1
|
Harris S, Mardlin J, Basset-Gunter R, Bray SR. What's in a Message? Effects of Mental Fatigue and Message Framing on Motivation for Physical Activity. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2024:1-12. [PMID: 39433293 DOI: 10.1123/jsep.2023-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Many adults worldwide do not meet current physical activity (PA) guidelines. Mental fatigue decreases the likelihood of choosing to engage in PA. Message framing may enhance PA motivation when fatigued. We examined the effects of mental fatigue and message framing on PA motivation with additional focus on the messaging "congruency effect." Three hundred and twenty undergraduates completed measures of dispositional motivational orientation and were exposed to either gain-framed or loss-framed messages before completing an effort discounting questionnaire. Results showed lower motivation to engage in PA of higher intensities and longer durations. Direct effects of message framing on PA motivation were not significant. Interaction effects revealed that participants receiving messages congruent with their dominant motivational orientation showed increased motivation for light-intensity PA and decreased motivation for vigorous-intensity PA as mental fatigue increased. Findings suggest that providing messages congruent with one's dominant motivational orientation may increase motivation for engaging in light-intensity PA when fatigued.
Collapse
Affiliation(s)
- Sheereen Harris
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jade Mardlin
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | | | - Steven R Bray
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2024:10.1038/s41380-024-02726-y. [PMID: 39215184 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
King JA, Bernardoni F, Westbrook A, Korb FM, Boehm I, Doose A, Geisler D, Gramatke K, Hellerhoff I, Wolff S, Strobel A, Goschke T, Roessner V, Ehrlich S. Exaggerated frontoparietal control over cognitive effort-based decision-making in young women with anorexia nervosa. Mol Psychiatry 2024:10.1038/s41380-024-02712-4. [PMID: 39198684 DOI: 10.1038/s41380-024-02712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Effortful tasks are generally experienced as costly, but the value of work varies greatly across individuals and populations. While most mental health conditions are characterized by amotivation and effort avoidance, individuals with anorexia nervosa (AN) persistently engage in effortful behaviors that most people find unrewarding (food restriction, excessive exercise). Current models of AN differentially attribute such extreme weight-control behavior to altered reward responding and exaggerated cognitive control. In a novel test of these theoretical accounts, we employed an established cognitive effort discounting paradigm in combination with fMRI in young acutely underweight female patients with AN (n = 48) and age-matched healthy controls (HC; n = 48). Contrary to the hypothesis that individuals with AN would experience cognitive effort (operationalized as N-back task performance) as less costly than HC participants, groups did not differ in the subjective value (SV) of discounted rewards or in SV-related activation of brain regions involved in reward valuation. Rather, all group differences in both behavior (superior N-back performance in AN and associated effort ratings) and fMRI activation (increased SV-related frontoparietal activation during decision-making in AN even for easier choices) were more indicative of increased control. These findings suggest that while effort discounting may be relatively intact in AN, effort investment is high both when performing demanding tasks and during effort-based decision-making; highlighting cognitive overcontrol as an important therapeutic target. Future research should establish whether exaggerated control during effort-based decision-making persists after weight-recovery and explore learning the value of effort in AN with tasks involving disorder-relevant effort demands and rewards.
Collapse
Affiliation(s)
- Joseph A King
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andrew Westbrook
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Franziska M Korb
- Chair of General Psychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Ilka Boehm
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katrin Gramatke
- Eating Disorder Research and Treatment Center, Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Inger Hellerhoff
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Wolff
- Department. of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Strobel
- Chair of Differential and Personality Psychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Goschke
- Chair of General Psychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Eating Disorder Research and Treatment Center, Dept. of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in the human basal ganglia and prefrontal cortex during decision making. Proc Natl Acad Sci U S A 2024; 121:e2322869121. [PMID: 39047043 PMCID: PMC11295073 DOI: 10.1073/pnas.2322869121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, CA94143
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL32608
- Department of Neurology, University of Florida, Gainesville, FL32608
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, CA94143
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Matthew A. J. Apps
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham UKB15 2TT, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, CA94143, United Kingdom
| | - Simon Little
- Department of Neurology, University of California, San Francisco, CA94143
| |
Collapse
|
5
|
Atkins KJ, Andrews SC, Stout JC, Chong TTJ. The effect of Huntington's disease on cognitive and physical motivation. Brain 2024; 147:2449-2458. [PMID: 38266149 PMCID: PMC11224606 DOI: 10.1093/brain/awae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
Apathy is one of the most common neuropsychiatric features of Huntington's disease. A hallmark of apathy is diminished goal-directed behaviour, which is characterized by a lower motivation to engage in cognitively or physically effortful actions. However, it remains unclear whether this reduction in goal-directed behaviour is driven primarily by a motivational deficit and/or is secondary to the progressive cognitive and physical deficits that accompany more advanced disease. We addressed this question by testing 17 individuals with manifest Huntington's disease and 22 age-matched controls on an effort-based decision-making paradigm. Participants were first trained on separate cognitively and physically effortful tasks and provided explicit feedback about their performance. Next, they chose on separate trials how much effort they were willing to exert in each domain in return for varying reward. At the conclusion of the experiment, participants were asked to rate their subjective perception of task load. In the cognitive task, the Huntington's disease group were more averse to cognitive effort than controls. Although the Huntington's disease group were more impaired than controls on the task itself, their greater aversion to cognitive effort persisted even after controlling for task performance. This suggests that the lower levels of cognitive motivation in the Huntington's disease group relative to controls was most likely driven by a primary motivational deficit. In contrast, both groups expressed a similar preference for physical effort. Importantly, the similar levels of physical motivation across both groups occurred even though participants with Huntington's disease performed objectively worse than controls on the physical effort task, and were aware of their performance through explicit feedback on each trial. This indicates that the seemingly preserved level of physical motivation in Huntington's disease was driven by a willingness to engage in physically effortful actions despite a reduced capacity to do so. Finally, the Huntington's disease group provided higher ratings of subjective task demand than controls for the cognitive (but not physical) effort task and when assessing the mental (but not the physical) load of each task. Together, these results revealed a dissociation in cognitive and physical motivation deficits between Huntington's disease and controls, which were accompanied by differences in how effort was subjectively perceived by the two groups. This highlights that motivation is the final manifestation of a complex set of mechanisms involved in effort processing, which are separable across different domains of behaviour. These findings have important clinical implications for the day-to-day management of apathy in Huntington's disease.
Collapse
Affiliation(s)
- Kelly J Atkins
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Sophie C Andrews
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Thompson Institute, University of the Sunshine Coast, Queensland 4575, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Trevor T J Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria 3004, Australia
- Department of Clinical Neurosciences, St Vincent’s Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
6
|
Hird EJ, Slanina-Davies A, Lewis G, Hamer M, Roiser JP. From movement to motivation: a proposed framework to understand the antidepressant effect of exercise. Transl Psychiatry 2024; 14:273. [PMID: 38961071 PMCID: PMC11222551 DOI: 10.1038/s41398-024-02922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Depression is the leading cause of disability worldwide, exerting a profound negative impact on quality of life in those who experience it. Depression is associated with disruptions to several closely related neural and cognitive processes, including dopamine transmission, fronto-striatal brain activity and connectivity, reward processing and motivation. Physical activity, especially aerobic exercise, reduces depressive symptoms, but the mechanisms driving its antidepressant effects are poorly understood. Here we propose a novel hypothesis for understanding the antidepressant effects of exercise, centred on motivation, across different levels of explanation. There is robust evidence that aerobic exercise decreases systemic inflammation. Inflammation is known to reduce dopamine transmission, which in turn is strongly implicated in effort-based decision making for reward. Drawing on a broad range of research in humans and animals, we propose that by reducing inflammation and boosting dopamine transmission, with consequent effects on effort-based decision making for reward, exercise initially specifically improves 'interest-activity' symptoms of depression-namely anhedonia, fatigue and subjective cognitive impairment - by increasing propensity to exert effort. Extending this framework to the topic of cognitive control, we explain how cognitive impairment in depression may also be conceptualised through an effort-based decision-making framework, which may help to explain the impact of exercise on cognitive impairment. Understanding the mechanisms underlying the antidepressant effects of exercise could inform the development of novel intervention strategies, in particular personalised interventions and boost social prescribing.
Collapse
Affiliation(s)
- E J Hird
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - A Slanina-Davies
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - G Lewis
- Division of Psychiatry, University College London, London, UK
| | - M Hamer
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
7
|
Attaallah B, Petitet P, Zambellas R, Toniolo S, Maio MR, Ganse-Dumrath A, Irani SR, Manohar SG, Husain M. The role of the human hippocampus in decision-making under uncertainty. Nat Hum Behav 2024; 8:1366-1382. [PMID: 38684870 PMCID: PMC11272595 DOI: 10.1038/s41562-024-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rhea Zambellas
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akke Ganse-Dumrath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
O'Malley CA, Norbury R, Smith SA, Fullerton CL, Mauger AR. Elevated muscle pain induced by a hypertonic saline injection reduces power output independent of physiological changes during fixed perceived effort cycling. J Appl Physiol (1985) 2024; 137:99-110. [PMID: 38813614 PMCID: PMC11389896 DOI: 10.1152/japplphysiol.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Pain is a naturally occurring phenomenon that consistently inhibits exercise performance by imposing unconscious, neurophysiological alterations (e.g., corticospinal changes) as well as conscious, psychophysiological pressures (e.g., shared effort demands). Although several studies indicate that pain would elicit lower task outputs for a set intensity of perceived effort, no study has tested this. Therefore, this study investigated the impact of elevated muscle pain through a hypertonic saline injection on the power output, psychophysiological, cerebral oxygenation, and perceptual changes during fixed perceived effort exercise. Ten participants completed three visits (1 familiarization + 2 fixed perceived effort trials). Fixed perceived effort cycling corresponded to 15% above gas exchange threshold (GET) [mean rating of perceived effort (RPE) = 15 "hard"]. Before the 30-min fixed perceived effort exercise, participants received a randomized bilateral hypertonic or isotonic saline injection in the vastus lateralis. Power output, cardiorespiratory, cerebral oxygenation, and perceptual markers (e.g., affective valence) were recorded during exercise. Linear mixed-model regression assessed the condition and time effects and condition × time interactions. Significant condition effects showed that power output was significantly lower during hypertonic conditions [t107 = 208, P = 0.040, β = 4.77 W, 95% confidence interval (95% CI) [0.27 to 9.26 W]]. Meanwhile, all physiological variables (e.g., heart rate, oxygen uptake, minute ventilation) demonstrated no significant condition effects. Condition effects were observed for deoxyhemoglobin changes from baseline (t107 = -3.29, P = 0.001, β = -1.50 ΔμM, 95% CI [-2.40 to -0.61 ΔμM]) and affective valence (t127 = 6.12, P = 0.001, β = 0.93, 95% CI [0.63 to 1.23]). Results infer that pain impacts the self-regulation of fixed perceived effort exercise, as differences in power output mainly occurred when pain ratings were higher after hypertonic versus isotonic saline administration.NEW & NOTEWORTHY This study identifies that elevated muscle pain through a hypertonic saline injection causes significantly lower power output when pain is experienced but does not seem to affect exercise behavior in a residual manner. Results provide some evidence that pain operates on a psychophysiological level to alter the self-regulation of exercise behavior due to differences between conditions in cerebral deoxyhemoglobin and other perceptual parameters.
Collapse
Affiliation(s)
- Callum A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Ryan Norbury
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Sport, Technology, and Health Sciences, St Mary's University Twickenham, London, United Kingdom
| | - Samuel A Smith
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Christopher L Fullerton
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
9
|
Brassard SL, Liu H, Dosanjh J, MacKillop J, Balodis I. Neurobiological foundations and clinical relevance of effort-based decision-making. Brain Imaging Behav 2024:10.1007/s11682-024-00890-x. [PMID: 38819540 DOI: 10.1007/s11682-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Applying effort-based decision-making tasks provides insights into specific variables influencing choice behaviors. The current review summarizes the structural and functional neuroanatomy of effort-based decision-making. Across 39 examined studies, the review highlights the ventromedial prefrontal cortex in forming reward-based predictions, the ventral striatum encoding expected subjective values driven by reward size, the dorsal anterior cingulate cortex for monitoring choices to maximize rewards, and specific motor areas preparing for effort expenditure. Neuromodulation techniques, along with shifting environmental and internal states, are promising novel treatment interventions for altering neural alterations underlying decision-making. Our review further articulates the translational promise of this construct into the development, maintenance and treatment of psychiatric conditions, particularly those characterized by reward-, effort- and valuation-related deficits.
Collapse
Affiliation(s)
- Sarah L Brassard
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Hanson Liu
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jadyn Dosanjh
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Iris Balodis
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Hewitt SRC, Habicht J, Bowler A, Lockwood PL, Hauser TU. Probing apathy in children and adolescents with the Apathy Motivation Index-Child version. Behav Res Methods 2024; 56:3982-3994. [PMID: 37537490 PMCID: PMC11133129 DOI: 10.3758/s13428-023-02184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Apathy is linked to mental health and altered neurocognitive functions such as learning and decision-making in healthy adults. Mental health problems typically begin to emerge during adolescence, yet little is known about how apathy develops due to an absence of quantitative measurements specific to young people. Here, we present and evaluate the Apathy Motivation Index-Child Version (AMI-CV) for children and adolescents. We show across two samples of young people (aged 8 to 17 years, total N = 191) tested in schools in the UK and on a smartphone app, that the AMI-CV is a short, psychometrically sound measure to assess levels of apathy and motivation in young people. Similar to adult versions, the AMI-CV captures three distinct apathy domains: Behavioural Activation, Social Motivation and Emotional Sensitivity. The AMI-CV showed excellent construct validity with an alternative measure of apathy and external validity replicating specific links with related mental health traits shown in adults. Our results provide a short measure of self-reported apathy in young people that enables research into apathy development. The AMI-CV can be used in conjunction with the adult version to investigate the impact of levels of apathy across the lifespan.
Collapse
Affiliation(s)
- Samuel R C Hewitt
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK.
| | - Johanna Habicht
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Aislinn Bowler
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, WC1E 7HX, UK
| | - Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Developmental Science, School of Psychology, University of Birmingham, Birmingham, UK
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Erfanian Abdoust M, Knecht S, Husain M, Le Heron C, Jocham G, Studer B. Effort-based decision making and motivational deficits in stroke patients. Brain Cogn 2024; 175:106123. [PMID: 38183905 DOI: 10.1016/j.bandc.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/08/2024]
Abstract
Motivational deficits in patients recovering from stroke are common and can reduce active participation in rehabilitation and thereby impede functional recovery. We investigated whether stroke patients with clinically reduced drive, initiation, and endurance during functional rehabilitative training (n = 30) display systematic alterations in effort-based decision making compared to age, sex, and severity-matched stroke patients (n = 30) whose drive appeared unaffected. Notably, the two groups did not differ in self-reported ratings of apathy and depression. However, on an effort-based decision-making task, stroke patients with clinically apparent drive impairment showed intact willingness to accept effort for reward, but were more likely to fail to execute the required effort compared to patients without apparent drive impairments. In other words, the decision behavioural assessment revealed that stroke patients that displayed reduced drive, initiation, and endurance during inpatient neurorehabilitation failed to persist in goal-directed effort production, even over very short periods. These findings indicate that reduced drive during rehabilitative therapy in post-stroke patients is not due to a diminished motivation to invest physical effort, but instead is related to a reduced persistence with effortful behaviour.
Collapse
Affiliation(s)
- Mani Erfanian Abdoust
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Mauritius Hospital Meerbusch, Meerbusch, Germany.
| | - Stefan Knecht
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK; Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Campbell Le Heron
- Department of Medicine, University of Otago (Christchurch), New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bettina Studer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Mauritius Hospital Meerbusch, Meerbusch, Germany
| |
Collapse
|
12
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in human basal ganglia and prefrontal cortex during decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570285. [PMID: 38106063 PMCID: PMC10723308 DOI: 10.1101/2023.12.05.570285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mathew A. J. Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Jiang H, Zheng Y. Dissociable neural after-effects of cognitive and physical effort expenditure during reward evaluation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1500-1512. [PMID: 37821754 DOI: 10.3758/s13415-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The reward after-effect of effort expenditure refers to the phenomenon that previous effort investment changes the subjective value of rewards when obtained. However, the neural mechanisms underlying the after-effects of effort exertion are still not fully understood. We investigated the modulation of reward after-effects by effort type (cognitive vs. physical) through the lens of neural dynamics. Thirty-two participants performed a physically or cognitively demanding task during an effort phase and then played a simple gambling game during a subsequent reward phase to earn monetary rewards while their electroencephalogram (EEG) was recorded. We found that previous effort expenditure decreased electrocortical activity during feedback evaluation. Importantly, this effort effect occurred in a domain-general manner during the early stage (as indexed by the reward positivity) but in a domain-specific manner during the later and more elaborative stage (as indexed by the P3 and delta oscillation) of reward evaluation. Additionally, effort expenditure enhanced P3 sensitivity to feedback valence regardless of effort type. Our findings suggest that cognitive and physical effort, although bearing some surface resemblance to each other, may have dissociable neural influences on the reward after-effects.
Collapse
Affiliation(s)
- Huiping Jiang
- Department of Psychology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Department of Psychology, Dalian Medical University, Dalian, China
| | - Ya Zheng
- Department of Psychology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Harris S, Bray SR. Investigating real-time physical activity behavior using ecological momentary assessment: Effects of mental fatigue and benefit-cost valuations. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 69:102499. [PMID: 37665934 DOI: 10.1016/j.psychsport.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Current research investigating the relationship between mental fatigue and physical activity behaviors relies on laboratory-based, experimental studies which lack ecological validity. OBJECTIVE This study used ecological momentary assessment (EMA) to assess feelings of mental fatigue and subjective evaluations (benefits and costs) as predictors of moderate-to-vigorous intensity physical activity in the everyday lives of young adults. METHODS One hundred participants (n = 22 males, n = 78 females, Mage = 20.60 years, 70% meeting or exceeding physical activity guidelines) responded to digital survey prompts up to four times a day and wore an accelerometer for seven consecutive days. Moderate-to-vigorous intensity physical activity in the 180-min time window following each survey prompt was recorded. Data from the 28 survey-moderate-to-vigorous intensity physical activity epochs were analyzed using multilevel mixed-effects linear modelling. RESULTS Higher levels of mental fatigue than one's average level were associated with engaging in fewer moderate-to-vigorous intensity physical activity minutes (p = .004) and lower benefit vs. cost scores (p = .001). Higher benefit vs. cost scores than one's average level were associated with engaging in more minutes of moderate-to-vigorous intensity physical activity (p < .001). CONCLUSIONS Results are the first to demonstrate outside the lab, that mental fatigue experienced in everyday life may amplify the perceived costs of moderate-to-vigorous intensity physical activity, with both factors playing a potential role in moderate-to-vigorous intensity physical activity decision-making. Future research may apply insights gained from this study in design and testing of real-time interventions promoting moderate-to-vigorous intensity physical activity.
Collapse
Affiliation(s)
- Sheereen Harris
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8S 4K1, Canada.
| | - Steven R Bray
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
15
|
Saperia S, Felsky D, Da Silva S, Siddiqui I, Rector N, Remington G, Zakzanis KK, Foussias G. Modeling Effort-Based Decision Making: Individual Differences in Schizophrenia and Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1041-1049. [PMID: 37290745 DOI: 10.1016/j.bpsc.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND A critical facet of motivation is effort-based decision making, which refers to the mental processes involved in deciding whether a potential reward is worth the effort. To advance understanding of how individuals with schizophrenia and major depressive disorder utilize cost-benefit information to guide choice behavior, this study aimed to characterize individual differences in the computations associated with effort-based decision making. METHODS One hundred forty-five participants (51 with schizophrenia, 43 with depression, and 51 healthy control participants) completed the Effort Expenditure for Rewards Task, with mixed effects modeling conducted to estimate the predictors of decision making. These model-derived, subject-specific coefficients were then clustered using k-means to test for the presence of discrete transdiagnostic subgroups with different profiles of reward, probability, and cost information utilization during effort-based decision making. RESULTS An optimal 2-cluster solution was identified, with no significant differences in the distribution of diagnostic groups between clusters. Cluster 1 (n = 76) was characterized by overall lower information utilization during decision making than cluster 2 (n = 61). Participants in this low information utilization cluster were also significantly older and more cognitively impaired, and their utilization of reward, probability, and cost was significantly correlated with clinical amotivation, depressive symptoms, and cognitive functioning. CONCLUSIONS Our findings revealed meaningful individual differences among participants with schizophrenia, depression, and healthy control participants in their utilization of cost-benefit information in the context of effortful decision making. These findings may provide insight into different processes associated with aberrant choice behavior and may potentially guide the identification of more individualized treatment targets for effort-based motivation deficits across disorders.
Collapse
Affiliation(s)
- Sarah Saperia
- Schizophrenia Division and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada; Slaight Family Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Felsky
- Schizophrenia Division and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Krembil Centre for Neuroinformatics and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Susana Da Silva
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ishraq Siddiqui
- Schizophrenia Division and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Slaight Family Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Rector
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gary Remington
- Schizophrenia Division and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - George Foussias
- Schizophrenia Division and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Slaight Family Centre for Youth in Transition, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Colton E, Wilson KE, Chong TTJ, Verdejo-Garcia A. Dysfunctional decision-making in binge-eating disorder: A meta-analysis and systematic review. Neurosci Biobehav Rev 2023; 152:105250. [PMID: 37263530 DOI: 10.1016/j.neubiorev.2023.105250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Binge-Eating Disorder (BED) involves anticipatory craving and urges, subjective loss-of-control during binge-eating episodes, and post-feeding psychological distress and guilt. Evidence indicates neurocognitive dysfunctions contribute to BED onset, maintenance, and treatment response. However, an integrated understanding of how cognitive processes underpin BED symptomology is lacking. We utilised a multi-stage decision-making model defining ten cognitive processes underpinning Preference Formation, Choice Implementation, Feedback Processing, and Flexibility/Shifting, to comprehensively review research published since 2013. We used preregistered PICOS criteria to assess 1966 articles identified from PubMed, PsycInfo, and Scopus database searches. This yielded 50 studies reporting behavioural cognitive tasks outcomes, comparing individuals with BED to controls with normal and higher weight. Meta-analyses revealed a unique profile of cognitive dysfunctions that spanned all decision-making stages. Significant deficits were evident in Uncertainty Evaluation, Attentional Inhibition, Choice Consistency, and Cognitive Flexibility/Set-shifting. We propose a novel model of dysfunctional decision-making processes in BED and describe their role in binge-eating behaviour. We further highlight the potential for cognitive interventions to target these processes and address the significant treatment gap in BED.
Collapse
Affiliation(s)
- Emily Colton
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia.
| | - Kira-Elise Wilson
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Trevor T-J Chong
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Antonio Verdejo-Garcia
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Reinecke MG, Mao Y, Kunesch M, Duéñez-Guzmán EA, Haas J, Leibo JZ. The Puzzle of Evaluating Moral Cognition in Artificial Agents. Cogn Sci 2023; 47:e13315. [PMID: 37555649 DOI: 10.1111/cogs.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023]
Abstract
In developing artificial intelligence (AI), researchers often benchmark against human performance as a measure of progress. Is this kind of comparison possible for moral cognition? Given that human moral judgment often hinges on intangible properties like "intention" which may have no natural analog in artificial agents, it may prove difficult to design a "like-for-like" comparison between the moral behavior of artificial and human agents. What would a measure of moral behavior for both humans and AI look like? We unravel the complexity of this question by discussing examples within reinforcement learning and generative AI, and we examine how the puzzle of evaluating artificial agents' moral cognition remains open for further investigation within cognitive science.
Collapse
|
18
|
Abstract
BACKGROUND The association between major depressive disorder and motivation to invest cognitive effort for rewards is unclear. One reason might be that prior tasks of cognitive effort-based decision-making are limited by potential confounds such as physical effort and temporal delay discounting. METHODS To address these interpretive challenges, we developed a new task - the Cognitive Effort Motivation Task - to assess one's willingness to exert cognitive effort for rewards. Cognitive effort was manipulated by varying the number of items (1, 2, 3, 4, 5) kept in spatial working memory. Twenty-six depressed patients and 44 healthy controls went through an extensive learning session where they experienced each possible effort level 10 times. They were then asked to make a series of choices between performing a fixed low-effort-low-reward or variable higher-effort-higher-reward option during the task. RESULTS Both groups found the task more cognitively (but not physically) effortful when effort level increased, but they still achieved ⩾80% accuracy on each effort level during training and >95% overall accuracy during the actual task. Computational modelling revealed that a parabolic model best accounted for subjects' data, indicating that higher-effort levels had a greater impact on devaluing rewards than lower levels. These procedures also revealed that MDD patients discounted rewards more steeply by effort and were less willing to exert cognitive effort for rewards compared to healthy participants. CONCLUSIONS These findings provide empirical evidence to show, without confounds of other variables, that depressed patients have impaired cognitive effort motivation compared to the general population.
Collapse
Affiliation(s)
- Yuen-Siang Ang
- McLean Hospital, Belmont MA, USA
- Department of Psychiatry, Harvard Medical School, Boston MA, USA
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Diego A Pizzagalli
- McLean Hospital, Belmont MA, USA
- Department of Psychiatry, Harvard Medical School, Boston MA, USA
| |
Collapse
|
19
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Renz KE, Schlier B, Lincoln TM. Are effort-based decision-making tasks worth the effort?-A study on the associations between effort-based decision-making tasks and self-report measures. Int J Methods Psychiatr Res 2023; 32:e1943. [PMID: 36088538 PMCID: PMC9976602 DOI: 10.1002/mpr.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Amotivation is a common symptom in various mental disorders, including psychotic or depressive disorders. Effort-based decision-making (EBDM)-tasks quantifying amotivation at a behavioral level have been on the rise. Task performance has been shown to differentiate patient groups from healthy controls. However, findings on indicators of construct validity, such as the correlations between different tasks and between tasks and self-reported/observer-rated amotivation in clinical and healthy samples have been inconclusive. METHODS In a representative community sample (N = 90), we tested the construct validity of the Deck Choice Task, the Expenditure for Rewards Task and the Balloon Task. We calculated correlations between the EBDM-tasks and between the EBDM-tasks and self-reported amotivation, apathy, anticipatory pleasure, and BIS/BAS. RESULTS Correlations between tasks were low to moderate (0.198 ≤ r ≤ 0.358), with the Balloon Task showing the largest correlations with the other tasks, but no significant correlations between any EBDM-task and the self-report measures. CONCLUSION Although different EBDM-tasks are conceptualized to measure the same construct, a large part of what each task measures could not be accounted for by the other tasks. Moreover, the tasks did not appear to substantially capture what was measured in established self-report instruments for amotivation in our sample, which could be interpreted as questioning the construct validity of EBDM-tasks.
Collapse
Affiliation(s)
- Katharina E Renz
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Human Movement, Universität Hamburg, Hamburg, Germany
| | - Björn Schlier
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Human Movement, Universität Hamburg, Hamburg, Germany
| | - Tania M Lincoln
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Human Movement, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Byrne KA, Liu Y, Shreeves M, Six SG. Working through negativity: The influence of affective states on effort-based decision-making. PERSONALITY AND INDIVIDUAL DIFFERENCES 2023. [DOI: 10.1016/j.paid.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Witt KM, Harper DN, Ellenbroek BA. Dopamine D1 receptor and effort-based decision making in rats: The moderating effect of sex. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110651. [PMID: 36191805 DOI: 10.1016/j.pnpbp.2022.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
Dopamine is a modulating factor in effort-based decision-making, and emerging evidence from pharmacological research suggests that the dopamine D1 receptor is the primary regulator. Given the limited selectivity of pharmacological tools, we further explored this hypothesis using dopamine D1 mutant (DAD1-/-) rats which have a specific genetic reduction in functional D1 receptors. Moreover, given the strong focus on males in neuroscience research in general and in the role of D1 receptors in effort-based learning, we compared both sexes in the present study. Adult male and female DAD1-/- mutant rats and wild type controls were trained to press a lever for a reinforcer. Once trained, subjects completed multiple fixed ratio, progressive ratio, and operant effort-choice (concurrent progressive ratio/chow feeding task [PROG/chow]) experiments. We predicted that DAD1-/- mutant rats would press the lever significantly less than controls across all experiments, have lower breakpoints, and consume more freely available food. As predicted, DAD1-/- mutant rats (regardless of sex) pressed the lever significantly less than controls and had lower breakpoints. Interestingly, there was a sex * genotype interaction for acquisition rates of lever pressing and change in breakpoints with free food available. Only 31% of DAD1-/- mutant males acquired lever pressing while 73% of DAD1-/- mutant females acquired lever pressing. Additionally, DAD1-/- mutant males had significantly larger decreases in breakpoints when free food was available. These findings extend the pharmacological research suggesting that the dopamine D1 receptor modulates decisions based on effort, which has implications for the development of treatment targeting amotivation in neuropsychiatric disorders. The sex * genotype interaction highlights the importance of including both sexes in future research, especially when there are sex differences in incidences and severity of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kate M Witt
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - David N Harper
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bart A Ellenbroek
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
23
|
Preferences for seeking effort or reward information bias the willingness to work. Sci Rep 2022; 12:19486. [PMID: 36376340 PMCID: PMC9663561 DOI: 10.1038/s41598-022-21917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Research suggests that the temporal order in which people receive information about costs and benefits whilst making decisions can influence their choices. But, do people have a preference for seeking information about costs or benefits when making effort-based decisions, and does this impact motivation? Here, participants made choices about whether to exert different levels of physical effort to obtain different magnitudes of reward, or rest for low reward. Prior to each effort-based choice, they also had to decide which information they wanted to see first: how much physical effort would be required, or how large the reward would be. We found no overall preference for seeking reward or effort information first, but motivation did change when people saw reward or effort information first. Seeking effort information first, both someone's average tendency to do so and their choice to see effort first on a given trial, was associated with reductions in the willingness to exert higher effort. Moreover, the tendency to prefer effort information first was associated with reduced vigorous exercise and higher levels of fatigue in everyday life. These findings highlight that preferences for seeking effort information may be a bias that reduces people's willingness to exert effort in the lab and in everyday life.
Collapse
|
24
|
Thomson KS, Oppenheimer DM. The "Effort Elephant" in the Room: What Is Effort, Anyway? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1633-1652. [PMID: 35767344 DOI: 10.1177/17456916211064896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite decades of research in the fields of judgment and decision-making, social psychology, cognitive psychology, human-machine interaction, behavioral economics, and neuroscience, we still do not know what "cognitive effort" is. The definitions in use are often imprecise and sometimes diametrically opposed. Researchers with different assumptions talk past each other, and many aspects of effort conservation remain untested and difficult to measure. In this article, we explain why effort is so difficult to pin down and why it is important that researchers develop consensus on precise definitions. Next, we describe major "hidden" sources of miscommunication: areas in which researchers disagree in their underlying assumptions about the nature of effort without realizing it. We briefly review a number of methods used to both measure and manipulate the effortfulness of thinking and highlight why they often produce contradictory findings. We conclude by reviewing existing perspectives on cognitive effort and integrating them to suggest a common framework for communicating about effort as a limited cognitive resource.
Collapse
Affiliation(s)
- Keela S Thomson
- Department of Social and Decision Science and Department of Psychology, Carnegie Mellon University
| | - Daniel M Oppenheimer
- Department of Social and Decision Science and Department of Psychology, Carnegie Mellon University
| |
Collapse
|
25
|
Canonica T, Zalachoras I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:940672. [PMID: 36051635 PMCID: PMC9426724 DOI: 10.3389/fnbeh.2022.940672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Motivated behavior is integral to the survival of individuals, continuously directing actions toward rewards or away from punishments. The orchestration of motivated behavior depends on interactions among different brain circuits, primarily within the dopaminergic system, that subserve the analysis of factors such as the effort necessary for obtaining the reward and the desirability of the reward. Impairments in motivated behavior accompany a wide range of neuropsychiatric disorders, decreasing the patients’ quality of life. Despite its importance, motivation is often overlooked as a parameter in neuropsychiatric disorders. Here, we review motivational impairments in rodent models of schizophrenia, depression, and Parkinson’s disease, focusing on studies investigating effort-related behavior in operant conditioning tasks and on pharmacological interventions targeting the dopaminergic system. Similar motivational disturbances accompany these conditions, suggesting that treatments aimed at ameliorating motivation levels may be beneficial for various neuropsychiatric disorders.
Collapse
|
26
|
Toro-Serey C, Kane GA, McGuire JT. Choices favoring cognitive effort in a foraging environment decrease when multiple forms of effort and delay are interleaved. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:509-532. [PMID: 34850362 DOI: 10.3758/s13415-021-00972-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Cognitive and physical effort are typically regarded as costly, but demands for effort also seemingly boost the appeal of prospects under certain conditions. One contextual factor that might influence choices for or against effort is the mix of different types of demand a decision maker encounters in a given environment. In two foraging experiments, participants encountered prospective rewards that required equally long intervals of cognitive effort, physical effort, or unfilled delay. Monetary offers varied per trial, and the two experiments differed in whether the type of effort or delay cost was the same on every trial, or varied across trials. When each participant faced only one type of cost, cognitive effort persistently produced the highest acceptance rate compared to trials with an equivalent period of either physical effort or unfilled delay. We theorized that if cognitive effort were intrinsically rewarding, we would observe the same pattern of preferences when participants foraged for varying cost types in addition to rewards. Contrary to this prediction, in the second experiment, an initially higher acceptance rate for cognitive effort trials disappeared over time amid an overall decline in acceptance rates as participants gained experience with all three conditions. Our results indicate that cognitive demands may reduce the discounting effect of delays, but not because decision makers assign intrinsic value to cognitive effort. Rather, the results suggest that a cognitive effort requirement might influence contextual factors such as subjective delay duration estimates, which can be recalibrated if multiple forms of demand are interleaved.
Collapse
Affiliation(s)
- Claudio Toro-Serey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
- McLean Hospital, Harvard Medical School, 115 Mill St., MRC 3, MA, 02478, Belmont, USA.
| | - Gary A Kane
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, 677 Bacon St., Rm 212, Boston, MA, 02215, USA
| | - Joseph T McGuire
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, 677 Bacon St., Rm 212, Boston, MA, 02215, USA
| |
Collapse
|
27
|
Johnson AR, Christensen BA, Kelly SJ, Calipari ES. The influence of reinforcement schedule on experience-dependent changes in motivation. J Exp Anal Behav 2022; 117:320-330. [PMID: 35344601 PMCID: PMC9090977 DOI: 10.1002/jeab.755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
Abstract
The progressive ratio procedure is used across fields to assess motivation for different reinforcers, define the effects of experimental interventions on motivation, and determine experience-dependent changes in motivation. However, less is known about how operant training schedules affect performance on this widely utilized task. Here we designed an experiment to examine the effect of variable ratio versus fixed ratio training schedules of reinforcement on progressive ratio performance while holding other performance variables constant between groups. We found a robust increase in maximum ratio completed between the pretest and posttraining test highlighting a robust training effect on progressive ratio performance. However, it did not matter if the training was under a fixed or variable ratio schedule. Additionally, we show that neither individual rates during training nor extinction responding correlated with maximum ratio achieved during the sessions. Finally, we show that rates during the training sessions do correlate with extinction performance, suggesting that these variables measure a different aspect of performance that does not predict motivation.
Collapse
Affiliation(s)
| | - Brooke A Christensen
- Department of Pharmacology, Vanderbilt University
- Vanderbilt Brain Institute, Vanderbilt University
| | | | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University
- Vanderbilt Brain Institute, Vanderbilt University
- Vanderbilt Center for Addiction Research, Vanderbilt University
- Department of Molecular Physiology and Biophysics, Vanderbilt University
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University
| |
Collapse
|
28
|
Hezemans FH, Wolpe N, O’Callaghan C, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Comput Biol 2022; 18:e1010079. [PMID: 35533200 PMCID: PMC9119485 DOI: 10.1371/journal.pcbi.1010079] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Collapse
Affiliation(s)
- Frank H. Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Noham Wolpe
- Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Claire O’Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Atkins KJ, Friel CP, Andrews SC, Chong TTJ, Stout JC, Quinn L. A qualitative examination of apathy and physical activity in Huntington's and Parkinson's disease. Neurodegener Dis Manag 2022; 12:129-139. [PMID: 35412856 DOI: 10.2217/nmt-2021-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: In Huntington's disease (HD) and Parkinson's disease (PD), apathy is a frequently cited barrier to participation in physical activity. Current diagnostic criteria emphasize dissociable variants of apathy that differentially affect goal-directed behavior. How these dimensions present and affect physical activity in HD and PD is unknown. Methods: Using a qualitative approach, we examined the experience of apathy and its impact on physical activity in 20 people with early-manifest HD or idiopathic PD. Results: Two major themes emerged: the multidimensionality of apathy, including initiation or goal-identification difficulties, and the interplay of apathy and fatigue; and facilitators of physical activity, including routines, safe environments and education. Conclusion: Physical activity interventions tailored to apathy phenotypes may maximize participant engagement.
Collapse
Affiliation(s)
- Kelly J Atkins
- School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Ciarán P Friel
- Center for Personalized Health, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, 11030, USA
| | - Sophie C Andrews
- School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, VIC, 3800, Australia.,Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,School of Psychology, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, VIC, 3800, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.,Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, 3065, Australia
| | - Julie C Stout
- School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teacher's College, Columbia University, New York City, NY, 10027, USA.,Centre for Trials Research, Cardiff University, Cardiff, Wales, CF14 4YS, UK
| |
Collapse
|
30
|
Zalachoras I, Astori S, Meijer M, Grosse J, Zanoletti O, de Suduiraut IG, Deussing JM, Sandi C. Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA. SCIENCE ADVANCES 2022; 8:eabj9019. [PMID: 35319997 PMCID: PMC8942367 DOI: 10.1126/sciadv.abj9019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Individuals frequently differ in their behavioral and cognitive responses to stress. However, whether motivation is differently affected by acute stress in different individuals remains to be established. By exploiting natural variation in trait anxiety in outbred Wistar rats, we show that acute stress facilitates effort-related motivation in low anxious animals, while dampening effort in high anxious ones. This model allowed us to address the mechanisms underlying acute stress-induced differences in motivated behavior. We show that CRHR1 expression levels in dopamine neurons of the ventral tegmental area (VTA)-a neuronal type implicated in the regulation of motivation-depend on animals' anxiety, and these differences in CRHR1 expression levels explain the divergent effects of stress on both effortful behavior and the functioning of mesolimbic DA neurons. These findings highlight CRHR1 in VTA DA neurons-whose levels vary with individuals' anxiety-as a switching mechanism determining whether acute stress facilitates or dampens motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| | - Mandy Meijer
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry/Molecular Neurogenetics, Munich, Germany
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| |
Collapse
|
31
|
Jurgelis M, Boardman JM, Coxon JP, Drummond SPA, Chong TTJ. Sleep Restriction Reduces Cognitive but Not Physical Motivation. Nat Sci Sleep 2022; 14:2001-2012. [PMID: 36394069 PMCID: PMC9642807 DOI: 10.2147/nss.s368335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Motivation is an important driver of behaviour, and several frameworks distinguish the willingness of individuals to invest cognitive versus physical effort to achieve a goal. One outstanding question is whether sleep loss lowers motivation within specific domains of effort, or has a global effect on motivation across multiple domains. Here, we investigated the effects of sleep restriction on the motivation to invest cognitive or physical effort in return for reward. MATERIALS AND METHODS 24 healthy young adults (11 females) completed an effort-based decision-making task over two laboratory sessions - once while sleep restricted (three consecutive nights with a three-hour sleep opportunity), and the other while fully rested (nine-hour sleep opportunity on each night). In an initial reinforcement phase, participants were trained to ceiling performance across six levels of effort on separate cognitively and physically demanding tasks. Then, in the critical decision-making phase, participants revealed their preference for how much cognitive or physical effort they would be willing to invest for reward. RESULTS Sleep restriction reduced the willingness to exert cognitive effort, but spared motivation in the physical domain. Furthermore, the reduction in cognitive motivation appeared to be a primary motivational deficit, which could not be attributed to differences in reward-likelihood of different levels of effort or the temporal structure of the task. CONCLUSION The results suggest that sleep restriction has a selective effect on cognitive over physical motivation, which has significant implications for real-world settings in which individuals must maintain high levels of cognitive motivation in the face of chronic sleep loss.
Collapse
Affiliation(s)
- Mindaugas Jurgelis
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Johanna M Boardman
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - James P Coxon
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Trevor T J Chong
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia.,Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, 3065, Australia
| |
Collapse
|
32
|
Collins AGE, Shenhav A. Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology 2022; 47:104-118. [PMID: 34453117 PMCID: PMC8617262 DOI: 10.1038/s41386-021-01126-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
An organism's survival depends on its ability to learn about its environment and to make adaptive decisions in the service of achieving the best possible outcomes in that environment. To study the neural circuits that support these functions, researchers have increasingly relied on models that formalize the computations required to carry them out. Here, we review the recent history of computational modeling of learning and decision-making, and how these models have been used to advance understanding of prefrontal cortex function. We discuss how such models have advanced from their origins in basic algorithms of updating and action selection to increasingly account for complexities in the cognitive processes required for learning and decision-making, and the representations over which they operate. We further discuss how a deeper understanding of the real-world complexities in these computations has shed light on the fundamental constraints on optimal behavior, and on the complex interactions between corticostriatal pathways to determine such behavior. The continuing and rapid development of these models holds great promise for understanding the mechanisms by which animals adapt to their environments, and what leads to maladaptive forms of learning and decision-making within clinical populations.
Collapse
Affiliation(s)
- Anne G E Collins
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Amitai Shenhav
- Department of Cognitive, Linguistic, & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
33
|
Goh AXA, Bennett D, Bode S, Chong TTJ. Neurocomputational mechanisms underlying the subjective value of information. Commun Biol 2021; 4:1346. [PMID: 34903804 PMCID: PMC8669024 DOI: 10.1038/s42003-021-02850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Humans have a striking desire to actively seek new information, even when it is devoid of any instrumental utility. However, the mechanisms that drive individuals' subjective preference for information remain unclear. Here, we used fMRI to examine the processing of subjective information value, by having participants decide how much effort they were willing to trade-off for non-instrumental information. We showed that choices were best described by a model that accounted for: (1) the variability in individuals' estimates of uncertainty, (2) their desire to reduce that uncertainty, and (3) their subjective preference for positively valenced information. Model-based analyses revealed the anterior cingulate as a key node that encodes the subjective value of information across multiple stages of decision-making - including when information was prospectively valued, and when the outcome was definitively delivered. These findings emphasise the multidimensionality of information value, and reveal the neurocomputational mechanisms underlying the variability in individuals' desire to physically pursue informative outcomes.
Collapse
Affiliation(s)
- Ariel X-A Goh
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Daniel Bennett
- Department of Psychiatry, Monash University, Melbourne, VIC, 3800, Australia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Stefan Bode
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
34
|
van As S, Beckers DGJ, Geurts SAE, Kompier MAJ, Husain M, Veling H. The Impact of Cognitive and Physical Effort Exertion on Physical Effort Decisions: A Pilot Experiment. Front Psychol 2021; 12:645037. [PMID: 34795608 PMCID: PMC8593226 DOI: 10.3389/fpsyg.2021.645037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Research suggests that cognitive fatigue has a negative impact on physical activity participation. However, the mechanisms underlying this effect are yet unclear. Using an effort-based decision-making paradigm, we examined whether individuals weigh physical effort-costs more strongly when they are cognitively or physically fatigued. Twenty university students visited the lab on three occasions. On each visit, participants underwent a manipulation that was designed to either induce cognitive fatigue (i.e., 2-back task), physical fatigue (i.e., handgrip exercise), or served as a control condition (i.e., documentary watching). After the manipulations, participants performed an effort-based decision-making task in which they decided for 125 offers whether they accepted the offer to exert the required level of physical effort to obtain rewards that varied in value. The probability to accept offers declined with increasing effort requirements whereas the general probability to accept offers was not reduced by any of the experimental conditions. As expected, the decline in accepted offers with increasing effort requirements was stronger after prolonged exertion of physical effort compared to the control condition. Unexpectedly, this effect was not found after exerting cognitive effort, and exploratory analyses revealed that the impact of physical effort exertion on physical effort-based decisions was stronger than that of cognitive effort exertion. These findings suggest that people weight future physical effort-costs more strongly after exerting physical effort, whereas we could not find any evidence for this after exerting cognitive effort. We discuss multiple explanations for this discrepancy, and outline possibilities for future research.
Collapse
Affiliation(s)
- Sven van As
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Debby G J Beckers
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Sabine A E Geurts
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | | | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Harm Veling
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
35
|
Heightened effort discounting is a common feature of both apathy and fatigue. Sci Rep 2021; 11:22283. [PMID: 34782630 PMCID: PMC8593117 DOI: 10.1038/s41598-021-01287-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Apathy and fatigue have distinct aetiologies, yet can manifest in phenotypically similar ways. In particular, each can give rise to diminished goal-directed behaviour, which is often cited as a key characteristic of both traits. An important issue therefore is whether currently available approaches are capable of distinguishing between them. Here, we examined the relationship between commonly administered inventories of apathy and fatigue, and a measure of goal-directed activity that assesses the motivation to engage in effortful behaviour. 103 healthy adults completed self-report inventories on apathy (the Dimensional Apathy Scale), and fatigue (the Multidimensional Fatigue Inventory, and/or Modified Fatigue Impact Scale). In addition, all participants performed an effort discounting task, in which they made choices about their willingness to engage in physically effortful activity. Importantly, self-report ratings of apathy and fatigue were strongly correlated, suggesting that these inventories were insensitive to the fundamental differences between the two traits. Furthermore, greater effort discounting was strongly associated with higher ratings across all inventories, suggesting that a common feature of both traits is a lower motivation to engage in effortful behaviour. These results have significant implications for the assessment of both apathy and fatigue, particularly in clinical groups in which they commonly co-exist.
Collapse
|
36
|
Brassard SL, Balodis IM. A review of effort-based decision-making in eating and weight disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110333. [PMID: 33905755 DOI: 10.1016/j.pnpbp.2021.110333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022]
Abstract
Effort-based decision-making provides a framework to understand the mental computations estimating the amount of work ("effort") required to obtain a reward. The aim of the current review is to systematically synthesize the available literature on effort-based decision-making across the spectrum of eating and weight disorders. More specifically, the current review summarises the literature examining whether 1) individuals with eating disorders and overweight/obesity are willing to expend more effort for rewards compared to healthy controls, 2) if particular components of effort-based decision-making (i.e. risk, discounting) relate to specific binge eating conditions, and 3) how individual differences in effort and reward -processing measures relate to eating pathology and treatment measures. A total of 96 studies were included in our review, following PRISMA guidelines. The review suggests that individuals with binge eating behaviours 1) are more likely to expend greater effort for food rewards, but not monetary rewards, 2) demonstrate greater decision-making impairments under risk and uncertainty, 3) prefer sooner rather than delayed rewards for both food and money, and 4) demonstrate increased implicit 'wanting' for high fat sweet foods. Finally, individual differences in effort and reward -processing measures relating to eating pathology and treatment measures are also discussed.
Collapse
Affiliation(s)
- Sarah L Brassard
- Department of Neuroscience, McMaster University, Canada; Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Canada
| | - Iris M Balodis
- Department of Neuroscience, McMaster University, Canada; Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Canada; Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada.
| |
Collapse
|
37
|
Shenhav A, Fahey MP, Grahek I. Decomposing the motivation to exert mental effort. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2021; 30:307-314. [PMID: 34675454 PMCID: PMC8528169 DOI: 10.1177/09637214211009510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Achieving most goals demands cognitive control, yet people vary widely in their success at meeting these demands. While motivation is known to be fundamental to determining these successes, what determines one's motivation to perform a given task remains poorly understood. Here, we describe recent efforts towards addressing this question using the Expected Value of Control model, which simulates the process by which people weigh the costs and benefits of exerting mental effort. By functionally decomposing this cost-benefit analysis, this model has been used to fill gaps in our understanding of the mechanisms of mental effort and to generate novel predictions about the sources of variability in real-world performance. We discuss the opportunities the model provides for formalizing hypotheses about why people vary in their motivation to perform tasks, as well as for understanding limitations in our ability to test these hypotheses based on a given measure of performance.
Collapse
Affiliation(s)
- Amitai Shenhav
- Department of Cognitive, Linguistic, & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Mahalia Prater Fahey
- Department of Cognitive, Linguistic, & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Ivan Grahek
- Department of Cognitive, Linguistic, & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
38
|
Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Front Behav Neurosci 2021; 15:700182. [PMID: 34305547 PMCID: PMC8298758 DOI: 10.3389/fnbeh.2021.700182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Impaired behavioral activation and effort-related motivational dysfunctions like fatigue and anergia are debilitating treatment-resistant symptoms of depression. Depressed people show a bias towards the selection of low effort activities. To determine if the broadly used antidepressant fluoxetine can improve behavioral activation and reverse dopamine (DA) depletion-induced anergia, male CD1 mice were evaluated for vigorous escape behaviors in an aversive context (forced swim test, FST), and also with an exercise preference choice task [running wheel (RW)-T-maze choice task]. In the FST, fluoxetine increased active behaviors (swimming, climbing) while reducing passive ones (immobility). However, fluoxetine was not effective at reducing anergia induced by the DA-depleting agent tetrabenazine, further decreasing vigorous climbing and increasing immobility. In the T-maze, fluoxetine alone produced the same pattern of effects as tetrabenazine. Moreover, fluoxetine did not reverse tetrabenazine-induced suppression of RW time but it reduced sucrose intake duration. This pattern of effects produced by fluoxetine in DA-depleted mice was dissimilar from devaluing food reinforcement by pre-feeding or making the food bitter since in both cases sucrose intake time was reduced but animals compensated by increasing time in the RW. Thus, fluoxetine improved escape in an aversive context but decreased relative preference for active reinforcement. Moreover, fluoxetine did not reverse the anergic effects of DA depletion. These results have implications for the use of fluoxetine for treating motivational symptoms such as anergia in depressed patients.
Collapse
Affiliation(s)
| | | | | | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
39
|
Silva C, Porter BS, Hillman KL. Stimulation in the Rat Anterior Insula and Anterior Cingulate During an Effortful Weightlifting Task. Front Neurosci 2021; 15:643384. [PMID: 33716659 PMCID: PMC7952617 DOI: 10.3389/fnins.2021.643384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
When performing tasks, animals must continually assess how much effort is being expended, and gage this against ever-changing physiological states. As effort costs mount, persisting in the task may be unwise. The anterior cingulate cortex (ACC) and the anterior insular cortex are implicated in this process of cost-benefit decision-making, yet their precise contributions toward driving effortful persistence are not well understood. Here we investigated whether electrical stimulation of the ACC or insular cortex would alter effortful persistence in a novel weightlifting task (WLT). In the WLT an animal is challenged to pull a rope 30 cm to trigger food reward dispensing. To make the action increasingly effortful, 45 g of weight is progressively added to the rope after every 10 successful pulls. The animal can quit the task at any point - with the rope weight at the time of quitting taken as the "break weight." Ten male Sprague-Dawley rats were implanted with stimulating electrodes in either the ACC [cingulate cortex area 1 (Cg1) in rodent] or anterior insula and then assessed in the WLT during stimulation. Low-frequency (10 Hz), high-frequency (130 Hz), and sham stimulations were performed. We predicted that low-frequency stimulation (LFS) of Cg1 in particular would increase persistence in the WLT. Contrary to our predictions, LFS of Cg1 resulted in shorter session duration, lower break weights, and fewer attempts on the break weight. High-frequency stimulation of Cg1 led to an increase in time spent off-task. LFS of the anterior insula was associated with a marginal increase in attempts on the break weight. Taken together our data suggest that stimulation of the rodent Cg1 during an effortful task alters certain aspects of effortful behavior, while insula stimulation has little effect.
Collapse
Affiliation(s)
| | | | - Kristin L. Hillman
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Colón-Semenza C, Fulford D, Ellis T. Effort-Based Decision-Making for Exercise in People with Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:725-735. [PMID: 33459665 DOI: 10.3233/jpd-202353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND People with Parkinson's disease (PwPD) are less active than their age-matched peers. Non-motor symptoms, specifically, deficient motivation, may influence decision-making for exercise due to the impaired mesolimbic dopaminergic pathway. OBJECTIVE The purpose of this study was to determine if effort-based decision-making for physical effort was different in PwPD compared to healthy controls. We sought to determine the relationship between effort-based decision making for exercise and a discrete motor task as well as the impact of components of motivation on decision-making for physical effort in PwPD. METHODS An effort-based decision-making paradigm using a discrete motor task (button pressing) and a continuous exercise task (cycling) was implemented in 32 PwPD and 23 healthy controls. Components of motivation were measured using the Apathy Scale and the Temporal Experience of Pleasure Scale- Anticipatory Pleasure scale. RESULTS The presence of Parkinson's disease (PD) did not moderate decisions for either physical effort task. There was a moderate correlation between decisions for both tasks, within each group. The anticipation of pleasure and apathy were predictors of decisions for both physical effort tasks in PwPD, but not in healthy controls. CONCLUSION PwPD responded similarly to effort and reward valuations compared to those without PD. Individuals were consistent in their decisions, regardless of the physical effort task. The anticipation of pleasure and apathy were significant predictors of decisions for exercise in PwPD only. Increased anticipation of pleasure, reduction of apathy, and the use of rewards may enhance engagement in high effort exercise among PwPD.
Collapse
Affiliation(s)
| | - Daniel Fulford
- Departments of Occupational Therapy and Psychology & Brain Sciences, Boston University, Boston, MA, USA
| | - Terry Ellis
- Center for Neurorehabilitation, Department of Physical Therapy & Athletic Training, Boston University, Boston, MA, USA
| |
Collapse
|
41
|
Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology (Berl) 2021; 238:3357-3373. [PMID: 34498115 PMCID: PMC8629809 DOI: 10.1007/s00213-021-05950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Motivational symptoms such as anergia, fatigue, and reduced exertion of effort are seen in depressed people. To model this, nucleus accumbens (Nacb) dopamine (DA) depletions are used to induce a low-effort bias in rodents tested on effort-based decision-making. We evaluated the effect of the catecholamine uptake blocker bupropion on its own, and after administration of tetrabenazine (TBZ), which blocks vesicular storage, depletes DA, and induces depressive symptoms in humans. Male CD1 mice were tested on a 3-choice-T-maze task that assessed preference between a reinforcer involving voluntary physical activity (running wheel, RW) vs. sedentary activities (sweet food pellet intake or a neutral non-social odor). Mice also were tested on the forced swim test (FST), two anxiety-related measures (dark-light box (DL), and elevated plus maze (EPM)). Expression of phosphorylated DARPP-32 (Thr34 and Thr75) was evaluated by immunohistochemistry as a marker of DA-related signal transduction. Bupropion increased selection of RW activity on the T-maze. TBZ reduced time running, but increased time-consuming sucrose, indicating an induction of a low-effort bias, but not an effect on primary sucrose motivation. In the FST, bupropion reduced immobility, increasing swimming and climbing, and TBZ produced the opposite effects. Bupropion reversed the effects of TBZ on the T-maze and the FST, and also on pDARPP32-Thr34 expression in Nacb core. None of these manipulations affected anxiety-related parameters. Thus, bupropion improved active behaviors, which were negatively motivated in the FST, and active behaviors that were positively motivated in the T-maze task, which has implications for using catecholamine uptake inhibitors for treating anergia and fatigue-like symptoms.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - Edgar Arias-Sandoval
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269-1020 USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
| |
Collapse
|
42
|
Atkins KJ, Andrews SC, Stout JC, Chong TTJ. Dissociable Motivational Deficits in Pre-manifest Huntington's Disease. CELL REPORTS MEDICINE 2020; 1:100152. [PMID: 33377123 PMCID: PMC7762769 DOI: 10.1016/j.xcrm.2020.100152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Motivation is characterized by a willingness to overcome both cognitive and physical effort costs. Impairments in motivation are common in striatal disorders, such as Huntington’s disease (HD), but whether these impairments are isolated to particular domains of behavior is controversial. We ask whether HD differentially affects the willingness of individuals to overcome cognitive versus physical effort. We tested 20 individuals with pre-manifest HD and compared their behavior to 20 controls. Across separate trials, participants made choices about how much cognitive or physical effort they were willing to invest for reward. Our key results were that individuals with pre-manifest HD were less willing than controls to invest cognitive effort but were no different in their overall preference for physical effort. These results cannot be explained by group differences in neuropsychological or psychiatric profiles. This dissociation of cognitive- and physical-effort-based decisions provides important evidence for separable, domain-specific mechanisms of motivation. We examine cognitive and physical effort discounting in pre-manifest HD Individuals with pre-manifest HD are less cognitively motivated than controls There are no differences in physical motivation between the two groups This dissociation is not confounded by neuropsychological or psychiatric factors
Collapse
Affiliation(s)
- Kelly J Atkins
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Sophie C Andrews
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia.,Neuroscience Research Australia, Sydney, NSW 2031, Australia.,School of Psychology, University of New South Wales, Sydney, NSW 2033, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Clinical Neurosciences, St. Vincent's Hospital, Melbourne, VIC 3065, Australia
| |
Collapse
|
43
|
Blini E, Tilikete C, Chelazzi L, Farnè A, Hadj-Bouziane F. The role of the vestibular system in value attribution to positive and negative reinforcers. Cortex 2020; 133:215-235. [PMID: 33130427 DOI: 10.1016/j.cortex.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Somatic inputs originating from bioregulatory processes can guide cognition and behavior. One such bodily signal, mostly overlooked so far, is represented by visuo-vestibular coupling and its alteration, which in extreme cases may result in motion sickness. We argued that the inherently perturbed interoceptive state that follows can be a powerful determinant of human motivated behavior, resulting in a blunted response to appetitive stimuli and an exaggerated response to noxious ones. We sought to assess such differential impact of visuo-vestibular mismatches on value through a task involving conflict monitoring. We therefore administered to 42 healthy participants a modified version of the Flankers task, in which distractors (arrows, pointing in either a congruent or incongruent direction) signaled the availability of monetary incentives (gains, losses, or neutral trials). While performing the task, participants received either galvanic vestibular stimulation (GVS), or sham stimulation. We have found impaired behavioral performances when value, which was attached to task-irrelevant information, was at stake. Gains and losses, interestingly, dissociated, and only the latter caused enhanced interference costs in the task, suggesting that negative incentives may be more effective in capturing human attention than positive ones. Finally, we have found some weak evidence for GVS to further increase the processing of losses, as suggested by even larger interference costs in this condition. Results were, however, overall ambiguous, and suggest that much more research is needed to better understand the link between the vestibular system and motivation.
Collapse
Affiliation(s)
- Elvio Blini
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Department of General Psychology, University of Padova, Padova, Italy.
| | - Caroline Tilikete
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Hospices Civils de Lyon, Neuro-Ophthalmology and Neurocognition, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience - Verona Unit, Verona, Italy
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France.
| |
Collapse
|
44
|
Strasser A, Luksys G, Xin L, Pessiglione M, Gruetter R, Sandi C. Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology 2020; 45:2048-2057. [PMID: 32688366 PMCID: PMC7547698 DOI: 10.1038/s41386-020-0760-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement.
Collapse
Affiliation(s)
- Alina Strasser
- grid.5333.60000000121839049Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gediminas Luksys
- Centre for Discovery Brain Sciences (CDBS), University of Edinburgh, Edinburgh, UK. .,ZJU-UoE Institute, Zhejiang University International Campus, Haining, China.
| | - Lijing Xin
- grid.5333.60000000121839049Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mathias Pessiglione
- grid.411439.a0000 0001 2150 9058Motivation, Brain and Behavior Team, Brain and Spine Institute (ICM), Paris, France
| | - Rolf Gruetter
- grid.5333.60000000121839049Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland ,grid.8591.50000 0001 2322 4988Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
45
|
Hegelstad WTV, Kreis I, Tjelmeland H, Pfuhl G. Psychosis and Psychotic-Like Symptoms Affect Cognitive Abilities but Not Motivation in a Foraging Task. Front Psychol 2020; 11:1632. [PMID: 32903697 PMCID: PMC7438796 DOI: 10.3389/fpsyg.2020.01632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Objective Goal-directed behavior is a central feature of human functioning. It requires goal appraisal and implicit cost-benefit analyses, i.e., how much effort to invest in the pursuit of a certain goal, against its value and a confidence judgment regarding the chance of attainment. Persons with severe mental illness such as psychosis often struggle with reaching goals. Cognitive deficits, positive symptoms restricting balanced judgment, and negative symptoms such as anhedonia and avolition may compromise goal attainment. The objective of this study was to investigate to what degree symptom severity is related to cognitive abilities, metacognition, and effort-based decision-making in a visual search task. Methods Two studies were conducted: study 1: N = 52 (healthy controls), and study 2: N = 46 (23 patients with psychosis/23 matched healthy controls). Symptoms were measured by the CAPE-42 (study 1) and the PANSS (study 2). By using a visual search task, we concomitantly measured (a) accuracy in short-term memory, (b) perceived accuracy by participants making a capture area or confidence interval, and (c) effort by measuring how long one searched for the target. Perseverance was assessed in trials in which the target was omitted and search had to be abandoned. Results Higher levels of positive symptoms, and having a diagnosis of psychosis, were associated with larger errors in memory. Participants adjusted both their capture area and their search investment to the error of their memory. Perseverance was associated with negative symptoms in study 1 but not in study 2. Conclusion By simultaneously assessing error and confidence in one's memory, as well as effort in search, we found that memory was affected by positive, not negative, symptoms in healthy controls, and was reduced in patients with psychosis. However, impaired memory did not concur with overconfidence or less effort in search, i.e., goal directed behavior was unrelated to symptoms or diagnosis. Metacognition and motivation were neither affected by cognitive abilities nor by negative symptoms. Clinically, this could indicate that struggles with goal directed behavior in psychosis may not solely be dependent on primary illness factors.
Collapse
Affiliation(s)
- Wenche Ten Velden Hegelstad
- TIPS Centre for Clinical Research in Psychosis, Psychiatric Division, Stavanger University Hospital, Stavanger, Norway
| | - Isabel Kreis
- Department of Psychology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Håkon Tjelmeland
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerit Pfuhl
- Department of Psychology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
46
|
Hezemans FH, Wolpe N, Rowe JB. Apathy is associated with reduced precision of prior beliefs about action outcomes. J Exp Psychol Gen 2020; 149:1767-1777. [PMID: 32039624 PMCID: PMC7397861 DOI: 10.1037/xge0000739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
Abstract
Apathy is a debilitating syndrome that is associated with reduced goal-directed behavior. Although apathy is common and detrimental to prognosis in many neuropsychiatric diseases, its underlying mechanisms remain controversial. We propose a new model of apathy, in the context of Bayesian theories of brain function, whereby actions require predictions of their outcomes to be held with sufficient precision for "explaining away" differences in sensory inputs. In the active inference model, apathy results from reduced precision of prior beliefs about action outcomes. We tested this hypothesis using a visuomotor task in healthy adults (N = 47), with experimental manipulation of physical effort and financial reward. Bayesian modeling of performance and participants' perception of their performance was used to infer the precision of their priors. We confirmed that the perception of performance was biased toward the target, which was accounted for by relatively precise prior beliefs about action outcomes. These priors were consistently more precise than the corresponding performance distribution, and were scaled to effort and reward. Crucially, prior precision was negatively associated with trait apathy, suggesting that apathetic individuals had less precise prior beliefs about action outcomes. The results support a Bayesian account of apathy that could inform future studies of clinical populations. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Frank H Hezemans
- Medical Research Council (MRC) Cognition, University of Cambridge
| | - Noham Wolpe
- Medical Research Council (MRC) Cognition, University of Cambridge
| | - James B Rowe
- Medical Research Council (MRC) Cognition, University of Cambridge
| |
Collapse
|
47
|
Massar SAA, Pu Z, Chen C, Chee MWL. Losses Motivate Cognitive Effort More Than Gains in Effort-Based Decision Making and Performance. Front Hum Neurosci 2020; 14:287. [PMID: 32765247 PMCID: PMC7379863 DOI: 10.3389/fnhum.2020.00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Human behavior is more strongly driven by the motivation to avoid losses than to pursue gains (loss aversion). However, there is little research on how losses influence the motivation to exert effort. We compared the effects of loss and gain incentives on cognitive task performance and effort-based decision making. In three experiments, participants performed a cognitively effortful task under gain and loss conditions and made choices about effort expenditure in a decision-making task. Results consistently showed significant loss aversion in effort-based decision making. Participants were willing to invest more effort in the loss compared to the gain condition (i.e., perform a longer duration task: Experiments 1 and 2; or higher task load: Experiment 3). On the other hand, losses did not lead to improved performance (sustained attention), or higher physiological effort (pupil diameter) in Experiments 1 and 2. In Experiment 3, losses did enhance working memory performance, but only at the highest load level. Taken together, these results suggest that loss aversion motivates higher effort investment in effort-based decision-making, while the effect of loss aversion during a performance may depend on the task type or effort level.
Collapse
Affiliation(s)
- Stijn A A Massar
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhenghao Pu
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christina Chen
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W L Chee
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Studer B, Geniole SN, Becker ML, Eisenegger C, Knecht S. Inducing illusory control ensures persistence when rewards fade and when others outperform us. Psychon Bull Rev 2020; 27:809-818. [PMID: 32424621 PMCID: PMC7399668 DOI: 10.3758/s13423-020-01745-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persisting even when the rewards of continued effort are fading is essential for achieving long-term goals, skills, and good health, alike. Yet, we often quit when things get hard. Here, we tested whether augmenting the feeling of control through external measures increases persistence under such discouraging circumstances. In two laboratory experiments, we first induced illusory control by manipulating the base-rate of positive outcomes and then tested the effect of this elevation of participants' perceived control upon their persistence under diminishing returns and in a competition against a stronger opponent. Induced illusory control significantly enhanced people's persistence in both of these motivationally challenging situations. Our findings demonstrate that motivation is dependent upon perceived, rather than objective, control, and reveal that this can be leveraged to counteract quitting behavior when things get hard, for instance in rehabilitation, physical activity interventions, or other training settings.
Collapse
Affiliation(s)
- Bettina Studer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany.
- Department of Neurology, Mauritius Hospital Meerbusch, Meerbusch, Germany.
| | - Shawn N Geniole
- Neuropsychopharmacology and Biopsychology Unit, Faculty of Psychology, University of Vienna, Vienna, Austria
- Social-Neuroendocrinology Laboratory, Department of Psychology, Nipissing University, North Bay, Ontario, Canada
- Department of Psychology, University of the Fraser Valley, Abbotsford, Canada
| | - Maike L Becker
- Neuropsychopharmacology and Biopsychology Unit, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christoph Eisenegger
- Neuropsychopharmacology and Biopsychology Unit, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Stefan Knecht
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Mauritius Hospital Meerbusch, Meerbusch, Germany
| |
Collapse
|
49
|
Morris LS, Norbury A, Smith DA, Harrison NA, Voon V, Murrough JW. Dissociating self-generated volition from externally-generated motivation. PLoS One 2020; 15:e0232949. [PMID: 32428020 PMCID: PMC7236980 DOI: 10.1371/journal.pone.0232949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Insight into motivational processes may be gained by examining measures of willingness to exert effort for rewards, which have been linked to neuropsychiatric symptoms of anhedonia and apathy. However, while much work has focused on the development of models of motivation based on classic tasks of externally-generated levels of effort for reward, there has been less focus on the question of self-generated motivation or volition. We developed a task that aims to capture separate measures of self-generated and externally-generated motivation, with two task variants for physical and cognitive effort, and sought to test and validate this measure in two populations of healthy volunteers (N = 27 and N = 28). Similar to previous reports, a sigmoid function represented a better overall fit to the effort-reward data than a linear or Weibull model. Individual sigmoid function shapes were governed by two free parameters: bias (the amount of reward needed for effort initiation) and reward insensitivity (the amount of increase in reward needed to accelerate effort expenditure). For both physical and cognitive effort, bias was higher in the self-generated condition, indicating reduced self-generated volitional effort initiation, compared to externally-generated effort initiation, across effort domains. Bias against initial effort initiation in the self-generated condition was related to a specific dimensional measure of anticipatory anhedonia. For physical effort only, reward insensitivity was also higher in the self-generated condition compared to the externally-generated motivation condition, indicating lower self-generated effort acceleration. This work provides a novel objective measure of self-generated motivation that may provide insights into mechanisms of anhedonia and related symptoms.
Collapse
Affiliation(s)
- Laurel S. Morris
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Agnes Norbury
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Derek A. Smith
- Department of Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Neil A. Harrison
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, United Kingdom
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - James W. Murrough
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
50
|
da Costa RQM, Furukawa E, Hoefle S, Moll J, Tripp G, Mattos P. An Adaptation of Pavlovian-to-Instrumental Transfer (PIT) Methodology to Examine the Energizing Effects of Reward-Predicting Cues on Behavior in Young Adults. Front Psychol 2020; 11:195. [PMID: 32116971 PMCID: PMC7034436 DOI: 10.3389/fpsyg.2020.00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
There is growing recognition that much of human behavior is governed by the presence of classically conditioned cues. The Pavlovian-to-Instrumental Transfer (PIT) paradigm offers a way to measure the effects of classically conditioned stimuli on behavior. In the current study, a novel behavioral task, an adaptation of the PIT framework, was developed for use in conjunction with an fMRI classical conditioning task. Twenty-four healthy young adults completed (1) instrumental training, (2) Pavlovian conditioning, and (3) a Transfer test. During instrumental training, participants learned to apply force to a handgrip to win money from slot machines pictured on a computer screen. During Pavlovian conditioning, slot machines appeared with one of two abstract symbols (cues), one symbol was predictive of monetary reward. During the Transfer test, participants again applied force to a handgrip to win money. This time, the slot machines were presented with the Pavlovian cues, but with the outcomes hidden. The results indicated increased effort on the instrumental task, i.e. higher response frequency and greater force, in the presence of the reward-predicting cue. Our findings add to the growing number of studies demonstrating PIT effects in humans. This new paradigm is effective in measuring the effects of a conditioned stimulus on behavioral activation.
Collapse
Affiliation(s)
- Raquel Quimas Molina da Costa
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Neurology Department, Universidade de São Paulo, São Paulo, Brazil
| | - Emi Furukawa
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sebastian Hoefle
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|