1
|
Yan C, Gu J, Yin S, Wu H, Lei X, Geng F, Zhang N, Wu X. Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer's disease. J Drug Target 2024; 32:80-92. [PMID: 38044844 DOI: 10.1080/1061186x.2023.2290453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, we developed a novel TGN decorated erythrocyte membrane-coated poly (lactic-co-glycolic acid) nanoparticle (TRNNs). The nanoparticle significantly boosted the penetration (7.3 times) in a U-118MG and HCMEC/D3 cell co-culture BBB model in vitro. Living image was performed to assess the TRNNs distribution in vivo. The fluorescence intensity in the isolated brain of TRDNs-treated mice was about 8 times that of the DNs-treated. In the novel object recognition test, the mice after administration of TRDNs showed higher recognition index (0.414 ± 0.016) than the model group (0.275 ± 0.019). A significant increase in the number of dendritic spines from TRNNs administrated mice hippocampi neurons was observed after Golgi stain. This improvement of neurons was also confirmed by the significant high expression of PSD95 protein level in hippocampi. We measured the OD values of Aβ25-35 induced PC12 cells that pre-treatment with different nanoparticles and concluded that TRNNs had a robust neuroprotection effect. Above all, functional biomimetic nanoparticles could increase the accumulation of naringenin into brain, thereby enable the drug to exert greater therapeutic effects.
Collapse
Affiliation(s)
- Chang Yan
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Jinlian Gu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Shun Yin
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Xia Lei
- Jiangsu MC Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Fang Geng
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Ning Zhang
- Jiangsu MC Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaodan Wu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| |
Collapse
|
2
|
Davoudi F, Shadjou N, Darroudi M. Interactions of memantine and rivastigmine with graphene oxide nanocarrier and beta-amyloid protein using molecular docking and in-silico methods. Heliyon 2024; 10:e37702. [PMID: 39309765 PMCID: PMC11416293 DOI: 10.1016/j.heliyon.2024.e37702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is characterized by the accumulation of beta-amyloid plaques and neurofibrillary tangles. Effective therapeutic strategies involve inhibiting the formation of beta-amyloid aggregates and destabilizing existing ones. A significant challenge in current treatments is the inability of therapeutic agents to cross the blood-brain barrier, a limitation addressed by employing drug nanocarriers. This study investigates the interactions between memantine, rivastigmine, beta-amyloid structures, and graphene oxide nanocarriers using molecular docking and in silico methods. The goal is to enhance drug development through cost-effective and efficient computational techniques. Results indicate that the binding energies for memantine-beta-amyloid and rivastigmine-beta-amyloid complexes are -9.03 kcal/mol and -7.81 kcal/mol, respectively, suggesting superior stability for the memantine-beta-amyloid complex. The electrostatic energies are -1.91 kcal/mol for memantine and -0.81 kcal/mol for rivastigmine, further supporting the greater stability of the memantine complex. Additionally, memantine's interaction with graphene oxide results in more negative adsorption energy (-92.47 kJ/mol) compared to rivastigmine (-86.36 kJ/mol), indicating a stronger binding affinity. The charge transfer (Q) values are -0.41 kJ/mol for memantine and -0.33 kJ/mol for rivastigmine. The negative enthalpy (ΔH) of -85.71 kJ/mol and Gibbs free energy (ΔG) of -41.52 kJ/mol for the memantine-graphene oxide interaction suggest a spontaneous process. Both memantine and rivastigmine display similar electronic properties, but memantine shows a more effective interaction with graphene oxide, likely due to its amine functional group and spatial configuration. The adsorption energy analysis confirms that memantine forms a more stable complex with graphene oxide than rivastigmine.
Collapse
Affiliation(s)
- Fateme Davoudi
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
- Institute of Nanotechnology, Urmia University, Urmia, Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Mahdieh Darroudi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
3
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
4
|
Far BF, Safaei M, Pourmolaei A, Adibamini S, Shirdel S, Shirdel S, Emadi R, Kaushik AK. Exploring Curcumin-Loaded Lipid-Based Nanomedicine as Efficient Targeted Therapy for Alzheimer's Diseases. ACS APPLIED BIO MATERIALS 2024; 7:3535-3555. [PMID: 38768054 DOI: 10.1021/acsabm.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition currently with 47 million people suffering from it globally. AD might have many reasons such as genetic issues, environmental factors, and Aβ accumulation, which is the biomarker of the disease. Since the primary reason is unknown, there is no targeted treatment at the moment, but ongoing research aims to slow its progression by managing amyloid-beta peptide production rather than symptomatic improvement. Since phytochemicals have been demonstrated to possess antioxidant, anti-inflammatory, and neuroprotective properties, they may target multiple pathological factors and can reduce the risk of the disease. Curcumin, as a phytochemical found in turmeric known for its antioxidant, free radical scavenging properties, and as an antiamyloid in treating AD, has come under investigation. Although its low bioavailability limits its efficacy, a prominent drug delivery system (DDS) is desired to overcome it. Hence, the potency of lipid-based nanoparticles encapsulating curcumin (LNPs-CUR) is considered in this study as a promising DDS. In vivo studies in animal models indicate LNPs-CUR effectively slow amyloid plaque formation, leading to cognitive enhancement and reduced toxicity compared to free CUR. However, a deeper understanding of CUR's pharmacokinetics and safety profile is crucial before LNPs-CUR can be considered as a medicine. Future investigations may explore the combination of NPs with other therapeutic agents to increase their efficacy in AD cases. This review provides the current position of CUR in the AD therapy paradigm, the DDS suggestions for CUR, and the previous research from the point of analytical view focused on the advantages and challenges.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628 Famagusta, Turkey
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Avenue, Babol 4714871167, Mazandaran, Iran
| | - Shaghyegh Adibamini
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Shabnam Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Telangana 502345, India
| |
Collapse
|
5
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Resmi AN, Rekha CR, Dhushyandhun ME, Elangovan S, Shenoy SJ, Gulia KK, Jayasree RS. Bifunctional cysteine gold nanoclusters for β-amyloid fibril inhibition and fluorescence imaging: a distinctive approach to manage Alzheimer's disease. J Mater Chem B 2023; 11:4715-4724. [PMID: 37171084 DOI: 10.1039/d2tb02802f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive complex neurodegenerative disorder affecting millions of individuals worldwide. Currently, there is no effective treatment for AD. AD is characterized by the deposition of amyloid plaques/fibrils. One major strategy for managing this disease is by slowing the progression of AD using different drugs which could potentially limit free-radical formation, oxidative stress and lipid peroxidation and promote the survival of neurons exposed to β-amyloid. Inhibition of amyloid fibrillization and clearance of amyloid plaques/fibrils are essential for the prevention and treatment of AD. The thiophilic interaction between the side chain of an aromatic residue in a polypeptide and a sulphur atom of the compound can effectively inhibit amyloid fibril formation. In this work, we have synthesized cysteine-capped gold nanoclusters (Cy-AuNCs) which exhibit inherent red emission and can disintegrate amyloid fibrils through the aforementioned thiophilic interactions. Herein, we also used molecular docking to study the thiophilic interactions between the sulphur atom of Cy-AuNCs and the aromatic rings of the protein. Finally, the gold cluster was functionalized with a brain targeting molecule, Levodopa (AuCs-LD), to specifically target the brain and to facilitate passage through the blood brain barrier (BBB). Both Cy-AuNCs and AuCs-LD showed good biocompatibility and the inherent fluorescence properties of nanoclusters enabled real time imaging. The efficacy of the nanoclusters to disintegrate amyloid fibrils and their ability to cross the BBB were demonstrated both in vitro and in vivo in the BBB model and the AD animal model respectively. Our results imply that nanoparticle-based artificial molecular chaperones may offer a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- A N Resmi
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - C R Rekha
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - M E Dhushyandhun
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Sarathkumar Elangovan
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Sachin J Shenoy
- Division of in vivo Models and Testing, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India
| | - Kamalesh K Gulia
- Division of Sleep Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| |
Collapse
|
7
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Joshi M, Joshi S, Khambete M, Degani M. Role of calcium dysregulation in Alzheimer's disease and its therapeutic implications. Chem Biol Drug Des 2023; 101:453-468. [PMID: 36373976 DOI: 10.1111/cbdd.14175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The increasing incidence of Alzheimer's disease (AD) coupled with the lack of therapeutics to address the underlying pathology of the disease has necessitated the need for exploring newer targets. Calcium dysregulation represents a relatively newer target associated with AD. Ca+2 serves as an important cellular messenger in neurons. The concentration of the Ca+2 ion needs to be regulated at optimal concentrations intracellularly for normal functioning of the neurons. This is achieved with the help of mitochondria, endoplasmic reticulum, and neuronal plasma membrane channel proteins. Disruption in normal calcium homeostasis can induce formation of amyloid beta plaques, accumulation of neurofibrillary tangles, and dysfunction of synaptic plasticity, which in turn can affect calcium homeostasis further, thus forming a vicious cycle. Hence, understanding calcium dysregulation can prove to be a key to develop newer therapeutics. This review provides detailed account of physiology of calcium homeostasis and its dysregulation associated with AD. Further, with an understanding of various receptors and organelles involved in these pathways, the review also discusses various calcium channel blockers explored in AD hand in hand with some multitarget molecules addressing calcium as one of the targets.
Collapse
Affiliation(s)
- Maithili Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Siddhi Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mihir Khambete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
9
|
Ahmad S, Hafeez A. Formulation and Development of Curcumin-Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer's Disease. Mol Neurobiol 2023; 60:1067-1082. [PMID: 36414909 DOI: 10.1007/s12035-022-03089-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Curcumin (CUR) and piperine (PIP) are very well-known phytochemicals that claimed to have many health benefits and have been widely used in foods and traditional medicines. This study investigated the therapeutic efficacy of these compounds to treat Alzheimer's disease (AD). However, poor oral bioavailability and permeability of curcumin are a major challenge for formulation scientists. In this research study, the researcher tried to enhance the bioavailability and permeability of curcumin by a nanotechnological approach. In this research study, we developed a CUR-PIP-loaded SNEDDS in various oils. Optimised formulation NF3 was subjected to evaluate its therapeutic effectiveness on AD animal model in comparison with untreated AD model and treated group (by market formulation donepezil). On the basis of characterisation results, it is confirmed that NF3 formulation is the best formulation. The optimised formulation shows a significant dose-dependent manner therapeutic effect on AD-induced model. Novel formulation CUR-PIP solid-SNEDDS was successfully developed and optimised. It is expected that the developed S-SNEDDS can be a potential, safe and effective carrier for the oral delivery of curcumin to the brain. To date, this article is the only study of CUR-PIP-loaded S-SNEDDS for the treatment of AD.
Collapse
Affiliation(s)
- Shmmon Ahmad
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India.
| |
Collapse
|
10
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
11
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Significance of native PLGA nanoparticles in the treatment of Alzheimer's disease pathology. Bioact Mater 2022; 17:506-525. [PMID: 36330076 PMCID: PMC9614411 DOI: 10.1016/j.bioactmat.2022.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is believed to be triggered by increased levels/aggregation of β-amyloid (Aβ) peptides. At present, there is no effective disease-modifying treatment for AD. Here, we evaluated the therapeutic potential of FDA-approved native poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles on Aβ aggregation and in cellular/animal models of AD. Our results showed that native PLGA can not only suppress the spontaneous aggregation but can also trigger disassembly of preformed Aβ aggregates. Spectroscopic studies, molecular dynamics simulations and biochemical analyses revealed that PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards the β-sheet structure, thus precluding the formation and/or triggering disassembly of Aβ aggregates. PLGA-treated Aβ samples can enhance neuronal viability by reducing phosphorylation of tau protein and its associated signaling mechanisms. Administration of PLGA can interact with Aβ aggregates and attenuate memory deficits as well as Aβ levels/deposits in the 5xFAD mouse model of AD. PLGA can also protect iPSC-derived neurons from AD patients against Aβ toxicity by decreasing tau phosphorylation. These findings provide unambiguous evidence that native PLGA, by targeting different facets of the Aβ axis, can have beneficial effects in mouse neurons/animal models as well as on iPSC-derived AD neurons - thus signifying its unique therapeutic potential in the treatment of AD pathology. PLGA nanoparticles by interacting with hydrophobic domain inhibit Aβ aggregation. PLGA-mediated inhibition of Aβ aggregation can increase viability of mouse neurons. PLGA administration can attenuate cognitive deficits/pathology in 5xFAD AD mouse model. PLGA can protect iPSC-derived neurons from AD patients against Aβ toxicity.
Collapse
|
13
|
Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH. Amyloid Beta in Aging and Alzheimer's Disease. Int J Mol Sci 2022; 23:12924. [PMID: 36361714 PMCID: PMC9655207 DOI: 10.3390/ijms232112924] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD), is a progressive neurodegenerative disease that affects behavior, thinking, learning, and memory in elderly individuals. AD occurs in two forms, early onset familial and late-onset sporadic; genetic mutations in PS1, PS2, and APP genes cause early onset familial AD, and a combination of lifestyle, environment and genetic factors causes the late-onset sporadic form of the disease. However, accelerated disease progression is noticed in patients with familial AD. Disease-causing pathological changes are synaptic damage, and mitochondrial structural and functional changes, in addition to increased production and accumulation of phosphorylated tau (p-tau), and amyloid beta (Aβ) in the affected brain regions in AD patients. Aβ is a peptide derived from amyloid precursor protein (APP) by proteolytic cleavage of beta and gamma secretases. APP is a glycoprotein that plays a significant role in maintaining neuronal homeostasis like signaling, neuronal development, and intracellular transport. Aβ is reported to have both protective and toxic effects in neurons. The purpose of our article is to summarize recent developments of Aβ and its association with synapses, mitochondria, microglia, astrocytes, and its interaction with p-tau. Our article also covers the therapeutic strategies that reduce Aβ toxicities in disease progression and discusses the reasons for the failures of Aβ therapeutics.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Wu Q, Karthivashan G, Nakhaei-Nejad M, Anand BG, Giuliani F, Kar S. Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-amyloid toxicity: Potential significance in Alzheimer's disease pathology. Int J Biol Macromol 2022; 219:1180-1196. [PMID: 36030976 DOI: 10.1016/j.ijbiomac.2022.08.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid)(PLGA) nanoparticles have been used extensively in delivering drugs to target tissues due to their excellent biocompatibility. Evidence suggests that PLGA-conjugated drugs/agents can attenuate pathology in cellular/animal models of Alzheimer's disease (AD), which is initiated by increased level/aggregation of amyloid β (Aβ) peptide generated from amyloid precursor protein (APP). The beneficial effects were attributed to conjugated-drugs rather than to PLGA nanoparticles. Interestingly, we recently reported that PLGA without any drug/agent (native PLGA) can suppress Aβ aggregation/toxicity. However, very little is known about the internalization, subcellular localization or effects of PLGA in neurons. In this study, using primary mouse cortical neurons, we first showed that native PLGA is internalized by an energy-mediated clathrin-dependent/-independent pathway and is localized in endosomal-lysosomal-autophagic vesicles. By attenuating internalization, PLGA can protect neurons against Aβ-mediated toxicity. Additionally, PLGA treatment altered expression profiles of certain AD-associated genes and decreased the levels of APP, its cleaved products α-/β-CTFs and Aβ peptides in mouse as well as iPSC-derived neurons from control and AD patients. Collectively, these results suggest that native PLGA not only protects neurons against Aβ-induced toxicity but also influences the expression of AD-related genes/proteins - highlighting PLGA's implication in normal and AD-related pathology.
Collapse
Affiliation(s)
- Qi Wu
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Govindarajan Karthivashan
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Maryam Nakhaei-Nejad
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Bibin G Anand
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Fabrizio Giuliani
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
16
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
17
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
18
|
Chen X, Guo X, Hao S, Yang T, Wang J. Iron Oxide Nanoparticles-loaded Hyaluronic Acid Nanogels for MRI-aided Alzheimer's disease Theranostics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Tween ® Preserves Enzyme Activity and Stability in PLGA Nanoparticles. NANOMATERIALS 2021; 11:nano11112946. [PMID: 34835710 PMCID: PMC8625811 DOI: 10.3390/nano11112946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Enzymes, as natural and potentially long-term treatment options, have become one of the most sought-after pharmaceutical molecules to be delivered with nanoparticles (NPs); however, their instability during formulation often leads to underwhelming results. Various molecules, including the Tween® polysorbate series, have demonstrated enzyme activity protection but are often used uncontrolled without optimization. Here, poly(lactic-co-glycolic) acid (PLGA) NPs loaded with β-glucosidase (β-Glu) solutions containing Tween® 20, 60, or 80 were compared. Mixing the enzyme with Tween® pre-formulation had no effect on particle size or physical characteristics, but increased the amount of enzyme loaded. More importantly, NPs made with Tween® 20:enzyme solutions maintained significantly higher enzyme activity. Therefore, Tween® 20:enzyme solutions ranging from 60:1 to 2419:1 mol:mol were further analyzed. Isothermal titration calorimetry analysis demonstrated low affinity and unquantifiable binding between Tween® 20 and β-Glu. Incorporating these solutions in NPs showed no effect on size, zeta potential, or morphology. The amount of enzyme and Tween® 20 in the NPs was constant for all samples, but a trend towards higher activity with higher molar rapports of Tween® 20:β-Glu was observed. Finally, a burst release from NPs in the first hour with Tween®:β-Glu solutions was the same as free enzyme, but the enzyme remained active longer in solution. These results highlight the importance of stabilizers during NP formulation and how optimizing their use to stabilize an enzyme can help researchers design more efficient and effective enzyme loaded NPs.
Collapse
|
20
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
21
|
Bukhari SNA. Nanotherapeutics for Alzheimer's Disease with Preclinical Evaluation and Clinical Trials: Challenges, Promises and Limitations. Curr Drug Deliv 2021; 19:17-31. [PMID: 34514990 DOI: 10.2174/1567201818666210910162750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder, is the most common form of dementia worldwide. Currently, there is no disease-modifying AD drug, and the development of effective treatments is made even harder by the highly selective nature of the blood-brain barrier (BBB) that allows the passage only of molecules with specific chemical-physical properties. In this context, nanomedicine and its nanoparticles (NPs) offer potential solutions to the challenge of AD therapy, in particular, the requirements for i) BBB crossing, ii) multitarget therapy iii) enhancement of pharmacokinetics; and iv) more precise delivery. In addition, the possibility to optimize NP biophysical and biological (i.e. target-specific ligands) properties allows for highly tailored delivery platforms. Preclinical studies have demonstrated that nanotherapeutics provide superior pharmacokinetics and brain uptake than free drugs and, on the other hand, these are also able to mitigate the side-effects of the symptomatic treatments approved by the FDA. Among the plethora of potential AD nanodrugs, multitarget nanotherapeutics are considered the most promising strategy due to their ability to hit simultaneously multiple pathogenic factors, while nano-nutraceuticals are emerging as interesting tools in the treatment/prevention of AD. This review provides a comprehensive overview of nanomedicine in AD therapy, focusing on key optimization of NPs properties, most promising nanotherapeutics in preclinical studies and difficulties that are limiting the efficient translation from bench to bedside.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014. Saudi Arabia
| |
Collapse
|
22
|
Huang Y, Ma M, Zhu X, Li M, Guo M, Liu P, He Z, Fu Q. Effectiveness of idebenone nanorod formulations in the treatment of Alzheimer's disease. J Control Release 2021; 336:169-180. [PMID: 34157335 DOI: 10.1016/j.jconrel.2021.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Idebenone (IDB) has demonstrated the potential to treat mitochondrial and neurodegenerative diseases, including Alzheimer's disease (AD). However, its therapeutic effects are compromised by poor compliance due to low bioavailability. The objective of this study is to fabricate IDB nanorods (IDBNRs) to improve oral bioavailability and increase concentrations in the brain in order to enhance therapeutic effects of IDB in the treatment of AD. IDBNRs showed desired sizes and rod-shaped morphologies. The release rate and the antioxidant activity of IDBNRs were improved relative to other delivery routes. The plasma and brain concentrations were enhanced due to rapid release into the systemic circulation. In behavioral tests, mice treated orally with IDBNRs showed amelioration of AD-induced impairment of learning and memory. Thus, because of improved efficiency of drug delivery, doses can be reduced, and the compliance and therapeutic experience of patients can be improved. IDBNRs may provide effective and convenient treatments for AD patients in the future.
Collapse
Affiliation(s)
- Yuying Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaolei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Mengran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Maleki R, Khedri M, Rezvantalab S, Afsharchi F, Musaie K, Shafiee S, Shahbazi M. β-Amyloid Targeting with Two-Dimensional Covalent Organic Frameworks: Multi-Scale In-Silico Dissection of Nano-Biointerface. Chembiochem 2021; 22:2306-2318. [PMID: 33884725 PMCID: PMC8359851 DOI: 10.1002/cbic.202100075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Cytotoxic aggregation of misfolded β-amyloid (Aβ) proteins is the main culprit suspected to be behind the development of Alzheimer's disease (AD). In this study, Aβ interactions with the novel two-dimensional (2D) covalent organic frameworks (COFs) as therapeutic options for avoiding β-amyloid aggregation have been investigated. The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m2 /gr) have the potential to prevent Aβ aggregation. Gibb's free energy analysis confirmed that COFs could prevent protofibril self-assembly in addition to inhibiting β-amyloid aggregation. Additionally, it was observed that the amine functional group and high contact area could improve the inhibitory effect of COFs on Aβ aggregation and enhance the diffusivity of COFs through the blood-brain barrier (BBB). In addition, microsecond coarse-grained (CG) simulations with three hundred amyloids reveal that the presence of COFs creates instability in the structure of amyloids and consequently prevents the fibrillation. These results suggest promising applications of engineered COFs in the treatment of AD and provide a new perspective on future experimental research.
Collapse
Affiliation(s)
- Reza Maleki
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Sima Rezvantalab
- Renewable Energies DepartmentFaculty of Chemical EngineeringUrmia University of Technology57166-419UrmiaIran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Sepehr Shafiee
- School of MedicineShahid Beheshti University of Medical Sciences19839-63113TehranIran
| | - Mohammad‐Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
24
|
Anand BG, Wu Q, Karthivashan G, Shejale KP, Amidian S, Wille H, Kar S. Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioact Mater 2021; 6:4491-4505. [PMID: 34027236 PMCID: PMC8131740 DOI: 10.1016/j.bioactmat.2021.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Evidence suggests that increased level/aggregation of beta-amyloid (Aβ) peptides initiate neurodegeneration and subsequent development of Alzheimer's disease (AD). At present, there is no effective treatment for AD. In this study, we reported the effects of gold nanoparticles surface-functionalized with a plant-based amino acid mimosine (Mimo-AuNPs), which is found to cross the blood-brain barrier, on the Aβ fibrillization process and toxicity. Thioflavin T kinetic assays, fluorescence imaging and electron microscopy data showed that Mimo-AuNPs were able to suppress the spontaneous and seed-induced Aβ1-42 aggregation. Spectroscopic studies, molecular docking and biochemical analyses further revealed that Mimo-AuNPs stabilize Aβ1-42 to remain in its monomeric state by interacting with the hydrophobic domain of Aβ1-42 (i.e., Lys16 to Ala21) there by preventing a conformational shift towards the β-sheet structure. Additionally, Mimo-AuNPs were found to trigger the disassembly of matured Aβ1-42 fibers and increased neuronal viability by reducing phosphorylation of tau protein and the production of oxyradicals. Collectively, these results reveal that the surface-functionalization of gold nanoparticles with mimosine can attenuate Aβ fibrillization and neuronal toxicity. Thus, we propose Mimo-AuNPs may be used as a potential treatment strategy towards AD-related pathologies. Mimosine functionalized with gold nanoparticles (Mimo-AuNPs) can cross blood-brain barrier. Mimo-AuNPs inhibit aggregation of Aβ peptides by interacting with its hydrophobic domain. Mimo-AuNPs can trigger disassembly of pre-aggregated Aβ fibers. Mimo-AuNPs can protect neurons against Aβ toxicity by attenuating intracellular signaling.
Collapse
Affiliation(s)
- Bibin G Anand
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Qi Wu
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Govindarajan Karthivashan
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Kiran P Shejale
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, India
| | - Sara Amidian
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
25
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
26
|
Krishna KV, Saha RN, Dubey SK. Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ 1-42 Induced Alzheimer's Disease Rat Model. ACS Chem Neurosci 2020; 11:4139-4151. [PMID: 33251785 DOI: 10.1021/acschemneuro.0c00430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and is the most common type of dementia. Amyloid β (Aβ) plaques play an important role in the pathophysiology of AD. However, the existing therapeutic strategies are not effective for the management of both Aβ-induced neurotoxicity and Aβ fibrils clearance in biological conditions. Herein, we have developed lipoprotein conjugated polymeric nanoparticles that can boost the clearance rate of Aβ fibrils and mitigate Aβ-induced neurotoxicity in AD rat. These nanoparticles were designed by loading donepezil in an amphiphilic polymer with a lipoprotein (ApoE3) integrated over the surface. Polymeric nanoparticles were prepared by a nanoprecipitation method, and ApoE3 was conjugated to the polymer layer by polysorbate 80. In the present study, we intended to examine the protective effect of ApoE3 nanoparticles against Aβ-induced neurotoxicity both in vitro and in vivo to evaluate if these can reduce the Aβ fibril formation and cognitive and behavioral deficits observed in AD induced rats. In the in vitro study, neurotoxicity induced by Aβ1-42 in human neuroblastoma (SH-SY5Y) cells was found to be significantly reduced upon treatment with ApoE3 donepezil nanoparticles. The presence of the ApoE3 significantly modified the morphology of Aβ fibrils and also inhibited the formation Aβ oligomers. Moreover, in the in vivo study, following treatment, AD induced rats were tested on Morris water maze (MWM) and passive avoidance task for their cognitive ability and sacrificed for biochemical estimations. From our observations, ApoE3 donepezil nanoparticles exhibited neuroprotection in the Aβ1-42 induced model by mitigating the pathological features and cognitive impairments. Thus, we anticipate that the nanosized lipoprotein carriers will possibly offer a rational therapeutic strategy in the formulation development of AD.
Collapse
Affiliation(s)
- Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai International Academic City, P.O. Box 345055, Dubai, United Arab Emirates
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| |
Collapse
|
27
|
Binda A, Murano C, Rivolta I. Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer's Disease: A State-of-the-Art (2017-2020). Int J Nanomedicine 2020; 15:6113-6135. [PMID: 32884267 PMCID: PMC7434571 DOI: 10.2147/ijn.s231480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The field of nanomedicine is constantly expanding. Since the first work dated in 1999, almost 28 thousand articles have been published, and more and more are published every year: just think that only in the last five years 20,855 have come out (source PUBMED) including original research and reviews. The goal of this review is to present the current knowledge about nanomedicine in Alzheimer’s disease, a widespread neurodegenerative disorder in the over 60 population that deeply affects memory and cognition. Thus, after a brief introduction on the pathology and on the state-of-the-art research for NPs passing the BBB, special attention is placed to new targets that can enter the interest of nanoparticle designers and to new promising therapies. The authors performed a literature review limited to the last three years (2017–2020) of available studies with the intention to present only novel formulations or approaches where at least in vitro studies have been performed. This choice was made because, while limiting the sector to nanotechnology applied to Alzheimer, an organic census of all the relevant news is difficult to obtain.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy
| |
Collapse
|
28
|
Duskey JT, Ottonelli I, Da Ros F, Vilella A, Zoli M, Kovachka S, Spyrakis F, Vandelli MA, Tosi G, Ruozi B. Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102226. [DOI: 10.1016/j.nano.2020.102226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
|
29
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|
30
|
Duskey JT, Baraldi C, Gamberini MC, Ottonelli I, Da Ros F, Tosi G, Forni F, Vandelli MA, Ruozi B. Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications. Polymers (Basel) 2020; 12:polym12040823. [PMID: 32260469 PMCID: PMC7249265 DOI: 10.3390/polym12040823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought after to make hybrid systems that are more flexible in terms of loading ability, but often the reactions for polymer coupling use harsh conditions, films, unpurified products, or create a single unoptimized product. In this work, we aimed to investigate possible innovative improvements regarding two synthetic procedures. Two methods were attempted and analytically compared using nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR), and dynamic scanning calorimetry (DSC) to furnish pure, homogenous, and tunable PLGA-chitosan hybrid polymers. These were fully characterized by analytical methods. A series of hybrids was produced that could be used to increase the suitability of PLGA with previously non-compatible drug molecules.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Umberto Veronesi Foundation, 20121 Milano, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Ilaria Ottonelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Da Ros
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Giovanni Tosi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Flavio Forni
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Maria Angela Vandelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Barbara Ruozi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Correspondence:
| |
Collapse
|
31
|
Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J Tissue Eng 2020; 11:2041731419897460. [PMID: 32180936 PMCID: PMC7057401 DOI: 10.1177/2041731419897460] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Brain diseases including neurodegenerative disorders and tumours are among the most serious health problems, degrading the quality of life and causing massive economic cost. Nanoparticles that load and deliver drugs and genes have been intensively studied for the treatment of brain diseases, and have demonstrated some biological effects in various animal models. Among other efforts taken in the nanoparticle development, targeting of blood brain barrier, specific cell type or local intra-/extra-cellular space is an important strategy to enhance the therapeutic efficacy of the nanoparticle delivery systems. This review underlies the targeting issue in the nanoparticle development for the treatment of brain diseases, taking key exemplar studies carried out in various in vivo models.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Atanu Chakraborty
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
32
|
The Clustering of mApoE Anti-Amyloidogenic Peptide on Nanoparticle Surface Does Not Alter Its Performance in Controlling Beta-Amyloid Aggregation. Int J Mol Sci 2020; 21:ijms21031066. [PMID: 32033502 PMCID: PMC7036774 DOI: 10.3390/ijms21031066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
The deposition of amyloid-β (Aβ) plaques in the brain is a significant pathological signature of Alzheimer’s disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aβ aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aβ aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aβ aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aβ fibrils or to hinder the Aβ aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aβ aggregation processes.
Collapse
|
33
|
Lancioni GE, Singh NN, O'Reilly MF, Sigafoos J, D'Amico F, De Vanna F, Laporta D, De Caro MF, Pinto K. Smartphone technology for fostering goal-directed ambulation and object use in people with moderate Alzheimer's disease. Disabil Rehabil Assist Technol 2019; 15:754-761. [PMID: 31726892 DOI: 10.1080/17483107.2019.1686075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study was aimed at assessing a smartphone-based intervention to help 11 individuals with moderate Alzheimer's disease and ambulation problems to manage goal-directed, walker-assisted ambulation and object use (i.e., to reach specific destinations and put away objects at those destinations independently).Method: The study was carried out according to a non-concurrent multiple baseline design across participants. Two measures were recorded, that is, the number of target responses performed correctly (with each target response consisting of reaching a destination and putting away an object), and the number of observation intervals with indices of enjoyment/appreciation (e.g., smiles and positive comments). During baseline, the participants were provided with a walker and three objects that were to be transported to and put away at specific destinations. During the intervention, the participants also had the smartphone-based technology that provided them with instructions about the destinations and objects, praise, and preferred stimulation.Results: During baseline, the mean frequency of correct target responses was virtually zero. The mean frequency of intervals with indices of enjoyment/appreciation ranged from zero to close to one. During the intervention, the mean frequencies for the two measures were slightly below three and just over three, respectively. The maximum frequencies possible were three and four, respectively.Conclusions: A smartphone-based intervention may be suitable to foster goal-directed, walker-assisted ambulation and object use as well as enjoyment/appreciation in participants like those involved in this study.IMPLICATIONS FOR REHABILITATIONA smartphone-based intervention may be used to promote goal-directed, walker-assisted ambulation and object use as well as indices of enjoyment/appreciation in persons with moderate Alzheimer disease.The technology for such intervention might involve (a) a smartphone with Android operating system, light sensor, Bluetooth v4.0, and MacroDroid, (b) Bluetooth headphones or earpieces, and (c) battery-powered light sources.The technology may provide the participants with instructions about the destinations to reach and the objects to put away at those destinations, and with praise and brief periods of preferred stimulation at the target destinations.The technology may be considered easy to access, friendly for the participants, and suitable for use by staff within daily contexts.
Collapse
Affiliation(s)
- Giulio E Lancioni
- Department of Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Nirbhay N Singh
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark F O'Reilly
- Department of Special Education, University of Texas at Austin, Austin, TX, USA
| | - Jeff Sigafoos
- School of Education, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Maria F De Caro
- Department of Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | | |
Collapse
|
34
|
Phiwchai I, Chariyarangsitham W, Phatruengdet T, Pilapong C. Ferric-Tannic Nanoparticles Increase Neuronal Cellular Clearance. ACS Chem Neurosci 2019; 10:4136-4144. [PMID: 31355625 DOI: 10.1021/acschemneuro.9b00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeting cellular clearance function in brain cells provides new opportunities for the prevention of dementia by clearance of potentially dangerous molecules. Herein, we present a new approach to enhancing neuroactive and neuroprotective activities in a neuronal cell line using ferric-tannic nanoparticles (FTs). Major biological functions mediated by FTs were clearly found to promote neuronal tube growth through the activation of axon guidance pathways. A number of neuronal tubes were found to increase under stimulation of amyloid beta-peptides, oxidative stress, and serum deprivation. The neuronal tubes generated play a role in clearing debris and amyloid beta-peptides. Another key function in cellular clearance mediated by FTs was their capability of inducing autophagy with the activation of lysosomes. Therefore, FTs are a promising new strategy for brain cell protection through the activation of the cellular clearance function. Hopefully, our findings will pave the way for the development of new methods for the prevention and therapy of dementia.
Collapse
Affiliation(s)
- Isara Phiwchai
- Radiologic Technology, Chiang Mai University, Chiang Mai, Thailand 50200
| | | | | | | |
Collapse
|