1
|
Lietz S, Sommer A, Sokolowski LM, Kling C, Rodriguez Alfonso AA, Preising N, Alpízar-Pedraza D, King J, Streit L, Schröppel B, van Erp R, Barth E, Schneider M, Münch J, Michaelis J, Ständker L, Wiese S, Barth H, Pulliainen AT, Scanlon K, Ernst K. Alpha-1 antitrypsin inhibits pertussis toxin. J Biol Chem 2024:107950. [PMID: 39481600 DOI: 10.1016/j.jbc.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Pertussis (whooping cough) is a vaccine-preventable but re-emerging, highly infectious respiratory disease caused by Bordetella pertussis. There are currently no effective treatments for pertussis, complicating care for non-vaccinated individuals, especially newborns. Disease manifestations are predominantly caused by pertussis toxin (PT), a pivotal virulence factor classified as an ADP-ribosylating AB-type protein toxin. In this work, an unbiased approach using peptide libraries, bioassay-guided fractionation and mass spectrometry revealed α1-antitrypsin (α1AT) as a potent PT inhibitor. Biochemistry-, cell culture- and molecular modeling-based in vitro experimentation demonstrated that the α1AT mode of action is based on blocking PT-binding to the host target cell surface. In the infant mouse model of severe pertussis, α1AT expression was reduced upon infection. Further, systemic administration of α1AT significantly reduced B. pertussis-induced leukocytosis, which is a hallmark of infant infection and major risk factor for fatal pertussis. Taken together our data demonstrates that α1AT is a novel PT inhibitor and that further evaluation and development of α1AT as a therapeutic agent for pertussis is warranted. Importantly, purified α1AT is already in use clinically as an intravenous augmentation therapy for those with genetic α1AT deficiency and could be repurposed to clinical management of pertussis.
Collapse
Affiliation(s)
- Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anja Sommer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Lena-Marie Sokolowski
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Carolin Kling
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Armando A Rodriguez Alfonso
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany; Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Daniel Alpízar-Pedraza
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana 10400, Cuba
| | - Jaylyn King
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lisa Streit
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Bernd Schröppel
- Internal Medicine Clinic, Nephrology Section Core Facility, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rene van Erp
- Internal Medicine Clinic, Nephrology Section Core Facility, Ulm University Medical Center, 89081 Ulm, Germany
| | - Eberhard Barth
- Anesthesiology an Intensive Medicine Clinic, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marion Schneider
- Anesthesiology an Intensive Medicine Clinic, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Arto T Pulliainen
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
2
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
3
|
Küper D, Klos J, Kühl F, Attili R, Brand K, Weissenborn K, Lichtinghagen R, Huber R. Influence of Anticoagulants and Heparin Contaminants on the Suitability of MMP-9 as a Blood-Derived Biomarker. Int J Mol Sci 2024; 25:10106. [PMID: 39337591 PMCID: PMC11432500 DOI: 10.3390/ijms251810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In contrast to other common anticoagulants such as citrate and low-molecular-weight heparin (LMWH), high-molecular-weight heparin (HMWH) induces the expression of matrix metalloproteinase (MMP)-9, which is also measured as a biomarker for stroke in blood samples. Mechanistically, HMWH-stimulated T cells produce cytokines that induce monocytic MMP-9 expression. Here, the influence of further anticoagulants (Fondaparinux, Hirudin, and Alteplase) and the heparin-contaminating glycosaminoglycans (GAG) hyaluronic acid (HA), dermatan sulfate (DS), chondroitin sulfate (CS), and over-sulfated CS (OSCS) on MMP-9 was analyzed to assess its suitability as a biomarker under various conditions. Therefore, starved Jurkat T cells were stimulated with anticoagulants/contaminants. Subsequently, starved monocytic THP-1 cells were incubated with the conditioned Jurkat supernatant, and MMP-9 mRNA levels were monitored (quantitative (q)PCR). Jurkat-derived mediators secreted in response to anticoagulants/contaminants were also assessed (proteome profiler array). The supernatants of HMWH-, Hirudin-, CS-, and OSCS-treated Jurkat cells comprised combinations of activating mediators and led to a significant (in the case of OSCS, dramatic) MMP-9 induction in THP-1. HA induced MMP-9 only in high concentrations, while LMWH, Fondaparinux, Alteplase, and DS had no effect. This indicates that depending on molecular weight and charge (but independent of anticoagulant activity), anticoagulants/contaminants provoke the expression of T-cell-derived cytokines/chemokines that induce monocytic MMP-9 expression, thus potentially impairing the diagnostic validity of MMP-9.
Collapse
Affiliation(s)
- Daniela Küper
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Josefin Klos
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Friederike Kühl
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Rozan Attili
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
- Faculty of Pharmacy and Medical Sciences, Hebron University, Hebron 711, Palestine
| | - Korbinian Brand
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| |
Collapse
|
4
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
5
|
Yu Y, Song Y, Zhao Y, Wang N, Wei B, Linhardt RJ, Dordick JS, Zhang F, Wang H. Quality control, safety assessment and preparation approaches of low molecular weight heparin. Carbohydr Polym 2024; 339:122216. [PMID: 38823901 DOI: 10.1016/j.carbpol.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.
Collapse
Affiliation(s)
- Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yue Song
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yunjie Zhao
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Ningning Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China.
| |
Collapse
|
6
|
Wang X, Ma Y, Zuo C, Zhao Z, Ma R, Wang L, Fang Y, Zhang Y, Wu X. Discovery and Characterization of Panaxatriol as a Novel Thrombin Inhibitor from Panax notoginseng Using a Combination of Computational and Experimental Approaches. PLANTA MEDICA 2024; 90:801-809. [PMID: 38838717 DOI: 10.1055/a-2339-2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Thrombin is a crucial enzyme in the coagulation cascade, and inhibitors of thrombin have been extensively studied as potential antithrombotic agents. The objective of this study was to identify natural inhibitors of thrombin from Panax notoginseng and evaluate their biological activity in vitro and binding characteristics. A combined approach involving molecular docking, thrombin inhibition assays, surface plasmon resonance, and molecular dynamics simulation was utilized to identify natural thrombin inhibitors. The results demonstrated that panaxatriol directly inhibits thrombin, with an IC50 of 10.3 µM. Binding studies using surface plasmon resonance revealed that panaxatriol interacts with thrombin, with a KD value of 7.8 µM. Molecular dynamics analysis indicated that the thrombin-panaxatriol system reached equilibrium rapidly with minimal fluctuations, and the calculated binding free energy was - 23.8 kcal/mol. The interaction between panaxatriol and thrombin involves the amino acid residues Glu146, Glu192, Gly216, Gly219, Tyr60A, and Trp60D. This interaction provides a mechanistic basis for further optimizing panaxatriol as a thrombin inhibitor. Our study has shown that panaxatriol serves as a direct thrombin inhibitor, laying the groundwork for further research and development of novel thrombin inhibitors.
Collapse
Affiliation(s)
- Xing Wang
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuqing Ma
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunfang Zuo
- Pharmacy Department, The 989th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Luoyang, China
| | - Zixi Zhao
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Ma
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lele Wang
- Key Laboratory of Ethnomedicine (Ministry of Education), School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuzhen Fang
- Key Laboratory of Ethnomedicine (Ministry of Education), School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuxin Zhang
- Key Laboratory of Ethnomedicine (Ministry of Education), School of Pharmacy, Minzu University of China, Beijing, China
| | - Xia Wu
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Xi X, Zhang W, Hu L, Xu R, Wang Y, Du G, Chen J, Kang Z. Enzymatic construction of a library of even- and odd-numbered heparosan oligosaccharides and their N-sulfonated derivatives. Int J Biol Macromol 2024; 264:130501. [PMID: 38442831 DOI: 10.1016/j.ijbiomac.2024.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Low-molecular-weight heparins (LMWHs), especially the specific-sized heparin oligosaccharides, are attractive for the therapeutic applications, while their synthesis remains challenging. In the present study, unsaturated even-numbered heparosan oligosaccharides were firstly prepared by cleaving high-molecular-weight heparosan using recombinant heparinase III (HepIII). The conversion rates of the unsaturated disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides were 33.9 %, 47.9 %, 78.7 %, 71.8 %, and 53.4 %, respectively. After processing the aforementioned heparosan oligosaccharides with the Δ4,5 unsaturated glycuronidase, saturated odd-numbered heparosan trisaccharides, pentasaccharides, heptasaccharides, and nonasaccharides were produced. It was observed that among them, the pentasaccharides were the smallest units of saturated odd-numbered oligosaccharides recognized by HepIII. These oligosaccharides were further catalyzed with bifunctional heparan sulfate N-deacetylase/N-sulfotransferase (NDST) under optimized reaction conditions. It was found that the tetrasaccharide was defined as the smallest recognition unit for NDST, obtaining the N-sulfonated heparosan tetrasaccharides, pentasaccharides, and hexasaccharides with a single sulfonate group, as well as N-sulfonated heparosan heptasaccharides, octasaccharides, and nonasaccharides with multiple sulfonate groups. These results provide an easy pathway for constructing a library of specific-sized N-sulfonated heparosan oligosaccharides that can be used as the substrates for the enzymatic synthesis of LMWHs and heparin oligosaccharides, shedding new light on the substrate preference of NDST.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Gericke M, Amaral AJR, Budtova T, De Wever P, Groth T, Heinze T, Höfte H, Huber A, Ikkala O, Kapuśniak J, Kargl R, Mano JF, Másson M, Matricardi P, Medronho B, Norgren M, Nypelö T, Nyström L, Roig A, Sauer M, Schols HA, van der Linden J, Wrodnigg TM, Xu C, Yakubov GE, Stana Kleinschek K, Fardim P. The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydr Polym 2024; 326:121633. [PMID: 38142079 DOI: 10.1016/j.carbpol.2023.121633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/25/2023]
Abstract
Polysaccharides are among the most abundant bioresources on earth and consequently need to play a pivotal role when addressing existential scientific challenges like climate change and the shift from fossil-based to sustainable biobased materials. The Research Roadmap 2040 of the European Polysaccharide Network of Excellence (EPNOE) provides an expert's view on how future research and development strategies need to evolve to fully exploit the vast potential of polysaccharides as renewable bioresources. It is addressed to academic researchers, companies, as well as policymakers and covers five strategic areas that are of great importance in the context of polysaccharide related research: (I) Materials & Engineering, (II) Food & Nutrition, (III) Biomedical Applications, (IV) Chemistry, Biology & Physics, and (V) Skills & Education. Each section summarizes the state of research, identifies challenges that are currently faced, project achievements and developments that are expected in the upcoming 20 years, and finally provides outlines on how future research activities need to evolve.
Collapse
Affiliation(s)
- Martin Gericke
- Friedrich Schiller University of Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Centre of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Adérito J R Amaral
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tatiana Budtova
- MINES Paris, PSL University, CEMEF - Center for Materials Forming, UMR CNRS 7635, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Pieter De Wever
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Thomas Heinze
- Friedrich Schiller University of Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Centre of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Anton Huber
- University Graz, Inst.f. Chem./PS&HC - Polysaccharides & Hydrocolloids, Heinrichstrasse 28, 8010 Graz, Austria
| | - Olli Ikkala
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| | - Janusz Kapuśniak
- Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Department of Dietetics and Food Studies, Waszyngtona 4/8, 42-200 Czestochowa, Poland
| | - Rupert Kargl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Pietro Matricardi
- Sapienza University of Rome, Department of Drug Chemistry and Technologies, P.le A. Moro 5, 00185 Rome, Italy
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Magnus Norgren
- Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, 41296 Gothenburg, Sweden; Aalto University, Department of Bioproducts and Biosystems, 00076 Aalto, Finland
| | - Laura Nyström
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Michael Sauer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | | | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - Chunlin Xu
- Åbo Akademi University, Laboratory of Natural Materials Technology, Henrikinkatu 2, Turku/Åbo, Finland
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, Food Structure and Biomaterials Group, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Pedro Fardim
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
9
|
Ding Y, Han B, Yuan B, Nie M, Liu R, Zhao M, Wang H. Occurrence rates and risk factors of in-hospital venous thromboembolism, major bleeding, and death in patients receiving fondaparinux after orthopedic surgery or trauma surgery. Ir J Med Sci 2023; 192:2973-2979. [PMID: 36787027 PMCID: PMC10692026 DOI: 10.1007/s11845-023-03289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
AIM Fondaparinux is a synthetic anticoagulant that inhibits thrombosis by suppressing factor Xa. The efficacy of fondaparinux for orthopedic surgeries has been revealed by several foreign studies; however, relevant evidence in Chinese patients is lacking. This study intended to investigate the occurrence rate and risk factors of in-hospital venous thromboembolism (VTE), major bleeding, and death in patients receiving fondaparinux after orthopedic surgery or trauma surgery. METHODS Totally, 1258 patients who received fondaparinux after orthopedic surgery or trauma surgery were retrospectively enrolled. Meanwhile, in-hospital VTE, major bleeding, and death were obtained for assessment. Besides, adverse events were recorded. RESULTS The occurrence rates of in-hospital VTE, major bleeding, and death were 2.5%, 21.8%, and 0.0%, respectively. The multivariate logistic regression analysis revealed that only age (> 60 years vs. ≤ 60 years) (odd ratios (OR) = 3.380, P = 0.013) was independently correlated with increased risk of in-hospital VTE. Additionally, osteoarthritis diagnosis (OR = 3.826, P < 0.001), femoral head necrosis diagnosis (OR = 1.809, P = 0.034), hip replacement (vs. internal fracture fixation) (OR = 2.199, P = 0.007), knee replacement (vs. internal fracture fixation) (OR = 2.781, P = 0.002), and serum creatinine (abnormal vs. normal) (OR = 1.677, P = 0.012) were independently linked to a higher risk of in-hospital major bleeding. Moreover, the common adverse events included pain (56.6%), wound bleeding (23.0%), increased drainage (5.2%), etc. CONCLUSION: Fondaparinux realizes low occurrence rates of in-hospital VTE and major bleeding with tolerable adverse events in patients receiving orthopedic surgery or trauma surgery.
Collapse
Affiliation(s)
- Ya Ding
- Department of Orthopedics, Anhui Spinal Deformities Clinical Medical Research Center, Fuyang People's Hospital, No. 501 Sanqing Road, Fuyang, Anhui, 236000, China
| | - Bowen Han
- Department of Orthopedics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bin Yuan
- Department of Orthopedics, Xinyi People's Hospital, Xuzhou, 221400, China
| | - Mingjun Nie
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Renyang Liu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Ming Zhao
- Department of Traumatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Hongliang Wang
- Department of Orthopedics, Anhui Spinal Deformities Clinical Medical Research Center, Fuyang People's Hospital, No. 501 Sanqing Road, Fuyang, Anhui, 236000, China.
| |
Collapse
|
10
|
Haibier A, Yusufu A, Lin H, Kayierhan A, Abudukelimu Y, Abudurexiti T. Efficacy and Safety Study of Low-Molecular-Weight Heparin and Fondaparinux Sodium After Hip Arthroplasty: A Retrospective Cohort Study. Orthop Res Rev 2023; 15:253-261. [PMID: 38033454 PMCID: PMC10684995 DOI: 10.2147/orr.s431372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Background Low molecular heparin(LMWH) and sodium sulfadiazine heparin(FPX) are commonly used to prevent deep vein thrombosis(DVT) after total hip arthroplasty(THA). In this study, we compared the role of these drugs in preventing DVT after THA. Methods Patients who underwent unilateral THA at the Sixth Affiliated Hospital of Xinjiang Medical University from April 2020 to December 2022 were retrospectively analyzed for inclusion in this study. According to the anticoagulant drugs used, the patients were divided into LMWH group (n=106) and FPX group (n=97). Changes in perioperative coagulation-related indices, hemoglobin, blood loss And the postoperative complications. Results The preoperative indexes of the two groups of patients, the difference was not statistically significant (P>0.05); the indexes of Intraoperative blood loss, Visible blood loss, Hidden blood loss, and Total blood loss of the two groups of patients were compared, and the difference was not significant (P>0.05); PT activity and INR in the LMWH group were significantly lower than those in the FPX group on the 1st and 5th postoperative days, and the differences were significant (P<0.05); Platelets, Hemoglobin, Hematocrit, D-dimer, and Fibrinogen were compared between the two groups on the 1st and 5th postoperative days, and the differences were not significant (P<0.05). The differences were not significant (P>0.05). The differences in blood transfusion rate and blood volume between the two groups were not significant (P>0.05); the total hospitalization cost of the LMWH group was significantly lower than that of the FPX group, and the difference was significant (P<0.05); and the differences in the incidence of postoperative complications between the two groups were not significant (P>0.05). Conclusion In this study, we found that the efficacy and safety of FPX and LMWH in preventing VTE after THA were basically the same, and the total cost of hospitalization in the LMWH group was significantly lower than that in the FPX group; however, due to the limited inclusion of the sample size, high-quality, large-sample, long-term follow-up clinical studies are necessary.
Collapse
Affiliation(s)
- Abuduwupuer Haibier
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Alimujiang Yusufu
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Hang Lin
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Aiben Kayierhan
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yimuran Abudukelimu
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Tuerhongjiang Abudurexiti
- Minimally Invasive Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
- Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
11
|
Rodríguez-Soto MA, Suárez Vargas N, Ayala-Velásquez M, Aragón-Rivera AM, Ostos C, Cruz JC, Muñoz Camargo C, Kim S, D’Amore A, Wagner WR, Briceño JC. Polyester urethane urea (PEUU) functionalization for enhanced anti-thrombotic performance: advancing regenerative cardiovascular devices through innovative surface modifications. Front Bioeng Biotechnol 2023; 11:1257778. [PMID: 37799814 PMCID: PMC10548217 DOI: 10.3389/fbioe.2023.1257778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Thrombogenesis, a major cause of implantable cardiovascular device failure, can be addressed through the use of biodegradable polymers modified with anticoagulating moieties. This study introduces a novel polyester urethane urea (PEUU) functionalized with various anti-platelet deposition molecules for enhanced antiplatelet performance in regenerative cardiovascular devices. Methods: PEUU, synthesized from poly-caprolactone, 1,4-diisocyanatobutane, and putrescine, was chemically oxidized to introduce carboxyl groups, creating PEUU-COOH. This polymer was functionalized in situ with polyethyleneimine, 4-arm polyethylene glycol, seleno-L-cystine, heparin sodium, and fondaparinux. Functionalization was confirmed using Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Bio-compatibility and hemocompatibility were validated through metabolic activity and hemolysis assays. The anti-thrombotic activity was assessed using platelet aggregation, lactate dehydrogenase activation assays, and scanning electron microscopy surface imaging. The whole-blood clotting time quantification assay was employed to evaluate anticoagulation properties. Results: Results demonstrated high biocompatibility and hemocompatibility, with the most potent anti-thrombotic activity observed on pegylated surfaces. However, seleno-L-cystine and fondaparinux exhibited no anti-platelet activity. Discussion: The findings highlight the importance of balancing various factors and addressing challenges associated with different approaches when developing innovative surface modifications for cardiovascular devices.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Ostos
- Group CATALAD, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
12
|
Napolitano M, Siragusa S. The Role of Injectables in the Treatment and Prevention of Cancer-Associated Thrombosis. Cancers (Basel) 2023; 15:4640. [PMID: 37760609 PMCID: PMC10526875 DOI: 10.3390/cancers15184640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer-associated thrombosis (CAT) is a leading cause of death among patients with cancer. CAT can manifest itself as venous thromboembolism (VTE), in the form of deep vein thrombosis or pulmonary embolism, or arterial thromboembolism. The pathophysiology of CAT is complex and depends on cancer-, patient-, treatment- and biomarkers-related factors. Treatment of VTE in patients with cancer is complex and includes three major classes of anticoagulant agents: heparin and its derivatives, e.g., low molecular weight heparins, direct oral anticoagulants (DOACs), and vitamin K inhibitors. Given the tremendous heterogeneity of clinical situations in patients with cancer and the challenges of CAT, there is no single universal treatment option for patients suffering from or at risk of CAT. Initial studies suggested that patients seemed to prefer an anticoagulant that would not interfere with their cancer treatment, suggesting the primacy of cancer over VTE, and favoring efficacy and safety over convenience of route of administration. Recent studies show that when the efficacy and safety aspects are similar, patients prefer the oral route of administration. Despite this, injectables are a valid option for many patients with cancer.
Collapse
Affiliation(s)
- Mariasanta Napolitano
- Haematology Unit, Thrombosis and Haemostasis Reference Regional Center, University of Palermo, 90121 Palermo, Italy;
| | | |
Collapse
|
13
|
Chen PB, Wang J, Wang L, Xiong SL, Wang C, Yang X, Li CM, Wang Q, Zhang YC. Study on the safety and effectiveness of low-dose vs. regular-dose fondaparinux in preventing venous thromboembolism prophylaxis following total knee arthroplasty. Front Cardiovasc Med 2023; 10:1195322. [PMID: 37485278 PMCID: PMC10359158 DOI: 10.3389/fcvm.2023.1195322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background This study aims to evaluate the effectiveness and safety of low-dose (1.5 mg) fondaparinux for venous thromboembolism (VTE) prophylaxis in patients post-total knee arthroplasty (TKA). Methods We retrospectively identified 314 patients who carried out the primary TKAs and received fondaparinux for VTE chemoprophylaxis between July 2020 and December 2021. A total of 141 TKA patients were excluded according to the exclusion criteria. Two groups of patients were established: the low-dose group included 84 patients who injected 1.5 mg of fondaparinux, and the regular-dose group included 89 patients who injected 2.5 mg of fondaparinux. The pre-operative blood analysis and coagulation assays were performed. The surgical time, the incidence of symptomatic VET, blood loss, wound complication, bleeding, drainage, and mortality of patients were determined and assessed. Results The pre-operative blood analysis, body mass index, sex, age, and coagulation assays of patients in both groups were comparable. In terms of symptomatic pulmonary embolism and deep vein thrombosis, there was no significant difference (variation) between the two groups. However, patients in both groups showed a substantial difference in terms of blood loss, drain volume, wound complication, and transfusion rate. Conclusion In prevention of VET in patients post-TKA, low-dose fondaparin is as effective as conventional dose fondaparinux. A significant decrease in blood loss, post-surgical transfusion rates, and wound complications were detected in patients given low-dose fondaparinux compared to those receiving regular-dose fondaparinux.
Collapse
Affiliation(s)
- Ping-bo Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lei Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shou-liang Xiong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Cong-ming Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yin-chang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
14
|
Wang L, Su Z, Xie C, Li R, Pan W, Xu L, Chen F, Cheng G. Efficacy and safety of fondaparinux in preventing venous thromboembolism in Chinese cancer patients: a single-arm, multicenter, retrospective study. Front Oncol 2023; 13:1165437. [PMID: 37313468 PMCID: PMC10258345 DOI: 10.3389/fonc.2023.1165437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/15/2023] Open
Abstract
Objective Fondaparinux is a synthetic anticoagulant for the prevention of venous thromboembolism (VTE), and its administration in Chinese cancer patients is rarely reported. This study aimed to assess the efficacy and safety of fondaparinux in preventing VTE in Chinese cancer patients. Methods A total of 224 cancer patients who received fondaparinux treatment were reviewed in this single-arm, multicenter, retrospective study. Meanwhile, VTE, bleeding, death, and adverse events of those patients in the hospital and at 1 month after treatment (M1) were retrieved, respectively. Results The in-hospital VTE rate was 0.45% and there was no (0.00%) VTE occurrence at M1. The in-hospital bleeding rate was 2.68%, among which the major bleeding rate was 2.23% and the minor bleeding rate was 0.45%. Moreover, the bleeding rate at M1 was 0.90%, among which both the major and minor bleeding rates were 0.45%. The in-hospital death rate was 0.45% and the death rate at M1 was 0.90%. Furthermore, the total rate of adverse events was 14.73%, including nausea and vomiting (3.13%), gastrointestinal reactions (2.23%), and reduced white blood cells (1.34%). Conclusion Fondaparinux could effectively prevent VTE with low bleeding risk and acceptable tolerance in cancer patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medical Oncology, The Afflicted Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Zhong Su
- Department of Oncology, Shandong Zouping People’s Hospital, Zouping, China
| | - Chunying Xie
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruijun Li
- Department of Medical Oncology, Zhengzhou People’s Hospital, Zhengzhou, China
| | - Wei Pan
- Department of Radiation Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Oncology, Yongkang First People’s Hospital, Yongkang, China
| | - Fei Chen
- Department of Oncology, The Central Hospital of Xiaogan, Xiaogan, China
| | - Gang Cheng
- Department of Medical Oncology, The Afflicted Bozhou Hospital of Anhui Medical University, Bozhou, China
| |
Collapse
|
15
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
16
|
Mirzamohammadi F, Nnamani Silva ON, Leaf RK, Eberlin KR, Valerio IL. Chemoprophylaxis and Management of Venous Thromboembolism in Microvascular Surgery. Semin Plast Surg 2023; 37:57-72. [PMID: 36776808 PMCID: PMC9911223 DOI: 10.1055/s-0042-1760381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
This review aims to highlight the common pharmacological and nonpharmacological interventions utilized for thromboprophylaxis as well as flap salvage in microsurgery. A literature review was conducted in PubMed/National Center for Biotechnology Information, Scopus, Web of Science, and MEDLINE databases. Articles with a focus on thromboprophylaxis in microsurgical procedures spanning head and neck surgery, breast and extremity microvascular reconstruction, deep venous thrombosis/pulmonary embolus in microvascular surgery, and flap thrombosis and salvage were included in this review. The majority of available evidence supports mechanical venous thromboembolism (VTE) prophylaxis in all patients undergoing microsurgery given the presence of multiple risk factors for VTE within this particular patient population. Based on the literature review, addition of VTE chemoprophylactic agents is beneficial and an algorithmic approach to thromboprophylaxis in microsurgery patients and management of patients with thrombosis based on literature review and senior authors' experience is recommended and outlined.
Collapse
Affiliation(s)
- Fatemeh Mirzamohammadi
- Wright State University Plastic Surgery Residency Program, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | | | - Rebecca K. Leaf
- Division of Hematology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kyle R. Eberlin
- Division of Plastic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Ian L. Valerio
- Division of Plastic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Bauersachs RM. Fondaparinux Sodium: Recent Advances in the Management of Thrombosis. J Cardiovasc Pharmacol Ther 2023; 28:10742484221145010. [PMID: 36594404 DOI: 10.1177/10742484221145010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fondaparinux sodium is a chemically synthesized selective factor Xa inhibitor approved for the prevention and treatment of venous thromboembolic events, that is, deep vein thrombosis, pulmonary embolism, and superficial vein thrombosis, in acutely ill (including those affected by COVID-19 or cancer patients) and those undergoing surgeries. Since its approval in 2002, the efficacy and safety of fondaparinux is well demonstrated by many clinical studies, establishing the value of fondaparinux in clinical practice. Some of the advantages with fondaparinux are its chemical nature of synthesis, minimal risk of contamination, 100% absolute bioavailability subcutaneously, instant onset of action, a long half-life, direct renal excretion, fewer adverse reactions when compared with direct oral anticoagulants, and being an ideal alternative in conditions where oral anticoagulants are not approved for use or in patients intolerant to low molecular weight heparins (LMWH). In the last decade, the real-world use of fondaparinux has been explored in other conditions such as acute coronary syndromes, bariatric surgery, in patients developing vaccine-induced immune thrombotic thrombocytopenia (VITT) and in pregnant women with heparin-induced thrombocytopenia (HIT), or those intolerant to LMWH. The emerging data from these studies have culminated in recent updates in the guidelines that recommend the use of fondaparinux under various conditions. This paper aims to review the recent data and the subsequent updates in the recommendations of various guidelines on the use of fondaparinux sodium.
Collapse
Affiliation(s)
- Rupert M Bauersachs
- Department of Angiology, Cardioangiologic Center Bethanien, Frankfurt, Germany.,Center for Vascular Research, Munich, Germany
| |
Collapse
|
18
|
Odriozola A, Puente Á, Cuadrado A, Rivas C, Anton Á, González FJ, Pellón R, Fábrega E, Crespo J, Fortea JI. Portal Vein Thrombosis in the Setting of Cirrhosis: A Comprehensive Review. J Clin Med 2022; 11:6435. [PMID: 36362663 PMCID: PMC9655000 DOI: 10.3390/jcm11216435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/06/2023] Open
Abstract
Portal vein thrombosis constitutes the most common thrombotic event in patients with cirrhosis, with increased rates in the setting of advanced liver disease. Despite being a well-known complication of cirrhosis, the contribution of portal vein thrombosis to hepatic decompensation and overall mortality is still a matter of debate. The incorporation of direct oral anticoagulants and new radiological techniques for portal vein recanalization have expanded our therapeutic arsenal. However, the lack of large prospective observational studies and randomized trials explain the heterogenous diagnostic and therapeutic recommendations of current guidelines. This article seeks to make a comprehensive review of the pathophysiology, clinical features, diagnosis, and treatment of portal vein thrombosis in patients with cirrhosis.
Collapse
Affiliation(s)
- Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Ángela Puente
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Antonio Cuadrado
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Ángela Anton
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | | | - Raúl Pellón
- Radiology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Emilio Fábrega
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - José Ignacio Fortea
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| |
Collapse
|
19
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
20
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
21
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
22
|
Pagkratis N, Matsagas M, Malli F, Gourgoulianis KI, Kotsiou OS. Prevalence of Hemorrhagic Complications in Hospitalized Patients with Pulmonary Embolism. J Pers Med 2022; 12:jpm12071133. [PMID: 35887630 PMCID: PMC9320949 DOI: 10.3390/jpm12071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The prevalence of anticoagulant therapy-associated hemorrhagic complications in hospitalized patients with pulmonary embolism (PE) has been scarcely investigated. Aim: To evaluate the prevalence of hemorrhages in hospitalized PE patients. Methods: The Information System “ASKLIPIOS™ HOSPITAL” implemented in the Respiratory Medicine Department, University of Thessaly, was used to collect demographic, clinical and outcome data from January 2013 to April 2021. Results: 326 patients were included. Males outnumbered females. The population’s mean age was 68.7 ± 17.0 years. The majority received low molecular weight heparin (LMWH). Only 5% received direct oral anticoagulants. 15% of the population were complicated with hemorrhage, of whom 18.4% experienced a major event. Major hemorrhages were fewer than minor (29.8% vs. 70.2%, p = 0.001). Nadroparin related to 83.3% of the major events. Hematuria was the most common hemorrhagic event. 22% of patients with major events received a transfusion, and 11% were admitted to intensive care unit (ICU). The events lasted for 3 ± 2 days. No death was recorded. Conclusions: 1/5 of the patients hospitalized for PE complicated with hemorrhage without a fatal outcome. The hemorrhages were mainly minor and lasted for 3 ± 2 days. Among LMWHs, nadroparin was related to a higher percentage of hemorrhages.
Collapse
Affiliation(s)
| | - Miltiadis Matsagas
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Foteini Malli
- Vascular Surgery Department, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | | | - Ourania S. Kotsiou
- Vascular Surgery Department, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Correspondence:
| |
Collapse
|
23
|
Tanguay M, Séguin C. Recurrent thrombosis rescued by fondaparinux in high-risk patients: A case series. Res Pract Thromb Haemost 2022; 6:e12773. [PMID: 35919877 PMCID: PMC9336207 DOI: 10.1002/rth2.12773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
Background Recurrent thrombosis treatment options are limited when anticoagulation with dose escalation of low molecular weight heparin or unfractionated heparin fail. Fondaparinux is a pure, synthetic pentasaccharide that consists of heparin's essential five-sugar chain that binds antithrombin to inactivate factor Xa. There is scarce data regarding fondaparinux's use in recurrent thrombosis. Key Clinical Question We aim to explore fondaparinux's role in recurrent thrombosis when other standard anticoagulation treatments fail. Clinical Approach We report a case series of six high thrombotic risk patients successfully treated with fondaparinux after thrombosis progression while on supratherapeutic low molecular weight heparin or unfractionated heparin. Of our six patients, two were previously diagnosed with a high-risk thrombophilia: triple positive antiphospholipid syndrome, and homozygous factor V Leiden. The other four had an underlying malignancy. Conclusion With fondaparinux, no thrombosis progression was observed, and no bleeding complications occurred.
Collapse
Affiliation(s)
- Mégane Tanguay
- Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Chantal Séguin
- Division of Hematology, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
24
|
Diavati S, Sagris M, Terentes-Printzios D, Vlachopoulos C. Anticoagulation Treatment in Venous Thromboembolism: Options and Optimal Duration. Curr Pharm Des 2021; 28:296-305. [PMID: 34766887 DOI: 10.2174/1381612827666211111150705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Venous thromboembolism (VTE), clinically presenting as deep-vein thrombosis (DVT) or pulmonary embolism (PE), constitutes a major global healthcare concern with severe complications, long-term morbidity and mortality. Although several clinical, genetic and acquired risk factors for VTE have been identified, the molecular pathophysiology and mechanisms of disease progression remain poorly understood. Anticoagulation has been the cornerstone of therapy for decades, but there still are uncertainties regarding primary and secondary VTE prevention, as well as optimal therapy duration. In this review we discuss the role of factor Xa in coagulation cascade and the different choices of anticoagulation therapy based on patients' predisposing risk factors and risk of event recurrence. Further, we compare newer agents to traditional anticoagulation treatment, based on most recent studies and guidelines.
Collapse
Affiliation(s)
- Stavrianna Diavati
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens. Greece
| | | | | | - Charalambos Vlachopoulos
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens. Greece
| |
Collapse
|
25
|
Banik N, Yang SB, Kang TB, Lim JH, Park J. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Int J Mol Sci 2021; 22:ijms221910524. [PMID: 34638867 PMCID: PMC8509054 DOI: 10.3390/ijms221910524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Collapse
Affiliation(s)
- Nipa Banik
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Seong-Bin Yang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Tae-Bong Kang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Ji-Hong Lim
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jooho Park
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence:
| |
Collapse
|
26
|
Senzolo M, Garcia-Tsao G, García-Pagán JC. Current knowledge and management of portal vein thrombosis in cirrhosis. J Hepatol 2021; 75:442-453. [PMID: 33930474 DOI: 10.1016/j.jhep.2021.04.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Portal vein thrombosis (PVT) is an increasingly recognised complication of cirrhosis whose incidence increases in parallel with the severity of cirrhosis. Several risk factors have been associated with the occurrence and progression of PVT. Although the negative effect of complete PVT on the surgical outcome of liver transplant recipients is clear, its impact on cirrhosis progression remains uncertain. Treatment options include anticoagulants and interventional thrombolytic therapies, which are chosen almost on a case-by-case basis depending on the characteristics of the patient and the thrombus. In this manuscript, we review current knowledge regarding the epidemiology, risk factors, diagnosis and classification, natural history, clinical consequences and treatment of non-neoplastic PVT in cirrhosis.
Collapse
Affiliation(s)
- Marco Senzolo
- Multivisceral Transplant Unit-Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy(†).
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, VA-Connecticut Healthcare System, West Haven, CT, USA; Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Barcelona, Spain; Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain; CIBEREHD (Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas), Spain(†)
| |
Collapse
|
27
|
Low Molecular Weight Heparins (LMWH) and Implications along Pregnancy: a Focus on the Placenta. Reprod Sci 2021; 29:1414-1423. [PMID: 34231172 DOI: 10.1007/s43032-021-00678-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Low molecular weight heparins (LMWH) have been largely studied for their use during pregnancy. The biology and the pharmacology of these molecules are well known and may be summarized in three main mechanisms of action: anti-coagulant, anti-inflammatory, and immunomodulant. The clinical implications of these drugs during pregnancy are mainly related to their action on the placenta, because of the presence of specific molecular and cellular targets, particularly at the trophoblast-endometrial interface. As well as for the prevention and treatment of thromboembolism, LMWH have been largely investigated for the improvement of embryo implantation and for the prevention of placenta-related complications such as preeclampsia, fetal growth restriction, and intrauterine fetal death. However, data on this topic are still unclear. The present review discusses the biological features, the mechanisms of action, and the possible contribution of LMWH to the success of placentation along pregnancy, pointing out the need for future basic science and clinical researches in this important field with the final aim to improve clinical practice in high-risk pregnancies.
Collapse
|
28
|
Nicolau JC, Feitosa Filho GS, Petriz JL, Furtado RHDM, Précoma DB, Lemke W, Lopes RD, Timerman A, Marin Neto JA, Bezerra Neto L, Gomes BFDO, Santos ECL, Piegas LS, Soeiro ADM, Negri AJDA, Franci A, Markman Filho B, Baccaro BM, Montenegro CEL, Rochitte CE, Barbosa CJDG, Virgens CMBD, Stefanini E, Manenti ERF, Lima FG, Monteiro Júnior FDC, Correa Filho H, Pena HPM, Pinto IMF, Falcão JLDAA, Sena JP, Peixoto JM, Souza JAD, Silva LSD, Maia LN, Ohe LN, Baracioli LM, Dallan LADO, Dallan LAP, Mattos LAPE, Bodanese LC, Ritt LEF, Canesin MF, Rivas MBDS, Franken M, Magalhães MJG, Oliveira Júnior MTD, Filgueiras Filho NM, Dutra OP, Coelho OR, Leães PE, Rossi PRF, Soares PR, Lemos Neto PA, Farsky PS, Cavalcanti RRC, Alves RJ, Kalil RAK, Esporcatte R, Marino RL, Giraldez RRCV, Meneghelo RS, Lima RDSL, Ramos RF, Falcão SNDRS, Dalçóquio TF, Lemke VDMG, Chalela WA, Mathias Júnior W. Brazilian Society of Cardiology Guidelines on Unstable Angina and Acute Myocardial Infarction without ST-Segment Elevation - 2021. Arq Bras Cardiol 2021; 117:181-264. [PMID: 34320090 PMCID: PMC8294740 DOI: 10.36660/abc.20210180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- José Carlos Nicolau
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Gilson Soares Feitosa Filho
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
- Centro Universitário de Tecnologia e Ciência (UniFTC), Salvador, BA - Brasil
| | - João Luiz Petriz
- Hospital Barra D'Or, Rede D'Or São Luiz, Rio de Janeiro, RJ - Brasil
| | | | | | - Walmor Lemke
- Clínica Cardiocare, Curitiba, PR - Brasil
- Hospital das Nações, Curitiba, PR - Brasil
| | | | - Ari Timerman
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | - José A Marin Neto
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | - Bruno Ferraz de Oliveira Gomes
- Hospital Barra D'Or, Rede D'Or São Luiz, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | | | | | - Carlos Eduardo Rochitte
- Hospital do Coração (HCor), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Edson Stefanini
- Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
| | | | - Felipe Gallego Lima
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - José Maria Peixoto
- Universidade José do Rosário Vellano (UNIFENAS), Belo Horizonte, MG - Brasil
| | - Juliana Ascenção de Souza
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Lilia Nigro Maia
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP - Brasil
| | | | - Luciano Moreira Baracioli
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Luís Alberto de Oliveira Dallan
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Luis Augusto Palma Dallan
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Luiz Carlos Bodanese
- Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS - Brasil
| | | | | | - Marcelo Bueno da Silva Rivas
- Rede D'Or São Luiz, Rio de Janeiro, RJ - Brasil
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brasil
| | | | | | - Múcio Tavares de Oliveira Júnior
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Nivaldo Menezes Filgueiras Filho
- Universidade do Estado da Bahia (UNEB), Salvador, BA - Brasil
- Universidade Salvador (UNIFACS), Salvador, BA - Brasil
- Hospital EMEC, Salvador, BA - Brasil
| | - Oscar Pereira Dutra
- Instituto de Cardiologia - Fundação Universitária de Cardiologia do Rio Grande do Sul, Porto Alegre, RS - Brasil
| | - Otávio Rizzi Coelho
- Faculdade de Ciências Médicas da Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | - Paulo Rogério Soares
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | - Roberto Esporcatte
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Talia Falcão Dalçóquio
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - William Azem Chalela
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Wilson Mathias Júnior
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| |
Collapse
|
29
|
Colarossi G, Maffulli N, Trivellas A, Schnöring H, Hatam N, Tingart M, Migliorini F. Superior outcomes with Argatroban for heparin-induced thrombocytopenia: a Bayesian network meta-analysis. Int J Clin Pharm 2021; 43:825-838. [PMID: 33774764 PMCID: PMC8352815 DOI: 10.1007/s11096-021-01260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Background Argatroban, lepirudin, desirudin, bivalirudin, and danaparoid are commonly used to manage heparin-induced thrombocytopenia related complications. However, the most suitable drug for this condition still remains controversial. Aim of the review This Bayesian network meta-analysis study compared the most common anticoagulant drugs used in the management of heparin-induced thrombocytopenia. Method All clinical trials comparing two or more anticoagulant therapies for suspected or confirmed heparin-induced thrombocytopenia were considered for inclusion. Studies concerning the use of heparins or oral anticoagulants were not considered. Data concerning hospitalisation length, thromboembolic, major, and minor haemorrhagic events, and mortality rate were collected. The network analyses were made through the STATA routine for Bayesian hierarchical random-effects model analysis with standardised mean difference (SMD) and log odd ratio (LOR) effect measures. Results Data from a total of 4338 patients were analysed. The overall mean age was 62.31 ± 6.6 years old. Hospitalization length was considerably shorter in favour of the argatroban group (SMD: − 1.70). Argatroban evidenced the lowest rate of major (LOR: − 1.51) and minor (LOR: − 0.57) haemorrhagic events. Argatroban demonstrated the lowest rate of thromboembolic events (LOR: 0.62), and mortality rate (LOR: − 1.16). Conclusion Argatroban performed better overall for selected patients with HIT. Argatroban demonstrated the shortest hospitalization, and lowest rate of haemorrhages, thromboembolisms, and mortality compared to bivalirudin, lepirudin, desirudin, and danaparoid.
Collapse
Affiliation(s)
- Giorgia Colarossi
- Department of Cardiac and Thoracic Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| | - Andromahi Trivellas
- Department of Orthopaedics, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Heike Schnöring
- Department of Cardiac and Thoracic Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Nima Hatam
- Department of Cardiac and Thoracic Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Markus Tingart
- Department of Orthopaedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
30
|
Dempfle CE, Koscielny J, Lindhoff-Last E, Linnemann B, Bux-Gewehr I, Kappert G, Scholz U, Kropff S, Eberle S, Bramlage P, Heinken A. Fondaparinux Pre-, Peri-, and/or Postpartum for the Prophylaxis/Treatment of Venous Thromboembolism (FondaPPP). Clin Appl Thromb Hemost 2021; 27:10760296211014575. [PMID: 33942675 PMCID: PMC8114740 DOI: 10.1177/10760296211014575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
We analyzed data for women who received fondaparinux for ≥7 days during pregnancy. The study retrospectively included women who received fondaparinux pre-, peri- and/or postpartum for ≥7 days for prophylaxis/venous thromboembolism (VTE) treatment at German specialist centers (2004-2010). Data on pregnancy, VTE risk factors, anticoagulant treatment, pregnancy outcome and adverse events were extracted from medical records. 120 women (mean age 31.5 years) were included. Among 84 women with prior pregnancies, 41.0% had ≥1 abortion. Anticoagulation was indicated for prophylaxis in 92.5% cases, including 82.5% women with an elevated VTE risk (82.8% thrombophilia, 34.2% VTE history). All women received low-molecular-weight heparin (LMWH) as first-line therapy; 3 also unfractionated heparin. Treatment changed to fondaparinux, due to heparin allergy (41.7%) or heparin-induced thrombocytopenia (10.0%). Fondaparinux was generally well tolerated. Adverse events included bleeding events (n = 5), abortion (n = 2), premature births (n = 2), stillbirth (n = 1), arrested labors (n = 2), injection site erythema (n = 4) and unspecified drug hypersensitivity (n = 6). No VTE events or increased liver enzymes occurred during treatment. In this retrospective study, fondaparinux was effective and well tolerated. Trial registration: ClinicalTrials.gov NCT01004939.
Collapse
Affiliation(s)
| | - Jürgen Koscielny
- Institut für Transfusionsmedizin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | - Ute Scholz
- Zentrum für Gerinnungsstörungen, Leipzig, Germany
| | | | | | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | | |
Collapse
|
31
|
Arepally GM, Padmanabhan A. Heparin-Induced Thrombocytopenia: A Focus on Thrombosis. Arterioscler Thromb Vasc Biol 2021; 41:141-152. [PMID: 33267665 PMCID: PMC7769912 DOI: 10.1161/atvbaha.120.315445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Heparin-induced thrombocytopenia is an immune-mediated disorder caused by antibodies that recognize complexes of platelet factor 4 and heparin. Thrombosis is a central and unpredictable feature of this syndrome. Despite optimal management, disease morbidity and mortality from thrombosis remain high. The hypercoagulable state in heparin-induced thrombocytopenia is biologically distinct from other thrombophilic disorders in that clinical complications are directly attributable to circulating ultra-large immune complexes. In some individuals, ultra-large immune complexes elicit unchecked cellular procoagulant responses that culminate in thrombosis. To date, the clinical and biologic risk factors associated with thrombotic risk in heparin-induced thrombocytopenia remain elusive. This review will summarize our current understanding of thrombosis in heparin-induced thrombocytopenia with attention to its clinical features, cellular mechanisms, and its management.
Collapse
Affiliation(s)
| | - Anand Padmanabhan
- Divisions of Hematopathology, Transfusion Medicine, and Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (A.P.)
| |
Collapse
|
32
|
Costanzo L, Palumbo FP, Ardita G, Antignani PL, Arosio E, Failla G. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J Vasc Surg Venous Lymphat Disord 2020; 8:711-716. [PMID: 32561465 PMCID: PMC7297687 DOI: 10.1016/j.jvsv.2020.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 (COVID-19) is causing a pandemic and potentially fatal disease of global public health concern. Viral infections are known to be associated with coagulation impairment; thus, thrombosis, hemorrhage, or both may occur. Understanding the pathophysiologic mechanisms underlying the development of coagulation disorders during viral infection is essential for the development of therapeutic strategies. Coagulopathy in COVID-19 infection is emerging as a precipitant factor for severe respiratory complications and death. An increase in coagulation markers, such as fibrinogen and D-dimer, has been found in severe COVID-19 cases. Heparin, clinically used as an anticoagulant, also has anti-inflammatory properties, including binding of inflammatory cytokines, inhibition of neutrophil chemotaxis, and protection of endothelial cells, and a potential antiviral effect. We hypothesized that low-molecular-weight heparin may attenuate cytokine storm in COVID-19 patients; therefore, low-molecular-weight heparin could be a valid adjunctive therapeutic drug for the treatment of COVID-19 pneumopathy. In this paper, we review potential mechanisms involved in coagulation impairment after viral infection and the possible role of heparin in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Luca Costanzo
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy.
| | - Francesco Paolo Palumbo
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giorgio Ardita
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | | | - Enrico Arosio
- Department of Medicine, University of Verona, Verona, Italy
| | - Giacomo Failla
- Angiology Unit, San Marco Hospital, Department of Cardiovascular Disease, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| |
Collapse
|
33
|
Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140301. [DOI: 10.1016/j.bbapap.2019.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
34
|
Greger J, Bates V, Mechtler L, Gengo F. A Review of Cannabis and Interactions With Anticoagulant and Antiplatelet Agents. J Clin Pharmacol 2019; 60:432-438. [DOI: 10.1002/jcph.1557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jessica Greger
- Dent Neurologic Institute Amherst New York USA
- University at BuffaloThe State University of New York Buffalo New York USA
| | | | | | - Fran Gengo
- Dent Neurologic Institute Amherst New York USA
- University at BuffaloThe State University of New York Buffalo New York USA
| |
Collapse
|
35
|
Marine glycan-derived therapeutics in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:113-134. [DOI: 10.1016/bs.pmbts.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|