retrieval practice effects. Psychon Bull Rev 2024; 31:2022-2035. [PMID: 38530592 PMCID: PMC11543715 DOI: 10.3758/s13423-024-02489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
While many theories assume that sleep is critical in stabilizing and strengthening memories, our recent behavioral study (Liu & Ranganath, 2021, Psychonomic Bulletin & Review, 28[6], 2035-2044) suggests that sleep does not simply stabilize memories. Instead, it plays a more complex role, integrating information across two temporally distinct learning episodes. In the current study, we simulated the results of Liu and Ranganath (2021) using our biologically plausible computational model, TEACH, developed based on the complementary learning systems (CLS) framework. Our model suggests that when memories are activated during sleep, the reduced influence of temporal context establishes connections across temporally separated events through mutual training between the hippocampus and neocortex. In addition to providing a compelling mechanistic explanation for the selective effect of sleep, this model offers new examples of the diverse ways in which the cortex and hippocampus can interact during learning.
Collapse
Affiliation(s)
- Xiaonan L Liu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Randall C O'Reilly
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Xu X, Du K, Mao D. Spatial dissociation between recognition and navigation in the primate hippocampus. SCIENCE ADVANCES 2024; 10:eado7392. [PMID: 39292773 PMCID: PMC11409969 DOI: 10.1126/sciadv.ado7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
The primate hippocampus, crucial for both episodic memory and spatial navigation, remains an enigma regarding whether these functions share the same neural substrates. We investigated how identical hippocampal neurons in macaque monkeys dynamically shifted their representations between tasks. In a recognition memory task, a notable fraction of hippocampal neurons showed that rate modulation strongly correlated with recognition performance. During free navigation in an open arena, spatial view, rather than position, predominantly influenced the spatial selectivity of hippocampal neurons. Neurons selective for recognition memory displayed minimal spatial tuning, while spatially tuned neurons exhibited limited memory-related activity. These neural correlates of recognition memory and space were more pronounced in the anterior and posterior portions of the hippocampus, respectively. These opposing gradients extended further into the anterior and posterior neocortices. Overall, our findings suggest the presence of orthogonal long-axis gradients between recognition memory and spatial navigation in the hippocampal-neocortical networks of macaque monkeys.
Collapse
Affiliation(s)
- Xiao Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Kechen Du
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dun Mao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Huang S, Bogdan PC, Howard CM, Gillette K, Deng L, Welch E, McAllister ML, Giovanello KS, Davis SW, Cabeza R. Cortico-hippocampal interactions underlie schema-supported memory encoding in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613755. [PMID: 39345576 PMCID: PMC11430046 DOI: 10.1101/2024.09.18.613755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Although episodic memory is typically impaired in older adults (OAs) compared to young adults (YAs), this deficit is attenuated when OAs can leverage their rich semantic knowledge, such as their knowledge of schemas. Memory is better for items consistent with pre-existing schemas and this effect is larger in OAs. Neuroimaging studies have associated schema use with the ventromedial prefrontal cortex (vmPFC) and hippocampus (HPC), but most of this research has been limited to YAs. This fMRI study investigated the neural mechanisms underlying how schemas boost episodic memory in OAs. Participants encoded scene-object pairs with varying congruency, and memory for the objects was tested the following day. Congruency with schemas enhanced object memory for YAs and, more substantially, for OAs. FMRI analyses examined how cortical modulation of HPC predicted subsequent memory. Congruency-related vmPFC modulation of left HPC enhanced subsequent memory in both age groups, while congruency-related modulation from angular gyrus (AG) boosted subsequent memory only in OAs. Individual differences in cortico-hippocampal modulations indicated that OAs preferentially used their semantic knowledge to facilitate encoding via an AG-HPC interaction, suggesting a compensatory mechanism. Collectively, our findings illustrate age-related differences in how schemas influence episodic memory encoding via distinct routes of cortico-hippocampal interactions.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| | - Paul C. Bogdan
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| | - Cortney M. Howard
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| | - Kirsten Gillette
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| | - Lifu Deng
- Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Erin Welch
- Department of Psychology, Columbia University, New York, NY 10027
| | - Margaret L. McAllister
- Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kelly S. Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Simon W. Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
- Department of Neurology, Duke University School of Medicine, Durham, NC 27708
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| |
Collapse
|
10
|
Wuestefeld A, Pichet Binette A, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early-versus late-onset amnestic Alzheimer's disease. Alzheimers Res Ther 2024; 16:204. [PMID: 39285454 PMCID: PMC11403779 DOI: 10.1186/s13195-024-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS BioFINDER-2 participants with memory impairment, abnormal amyloid-β and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-β-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden.
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden
- Image and Function, Skåne University Hospital, Lund, 22242, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Department of Neurology, Skåne University Hospital, Lund, 22242, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, 22184, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 20502, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Klinikgatan 28, Room C1103b, Lund, SE-22242, Sweden
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Klinikgatan 13B, Lund, SE-22242, Sweden.
| |
Collapse
|
11
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Gurguryan L, Fenerci C, Ngo N, Sheldon S. The Neural Corelates of Constructing Conceptual and Perceptual Representations of Autobiographical Memories. J Cogn Neurosci 2024; 36:1350-1373. [PMID: 38683700 DOI: 10.1162/jocn_a_02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Contemporary neurocognitive frameworks propose that conceptual and perceptual content of autobiographical memories-personal past experiences-are processed by dissociable neural systems. Other work has proposed a central role of the anterior hippocampus in initially constructing autobiographical memories, regardless of the content. Here, we report on an fMRI study that utilized a repeated retrieval paradigm to test these ideas. In an MRI scanner, participants retrieved autobiographical memories at three timepoints. During the third retrieval, participants either shifted their focus to the conceptual content of the memory, the perceptual content of the memory, or retrieved the memory as they had done so on previous trials. We observed stronger anterior hippocampal activity for the first retrieval compared with later retrievals, regardless of whether there was a shift in content in those later trials. We also found evidence for separate cortical systems when constructing autobiographical memories with a focus on conceptual or perceptual content. Finally, we found that there was common engagement between later retrievals that required a shift toward conceptual content and the initial retrieval of a memory. This final finding was explored further with a behavioral experiment that provided evidence that focusing on conceptual content of a memory guides memory construction, whereas perceptual content adds precision to a memory. Together, these findings suggest there are distinct content-oriented cortical systems that work with the anterior hippocampus to construct representations of autobiographical memories.
Collapse
Affiliation(s)
| | | | - Nguyet Ngo
- McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
13
|
Wuestefeld A, Binette AP, van Westen D, Strandberg O, Stomrud E, Mattsson-Carlgren N, Janelidze S, Smith R, Palmqvist S, Baumeister H, Berron D, Yushkevich PA, Hansson O, Spotorno N, Wisse LEM. Medial temporal lobe atrophy patterns in early- versus late-onset amnestic Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594976. [PMID: 38826333 PMCID: PMC11142072 DOI: 10.1101/2024.05.21.594976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking. Methods BioFINDER-2 participants with memory impairment, abnormal amyloid-β status and tau-PET were included. Forty-one EOAD individuals aged ≤65 years and, as comparison, late-onset AD (LOAD, ≥70 years, n=154) and Aβ-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. Results AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups, although LOAD showed thinner entorhinal cortices compared to EOAD. EOAD showed lower WMH compared to LOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity was found. Conclusions We found in vivo evidence for MTL atrophy in amnestic EOAD and overall similar levels to LOAD of MTL tau pathology and co-pathologies.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
- Image and Function, Skåne University Hospital, 22242 Lund Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Department of Neurology, Skåne University Hospital, 22242 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502 Malmö, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 22242 Lund, Sweden
| | - Laura EM Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, 22242 Lund, Sweden
| |
Collapse
|
14
|
Ke M, Hou Y, Zhang L, Liu G. Brain functional network changes in patients with juvenile myoclonic epilepsy: a study based on graph theory and Granger causality analysis. Front Neurosci 2024; 18:1363255. [PMID: 38774788 PMCID: PMC11106382 DOI: 10.3389/fnins.2024.1363255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that the brain networks are disrupted in adolescent patients with juvenile myoclonic epilepsy (JME). However, previous studies have mainly focused on investigating brain connectivity disruptions from the perspective of static functional connections, overlooking the dynamic causal characteristics between brain network connections. In our study involving 37 JME patients and 35 Healthy Controls (HC), we utilized rs-fMRI to construct whole-brain functional connectivity network. By applying graph theory, we delved into the altered topological structures of the brain functional connectivity network in JME patients and identified abnormal regions as key regions of interest (ROIs). A novel aspect of our research was the application of a combined approach using the sliding window technique and Granger causality analysis (GCA). This method allowed us to delve into the dynamic causal relationships between these ROIs and uncover the intricate patterns of dynamic effective connectivity (DEC) that pervade various brain functional networks. Graph theory analysis revealed significant deviations in JME patients, characterized by abnormal increases or decreases in metrics such as nodal betweenness centrality, degree centrality, and efficiency. These findings underscore the presence of widespread disruptions in the topological features of the brain. Further, clustering analysis of the time series data from abnormal brain regions distinguished two distinct states indicative of DEC patterns: a state of strong connectivity at a lower frequency (State 1) and a state of weak connectivity at a higher frequency (State 2). Notably, both states were associated with connectivity abnormalities across different ROIs, suggesting the disruption of local properties within the brain functional connectivity network and the existence of widespread multi-functional brain functional networks damage in JME patients. Our findings elucidate significant disruptions in the local properties of whole-brain functional connectivity network in patients with JME, revealing causal impairments across multiple functional networks. These findings collectively suggest that JME is a generalized epilepsy with localized abnormalities. Such insights highlight the intricate network dysfunctions characteristic of JME, thereby enriching our understanding of its pathophysiological features.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Yaru Hou
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Li Zhang
- Hospital of Lanzhou University of Technology, Lanzhou University of Technology, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Wuestefeld A, Baumeister H, Adams JN, de Flores R, Hodgetts CJ, Mazloum-Farzaghi N, Olsen RK, Puliyadi V, Tran TT, Bakker A, Canada KL, Dalton MA, Daugherty AM, La Joie R, Wang L, Bedard ML, Buendia E, Chung E, Denning A, Del Mar Arroyo-Jiménez M, Artacho-Pérula E, Irwin DJ, Ittyerah R, Lee EB, Lim S, Del Pilar Marcos-Rabal M, Iñiguez de Onzoño Martin MM, Lopez MM, de la Rosa Prieto C, Schuck T, Trotman W, Vela A, Yushkevich P, Amunts K, Augustinack JC, Ding SL, Insausti R, Kedo O, Berron D, Wisse LEM. Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories. Hippocampus 2024; 34:241-260. [PMID: 38415962 PMCID: PMC11039382 DOI: 10.1002/hipo.23602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Negar Mazloum-Farzaghi
- University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| | - Vyash Puliyadi
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tammy T Tran
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | | | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Lei Wang
- The Ohio State University, Columbus, Ohio, USA
| | - Madigan L Bedard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Esther Buendia
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Eunice Chung
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Denning
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - David J Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Edward B Lee
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Lim
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Monica Munoz Lopez
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | | | - Theresa Schuck
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Alicia Vela
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | | | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Olga Kedo
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. Eur J Psychotraumatol 2024; 15:2335793. [PMID: 38590134 PMCID: PMC11005872 DOI: 10.1080/20008066.2024.2335793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (β = 0.0099, q = 0.032) and lower EC ODI (β = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.
Collapse
Affiliation(s)
- Steven J. Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Sydney A. Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A. Olson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cameron D. Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos P. Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin Ravichandran
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - William A. Carlezon
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kerry J. Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M. Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Lei HY, Pi GL, He T, Xiong R, Lv JR, Liu JL, Wu DQ, Li MZ, Shi K, Li SH, Yu NN, Gao Y, Yu HL, Wei LY, Wang X, Zhou QZ, Zou PL, Zhou JY, Liu YZ, Shen NT, Yang J, Ke D, Wang Q, Liu GP, Yang XF, Wang JZ, Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil Med Res 2024; 11:16. [PMID: 38462603 PMCID: PMC10926584 DOI: 10.1186/s40779-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Collapse
Affiliation(s)
- Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Lin Pi
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Ru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Le Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na-Na Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Lin Zou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Zhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nai-Ting Shen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
19
|
Wuestefeld A, Baumeister H, Adams JN, de Flores R, Hodgetts C, Mazloum-Farzaghi N, Olsen RK, Puliyadi V, Tran TT, Bakker A, Canada KL, Dalton MA, Daugherty AM, Joie RL, Wang L, Bedard M, Buendia E, Chung E, Denning A, Arroyo-Jiménez MDM, Artacho-Pérula E, Irwin DJ, Ittyerah R, Lee EB, Lim S, Marcos-Rabal MDP, Martin MMIDO, Lopez MM, Prieto CDLR, Schuck T, Trotman W, Vela A, Yushkevich P, Amunts K, Augustinack JC, Ding SL, Insausti R, Kedo O, Berron D, Wisse LEM. Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.542054. [PMID: 37292729 PMCID: PMC10245880 DOI: 10.1101/2023.05.24.542054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain, Caen-Normandie University, Caen-Normandie, France
| | | | - Negar Mazloum-Farzaghi
- University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, North York, ON, Canada
| | - Rosanna K Olsen
- University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, North York, ON, Canada
| | - Vyash Puliyadi
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tammy T Tran
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Arnold Bakker
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | | | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco USA
| | - Lei Wang
- The Ohio State University, Columbus, OH, USA
| | - Madigan Bedard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eunice Chung
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Lim
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Alicia Vela
- University of Castilla-La Mancha, Albacete, Spain
| | | | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | - Olga Kedo
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | |
Collapse
|
20
|
Alonso KW, Dahhan NZA, Riggs L, Tseng J, de Medeiros C, Scott M, Laughlin S, Bouffet E, Mabbott DJ. Network connectivity underlying episodic memory in children: Application of a pediatric brain tumor survivor injury model. Dev Sci 2024; 27:e13413. [PMID: 37218519 DOI: 10.1111/desc.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Episodic memory involves personal experiences paired with their context. The Medial Temporal, Posterior Medial, Anterior Temporal, and Medial Prefrontal networks have been found to support the hippocampus in episodic memory in adults. However, there lacks a model that captures how the structural and functional connections of these networks interact to support episodic memory processing in children. Using diffusion-weighted imaging, magnetoencephalography, and memory tests, we quantified differences in white matter microstructure, neural communication, and episodic memory performance, respectively, of healthy children (n = 23) and children with reduced memory performance. Pediatric brain tumor survivors (PBTS; n = 24) were used as a model, as they exhibit reduced episodic memory and perturbations in white matter and neural communication. We observed that PBTS, compared to healthy controls, showed significantly (p < 0.05) (1) disrupted white matter microstructure between these episodic memory networks through lower fractional anisotropy and higher mean and axial diffusivity, (2) perturbed theta band (4-7 Hz) oscillatory synchronization in these same networks through higher weighted phase lag indices (wPLI), and (3) lower episodic memory performance in the Transverse Patterning and Children's Memory Scale (CMS) tasks. Using partial-least squares path modeling, we found that brain tumor treatment predicted network white matter damage, which predicted inter-network theta hypersynchrony and lower verbal learning (directly) and lower verbal recall (indirectly via theta hypersynchrony). Novel to the literature, our findings suggest that white matter modulates episodic memory through effect on oscillatory synchronization within relevant brain networks. RESEARCH HIGHLIGHTS: Investigates the relationship between structural and functional connectivity of episodic memory networks in healthy children and pediatric brain tumor survivors Pediatric brain tumor survivors demonstrate disrupted episodic memory, white matter microstructure and theta oscillatory synchronization compared to healthy children Findings suggest white matter microstructure modulates episodic memory through effects on oscillatory synchronization within relevant episodic memory networks.
Collapse
Affiliation(s)
- Katie Wade Alonso
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Lily Riggs
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Julie Tseng
- The Hospital for Sick Children, Toronto, Canada
| | | | - Ming Scott
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Donald J Mabbott
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Karagoz AB, Morse SJ, Reagh ZM. Cortico-hippocampal networks carry information about characters and their relationships in an extended narrative. Neuropsychologia 2023; 191:108729. [PMID: 37951387 PMCID: PMC11600529 DOI: 10.1016/j.neuropsychologia.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Social information is a centerpiece of human experience. Despite a wealth of research into the way we understand social relationships and how aspects of social life might be supported by the brain, relatively little is known about how the brain represents individual people and their relationships with others. How do intrinsic networks in the brain track people and their connections in complex situations? Here, we sought to understand this issue using an open neuroimaging dataset in which people freely viewed "The Grand Budapest Hotel." Using support vector machine classification of fMRI activity patterns, we found that character identity could be decoded throughout subsystems of the brain's "Default Mode" Network, especially in regions of an Anterior Temporal and a Medial Prefrontal subsystem, as well as a Medial Temporal Network (MTN). We tested character relationships in two ways - onscreen co-occurrence and shared semantic information from an independent sample of character descriptions - and found evidence for these representations throughout the "Default Mode" Network, and the MTN. The extent to which each variant of character relationships fit neural patterns differed across networks, with abstract semantic relatedness being especially prominent in regions of Anterior Temporal and Medial Prefrontal Networks. These data show that subsystems of the brain's "Default Mode" Network and MTN carry information about individual people as well as their connections, and highlight a particularly strong role for the Anterior Temporal network in representing this information.
Collapse
Affiliation(s)
- Ata B Karagoz
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105, USA.
| | - Sarah J Morse
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Zachariah M Reagh
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105, USA
| |
Collapse
|
22
|
Wang L, Xu H, Wang M, Brendel M, Rominger A, Shi K, Han Y, Jiang J. A metabolism-functional connectome sparse coupling method to reveal imaging markers for Alzheimer's disease based on simultaneous PET/MRI scans. Hum Brain Mapp 2023; 44:6020-6030. [PMID: 37740923 PMCID: PMC10619407 DOI: 10.1002/hbm.26493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Abnormal glucose metabolism and hemodynamic changes in the brain are closely related to cognitive function, providing complementary information from distinct biochemical and physiological processes. However, it remains unclear how to effectively integrate these two modalities across distinct brain regions. In this study, we developed a connectome-based sparse coupling method for hybrid PET/MRI imaging, which could effectively extract imaging markers of Alzheimer's disease (AD) in the early stage. The FDG-PET and resting-state fMRI data of 56 healthy controls (HC), 54 subjective cognitive decline (SCD), and 27 cognitive impairment (CI) participants due to AD were obtained from SILCODE project (NCT03370744). For each participant, the metabolic connectome (MC) was constructed by Kullback-Leibler divergence similarity estimation, and the functional connectome (FC) was constructed by Pearson correlation. Subsequently, we measured the coupling strength between MC and FC at various sparse levels, assessed its stability, and explored the abnormal coupling strength along the AD continuum. Results showed that the sparse MC-FC coupling index was stable in each brain network and consistent across subjects. It was more normally distributed than other traditional indexes and captured more SCD-related brain areas, especially in the limbic and default mode networks. Compared to other traditional indices, this index demonstrated best classification performance. The AUC values reached 0.748 (SCD/HC) and 0.992 (CI/HC). Notably, we found a significant correlation between abnormal coupling strength and neuropsychological scales (p < .05). This study provides a clinically relevant tool for hybrid PET/MRI imaging, allowing for exploring imaging markers in early stage of AD and better understanding the pathophysiology along the AD continuum.
Collapse
Affiliation(s)
- Luyao Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Huanyu Xu
- School of Communication and Information EngineeringShanghai UniversityShanghaiChina
| | - Min Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Matthias Brendel
- Department of Nuclear MedicineUniversity Hospital of Munich, Ludwig Maximilian University of MunichMunichGermany
| | - Axel Rominger
- Department of Nuclear MedicineInselspital, University Hospital BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear MedicineInselspital, University Hospital BernBernSwitzerland
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
- Hainan UniversityHaikouChina
| | - Jiehui Jiang
- School of Life SciencesShanghai UniversityShanghaiChina
| |
Collapse
|
23
|
Tanguay AFN, Palombo DJ, Love B, Glikstein R, Davidson PSR, Renoult L. The shared and unique neural correlates of personal semantic, general semantic, and episodic memory. eLife 2023; 12:e83645. [PMID: 37987578 PMCID: PMC10662951 DOI: 10.7554/elife.83645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
One of the most common distinctions in long-term memory is that between semantic (i.e., general world knowledge) and episodic (i.e., recollection of contextually specific events from one's past). However, emerging cognitive neuroscience data suggest a surprisingly large overlap between the neural correlates of semantic and episodic memory. Moreover, personal semantic memories (i.e., knowledge about the self and one's life) have been studied little and do not easily fit into the standard semantic-episodic dichotomy. Here, we used fMRI to record brain activity while 48 participants verified statements concerning general facts, autobiographical facts, repeated events, and unique events. In multivariate analysis, all four types of memory involved activity within a common network bilaterally (e.g., frontal pole, paracingulate gyrus, medial frontal cortex, middle/superior temporal gyrus, precuneus, posterior cingulate, angular gyrus) and some areas of the medial temporal lobe. Yet the four memory types differentially engaged this network, increasing in activity from general to autobiographical facts, from autobiographical facts to repeated events, and from repeated to unique events. Our data are compatible with a component process model, in which declarative memory types rely on different weightings of the same elementary processes, such as perceptual imagery, spatial features, and self-reflection.
Collapse
Affiliation(s)
- Annick FN Tanguay
- School of Psychology, University of OttawaOttawaCanada
- School of Psychology, University of East AngliaNorwichUnited Kingdom
| | - Daniela J Palombo
- Department of Psychology, University of British ColumbiaVancouverCanada
| | - Brittany Love
- School of Psychology, University of OttawaOttawaCanada
| | | | | | - Louis Renoult
- School of Psychology, University of East AngliaNorwichUnited Kingdom
| |
Collapse
|
24
|
Violante IR, Alania K, Cassarà AM, Neufeld E, Acerbo E, Carron R, Williamson A, Kurtin DL, Rhodes E, Hampshire A, Kuster N, Boyden ES, Pascual-Leone A, Grossman N. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci 2023; 26:1994-2004. [PMID: 37857775 PMCID: PMC10620081 DOI: 10.1038/s41593-023-01456-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.
Collapse
Affiliation(s)
- Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Ketevan Alania
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Antonino M Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Neurology and Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Danielle L Kurtin
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, London, UK
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Edward S Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern and Koch Institutes, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
25
|
Avery SN, Rogers BP, McHugo M, Armstrong K, Blackford JU, Vandekar SN, Woodward ND, Heckers S. Hippocampal Network Dysfunction in Early Psychosis: A 2-Year Longitudinal Study. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:979-989. [PMID: 37881573 PMCID: PMC10593896 DOI: 10.1016/j.bpsgos.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Background Hippocampal abnormalities are among the most consistent findings in schizophrenia. Numerous studies have reported deficits in hippocampal volume, function, and connectivity in the chronic stage of illness. While hippocampal volume and function deficits are also present in the early stage of illness, there is mixed evidence of both higher and lower functional connectivity. Here, we use graph theory to test the hypothesis that hippocampal network connectivity is broadly lowered in early psychosis and progressively worsens over 2 years. Methods We examined longitudinal resting-state functional connectivity in 140 participants (68 individuals in the early stage of psychosis, 72 demographically similar healthy control individuals). We used an anatomically driven approach to quantify hippocampal network connectivity at 2 levels: 1) a core hippocampal-medial temporal lobe cortex (MTLC) network; and 2) an extended hippocampal-cortical network. Group and time effects were tested in a linear mixed effects model. Results Early psychosis patients showed elevated functional connectivity in the core hippocampal-MTLC network, but contrary to our hypothesis, did not show alterations within the broader hippocampal-cortical network. Hippocampal-MTLC network hyperconnectivity normalized longitudinally and predicted improvement in positive symptoms but was not associated with increasing illness duration. Conclusions These results show abnormally elevated functional connectivity in a core hippocampal-MTLC network in early psychosis, suggesting that selectively increased hippocampal signaling within a localized cortical circuit may be a marker of the early stage of psychosis. Hippocampal-MTLC hyperconnectivity could have prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Suzanne N. Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Raud L, Sneve MH, Vidal-Piñeiro D, Sørensen Ø, Folvik L, Ness HT, Mowinckel AM, Grydeland H, Walhovd KB, Fjell AM. Hippocampal-cortical functional connectivity during memory encoding and retrieval. Neuroimage 2023; 279:120309. [PMID: 37544416 DOI: 10.1016/j.neuroimage.2023.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.
Collapse
Affiliation(s)
- Liisa Raud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Line Folvik
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Hedda T Ness
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
27
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
28
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294894. [PMID: 37693514 PMCID: PMC10491384 DOI: 10.1101/2023.08.31.23294894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been reported. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analysis), and EC (secondary analysis) using Neurite Orientation Dispersion and Density Imaging. Methods Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion- weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure. Results Higher PACAP levels in blood were associated with greater EC NDI (β=0.31, q=0.034) and lower EC ODI (β=-0.30, q=0.042) and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures. Conclusions Circulating PACAP levels were associated with altered neuronal density of the EC but not hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal- associated memory circuits.
Collapse
|
30
|
Steel A, Garcia BD, Goyal K, Mynick A, Robertson CE. Scene Perception and Visuospatial Memory Converge at the Anterior Edge of Visually Responsive Cortex. J Neurosci 2023; 43:5723-5737. [PMID: 37474310 PMCID: PMC10401646 DOI: 10.1523/jneurosci.2043-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
To fluidly engage with the world, our brains must simultaneously represent both the scene in front of us and our memory of the immediate surrounding environment (i.e., local visuospatial context). How does the brain's functional architecture enable sensory and mnemonic representations to closely interface while also avoiding sensory-mnemonic interference? Here, we asked this question using first-person, head-mounted virtual reality and fMRI. Using virtual reality, human participants of both sexes learned a set of immersive, real-world visuospatial environments in which we systematically manipulated the extent of visuospatial context associated with a scene image in memory across three learning conditions, spanning from a single FOV to a city street. We used individualized, within-subject fMRI to determine which brain areas support memory of the visuospatial context associated with a scene during recall (Experiment 1) and recognition (Experiment 2). Across the whole brain, activity in three patches of cortex was modulated by the amount of known visuospatial context, each located immediately anterior to one of the three scene perception areas of high-level visual cortex. Individual subject analyses revealed that these anterior patches corresponded to three functionally defined place memory areas, which selectively respond when visually recalling personally familiar places. In addition to showing activity levels that were modulated by the amount of visuospatial context, multivariate analyses showed that these anterior areas represented the identity of the specific environment being recalled. Together, these results suggest a convergence zone for scene perception and memory of the local visuospatial context at the anterior edge of high-level visual cortex.SIGNIFICANCE STATEMENT As we move through the world, the visual scene around us is integrated with our memory of the wider visuospatial context. Here, we sought to understand how the functional architecture of the brain enables coexisting representations of the current visual scene and memory of the surrounding environment. Using a combination of immersive virtual reality and fMRI, we show that memory of visuospatial context outside the current FOV is represented in a distinct set of brain areas immediately anterior and adjacent to the perceptually oriented scene-selective areas of high-level visual cortex. This functional architecture would allow efficient interaction between immediately adjacent mnemonic and perceptual areas while also minimizing interference between mnemonic and perceptual representations.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Brenda D Garcia
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Kala Goyal
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anna Mynick
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Caroline E Robertson
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
31
|
Morton NW, Zippi EL, Preston AR. Memory reactivation and suppression modulate integration of the semantic features of related memories in hippocampus. Cereb Cortex 2023; 33:9020-9037. [PMID: 37264937 PMCID: PMC10350843 DOI: 10.1093/cercor/bhad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Encoding an event that overlaps with a previous experience may involve reactivating an existing memory and integrating it with new information or suppressing the existing memory to promote formation of a distinct, new representation. We used fMRI during overlapping event encoding to track reactivation and suppression of individual, related memories. We further used a model of semantic knowledge based on Wikipedia to quantify both reactivation of semantic knowledge related to a previous event and formation of integrated memories containing semantic features of both events. Representational similarity analysis revealed that reactivation of semantic knowledge related to a prior event in posterior medial prefrontal cortex (pmPFC) supported memory integration during new learning. Moreover, anterior hippocampus (aHPC) formed integrated representations combining the semantic features of overlapping events. We further found evidence that aHPC integration may be modulated on a trial-by-trial basis by interactions between ventrolateral PFC and anterior mPFC, with suppression of item-specific memory representations in anterior mPFC inhibiting hippocampal integration. These results suggest that PFC-mediated control processes determine the availability of specific relevant memories during new learning, thus impacting hippocampal memory integration.
Collapse
Affiliation(s)
- Neal W Morton
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States
| | - Ellen L Zippi
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 95064, United States
| | - Alison R Preston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
32
|
Sweatman H, Lewis-de los Angeles CP, Zhang J, de los Angeles C, Ofen N, Gabrieli JDE, Chai XJ. Development of the neural correlates of recollection. Cereb Cortex 2023; 33:6028-6037. [PMID: 36520501 PMCID: PMC10183736 DOI: 10.1093/cercor/bhac481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Recollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience. Successful recall was associated with activations in regions of the core recollection network and frontoparietal network. Adults exhibited greater successful recall activations compared with children in the precuneus and right angular gyrus. In contrast, similar levels of successful recall activations were observed in both age groups in the mPFC. Group differences were also seen in the hippocampus and lateral frontal regions. These findings suggest that the engagement of the mPFC in episodic retrieval may be relatively early maturing, whereas the contribution to episodic retrieval of more posterior regions such as the precuneus and angular gyrus undergoes more protracted maturation.
Collapse
Affiliation(s)
- Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - C Paula Lewis-de los Angeles
- Department of Pediatrics, Hasbro Children’s Hospital, Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, United States
| | - Jiahe Zhang
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carlo de los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Noa Ofen
- Department of Psychology and the Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 524 Main Street, Cambridge, MA 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, United States
| | - Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
33
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
34
|
Auguste A, Fourcaud-Trocmé N, Meunier D, Gros A, Garcia S, Messaoudi B, Thevenet M, Ravel N, Veyrac A. Distinct brain networks for remote episodic memory depending on content and emotional experience. Prog Neurobiol 2023; 223:102422. [PMID: 36796748 DOI: 10.1016/j.pneurobio.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.
Collapse
Affiliation(s)
- Anne Auguste
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nicolas Fourcaud-Trocmé
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - David Meunier
- University Aix Marseille, Insitut des Neurosciences de la Timone, Marseille, France
| | - Alexandra Gros
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Samuel Garcia
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Belkacem Messaoudi
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Marc Thevenet
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nadine Ravel
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Alexandra Veyrac
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France.
| |
Collapse
|
35
|
Zhang L, Pini L, Kim D, Shulman GL, Corbetta M. Spontaneous Activity Patterns in Human Attention Networks Code for Hand Movements. J Neurosci 2023; 43:1976-1986. [PMID: 36788030 PMCID: PMC10027113 DOI: 10.1523/jneurosci.1601-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Recent evidence suggests that, in the absence of any task, spontaneous brain activity patterns and connectivity in the visual and motor cortex code for natural stimuli and actions, respectively. These "resting-state" activity patterns may underlie the maintenance and consolidation (replay) of information states coding for ecological stimuli and behaviors. In this study, we examine whether replay patterns occur in resting-state activity in association cortex grouped into high-order cognitive networks not directly processing sensory inputs or motor outputs. Fifteen participants (7 females) performed four hand movements during an fMRI study. Three movements were ecological. The fourth movement as control was less ecological. Before and after the task scans, we acquired resting-state fMRI scans. The analysis examined whether multivertex task activation patterns for the four movements computed at the cortical surface in different brain networks resembled spontaneous activity patterns measured at rest. For each movement, we computed a vector of r values indicating the strength of the similarity between the mean task activation pattern and frame-by-frame resting-state patterns. We computed a cumulative distribution function of r 2 values and used the 90th percentile cutoff value for comparison. In the dorsal attention network, resting-state patterns were more likely to match task patterns for the ecological movements than the control movement. In contrast, rest-task pattern correlation was more likely for less ecological movement in the ventral attention network. These findings show that spontaneous activity patterns in human attention networks code for hand movements.SIGNIFICANCE STATEMENT fMRI indirectly measures neural activity noninvasively. Resting-state (spontaneous) fMRI signals measured in the absence of any task resemble signals evoked by task performance both in topography and inter-regional (functional) connectivity. However, the function of spontaneous brain activity is unknown. We recently showed that spatial activity patterns evoked by visual and motor tasks in visual and motor cortex, respectively, occur at rest in the absence of any stimulus or response. Here we show that activity patterns related to hand movements replay at rest in frontoparietal regions of the human attention system. These findings show that spontaneous activity in the human cortex may mediate the maintenance and consolidation of information states coding for ecological stimuli and behaviors.
Collapse
Affiliation(s)
- Lu Zhang
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - DoHyun Kim
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Gordon L Shulman
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
- Venetian Institute of Molecular Medicine, Padova, 35129, Italy
| |
Collapse
|
36
|
Reagh ZM, Ranganath C. Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events. Nat Commun 2023; 14:1279. [PMID: 36890146 PMCID: PMC9995562 DOI: 10.1038/s41467-023-36805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although every life event is unique, there are considerable commonalities across events. However, little is known about whether or how the brain flexibly represents information about different event components at encoding and during remembering. Here, we show that different cortico-hippocampal networks systematically represent specific components of events depicted in videos, both during online experience and during episodic memory retrieval. Regions of an Anterior Temporal Network represented information about people, generalizing across contexts, whereas regions of a Posterior Medial Network represented context information, generalizing across people. Medial prefrontal cortex generalized across videos depicting the same event schema, whereas the hippocampus maintained event-specific representations. Similar effects were seen in real-time and recall, suggesting reuse of event components across overlapping episodic memories. These representational profiles together provide a computationally optimal strategy to scaffold memory for different high-level event components, allowing efficient reuse for event comprehension, recollection, and imagination.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Charan Ranganath
- UC Davis Center for Neuroscience, University of California, Davis, CA, USA.,Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Jacobsen B, Kleven H, Gatome W, Las L, Ulanovsky N, Witter MP. Organization of projections from the entorhinal cortex to the hippocampal formation of the Egyptian fruit bat Rousettus aegyptiacus. Hippocampus 2023. [PMID: 36869437 DOI: 10.1002/hipo.23517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
The hippocampal formation and entorhinal cortex are crucially involved in learning and memory as well as in spatial navigation. The conservation of these structures across the entire mammalian lineage demonstrates their importance. Information on a diverse set of spatially tuned neurons has become available, but we only have a rudimentary understanding of how anatomical network structure affects functional tuning. Bats are the only order of mammals that have evolved true flight, and with this specialization comes the need to navigate and behave in a three dimensional (3D) environment. Spatial tuning of cells in the entorhinal-hippocampal network of bats has been studied for some time, but whether the reported tuning in 3D is associated with changes in the entorhinal-hippocampal network is not known. Here we investigated the entorhinal-hippocampal projections in the Egyptian fruit bat (Rousettus aegyptiacus), by injecting chemical anterograde tracers in the entorhinal cortex. Detailed analyses of the terminations of these projections in the hippocampus showed that both the medial and lateral entorhinal cortex sent projections to the molecular layer of all subfields of the hippocampal formation. Our analyses showed that the terminal distributions of entorhinal fibers in the hippocampal formation of Egyptian fruit bats-including the proximo-distal and longitudinal topography and the layer-specificity-are similar to what has been described in other mammalian species such as rodents and primates. The major difference in entorhinal-hippocampal projections that was described to date between rodents and primates is in the terminal distribution of the DG projection. We found that bats have entorhinal-DG projections that seem more like those in primates than in rodents. It is likely that the latter projection in bats is specialized to the behavioral needs of this species, including 3D flight and long-distance navigation.
Collapse
Affiliation(s)
- Bente Jacobsen
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Heidi Kleven
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway.,Neural Systems, Institute of Basic Medical Sciences, UiO University of Oslo, Oslo, Norway
| | - Wairimu Gatome
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Menno P Witter
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
38
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
39
|
Meyer ML. Don't You Forget About Me: The Importance of Studying the Brain Basis of Real-world Interpersonal Memory. J Cogn Neurosci 2023; 35:149-157. [PMID: 36306251 DOI: 10.1162/jocn_a_01926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite the fact that humans are a highly social species, we know relatively little about how people remember the rich interpersonal information filling their social lives. This gap is surprising: One function of memory has been suggested to be relationship maintenance [Neisser, U. Time present and time past. Practical Aspects of Memory: Current Research and Issues, 2, 545-560, 1988]. A major barrier to understanding the brain basis of interpersonal memory is that traditional brain imaging methods are not ideally suited to study memory for the nuanced interpersonal experiences comprising our social lives. Yet, recent and rapidly developing advances in the analysis of brain responses to naturalistic social information can help researchers surpass this methodological barrier. This perspective piece articulates the importance of studying the brain basis of real-world social memories and suggests new directions in interpersonal memory research. This includes investigating the brain mechanisms that represent the content and structure of real-world interpersonal memories as well as how they are altered in mental health conditions associated with social memory biases.
Collapse
|
40
|
Williams AB, Liu X, Hsieh F, Hurtado M, Lesh T, Niendam T, Carter C, Ranganath C, Ragland JD. Memory-Based Prediction Deficits and Dorsolateral Prefrontal Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:71-78. [PMID: 35618258 PMCID: PMC10036169 DOI: 10.1016/j.bpsc.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Theories suggest that people with schizophrenia (SZ) have problems generating predictions based on past experiences. The dorsolateral prefrontal cortex (DLPFC) and hippocampus participate in memory-based prediction. We used functional magnetic resonance imaging to investigate DLPFC and hippocampal function in healthy control (HC) subjects and people with SZ during memory-based prediction. METHODS Prior to scanning, HC subjects (n = 54) and people with SZ (n = 31) learned 5-object sequences presented in fixed or random orders on each repetition. During scanning, participants made semantic decisions (e.g., "Can this object fit in a shoebox?") on a continuous stream of objects from fixed and random sequences. Sequence prediction was demonstrated by faster semantic decisions for objects in fixed versus random sequences because memory could be used to anticipate and more efficiently process semantic information about upcoming objects in fixed sequences. Representational similarity analyses were used to determine how each sequence type was represented in the posterior hippocampus and DLPFC. RESULTS Sequence predictions were reduced in individuals with SZ relative to HC subjects. Representational similarity analyses revealed stronger memory-based predictions in the DLPFC of HC subjects than people with SZ, and DLPFC representations correlated with more successful predictions in HC subjects only. For the posterior hippocampus, voxel pattern similarity was increased for fixed versus random sequences in HC subjects only, but no significant between-group differences or correlations with prediction success were observed. CONCLUSIONS Individuals with SZ are capable of learning temporal sequences; however, they are impaired using memory to predict upcoming events as efficiently as HC subjects. This deficit appears related to disrupted neural representation of sequence information in the DLPFC.
Collapse
Affiliation(s)
- Ashley B Williams
- Center for Neuroscience, University of California, Davis, Davis, California
| | - Xiaonan Liu
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - Frank Hsieh
- Department of Psychology, University of California, Berkeley, Berkeley, California; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Mitzi Hurtado
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tyler Lesh
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tara Niendam
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cameron Carter
- Departments of Psychology, University of California, Davis, Davis, California; Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - J Daniel Ragland
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
41
|
Maxim P, Brown TI. Toward an Understanding of Cognitive Mapping Ability Through Manipulations and Measurement of Schemas and Stress. Top Cogn Sci 2023; 15:75-101. [PMID: 34612588 DOI: 10.1111/tops.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023]
Abstract
Daily function depends on an ability to mentally map our environment. Environmental factors such as visibility and layout, and internal factors such as psychological stress, can challenge spatial memory and efficient navigation. Importantly, people vary dramatically in their ability to navigate flexibly and overcome such challenges. In this paper, we present an overview of "schema theory" and our view of its relevance to navigational memory research. We review several studies from our group and others, that integrate manipulations of environmental complexity and affective state in order to gain a richer understanding of the mechanisms that underlie individual differences in navigational memory. Our most recent data explicitly link such individual differences to ideas rooted in schema theory, and we discuss the potential for this work to advance our understanding of cognitive decline with aging. The data from this body of work highlight the powerful impacts of individual cognitive traits and affective states on the way people take advantage of environmental features and adopt navigational strategies.
Collapse
Affiliation(s)
- Paulina Maxim
- School of Psychology, Georgia Institute of Technology
| | | |
Collapse
|
42
|
Siestrup S, Jainta B, Cheng S, Schubotz RI. Solidity Meets Surprise: Cerebral and Behavioral Effects of Learning from Episodic Prediction Errors. J Cogn Neurosci 2022; 35:1-23. [PMID: 36473102 DOI: 10.1162/jocn_a_01948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
How susceptible a memory is to later modification might depend on how stable the episode has been encoded. This stability was proposed to increase when retrieving information more (vs. less) often and in a spaced (vs. massed) practice. Using fMRI, we examined the effects of these different pre-fMRI retrieval protocols on the subsequent propensity to learn from episodic prediction errors. After encoding a set of different action stories, participants came back for two pre-fMRI retrieval sessions in which they encountered original episodes either 2 or 8 times in either a spaced or a massed retrieval protocol. One week later, we cued episodic retrieval during the fMRI session by using original or modified videos of encoded action stories. Recurrent experience of modified episodes was associated with increasing activity in the episodic memory network including hippocampal and cortical areas, when leading to false memories in a post-fMRI memory test. While this observation clearly demonstrated learning from episodic prediction errors, we found no evidence for a modulatory effect of the different retrieval protocols. As expected, the benefit of retrieving an episode more often was reflected in better memory for originally encoded episodes. In addition, frontal activity increased for episodic prediction errors when episodes had been less frequently retrieved pre-fMRI. A history of spaced versus massed retrieval was associated with increased activation throughout the episodic memory network, with no significant effect on behavioral performance. Our findings show that episodic prediction errors led to false memories. The history of different retrieval protocols was reflected in memory performance and brain responses to episodic prediction errors, but did not interact with the brain's episodic learning response.
Collapse
|
43
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
44
|
Grande X, Sauvage MM, Becke A, Düzel E, Berron D. Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry. eLife 2022; 11:e76479. [PMID: 36222669 PMCID: PMC9651961 DOI: 10.7554/elife.76479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Scene and object information reach the entorhinal-hippocampal circuitry in partly segregated cortical processing streams. Converging evidence suggests that such information-specific streams organize the cortical - entorhinal interaction and the circuitry's inner communication along the transversal axis of hippocampal subiculum and CA1. Here, we leveraged ultra-high field functional imaging and advance Maass et al., 2015 who report two functional routes segregating the entorhinal cortex (EC) and the subiculum. We identify entorhinal subregions based on preferential functional connectivity with perirhinal Area 35 and 36, parahippocampal and retrosplenial cortical sources (referred to as ECArea35-based, ECArea36-based, ECPHC-based, ECRSC-based, respectively). Our data show specific scene processing in the functionally connected ECPHC-based and distal subiculum. Another route, that functionally connects the ECArea35-based and a newly identified ECRSC-based with the subiculum/CA1 border, however, shows no selectivity between object and scene conditions. Our results are consistent with transversal information-specific pathways in the human entorhinal-hippocampal circuitry, with anatomically organized convergence of cortical processing streams and a unique route for scene information. Our study thus further characterizes the functional organization of this circuitry and its information-specific role in memory function.
Collapse
Affiliation(s)
- Xenia Grande
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Department, Leibniz-Institute for NeurobiologyMagdeburgGermany
- Functional Neuroplasticity Department, Otto-von-Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University MagdeburgMagdeburgGermany
| | - Andreas Becke
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - David Berron
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University MagdeburgMagdeburgGermany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund UniversityLundSweden
| |
Collapse
|
45
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
46
|
Castegnaro A, Howett D, Li A, Harding E, Chan D, Burgess N, King J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus 2022; 32:660-678. [PMID: 35916343 PMCID: PMC9543035 DOI: 10.1002/hipo.23458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022]
Abstract
Pathological changes in the medial temporal lobe (MTL) are found in the early stages of Alzheimer's disease (AD) and aging. The earliest pathological accumulation of tau colocalizes with the areas of the MTL involved in object processing as part of a wider anterolateral network. Here, we sought to assess the diagnostic potential of memory for object locations in iVR environments in individuals at high risk of AD dementia (amnestic mild cognitive impairment [aMCI] n = 23) as compared to age-related cognitive decline. Consistent with our primary hypothesis that early AD would be associated with impaired object location, aMCI patients exhibited impaired spatial feature binding. Compared to both older (n = 24) and younger (n = 53) controls, aMCI patients, recalled object locations with significantly less accuracy (p < .001), with a trend toward an impaired identification of the object's correct context (p = .05). Importantly, these findings were not explained by deficits in object recognition (p = .6). These deficits differentiated aMCI from controls with greater accuracy (AUC = 0.89) than the standard neuropsychological tests. Within the aMCI group, 16 had CSF biomarkers indicative of their likely AD status (MCI+ n = 9 vs. MCI- n = 7). MCI+ showed lower accuracy in the object-context association than MCI- (p = .03) suggesting a selective deficit in object-context binding postulated to be associated with anterior-temporal areas. MRI volumetric analysis across healthy older participants and aMCI revealed that test performance positively correlates with lateral entorhinal cortex volumes (p < .05) and hippocampus volumes (p < .01), consistent with their hypothesized role in binding contextual and spatial information with object identity. Our results indicate that tests relying on the anterolateral object processing stream, and in particular requiring successful binding of an object with spatial information, may aid detection of pre-dementia AD due to the underlying early spread of tau pathology.
Collapse
Affiliation(s)
- Andrea Castegnaro
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - David Howett
- School of Psychological ScienceUniversity of BristolBristolUK
| | - Adrienne Li
- Department of PsychologyYork UniversityTorontoOntarioCanada
| | - Elizabeth Harding
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Dennis Chan
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Neil Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - John King
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| |
Collapse
|
47
|
Theta oscillations support active exploration in human spatial navigation. Neuroimage 2022; 262:119581. [PMID: 35995375 DOI: 10.1016/j.neuroimage.2022.119581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Active navigation seems to yield better spatial knowledge than passive navigation, but it is unclear how active decision-making influences learning and memory. Here, we examined the contributions of theta oscillations to memory-related exploration while testing theories about how they contribute to active learning. Using electroencephalography (EEG), we tested individuals on a maze-learning task in which they made discrete decisions about where to explore at each choice point in the maze. Half the participants were free to make active decisions at each choice point, and the other half passively explored by selecting a marked choice (matched to active exploration) at each intersection. Critically, all decisions were made when stationary, decoupling the active decision-making process from movement and speed factors, which is another prominent potential role for theta oscillations. Participants were then tested on their knowledge of the maze by traveling from object A to object B within the maze. Results show an advantage for active decision-making during learning and indicate that the active group had greater theta power during choice points in exploration, particularly in midfrontal channels. These findings demonstrate that active exploration is associated with theta oscillations during human spatial navigation, and that these oscillations are not exclusively related to movement or speed. Results demonstrating increased theta oscillations in prefrontal regions suggest communication with the hippocampus and integration of new information into memory. We also found evidence for alpha oscillations during active navigation, suggesting a role for attention as well. This study finds support for a general mnemonic role for theta oscillations during navigational learning.
Collapse
|
48
|
Leavitt VM, Dworkin JD, Buyukturkoglu K, Riley CS, Ritchey M. Summary metrics of memory subnetwork functional connectivity alterations in multiple sclerosis. Mult Scler 2022; 28:1963-1972. [PMID: 35658737 DOI: 10.1177/13524585221099169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Memory dysfunction is common in multiple sclerosis (MS); mechanistic understanding of its causes is lacking. Large-scale network resting-state functional connectivity (RSFC) is sensitive to memory dysfunction. OBJECTIVE We derived and tested summary metrics of memory network RSFC. METHODS Cognitive data and 3T magnetic resonance imaging (MRI) scans were collected from 235 MS patients and 35 healthy controls (HCs). Index scores were calculated as RSFC within (anteriority index, AntI) and between (integration index, IntI) dorsomedial anterior temporal and medial temporal memory subnetworks. Group differences in index expression were evaluated. Associations between index scores and memory/non-memory cognition were evaluated; relationships between T2 lesion volume (T2LV) and index scores were assessed. RESULTS Index scores were related to memory and T2LV in MS patients, who showed marginally elevated AntI relative to HC (p = 0.06); no group differences were found for IntI. Better memory was associated with higher AntI (β = 0.15, p = 0.018) and IntI (β = 0.16, p = 0.014). No associations were found for non-memory cognition. Higher T2LV was associated with higher AntI and IntI; exploratory mediation analysis revealed significant inconsistent mediation, that is, higher index scores partially suppressed the negative association between T2LV and memory. CONCLUSION Summary, within-subject metrics permit replication and circumvent challenges of traditional (incommensurate) RSFC variables to advance development of mechanistic models of memory dysfunction in MS.
Collapse
Affiliation(s)
- Victoria M Leavitt
- Translational Cognitive Neuroscience Laboratory, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA/Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA
| | - Korhan Buyukturkoglu
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Claire S Riley
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA/Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maureen Ritchey
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
49
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
50
|
Li H, Ding F, Chen C, Huang P, Xu J, Chen Z, Wang S, Zhang M. Dynamic functional connectivity in modular organization of the hippocampal network marks memory phenotypes in temporal lobe epilepsy. Hum Brain Mapp 2022; 43:1917-1929. [PMID: 34967488 PMCID: PMC8933317 DOI: 10.1002/hbm.25763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a network disorder with a high incidence of memory impairment. Memory processing ability highly depends on the dynamic coordination between distinct modules within the hippocampal network. Here, we investigate the relationship between memory phenotypes and modular alterations of dynamic functional connectivity (FC) in the hippocampal network in TLE patients. Then, 31 healthy controls and 66 TLE patients with hippocampal sclerosis were recruited. The patients were classified into memory-intact (MI, 35 cases) group and memory-deficit (MD, 31 cases) group, each based on individual's Wechsler Memory Scale-Revised score. The sliding-windows approach and graph theory analysis were used to analyze the hippocampal network based on resting state functional magnetic resonance imaging. Temporal properties and modular metrics were calculated. Two discrete and switchable states were revealed: a high modularized state (State I) and a low modularized state (State II), which corresponded to either anterior or posterior hippocampal network dominated pattern. TLE was prone to drive less State I but more State II, and the tendency was more obvious in TLE-MD. Additionally, TLE-MD showed more widespread alterations of modular properties compared with TLE-MI across two states. Furthermore, the dynamic modularity features had unique superiority in discriminating TLE-MD from TLE-MI. These findings demonstrated that state transitions and modular function of dissociable hippocampal networks were altered in TLE and more importantly, they could reflect different memory phenotypes. The trend revealed potential values of dynamic FC in elucidating the mechanism underlying memory impairments in TLE.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Xu
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|