1
|
Eriksson Ström J, Kebede Merid S, Linder R, Pourazar J, Lindberg A, Melén E, Behndig AF. Airway MMP-12 and DNA methylation in COPD: an integrative approach. Respir Res 2025; 26:10. [PMID: 39794761 PMCID: PMC11724436 DOI: 10.1186/s12931-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND In COPD, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] is shifted towards excessive degradation, reflected in bronchoalveolar lavage (BAL) as increased MMP concentrations. Because of their critical role in lung homeostasis, MMP activity is tightly regulated, but to what extent this regulation occurs through epigenetic mechanisms remains unknown. METHODS To explore the interplay between MMPs, TIMPs, and DNA methylation (DNAm) we (1) analysed MMP-9, -12, and TIMP-1 concentrations in BAL fluid, and profiled DNAm in BAL cells from 18 COPD and 30 control subjects, (2) estimated protein-COPD relationships using multivariable regression, (3) identified protein quantitative trait methylation loci (pQTMs) with COPD as a potential modifier in a separate interaction model, and (4) integrated significant interactions with a previous COPD GWAS meta-analysis. RESULTS COPD was associated with higher levels of BAL MMP-12 (p = 0.016) but not with MMP-9 or TIMP-1. Further examination of MMP-12 identified association with DNAm at 34 loci (pQTMs), with TGFBR2 (p = 2.25 × 10-10) and THBS4 (p = 1.11 × 10-9) among the top ten pQTM genes. The interaction model identified 66 sites where the DNAm-MMP-12 association was significantly different in COPD compared to controls. Of these, one was colocalized with SNPs previously associated with COPD. CONCLUSIONS Our findings indicate that airway MMP-12 may partially be regulated by epigenetic mechanisms and that this regulation is disrupted in COPD. Furthermore, integration with COPD GWAS data suggests that this dysregulation is influenced by a combination of environmental factors, disease processes, and genetics, with the latter potentially playing a lesser role.
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Simon Kebede Merid
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Robert Linder
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
2
|
Dagnachew YM, Lim HY, Wupeng L, Lim SY, Lim SJN, Thiam CH, Tan SW, Eng JLJ, Mei D, Hazwany Mohammad Azhar S, Ong WS, Tan QHC, Wong WSF, Angeli V. Collagen deposition in lung parenchyma driven by depletion of interstitial Lyve-1 + macrophages prevents cigarette smoke-induced emphysema and loss of airway function. Front Immunol 2025; 15:1493395. [PMID: 39830508 PMCID: PMC11738928 DOI: 10.3389/fimmu.2024.1493395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Collagen is essential for maintaining lung structure and function and its remodeling has been associated with respiratory diseases including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Methods To address this question, we employed Lyve1wt/cre ; Csf1rflox/flox mice with specific depletion of Lyve-1+ macrophages and assessed the content, types and organization of collagen in lung compartments at steady state and after chronic exposure to cigarette smoke (CS). Results Using this mouse model, we found that the absence of this subpopulation of tissue resident macrophage led to the deposition of type I collagen fibers around the alveoli and bronchi at steady state. Further analysis by polarized light microscopy and Sircol collagen assay revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity together with an increase in Col1a1, Timp-3 and Lox expression accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mice lacking Lyve-1+ macrophages exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We found that deposition of collagen prior CS exposure protected these mice against destruction of alveoli (emphysema), and bronchi thickening and prevented loss of airway function. Discussion Thus, we uncover that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of collagen network in the lungs at steady state and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as promising approaches to treat respiratory diseases.
Collapse
Affiliation(s)
- Yinebeb Mezgebu Dagnachew
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Sciences, School of Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Liao Wupeng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sheng Jie Natalie Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shu Wen Tan
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joan Lau Joo Eng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dan Mei
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Wei Siong Ong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qi Hui Caris Tan
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wai-Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Fu D, Shu X, Zhou G, Ji M, Liao G, Zou L. Connection between oral health and chronic diseases. MedComm (Beijing) 2025; 6:e70052. [PMID: 39811802 PMCID: PMC11731113 DOI: 10.1002/mco2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic diseases have emerged as a paramount global health burden, accounting for 74% of global mortality and causing substantial economic losses. The oral cavity serves as a critical indicator of overall health and is inextricably linked to chronic disorders. Neglecting oral health can exacerbate localized pathologies and accelerate the progression of chronic conditions, whereas effective management has the potential to reduce their incidence and mortality. Nevertheless, limited resources and lack of awareness often impede timely dental intervention, delaying optimal therapeutic measures. This review provides a comprehensive analysis of the impact of prevalent chronic diseases-such as diabetes mellitus, rheumatoid arthritis, cardiovascular disorders, and chronic respiratory diseases-on oral health, along with an exploration of how changes in oral health affect these chronic conditions through both deterioration and intervention mechanisms. Additionally, novel insights into the underlying pathophysiological mechanisms governing these relationships are presented. By synthesizing these advancements, this review aims to illuminate the complex interrelationship between oral health and chronic diseases while emphasizing the urgent need for greater collaboration between dental practitioners and general healthcare providers to improve overall health outcomes.
Collapse
Affiliation(s)
- Di Fu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
5
|
Shmarina G, Pukhalskaya D, Shmarin V, Semykin S, Avakyan L, Krasovsky S, Goryainova A, Kostyuk S, Zinchenko R, Kashirskaya N. Burkholderia cepacia in cystic fibrosis children and adolescents: overall survival and immune alterations. Front Cell Infect Microbiol 2024; 14:1374318. [PMID: 39011515 PMCID: PMC11246859 DOI: 10.3389/fcimb.2024.1374318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background In current literature there are only scarce data on the host inflammatory response during Burkholderia cepacia complex (Bcc) persistence. The primary objective of the present research was to carry out cross-sectional analyses of biomarkers and evaluate disease progression in cystic fibrosis (CF) patients with chronic Bcc infection and pathogen-free ones. The secondary aim was to assess prospectively overall survival of the study participants during up to 8 years of follow-up. Methods The study included 116 paediatric patients with CF; 47 CF patients were chronically infected with Bcc, and 69 individuals were Bcc free. Plasma and sputum biomarkers (neutrophil elastase, MMP-8, MMP-9, MMP-12, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IL-22, IL-23, IL-17, IFN-γ, TGFβ1, TNF-α) were analysed using commercially available kits. Besides, inhibitory effect of dexamethasone on proliferative response of PHA-stimulated peripheral blood lymphocytes had been assessed. Results Bcc infected patients did not differ from Bcc free ones in demographic and clinical parameters, but demonstrated an increased rate of glucose metabolism disturbances and survival disadvantage during prolong follow-up period. Biomarkers analyses revealed elevated TNF-α and reduced IL-17F levels in sputum samples of Bcc infected patients. These patients also demonstrated improvement of peripheral blood lymphocyte sensitivity to steroid treatment and reduction in plasma pro-inflammatory (IL-17F and IL-18) and anti-inflammatory (TGFβ1 and IL-10) cytokine concentrations. Conclusions Reduction in IL-17F levels may have several important consequences including increase in steroid sensitivity and glycemic control disturbances. Further investigations are needed to clarify the role of IL-17 cytokines in CF complication development. Low plasma TGFβ1 and IL-10 levels in Bcc infected group may be a sign of subverted activity of regulatory T cells. Such immune alterations may be one of the factors contributing to the development of the cepacia syndrome.
Collapse
Affiliation(s)
- Galina Shmarina
- Research Centre for Medical Genetics, Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Vassiliy Shmarin
- Research Centre for Medical Genetics, Moscow, Russia
- First Moscow State Medical University, Moscow, Russia
| | - Sergey Semykin
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | - Lusine Avakyan
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | - Anastasia Goryainova
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | | | | |
Collapse
|
6
|
Feng Q, Shu X, Fang H, Shi X, Zhang Y, Zhang H. Discovery of pharmacological effects and targets of Citri Grandis Exocarpium based on SYSTCM and virtual screening. Food Nutr Res 2024; 68:10618. [PMID: 38974913 PMCID: PMC11227261 DOI: 10.29219/fnr.v68.10618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
Citri Grandis Exocarpium (Huajuhong, CGE) is the peel of the unripe fruits of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck, which is commonly used in the clinic for the treatment of cough and indigestion. The pharmacological mechanism of CGE is unclear. In this study, the pharmacological effect of CGE was predicted by System Traditional Chinese Medicine (SYSTCM), which integrated the pharmacological effect prediction approach by artificial intelligence into the systemic traditional Chinese medicine (TCM) platform. The main pharmacological effect of CGE was antiallergy, promoting bile, blood lipid regulation, cardiotonics, diuresis, and antiarrhythmia by prediction of SYSTCM. In vitro cell experiments were carried out to identify the antiallergic effect of CGE. Extracts of Citri Grandis Exocarpium (ECGE) inhibited lipopolysaccharide-induced cell injury and nitric oxide release in RAW264.7 cells. ECGE and naringin-inhibited immunoglobulin E-induced cell degranulation in RBL-2H3 cells. Target profiling, protein interaction network, and molecular docking of compounds from CGE indicated that mitogen-activated protein kinase 14 (MAPK14) and matrix metalloprotease 9 (MMP9) were key potential targets of CGE with antiallergic activity. This study identified and validated the antiallergic effect of CGE by combining SYSTCM, cell experiments, and virtual screening, which provided a new paradigm and approach for studying the pharmacological effect and mechanism of TCM.
Collapse
Affiliation(s)
- Qinqi Feng
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Shu
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxi Shi
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongchun Zhang
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Song YD, Bai XM, Ma J. The association of systemic immune-inflammation index with lung function, risk of COPD and COPD severity: A population-based study. PLoS One 2024; 19:e0303286. [PMID: 38875233 PMCID: PMC11178193 DOI: 10.1371/journal.pone.0303286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE The relationship between the levels of Systemic Immune-inflammation Index (SII) and chronic obstructive pulmonary disease (COPD), lung function, and COPD severity were not fully understood. We conducted this cross-sectional, population-based study to investigate the complex association between SII and COPD, lung function, and COPD severity among the US adults. METHODS Overall, 18,349 participants were included in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. The exposure variable was SII, calculated from platelet counts, neutrophil counts, and lymphocyte counts. Weighted univariable and multivariable logistic regression, subgroup analysis, and restricted cubic spline (RCS) regression were performed to assess the relationship between COPD, lung function, COPD severity and SII. Last, we used a propensity score matching (PSM) analysis to reduce selective bias and validate these relationships. RESULTS Approximately 1,094 (5.96%) of the participants were diagnosed as COPD. The multivariable-adjusted odds ratio (OR) (95% confidence interval, CI) for the Q2 group (Log-SII > 2.740) was 1.39 (1.16 to 1.68). Before and after matching, multivariable logistic regression models revealed that increased Log-SII levels (SII Logarithmic transformation) associated positively with the risk of COPD. The subgroup analysis showed no interaction between Log-SII and a variety of variables (P for interaction > 0.05). RCS showed a reversed L-shaped relationship between Log-SII with COPD (P for nonlinear = 0.001) in individuals. In addition, we observed negative significant correlations between forced expiratory volume in one second (FEV1) / forced vital capacity (FVC) %, FEV1/FVC% predicted and SII, and reversed U-shaped curve relationships between FEV1, FEV1% predicted and SII. High SII level is associated with severity of COPD, especially at Global Initiative on Obstructive Lung Disease (GOLD) 1 and GOLD 3. CONCLUSIONS In summary, the Log-SII level is associated with COPD risk, lung function, and COPD severity.
Collapse
Affiliation(s)
- Ying-da Song
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Xiao-Ming Bai
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Jun Ma
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
8
|
Li J, Chen CT, Li P, Zhang X, Liu X, Wu W, Gu W. Lung transcriptomics reveals the underlying mechanism by which aerobic training enhances pulmonary function in chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:154. [PMID: 38532405 DOI: 10.1186/s12890-024-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Aerobic training is the primary method of rehabilitation for improving respiratory function in patients with chronic obstructive pulmonary disease (COPD) in remission. However, the mechanism underlying this improvement is not yet fully understood. The use of transcriptomics in rehabilitation medicine offers a promising strategy for uncovering the ways in which exercise training improves respiratory dysfunction in COPD patients. In this study, lung tissue was analyzed using transcriptomics to investigate the relationship between exercise and lung changes. METHODS Mice were exposed to cigarette smoke for 24 weeks, followed by nine weeks of moderate-intensity treadmill exercise, with a control group for comparison. Pulmonary function and structure were assessed at the end of the intervention and RNA sequencing was performed on the lung tissue. RESULTS Exercise training was found to improve airway resistance and lung ventilation indices in individuals exposed to cigarette smoke. However, the effect of this treatment on damaged alveoli was weak. The pair-to-pair comparison revealed numerous differentially expressed genes, that were closely linked to inflammation and metabolism. CONCLUSIONS Further research is necessary to confirm the cause-and-effect relationship between the identified biomarkers and the improvement in pulmonary function, as this was not examined in the present study.
Collapse
Affiliation(s)
- Jian Li
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), 200433, Shanghai, PR China
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China
| | - Cai-Tao Chen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, PR China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Xiaoyun Zhang
- Laboratory Department of the 908th Hospital of the Joint Logistics Support Force, 330001, Nanchang, PR China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), No. 800 Xiangyin Road, Yangpu District, 200433, Shanghai, PR China.
| |
Collapse
|
9
|
Pandey V, Yadav V, Srivastava A, Gaglani P, Singh R, Subhashini. Blocking μ-opioid receptor by naltrexone exaggerates oxidative stress and airway inflammation via the MAPkinase pathway in a murine model of asthma. Free Radic Biol Med 2024; 212:94-116. [PMID: 38142953 DOI: 10.1016/j.freeradbiomed.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Opioids regulate various physiological and pathophysiological functions, including cell proliferation, immune function, obesity, and neurodegenerative disorders. They have been used for centuries as a treatment for severe pain, binding to opioid receptors a specific G protein-coupled receptor. Common opioids, like β-endorphin, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), and dynorphins, have analgesic effects. The use of a potent antagonist, like naltrexone hydrochloride, to block the effects of mu Opioid Receptor (μOR) may result in the withdrawal of physiological effects and could potentially impact immune responses in many diseases including respiratory disease. Asthma is a respiratory disease characterized by airway hyperresponsiveness, inflammation, bronchoconstriction, chest tightness, stress generation and release of various cytokines. Airway inflammation leads recruitment and activation of immune cells releasing mediators, including opioids, which may modulate inflammatory response by binding to their respective receptors. The study aims to explore the role of μOR antagonist (naltrexone) in regulating asthma pathophysiology, as the regulation of immune and inflammatory responses in asthma remains unclear. Balb/c mice were sensitized intranasally by 1% TDI and challenged with 2.5% TDI. Naltrexone hydrochloride (1 mg/kg body weight) was administered through intraperitoneal route 1 h before TDI induction. Blocking μOR by naltrexone exacerbates airway inflammation by recruiting inflammatory cells (lymphocytes and neutrophils), enhancing intracellular Reactive oxygen species in bronchoalveolar lavage fluid (BALF), and inflammatory mediator (histamine, Eosinophil peroxidase and neutrophil elastase) in lungs. Naltrexone administration modulated inflammatory cytokines (TNF-α, IL-4, IL-5, IL-6, IL-10, and IL-17A), and enhanced IgE and CRP levels. Naltrexone administration also increased the expression of NF-κB, and phosphorylated p-P38, p-Erk, p-JNK and NF-κB by inhibiting the μOR. Docking study revealed good binding affinity of naltrexone with μOR compared to δ and κ receptors. In future it might elucidate potential therapeutic against many respiratory pathological disorders. In conclusion, μOR blocking by naltrexone regulates and implicates inflammation, bronchoconstriction, and lung physiology.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pratikkumar Gaglani
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Zeng Y, Hu R, Ma W, Ding Y, Zhou Y, Peng X, Feng L, Cheng Q, Luo Z. New tricks for old drugs- praziquantel ameliorates bleomycin-induced pulmonary fibrosis in mice. BMC Pharmacol Toxicol 2024; 25:18. [PMID: 38355586 PMCID: PMC10868045 DOI: 10.1186/s40360-024-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis. METHODS In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio. RESULTS We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-β and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-β in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages. CONCLUSIONS Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-β and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanjun Zeng
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Hu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ma
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Ding
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin Peng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lixin Feng
- Department of Rheumatology and Immunology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qingmei Cheng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, China.
| |
Collapse
|
11
|
Lin S, Lin W, Zhong Z, Zhong H, Zhou T, Weng W. The Expression and Molecular Mechanisms of Matrix Metalloproteinase- 9 and Vascular Endothelial Growth Factor in Renal Interstitial Fibrosis in Rats. Curr Mol Med 2024; 24:1540-1549. [PMID: 37936436 DOI: 10.2174/0115665240264823231101103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE To explore a new approach for the treatment of renal interstitial fibrosis (RIF), we detected the expression of matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGF). METHODS Twenty-four male Sprague Dawley (SD) rats were randomly divided into 2- week normal control (2NC) group, 4-week NC (4NC) group, 2-week unilateral ureteral obstruction (2UUO) group, and 4-week UUO (4UUO) group. We performed left ureteral ligation on UUO groups. Then, we sacrificed the rats of the 2NC group and 2UUO group at 2 weeks and the other groups at 4 weeks after the surgery. Immunohistochemistry and western blot were applied to detect the expression of MMP9, VEGF, fibronectin (FN), type IV collagen (Col-IV), and transforming growth factor-β1 (TGF-β1). MMP9 levels reduced after UUO surgery. Its expression was less in the 4UUO group than in the 2UUO group (P<0.05). The expression of VEGF, TGF- β1, FN, and Col-IV was higher in UUO groups than in NC groups (P<0.05). The expression of these indicators was higher in the 4UUO group than in the 2UUO group (P<0.05). RESULTS In the correlation analysis, MMP9 levels in UUO groups had a negative correlation with the expression of TGF-β1, VEGF, Col-IV, FN, and RIF index (all P<0.05). In UUO groups, VEGF levels had a positive correlation with the expression of TGF-β1, Col-IV, FN, and RIF index (all P<0.05). CONCLUSION In conclusion, with the aggravation of RIF lesions, MMP9 levels decreased, and VEGF levels increased. Whether there is a mutual inhibition relationship between them remains to be confirmed by further experiments.
Collapse
Affiliation(s)
- Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| |
Collapse
|
12
|
Farmand S, Sender V, Karlsson J, Merkl P, Normark S, Henriques-Normark B. STAT3 Deficiency Alters the Macrophage Activation Pattern and Enhances Matrix Metalloproteinase 9 Expression during Staphylococcal Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:69-80. [PMID: 37982695 PMCID: PMC10733582 DOI: 10.4049/jimmunol.2300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Staphylococcus aureus is a significant cause of morbidity and mortality in pulmonary infections. Patients with autosomal-dominant hyper-IgE syndrome due to STAT3 deficiency are particularly susceptible to acquiring staphylococcal pneumonia associated with lung tissue destruction. Because macrophages are involved in both pathogen defense and inflammation, we investigated the impact of murine myeloid STAT3 deficiency on the macrophage phenotype in vitro and on pathogen clearance and inflammation during murine staphylococcal pneumonia. Murine bone marrow-derived macrophages (BMDM) from STAT3 LysMCre+ knockout or Cre- wild-type littermate controls were challenged with S. aureus, LPS, IL-4, or vehicle control in vitro. Pro- and anti-inflammatory responses as well as polarization and activation markers were analyzed. Mice were infected intratracheally with S. aureus, bronchoalveolar lavage and lungs were harvested, and immunohistofluorescence was performed on lung sections. S. aureus infection of STAT3-deficient BMDM led to an increased proinflammatory cytokine release and to enhanced upregulation of costimulatory MHC class II and CD86. Murine myeloid STAT3 deficiency did not affect pathogen clearance in vitro or in vivo. Matrix metalloproteinase 9 was upregulated in Staphylococcus-treated STAT3-deficient BMDM and in lung tissues of STAT3 knockout mice infected with S. aureus. Moreover, the expression of miR-155 was increased. The enhanced inflammatory responses and upregulation of matrix metalloproteinase 9 and miR-155 expression in murine STAT3-deficient as compared with wild-type macrophages during S. aureus infections may contribute to tissue damage as observed in STAT3-deficient patients during staphylococcal pneumonia.
Collapse
Affiliation(s)
- Susan Farmand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
13
|
Li W, Liu L, Duanqing M, Xiong X, Gan D, Yang J, Wang M, Zhou M, Yan J. CLDN1 silencing suppresses the proliferation and migration of airway smooth muscle cells by modulating MMP14. Autoimmunity 2023; 56:2281223. [PMID: 37964516 DOI: 10.1080/08916934.2023.2281223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Airway remodeling is an important pathologic factor in the progression of asthma. Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) are important pathologic mechanisms in severe asthma. In the current study, claudin-1 (CLDN1) was identified as an asthma-related gene and was upregulated in ASMCs stimulated with platelet-derived growth factor BB (PDGF-BB). Cell counting kit-8 and EdU assays were used to evaluate cell proliferation, and transwell assay was carried out to analyze cell migration and invasion. The levels of inflammatory factors were detected using enzyme-linked immunosorbent assay. The results showed that CLDN1 knockdown inhibited the proliferation, migration, invasion, and inflammation of ASMCs treated with PDGF-BB, whereas overexpression of CLDN1 exhibited the opposite effects. Protein-protein interaction assay and co-immunoprecipitation revealed that CLDN1 directly interacted with matrix metalloproteinase 14 (MMP14). CLDN1 positively regulated MMP14 expression in asthma, and MMP14 overexpression reversed cell proliferation, migration, invasion, and inflammation induced by silenced CLDN1. Taken together, CLDN1 promotes PDGF-BB-induced cell proliferation, migration, invasion, and inflammatory responses of ASMCs by upregulating MMP14 expression, suggesting a potential role for CLDN1 in airway remodeling in asthma.
Collapse
Affiliation(s)
- Wei Li
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Linyan Liu
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Ming'ai Duanqing
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Xiaoqing Xiong
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Dejian Gan
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Jin Yang
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Mingya Wang
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Min Zhou
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| | - Jun Yan
- Pediatrics Department, The People's Hospital of Jiulongpo District, Chongqing, China
| |
Collapse
|
14
|
Yombo DJK, Madala SK, Vemulapalli CP, Ediga HH, Hardie WD. Pulmonary fibroelastosis - A review. Matrix Biol 2023; 124:1-7. [PMID: 37922998 PMCID: PMC10841596 DOI: 10.1016/j.matbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Elastin is a long-lived fibrous protein that is abundant in the extracellular matrix of the lung. Elastic fibers provide the lung the characteristic elasticity during inhalation with recoil during exhalation thereby ensuring efficient gas exchange. Excessive deposition of elastin and other extracellular matrix proteins reduces lung compliance by impairing ventilation and compromising gas exchange. Notably, the degree of elastosis is associated with the progressive decline in lung function and survival in patients with interstitial lung diseases. Currently there are no proven therapies which effectively reduce the elastin burden in the lung nor prevent dysregulated elastosis. This review describes elastin's role in the healthy lung, summarizes elastosis in pulmonary diseases, and evaluates the current understanding of elastin regulation and dysregulation with the goal of guiding future research efforts to develop novel and effective therapies.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Chanukya P Vemulapalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - William D Hardie
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, OH, USA.
| |
Collapse
|
15
|
Modestino L, Cristinziano L, Trocchia M, Ventrici A, Capone M, Madonna G, Loffredo S, Ferrara AL, Romanelli M, Simeone E, Varricchi G, Rossi FW, de Paulis A, Marone G, Ascierto PA, Galdiero MR. Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps. Cancer Immunol Immunother 2023; 72:3363-3376. [PMID: 37525065 PMCID: PMC10491523 DOI: 10.1007/s00262-023-03493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
16
|
Tamiya H, Mitani A, Abe M, Nagase T. Putative Bidirectionality of Chronic Obstructive Pulmonary Disease and Periodontal Disease: A Review of the Literature. J Clin Med 2023; 12:5935. [PMID: 37762876 PMCID: PMC10531527 DOI: 10.3390/jcm12185935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of chronic obstructive pulmonary disease (COPD) is increasing worldwide and is currently the third leading cause of death globally. The long-term inhalation of toxic substances, mainly cigarette smoke, deteriorates pulmonary function over time, resulting in the development of COPD in adulthood. Periodontal disease is an inflammatory condition that affects most adults and is caused by the bacteria within dental plaque. These bacteria dissolve the gums around the teeth and the bone that supports them, ultimately leading to tooth loss. Periodontal disease and COPD share common risk factors, such as aging and smoking. Other similarities include local chronic inflammation and links with the onset and progression of systemic diseases such as ischemic heart disease and diabetes mellitus. Understanding whether interventions for periodontal disease improve the disease trajectory of COPD (and vice versa) is important, given our rapidly aging society. This review focuses on the putative relationship between COPD and periodontal disease while exploring current evidence and future research directions.
Collapse
Affiliation(s)
- Hiroyuki Tamiya
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihisa Mitani
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masanobu Abe
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takahide Nagase
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
17
|
Roman J. Fibroblasts-Warriors at the Intersection of Wound Healing and Disrepair. Biomolecules 2023; 13:945. [PMID: 37371525 DOI: 10.3390/biom13060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Wound healing is triggered by inflammation elicited after tissue injury. Mesenchymal cells, specifically fibroblasts, accumulate in the injured tissues, where they engage in tissue repair through the expression and assembly of extracellular matrices that provide a scaffold for cell adhesion, the re-epithelialization of tissues, the production of soluble bioactive mediators that promote cellular recruitment and differentiation, and the regulation of immune responses. If appropriately deployed, these processes promote adaptive repair, resulting in the preservation of the tissue structure and function. Conversely, the dysregulation of these processes leads to maladaptive repair or disrepair, which causes tissue destruction and a loss of organ function. Thus, fibroblasts not only serve as structural cells that maintain tissue integrity, but are key effector cells in the process of wound healing. The review will discuss the general concepts about the origins and heterogeneity of this cell population and highlight the specific fibroblast functions disrupted in human disease. Finally, the review will explore the role of fibroblasts in tissue disrepair, with special attention to the lung, the role of aging, and how alterations in the fibroblast phenotype underpin disorders characterized by pulmonary fibrosis.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Chen D, Curtis JL, Chen Y. Twenty years of changes in the definition of early chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:84-93. [PMID: 39170827 PMCID: PMC11332824 DOI: 10.1016/j.pccm.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 08/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that affects the quality of life of nearly one-tenth of the global population. Due to irreversible airflow obstruction and progressive lung function decline, COPD is characterized by high mortality and disability rates, which imposes a huge economic burden on society. In recent years, the importance of intervention in the early stage of COPD has been recognized and the concept of early COPD has been proposed. Identifying and intervening in individuals with early COPD, some of whom have few or no symptoms, might halt or reverse the progressive decline in lung function, improve the quality of life, and better their prognosis. However, understanding of early COPD is not yet well established, and there are no unified and feasible diagnostic criteria, which complicates clinical research. In this article, we review evolution of the definition of early COPD over the past 20 years, describe the changes in awareness of this concept, and propose future research directions.
Collapse
Affiliation(s)
- Dian Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Research center for Chronic Airway Diseases, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
19
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
20
|
Nurlu Temel E, Savran M, Erzurumlu Y, Hasseyid N, Buyukbayram HI, Okuyucu G, Sevuk MA, Ozmen O, Beyan AC. The β1 Adrenergic Blocker Nebivolol Ameliorates Development of Endotoxic Acute Lung Injury. J Clin Med 2023; 12:jcm12051721. [PMID: 36902508 PMCID: PMC10003295 DOI: 10.3390/jcm12051721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective β1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.
Collapse
Affiliation(s)
- Esra Nurlu Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
- Correspondence: ; Tel.: +90-532-551-94-39; Fax: +90-246-237-11-65
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Yalcın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Halil Ibrahim Buyukbayram
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Gozde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Ayse Coskun Beyan
- Department of Occupational Medicine, Faculty of Medicine, Dokuz Eylul University, 35220 İzmir, Turkey
| |
Collapse
|
21
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
β-Cryptoxanthin Attenuates Cigarette-Smoke-Induced Lung Lesions in the Absence of Carotenoid Cleavage Enzymes (BCO1/BCO2) in Mice. Molecules 2023; 28:molecules28031383. [PMID: 36771049 PMCID: PMC9920649 DOI: 10.3390/molecules28031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
High dietary intake of β-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by β-carotene-15,15'-oxygenase (BCO1) and β-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-β-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.
Collapse
|
23
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Markers of Bronchiolitis Obliterans Syndrome after Lung Transplant: Between Old Knowledge and Future Perspective. Biomedicines 2022; 10:biomedicines10123277. [PMID: 36552035 PMCID: PMC9775233 DOI: 10.3390/biomedicines10123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the most common form of CLAD and is characterized by airflow limitation and an obstructive spirometric pattern without high-resolution computed tomography (HRCT) evidence of parenchymal opacities. Computed tomography and microCT analysis show abundant small airway obstruction, starting from the fifth generation of airway branching and affecting up to 40-70% of airways. The pathogenesis of BOS remains unclear. It is a multifactorial syndrome that leads to pathological tissue changes and clinical manifestations. Because BOS is associated with the worst long-term survival in LTx patients, many studies are focused on the early identification of BOS. Markers may be useful for diagnosis and for understanding the molecular and immunological mechanisms involved in the onset of BOS. Diagnostic and predictive markers of BOS have also been investigated in various biological materials, such as blood, BAL, lung tissue and extracellular vesicles. The aim of this review was to evaluate the scientific literature on markers of BOS after lung transplant. We performed a systematic review to find all available data on potential prognostic and diagnostic markers of BOS.
Collapse
|
25
|
da Costa MS, Luft C, Sbruzzi M, de Oliveira JR, Donadio MVF. Impact of maternal physical exercise on inflammatory and hypothalamic-pituitary-adrenal axis markers in the brain and lungs of prenatally stressed neonatal mice. Dev Psychobiol 2022; 64:e22330. [PMID: 36282762 DOI: 10.1002/dev.22330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to evaluate the effects of maternal exercise on alterations induced by prenatal stress in markers of the inflammatory process and the hypothalamic-pituitary-adrenal axis in the brain and lungs of neonatal mice. Female Balb/c mice were divided into three groups: control, prenatal restraint stress, prenatal restraint stress and physical exercise before and during the gestational period. On day 0 (PND0) and 10 (PND10), mice were euthanized for brain and lung analyses. The gene expression of GR, MR, IL-6, IL-10, and TNF in the brain and lungs and the protein expression of MMP-2 in the lungs were analyzed. Maternal exercise reduced IL-6 and IL-10 gene expression in the brain of PND0 mice. Prenatal stress and maternal exercise decreased GR, MR, IL-6, and TNF gene expression in the lungs of PND0 mice. In the hippocampus of PND10 females, exercise inhibited the effects of prenatal stress on the expression of MR, IL-6, and IL-10. In the lungs of PND10 females, exercise prevented the decrease in GR expression caused by prenatal stress. In the hippocampus and lungs of PND10 males, prenatal stress decreased GR gene expression. Our findings confirm the effects induced by prenatal stress and demonstrate that physical exercise before and during the gestational period may have a protective role on inflammatory changes.
Collapse
Affiliation(s)
- Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| | - Mariana Sbruzzi
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Physiotherapy, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| |
Collapse
|
26
|
Li F, Li M, Hu L, Zhu W, Cheng D. Identification of key modules and hub genes for eosinophilic asthma by weighted gene co-expression network analysis. J Asthma 2022; 60:1038-1049. [PMID: 36165511 DOI: 10.1080/02770903.2022.2128372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: Eosinophilic asthma (EA) is one of the most important asthma phenotypes with distinct features. However, its genetic characteristics are not fully understood. This study aimed to investigate the transcriptome features and to identify hub genes of EA.Methods: Differentially expressed genes (DEGs) analysis, weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were performed to construct gene networks and to identify hub genes. Enrichment analyses were performed to investigate the biological processes, pathways and immune status of EA. The hub genes were validated in another dataset. The diagnostic value of the identified hub genes was assessed by receiver operator characteristic curve (ROC) analysis.Results: Compared with NEA, EA had a different gene expression pattern, in which 81 genes were differentially expressed. WGCNA identified two gene modules significantly associated with EA. Intersections of the DEGs and the genes in the modules associated with EA were mainly enriched in chemotaxis and signal transduction by GO and KEGG enrichment analyses. Single-sample gene set enrichment analysis indicated that EA had different immune infiltration and functions compared with NEA. Seven hub genes of EA were identified and validated, including CCL17, CCL26, CD1C, CXCL11, CXCL10, CCL22 and CCR7, all of which have diagnostic value for distinguishing EA from NEA (All AUC >0.7) .Conclusions: This study demonstrated the distinct gene expression patterns, biological processes and immune status of EA. Hub genes of EA were identified and validated. Our study could provide a framework of co-expression gene modules and potential therapeutic targets for EA.
Collapse
Affiliation(s)
- Fanmin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,General Practice Department, The People's Hospital of Leshan, Leshan, China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijia Hu
- Department of Ultrasound Imaging, The People's Hospital of Leshan, Leshan, China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Saraiva-Romanholo BM, de Genaro IS, de Almeida FM, Felix SN, Lopes MRC, Amorim TS, Vieira RP, Arantes-Costa FM, Martins MA, de Fátima Lopes Calvo Tibério I, Prado CM. Exposure to Sodium Hypochlorite or Cigarette Smoke Induces Lung Injury and Mechanical Impairment in Wistar Rats. Inflammation 2022; 45:1464-1483. [PMID: 35501465 DOI: 10.1007/s10753-022-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary irritants, such as cigarette smoke (CS) and sodium hypochlorite (NaClO), are associated to pulmonary diseases in cleaning workers. We examined whether their association affects lung mechanics and inflammation in Wistar rats. Exposure to these irritants alone induced alterations in the lung mechanics, inflammation, and remodeling. The CS increased airway cell infiltration, acid mucus production, MMP-12 expression, and alveolar enlargement. NaClO increased the number of eosinophils and macrophages in the bronchoalveolar lavage fluid, with cells expressing IL-13, MMP-12, MMP-9, TIMP-1, and iNOS in addition to increased IL-1β and TNF-α levels. Co-exposure to both irritants increased epithelial and smooth muscle cell area, acid mucus production, and IL-13 expression in the airways, while it reduced the lung inflammation. In conclusion, the co-exposure of CS with NaClO reduced the pulmonary inflammation, but increased the acidity of mucus, which may protect lungs from more injury. A cross-resistance in people exposed to multiple lung irritants should also be considered.
Collapse
Affiliation(s)
- Beatriz Mangueira Saraiva-Romanholo
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil.
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil.
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil.
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil.
| | - Isabella Santos de Genaro
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Soraia Nogueira Felix
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | | | | | - Rodolfo Paula Vieira
- Post-Graduation Program in Bioengineering and in Biomedical Engineering, Brazil University, Sao Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, Brazil
- School of Medicine, Anhembi Morumbi University, Sao Jose dos Campos, SP, Brazil
| | - Fernanda Magalhães Arantes-Costa
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Carla Máximo Prado
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
29
|
Fu X, Li T, Yao Q. The Effect of Ophiopogonin C in Ameliorating Radiation-Induced Pulmonary Fibrosis in C57BL/6 Mice: An Update Study. Front Oncol 2022; 12:811183. [PMID: 35433490 PMCID: PMC9007236 DOI: 10.3389/fonc.2022.811183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The aim of this study was to assess and update the protective effects and underlying mechanisms of Ophiopogonin C (OP-C), a biologically active component separated and purified from Ophiopogon japonicus, in ameliorating radiation-induced pulmonary fibrosis in C57BL/6 mice administered thoracic radiation. Methods and Materials We randomly divided 75 mice into five groups and administered a dose of 12-Gy whole thoracic radiation to establish a pulmonary fibrosis animal model. Mice were treated with OP-C or dexamethasone combined with or without cephalexin by daily gavage for 4 weeks. All mice were sacrificed after the completion of thoracic irradiation at 28 weeks. Serum levels of interleukin-6 and transforming growth factor-β1 (TGF-β1) were evaluated. Moreover, superoxide dismutase (SOD) levels in lung tissue were measured. The severity of fibrosis was evaluated using the hydroxyproline content of the lung tissue. The pathological changes in the five groups were detected by hematoxylin and eosin and Masson trichrome staining. Smooth muscle actin expression was detected using immunohistochemical staining. Matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteases-2 (TIMP-2) were examined by immunohistochemical staining of the lung sections, and semiquantitative analysis was used to calculate the expression of MMP-2 and TIMP-2. Results Irradiated mice treated with OP-C or DXE combined with or without cephalexin significantly reduced mortality in mice and fibrosis levels by 1) reducing the deposition of collagen and accumulation of inflammatory cells and fibroblasts, 2) downgrading levels of the promote-fibrosis cytokine TGF-β1, and 3) increasing SOD activity in the lung tissue compared with that of irradiated mice without treatment. However, there were no statistical differences in fibrosis levels among the irradiated mice treated with OP-C or DXE combined with or without cephalexin. Conclusion OP-C significantly ameliorates radiation-induced pulmonary fibrosis and may be a promising therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- Xiaobin Fu
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tingting Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiwei Yao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
30
|
Potluri T, Taylor MJ, Stulberg JJ, Lieber RL, Zhao H, Bulun SE. An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model. JCI Insight 2022; 7:e152011. [PMID: 35439171 PMCID: PMC9090253 DOI: 10.1172/jci.insight.152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Matthew J. Taylor
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Jonah J. Stulberg
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard L. Lieber
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| |
Collapse
|
31
|
Singh M, Akkaya S, Preuß M, Rademacher F, Tohidnezhad M, Kubo Y, Behrendt P, Weitkamp JT, Wedel T, Lucius R, Gläser R, Harder J, Bayer A. Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. Int J Mol Sci 2022; 23:ijms23052827. [PMID: 35269967 PMCID: PMC8911300 DOI: 10.3390/ijms23052827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF.
Collapse
Affiliation(s)
- Michael Singh
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Serhat Akkaya
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Mark Preuß
- Department for Vascular Medicine, Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Franziska Rademacher
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Peter Behrendt
- Department of Trauma Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24015 Kiel, Germany;
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Regine Gläser
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Andreas Bayer
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
- Correspondence:
| |
Collapse
|
32
|
DI Stefano A, Gnemmi I, Dossena F, Ricciardolo FL, Maniscalco M, Lo Bello F, Balbi B. Pathogenesis of COPD at the cellular and molecular level. Minerva Med 2022; 113:405-423. [PMID: 35138077 DOI: 10.23736/s0026-4806.22.07927-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inflammatory responses in the lung of patients with stable mild-to severe forms of COPD play a central role in the definition, comprehension and monitoring of the disease state. A better understanding of the COPD pathogenesis can't avoid a detailed knowledge of these inflammatory changes altering the functional health of the lung during the disease progression. We here summarize and discuss the role and principal functions of the inflammatory cells populating the large, small airways and lung parenchyma of patients with COPD of increasing severity in comparison with healthy control subjects: T and B lymphocytes, NK and Innate Lymphoid cells, macrophages, and neutrophils. The differential inflammatory distribution in large and small airways of patients is also discussed. Furthermore, relevant cellular mechanisms controlling the homeostasis and the "normal" balance of these inflammatory cells and of structural cells in the lung, such as autophagy, apoptosis, necroptosis and pyroptosis are as well presented and discussed in the context of the COPD severity.
Collapse
Affiliation(s)
- Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy -
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| | - Francesca Dossena
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| | - Fabio L Ricciardolo
- Rare Lung Disease Unit and Severe Asthma Centre, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital Orbassano, University of Turin, Turin, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, Benevento, Italy
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| |
Collapse
|
33
|
The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation. Cells 2021; 10:cells10113215. [PMID: 34831437 PMCID: PMC8620267 DOI: 10.3390/cells10113215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air–liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.
Collapse
|
34
|
Kollaras V, Valsami G, Lambropoulou M, Konstandi O, Kostomistsopoulos N, Pikoulis E, Simopoulos C, Tsaroucha A. Effect of silibinin on the expression of MMP2, MMP3, MMP9 and TIMP2 in kidney and lung after hepatic ischemia/reperfusion injury in an experimental rat model. Acta Cir Bras 2021; 36:e360904. [PMID: 34755764 PMCID: PMC8580512 DOI: 10.1590/acb360904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The protective effect of silibinin on kidney and lung parenchyma during hepatic ischemia/reperfusion injury (IRI) is explored. METHODS Sixty-three Wistar rats were separated into three groups: sham; control (45 min IRI); and silibinin (200 μL silibinin administration after 45 min of ischemia and before reperfusion). Immunohistochemistry and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to evaluate the expression levels of MMP2, MMP3, MMP9, and TIMP2 on kidney and lung. RESULTS Comparing sham vs. control groups, confirmed that hepatic IRI increased both renal and lung MMP2, MMP3, MMP9 and TIMP2 expressions starting at 180 min (p<0.001). Comparison of the control vs. silibinin groups showed a statistically significant decrease in the expression levels of MMP2, MMP3, and MMP9 and increase of TIMP2 in kidney and lung parenchyma. The starting point of this decrease was at 120 min after reperfusion, both for kidney and lung parameters, and it was statistically significant at 240 min (p<0.001) for kidney, while silibinin showed a peak of lung protection at 180 min after hepatic reperfusion (p<0.001). CONCLUSIONS Hepatic IRI causes distant kidney and lung damage, while a statistically significant protective action, both on kidney and lung parenchyma, is conveyed by the intravenous administration of silibinin.
Collapse
|
35
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
36
|
Egorikhina MN, Bronnikova II, Rubtsova YP, Charykova IN, Bugrova ML, Linkova DD, Aleynik DY. Aspects of In Vitro Biodegradation of Hybrid Fibrin-Collagen Scaffolds. Polymers (Basel) 2021; 13:polym13203470. [PMID: 34685229 PMCID: PMC8539699 DOI: 10.3390/polym13203470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin–collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.
Collapse
|
37
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
38
|
Du L, Chen F, Xu C, Tan W, Shi J, Tang L, Xiao L, Xie C, Zeng Z, Liang Y, Guo Y. Increased MMP12 mRNA expression in induced sputum was correlated with airway eosinophilic inflammation in asthma patients: evidence from bioinformatic analysis and experiment verification. Gene 2021; 804:145896. [PMID: 34384863 DOI: 10.1016/j.gene.2021.145896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Asthma is a common chronic airway inflammatory disease worldwide. Studies on gene expression profiles in induced sputum may provide noninvasive diagnostic biomarkers and therapeutic targets for asthma. OBJECTIVE To investigate mRNA expression of MMP12 in induced sputum and its relationship with asthma airway eosinophilic inflammation. METHODS GSE76262 dataset was analyzed using R software, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. The top ten hub genes were screened with Cytoscape software (version 3.8.4). We then verified the mRNA expression of MMP12 in two other datasets (GSE137268 and GSE74075) via ROC curve estimates and our induced sputum samples using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Finally, we explored the correlation between MMP12 with asthmatic eosinophilic-related indicators. RESULTS We obtained the top ten hub genes, namely, CCL17, CCL2, CSF1, CCL22, CCR3, CD69, FCGR2B, CD1C, CD1E, and MMP12 via expression profile screening and validation on the GSE76262 dataset. MMP12 was selected as the candidate gene through further validation on GSE137268 and GSE74075 datasets. Finally, we demonstrated that the mRNA expression of MMP12 is significantly upregulated in induced sputum of asthmatic patients (p<0.05) and significantly correlated with eosinophilic-related indicators (p<0.05). These findings indicated that MMP12 can act as a diagnostic biomarker for asthma. CONCLUSION Our study successfully identified and demonstrated that MMP12 is a potential diagnostic biomarker for asthma due to its high expression and association with eosinophilic-related indicators. The results of this study can provide novel insights into asthmatic diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Fengjia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Weiping Tan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Jia Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Lu Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Lisha Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Canmao Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
39
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
40
|
Choudhary I, Vo T, Paudel K, Yadav R, Mao Y, Patial S, Saini Y. Postnatal Ozone Exposure Disrupts Alveolar Development, Exaggerates Mucoinflammatory Responses, and Suppresses Bacterial Clearance in Developing Scnn1b-Tg + Mice Lungs. THE JOURNAL OF IMMUNOLOGY 2021; 207:1165-1179. [PMID: 34330754 DOI: 10.4049/jimmunol.2001286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Increased levels of ambient ozone, one of the six criteria air pollutants, result in respiratory tract injury and worsening of ongoing lung diseases. However, the effect of ozone exposure on the respiratory tract undergoing active lung development and simultaneously experiencing mucoinflammatory lung diseases, such as cystic fibrosis, remains unclear. To address these questions, we exposed Scnn1b transgenic (Scnn1b-Tg+) mice, a mouse model of cystic fibrosis-like lung disease, and littermate wild-type (WT) mice to ozone from postnatal days (PND) 3-20 and examined the lung phenotypes at PND21. As compared with filtered air (FA)-exposed WT mice, the ozone-exposed WT mice exhibited marked alveolar space enlargement, in addition to significant eosinophilic infiltration, type 2 inflammation, and mucous cell metaplasia. Ozone-exposed Scnn1b-Tg+ mice also exhibited significantly increased alveolar space enlargement, which was also accompanied by exaggerated granulocytic infiltration, type 2 inflammation, and a greater degree of mucus obstruction. The alveolar space enlargement in ozone-exposed WT, FA-exposed Scnn1b-Tg+, and ozone-exposed Scnn1b-Tg+ mice was accompanied by elevated levels of MMP12 protein in macrophages and Mmp12 mRNA in the lung homogenates. Finally, although bacterial burden was largely resolved by PND21 in FA-exposed Scnn1b-Tg+ mice, ozone-exposed Scnn1b-Tg+ mice exhibited compromised bacterial clearance, which was also associated with increased levels of IL-10, an immunosuppressive cytokine, and marked mucus obstruction. Taken together, our data show that ozone exposure results in alveolar space remodeling during active phases of lung development and markedly exaggerates the mucoinflammatory outcomes of pediatric-onset lung disease, including bacterial infections, granulocytic inflammation, mucus obstruction, and alveolar space enlargement.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Thao Vo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Kshitiz Paudel
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Radha Yadav
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yun Mao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
41
|
Hult EM, Gurczynski SJ, Moore BB. M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2021; 321:L518-L532. [PMID: 34231378 DOI: 10.1152/ajplung.00107.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.
Collapse
Affiliation(s)
- Elissa M Hult
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
42
|
Zastrzeżyńska W, Bazan-Socha S, Przybyszowski M, Gawlewicz-Mroczka A, Jakieła B, Plutecka H, Zaręba L, Musiał J, Okoń K, Sładek K, Soja J. Effect of omalizumab on bronchoalveolar lavage matrix metalloproteinases in severe allergic asthma. J Asthma 2021; 59:1087-1094. [PMID: 33764254 DOI: 10.1080/02770903.2021.1903917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Airway inflammation in asthma is accompanied by reconstruction of the bronchial wall extracellular matrix that most likely occurs with a contribution of matrix metalloproteinases (MMPs). Recently we have reported that omalizumab may decrease reticular basement membrane (RBM) thickness together with fibronectin deposits in asthmatic airways, although mechanisms involved are unknown. OBJECTIVE In the present study, we have investigated the impact of omalizumab on MMPs concentrations in bronchoalveolar lavage fluid (BAL) of asthmatic subjects in relation to airway remodeling changes in histology. PATIENTS AND METHODS The study group consisted of 13 severe allergic asthmatics treated with omalizumab for at least 12 months. In each subject, clinical and laboratory parameters, bronchoscopy with BAL, and endobronchial biopsy were evaluated before and after the biologic therapy. RBM thickness, fibronectin, and collagen deposits in bronchial mucosa specimens were analyzed in histology. The investigations also included BAL cytology and BAL concentrations of MMP-2, -3, and -9. RESULTS Omalizumab was related to a decrease in all measured MMPs in BAL (p < 0.001, each), although such declines were not observed in each patient. The depletions were associated with a lower asthma exacerbation rate and better asthma control. Interestingly, patients who showed a decline in at least one MMP (n = 10, 77%) were characterized by a higher decrease in the RBM thickness (-1.61 [-2.02 to -0.6] vs. -0.06 [-0.09 to +3.3], p = 0.03). Likewise, individuals with lower concentrations of MMP-9 after omalizumab (n = 7, 58%) had a greater reduction in the RBM layer as compared to those with steady MMP-9 levels (-1.8 [-2.4 to -1.14] vs. -0.13 [-0.6 to -0.06] μm, p = 0.03). Moreover, the latter group also had unfavorable higher collagen I accumulation after biologic (42 [20 to 55] vs. 0 [-10 to 20]%, respectively, p = 0.03). Higher concentrations of MMPs in BAL at baseline were related to the lower systemic steroid dose and better omalizumab response concerning the decline in RBM thickness. CONCLUSION Our data suggest that omalizumab therapy is associated with decreased BAL MMPs concentration in the subgroup of asthma patients. The decline was linked with a reduction in the RBM thickness what might play a beneficial role in airway remodeling.
Collapse
Affiliation(s)
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Przybyszowski
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Gawlewicz-Mroczka
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Plutecka
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lech Zaręba
- Interdisciplinary Centre for Computational Modelling, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Jacek Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
43
|
Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, Krupska I, Matsumoto R, Poon MML, Idzikowski E, Morris SE, Pasin C, Yates AJ, Ku A, Chait M, Davis-Porada J, Guo XV, Zhou J, Steinle M, Mackay S, Saqi A, Baldwin MR, Sims PA, Farber DL. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021; 54:797-814.e6. [PMID: 33765436 PMCID: PMC7951561 DOI: 10.1016/j.immuni.2021.03.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Izabela Krupska
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sinead E Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chloé Pasin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amy Ku
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Chait
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Davis-Porada
- Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Xinzheng V Guo
- Human Immune Monitoring Core, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT 06405, USA
| | | | - Sean Mackay
- IsoPlexis Corporation, Branford, CT 06405, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew R Baldwin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Wang Y, Meagher RB, Ambati S, Cheng H, Ma P, Phillips BG. Patients with Obstructive Sleep Apnea Have Altered Levels of Four Cytokines Associated with Cardiovascular and Kidney Disease, but Near Normal Levels with Airways Therapy. Nat Sci Sleep 2021; 13:457-466. [PMID: 33790678 PMCID: PMC8006954 DOI: 10.2147/nss.s282869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) results in chronic intermittent hypoxia leading to systemic inflammation, increases in pro-inflammatory cytokines TNF-Alpha and IL-6, and increased risk for a number of life threatening medical disorders such as cardiovascular and kidney disease. METHODS A BioPlex Array was used to examined the serum levels of four cytokines also expressed in endothelial cells and/or macrophages and associated with cardiovascular and kidney disease risk. RESULTS Relative to untreated OSA patients, airways treated OSA patients had a 5.4-fold higher median level of MMP2 (p = 9.1x10-11), a 1.4-fold higher level of TWEAK (p = 1.8x10-7), a 1.7-fold higher level of CD163 (p = 1.4x10-6), but a 2.0-fold lower level of MMP3 (p = 7.9x10-7). Airway treatment resulted in levels more similar to or indistinguishable from control subjects. Both t-SNE or UMAP analysis of the global structure of these multi-dimensional data revealed two data clusters, one populated primarily with data for controls and most airways treated OSA patients and a second populated primarily with data for OSA patients. DISCUSSION We discuss a concept in which the aberrant levels of these cytokines in untreated OSA patients may represent a chronic response after years of experiencing intermittent nightly hypoxia, which attenuated the acute response to hypoxia. A balanced therapeutic correction of the aberrant levels of these cytokines may limit the progression of CVD and kidney disease in OSA patients.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Huimin Cheng
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
46
|
Chen G, Ge D, Zhu B, Shi H, Ma Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J Int Med Res 2021; 48:300060520919592. [PMID: 32339071 PMCID: PMC7219017 DOI: 10.1177/0300060520919592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to examine the changes and significance of matrix metalloproteinase 9 (MMP9), MMP2, tissue inhibitor of metalloproteinase 1 (TIMP1), and TIMP2 in rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Wistar rats were randomly divided into a control group (injected with saline) and an ALI group (injected with LPS), then subdivided into four time points (2, 6, 12, and 24 hours). Serum tumor necrosis factor alpha and interleukin-6 levels were detected by ELISA to investigate the inflammatory reaction after LPS injection. The degree of ALI was determined by hematoxylin–eosin staining of lung tissue, the lung wet/dry weight ratio, and pulmonary permeability index. Changes in lung MMP and TIMP protein and mRNA levels were detected by western blotting and quantitative real-time polymerase chain reaction. Results Changes in the ratios of MMP9/TIMP1 and MMP2/TIMP2 were consistent with and strongly positively associated with the lung wet/dry weight ratio, the pulmonary permeability index, and serum tumor necrosis factor alpha and interleukin-6 levels in the ALI group. Conclusion ALI induced by LPS may be related to upregulation of MMP9/TIMP1 and MMP2/TIMP2 ratios.
Collapse
Affiliation(s)
- Guobing Chen
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Ge
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Pediatric Key Laboratory of Xiamen, Xiamen, Fujian, China
| | - Bizhen Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huixuan Shi
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
47
|
Application of text mining to develop AOP-based mucus hypersecretion genesets and confirmation with in vitro and clinical samples. Sci Rep 2021; 11:6091. [PMID: 33731770 PMCID: PMC7969622 DOI: 10.1038/s41598-021-85345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Mucus hypersecretion contributes to lung function impairment observed in COPD (chronic obstructive pulmonary disease), a tobacco smoking-related disease. A detailed mucus hypersecretion adverse outcome pathway (AOP) has been constructed from literature reviews, experimental and clinical data, mapping key events (KEs) across biological organisational hierarchy leading to an adverse outcome. AOPs can guide the development of biomarkers that are potentially predictive of diseases and support the assessment frameworks of nicotine products including electronic cigarettes. Here, we describe a method employing manual literature curation supported by a focused automated text mining approach to identify genes involved in 5 KEs contributing to decreased lung function observed in tobacco-related COPD. KE genesets were subsequently confirmed by unsupervised clustering against 3 different transcriptomic datasets including (1) in vitro acute cigarette smoke and e-cigarette aerosol exposure, (2) in vitro repeated incubation with IL-13, and (3) lung biopsies from COPD and healthy patients. The 5 KE genesets were demonstrated to be predictive of cigarette smoke exposure and mucus hypersecretion in vitro, and less conclusively predict the COPD status of lung biopsies. In conclusion, using a focused automated text mining and curation approach with experimental and clinical data supports the development of risk assessment strategies utilising AOPs.
Collapse
|
48
|
Prabha A, Lokesh KS, Chaya SK, Jayaraj BS, Malamardi S, Subbarao MVSST, Beck SC, Krishna MT, Mahesh PA. Pilot study investigating diagnostic utility of serum MMP-1 and TGF-β1 in asthma in 'real world' clinical practice in India. J Clin Pathol 2021; 75:222-225. [PMID: 33597224 DOI: 10.1136/jclinpath-2020-206821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 11/03/2022]
Abstract
AIMS At a tissue level, matrix metalloproteinase-1 (MMP-1) and transforming growth factor-beta 1 (TGF-β1) contribute to allergic airway inflammation, tissue remodelling and disease severity in asthma via different pathways. Their peripheral blood levels and role in diagnosis and therapeutic monitoring has not been adequately explored. We investigated the association between MMP-1 and TGF-β in moderate and severe persistent asthma and evaluated their performance characteristics by constructing receiver operating characteristic curves. METHODS Serum MMP-1 and TGF-β1 were measured using ELISA in 75 adults; moderate persistent asthma (n=25), severe persistent asthma (n=25) and healthy community controls (n=25). Severity of asthma was determined as per Global Initiative for Asthma guidelines. Subjects were followed up for 3 months and treatment responsiveness was assessed by spirometry and symptom response. RESULTS Serum MMP-1 and TGF-β1 were significantly elevated in asthmatics compared with controls (p<0.0001 and p<0.01). While serum MMP-1 was elevated in severe asthma compared with moderate asthma (p<0.05), TGF-β1 was lower in severe asthma compared with moderate asthma (p<0.05). The performance characteristics of serum MMP-1 and TGF-β1 were promising in this cohort with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 82%, 100%, 100% and 99% and 62%, 100%, 100% and 97.8%, respectively; sensitivity of MMP-1 being superior. CONCLUSION This pilot study showed that serum MMP-1 and TGF-β1 levels are elevated in chronic asthma and may serve as a useful adjunct in differentiating moderate from severe asthma. A large multicentre study in well characterised cohort of asthmatics is warranted to investigate their role in diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Aswani Prabha
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - Komarla Sundararaja Lokesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - S K Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - B S Jayaraj
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - M V S S T Subbarao
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| | - Sarah C Beck
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India .,Special Interest Group - Environment and Respiratory Diseases, JSS Academy of Higher Education & Research (JSSAHER), Mysore, Karnataka, India
| |
Collapse
|
49
|
Trivedi A, Khan MA, Bade G, Talwar A. Orchestration of Neutrophil Extracellular Traps (Nets), a Unique Innate Immune Function during Chronic Obstructive Pulmonary Disease (COPD) Development. Biomedicines 2021; 9:53. [PMID: 33435568 PMCID: PMC7826777 DOI: 10.3390/biomedicines9010053] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Morbidity, mortality and economic burden caused by chronic obstructive pulmonary disease (COPD) is a significant global concern. Surprisingly, COPD is already the third leading cause of death worldwide, something that WHO had not predicted to occur until 2030. It is characterized by persistent respiratory symptoms and airway limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles of gases. Neutrophil is one of the key infiltrated innate immune cells in the lung during the pathogenesis of COPD. Neutrophils during pathogenic attack or injury decide to undergo for a suicidal death by releasing decondensed chromatin entangled with antimicrobial peptides to trap and ensnare pathogens. Casting neutrophil extracellular traps (NETs) has been widely demonstrated to be an effective mechanism against invading microorganisms thus controlling overwhelming infections. However, aberrant and massive NETs formation has been reported in several pulmonary diseases, including chronic obstructive pulmonary disease. Moreover, NETs can directly induce epithelial and endothelial cell death resulting in impairing pulmonary function and accelerating the progression of the disease. Therefore, understanding the regulatory mechanism of NET formation is the need of the hour in order to use NETs for beneficial purpose and controlling their involvement in disease exacerbation. For example, DNA neutralization of NET proteins using protease inhibitors and disintegration with recombinant human DNase would be helpful in controlling excess NETs. Targeting CXC chemokine receptor 2 (CXCR2) would also reduce neutrophilic inflammation, mucus production and neutrophil-proteinase mediated tissue destruction in lung. In this review, we discuss the interplay of NETs in the development and pathophysiology of COPD and how these NETs associated therapies could be leveraged to disrupt NETopathic inflammation as observed in COPD, for better management of the disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Meraj A. Khan
- Translational Medicine, SickKids Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India; (A.T.); (G.B.)
| |
Collapse
|
50
|
Abd-Elaziz K, Voors-Pette C, Wang KL, Pan S, Lee Y, Mao J, Li Y, Chien B, Lau D, Diamant Z. First-in-Man Safety, Tolerability, and Pharmacokinetics of a Novel and Highly Selective Inhibitor of Matrix Metalloproteinase-12, FP-025: Results from Two Randomized Studies in Healthy Subjects. Clin Drug Investig 2020; 41:65-76. [PMID: 33331980 DOI: 10.1007/s40261-020-00981-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Matrix metalloproteinases (MMPs) are proteases with different biological and pathological activities, and many have been linked to several diseases. Targeting individual MMPs may offer a safer therapeutic potential for several diseases. We assessed the safety, tolerability, and pharmacokinetics of FP-025, a novel, highly selective oral matrix metalloproteinase-12 inhibitor, in healthy subjects. METHODS Two randomized, double-blind, placebo-controlled studies were conducted. Study I was a first-in-man study, evaluating eight single ascending doses (SADs) (50-800 mg) in two formulations: i.e., neat FP-025 in capsule (API-in-Capsule) and in an amorphous solid dispersion (ASD-in-Capsule) formulation. In Study II, three multiple ascending doses (MADs) (100, 200, and 400 mg, twice daily) of FP-025 (ASD-in-Capsule) were administered for 8 days, including a food-effect evaluation. RESULTS Ninety-six subjects were dosed. Both formulations were well tolerated with one adverse event (AE) reported in the 800 mg API-in-Capsule SAD group and seven AEs throughout the MAD groups. The exposure to FP-025 was low with the API-in-Capsule formulation; it increased dose-dependently with the ASD-in-Capsule formulation, with which exposure to FP-025 increased in a greater-than-dose-proportional manner at lower doses (≤ 100 mg) but less proportionally at higher doses. The elimination half-life (t1/2) was between 6 (Study I) and 8 h (Study II). Accumulation of FP-025 was approximately 1.7-fold in the MAD study. Food intake delayed the rate of absorption, but without effect in the extent of absorption or bioavailability. CONCLUSION FP-025 was well tolerated and showed a favorable pharmacokinetic profile following ASD-in-Capsule dosing. Efficacy studies in target patient populations, including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis, are warranted. TRIAL REGISTRATION NUMBER www.clinicaltrials.gov : NCT02238834 (Study I); NCT03304964 (Study II). Trial registration date: Study I was registered on 12 September 2014 while study II was registered on 9 October 2017.
Collapse
Affiliation(s)
- Khalid Abd-Elaziz
- Department of Clinical Pharmacology, QPS-Netherlands, Groningen, The Netherlands.
| | | | - Kang-Ling Wang
- General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sandy Pan
- QPS Taiwan, Taipei City, 115, Taiwan
| | - Yisheng Lee
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - John Mao
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Yuhua Li
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Benjamin Chien
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - David Lau
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Zuzana Diamant
- Department of Clinical Pharmacology, QPS-Netherlands, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands.,Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|