1
|
Ma K, Yang Y, Li Y, Li C, Li T, Ma H, Jiang Z, Zhou H, Wang W. The Observation of Meiotic Union Behavior of Gametophytes Provides a New Basis for Ploidy of Carassius auratus gibelio. Animals (Basel) 2025; 15:140. [PMID: 39858139 PMCID: PMC11758287 DOI: 10.3390/ani15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
As an important aquaculture fish, the genus Carassius exhibits different ploidy, including tetraploids and hexaploids [...].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - He Zhou
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, PRC, Dalian Ocean University, Dalian 116023, China; (K.M.); (Y.Y.); (Y.L.); (C.L.); (T.L.); (H.M.); (Z.J.)
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, PRC, Dalian Ocean University, Dalian 116023, China; (K.M.); (Y.Y.); (Y.L.); (C.L.); (T.L.); (H.M.); (Z.J.)
| |
Collapse
|
2
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
3
|
Qing W, Ren B, Lou C, Zhong H, Zhou Y, Liu S. Gene expression analyses of GH/IGF axis in triploid crucian carp with growth heterosis. Front Endocrinol (Lausanne) 2024; 15:1373623. [PMID: 38596226 PMCID: PMC11002129 DOI: 10.3389/fendo.2024.1373623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Fiesinger A, Held C, Schmidt AL, Putchim L, Melzner F, Wall M. Dominance of the coral Pocillopora acuta around Phuket Island in the Andaman Sea, Thailand. Ecol Evol 2023; 13:e10724. [PMID: 38020692 PMCID: PMC10643679 DOI: 10.1002/ece3.10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Pocillopora damicornis (Linnaeus, 1758), a species complex, consists of several genetic lineages, some of which likely represent reproductively isolated species, including the species Pocillopora acuta Lamarck, 1816. Pocillopora acuta can exhibit similar morphological characteristics as P. damicornis, thus making it difficult to identify species-level taxonomic units. To determine whether the P. damicornis-like colonies on the reefs in the Andaman Sea (previously often identified as P. damicornis) consist of different species, we sampled individual colonies at five sites along a 50 km coastal stretch at Phuket Island and four island sites towards Krabi Province, Thailand. We sequenced 210 coral samples for the mitochondrial open reading frame and identified six distinct haplotypes, all belonging to P. acuta according to the literature. Recently, P. acuta was observed to efficiently recolonize heat-damaged reefs in Thailand as well as globally, making it a potentially important coral species in future reefs. Specifically in the light of global change, this study underscores the importance of high-resolution molecular species recognition, since taxonomic units are important factors for population genetic studies, and the latter are crucial for management and conservation efforts.
Collapse
Affiliation(s)
- Anna Fiesinger
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Christoph Held
- Alfred‐Wegener‐InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| | - Andrea L. Schmidt
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Cooperative Institute for Marine and Atmospheric ResearchUniversity of Hawai‘i at ManoaHonoluluHonoluluUSA
| | | | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Marlene Wall
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Alfred‐Wegener‐InstitutHelmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| |
Collapse
|
5
|
He B, Sridhar A, Streiff C, Deketelaere C, Zhang H, Gao Y, Hu Y, Pirotte S, Delrez N, Davison AJ, Donohoe O, Vanderplasschen AFC. In Vivo Imaging Sheds Light on the Susceptibility and Permissivity of Carassius auratus to Cyprinid Herpesvirus 2 According to Developmental Stage. Viruses 2023; 15:1746. [PMID: 37632088 PMCID: PMC10459324 DOI: 10.3390/v15081746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host is still unclear. To help bridge these knowledge gaps, we developed the first ever recombinant strain of CyHV-2 expressing bioluminescent and fluorescent reporter genes. Infection of Carassius auratus hosts with this recombinant by immersion facilitated the exploitation of various in vivo imaging techniques to establish the spatiotemporal aspects of CyHV-2 replication at larval, juvenile, and adult developmental stages. While less susceptible than later developmental stages, larvae were most permissive to CyHV-2 replication, leading to rapid systemic infection and high mortality. Permissivity to CyHV-2 decreased with advancing development, with adults being the least permissive and, thus, also exhibiting the least mortality. Across all developmental stages, the skin was the most susceptible and permissive organ to infection at the earliest sampling points post-infection, indicating that it represents the major portal of entry into these hosts. Collectively these findings provide important fundamental insights into CyHV-2 pathogenesis and epidemiology in Carassius auratus with high relevance to other related economically important virus-host models.
Collapse
Affiliation(s)
- Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Cindy Streiff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Caroline Deketelaere
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yunlong Hu
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Sebastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Co. Westmeath, Ireland
| | - Alain F. C. Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| |
Collapse
|
6
|
Lu M, Zhang QC, Zhu ZY, Peng F, Li Z, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex. Sci Bull (Beijing) 2023; 68:1038-1050. [PMID: 37173259 DOI: 10.1016/j.scib.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Can Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Peng F, Zhou L, Lu W, Gan R, Lu M, Li Z, Zhang X, Wang Y, Gui J. Genomic and Transcriptional Profiles of Kelch-like ( klhl) Gene Family in Polyploid Carassius Complex. Int J Mol Sci 2023; 24:8367. [PMID: 37176071 PMCID: PMC10179623 DOI: 10.3390/ijms24098367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Genome duplication supplies raw genetic materials and has been thought to be essential for evolutionary innovation and ecological adaptation. Here, we select Kelch-like (klhl) genes to study the evolution of the duplicated genes in the polyploid Carassius complex, including amphidiploid C. auratus and amphitriploid C. gibelio. Phylogenetic, chromosomal location and read coverage analyses indicate that most of Carassius klhl genes exhibit a 2:1 relationship with zebrafish orthologs and confirm two rounds of polyploidy, an allotetraploidy followed by an autotriploidy, occurred during Carassius evolution. The lineage-specific expansion and biased retention/loss of klhl genes are also found in Carassius. Transcriptome analyses across eight adult tissues and seven embryogenesis stages reveal varied expression dominance and divergence between the two species. The expression of klhls in response to Carassius herpesvirus 2 infection shows different expression changes corresponding to distinct herpesvirus resistances in three C. gibelio gynogenetic clones. Finally, we find that most C. gibelio klhl genes possess three alleles except eight genes that have lost one or two alleles due to genome rearrangement. The allele expression bias is prosperous for Cgklhl genes and varies during embryogenesis owning to the sequential expression manner of the alleles. The current study provides global insights into the genomic and transcriptional evolution of duplicated genes in a given superfamily resulting from multiple rounds of polyploidization.
Collapse
Affiliation(s)
- Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Feng X, Zhu R, Jia Y, Tong J, Yu X, Pang M, Liu C, Sui X, Chen Y. Genetic diversity and population structure of the invasive populations of goldfish Carassius auratus complex in Tibet. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Zhang X, Luo M, Jiang B, Zhu W, Min Q, Hu J, Liu T, Fu J, Shi X, Wang P, Wang L, Dong Z. microRNA regulation of skin pigmentation in golden-back mutant of crucian carp from a rice-fish integrated farming system. BMC Genomics 2023; 24:70. [PMID: 36765276 PMCID: PMC9912656 DOI: 10.1186/s12864-023-09168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.
Collapse
Affiliation(s)
- Xianbo Zhang
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Mingkun Luo
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Bingjie Jiang
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Qianwen Min
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jinli Hu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Ting Liu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jianjun Fu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Xiulan Shi
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Pan Wang
- grid.412514.70000 0000 9833 2433College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Gan RH, Zhou L, Gui JF. Efficiently Editing Multiple Duplicated Homeologs and Alleles for Recurrent Polyploids. Methods Mol Biol 2023; 2545:491-512. [PMID: 36720830 DOI: 10.1007/978-1-0716-2561-3_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research on the evolutionary fate of duplicated genes in recurrent polyploids is scarce due to the difficulties in disentangling the different homeologs and alleles of duplicated genes. This chapter describes the detailed procedures to identify different homeologs and alleles of duplicated genes, to analyze their molecular characteristics, and to reveal their functional divergence by gene editing with CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9). Using the gene editing approach, we efficiently constructed multiple knockout mutant lines with single or simultaneously disrupted different homeologs or alleles in a recurrent polyploid fish, demonstrating its usability for targeting and mutating multiple divergent homeologs and alleles in recurrent duplicated genomes.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
12
|
Kuhl H, Du K, Schartl M, Kalous L, Stöck M, Lamatsch DK. Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp. Nat Commun 2022; 13:4092. [PMID: 35835759 PMCID: PMC9283417 DOI: 10.1038/s41467-022-31515-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany
| | - Kang Du
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Lukáš Kalous
- Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany.
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Dunja K Lamatsch
- Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria.
| |
Collapse
|
13
|
Wang MT, Li Z, Ding M, Yao TZ, Yang S, Zhang XJ, Miao C, Du WX, Shi Q, Li S, Mei J, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 2022; 18:e1010288. [PMID: 35767574 PMCID: PMC9275722 DOI: 10.1371/journal.pgen.1010288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Collapse
Affiliation(s)
- Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Huang Y, Li J, Bian C, Li R, You X, Shi Q. Evolutionary Genomics Reveals Multiple Functions of Arylalkylamine N-Acetyltransferase in Fish. Front Genet 2022; 13:820442. [PMID: 35664299 PMCID: PMC9160868 DOI: 10.3389/fgene.2022.820442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
As an important hormone, melatonin participates in endocrine regulation of diverse functions in vertebrates. Its biosynthesis is catalyzed by four cascaded enzymes, among them, arylalkylamine N-acetyltransferase (AANAT) is the most critical one. Although only single aanat gene has been identified in most groups of vertebrates, researchers including us have determined that fish have the most diverse of aanat genes (aanat1a, aanat1b, and aanat2), playing various potential roles such as seasonal migration, amphibious aerial vision, and cave or deep-sea adaptation. With the rapid development of genome and transcriptome sequencing, more and more putative sequences of fish aanat genes are going to be available. Related phylogeny and functional investigations will enrich our understanding of AANAT functions in various fish species.
Collapse
Affiliation(s)
- Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-Ugent Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
16
|
Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-Ghamdi YO, Akhtar K, Bakhsh EM, Khan SB. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022; 8:167. [PMID: 35323280 PMCID: PMC8950628 DOI: 10.3390/gels8030167] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional, cross-linked, and supramolecular networks that can absorb significant volumes of water. Hydrogels are one of the most promising biomaterials in the biological and biomedical fields, thanks to their hydrophilic properties, biocompatibility, and wide therapeutic potential. Owing to their nontoxic nature and safe use, they are widely accepted for various biomedical applications such as wound dressing, controlled drug delivery, bone regeneration, tissue engineering, biosensors, and artificial contact lenses. Herein, this review comprises different synthetic strategies for hydrogels and their chemical/physical characteristics, and various analytical, optical, and spectroscopic tools for their characterization are discussed. A range of synthetic approaches is also covered for the synthesis and design of hydrogels. It will also cover biomedical applications such as bone regeneration, tissue engineering, and drug delivery. This review addressed the fundamental, general, and applied features of hydrogels in order to facilitate undergraduates, graduates, biomedical students, and researchers in a variety of domains.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Saad Salman
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Abdul Amin
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Swabi 23561, Pakistan; (Z.A.); (A.A.); (Z.U.R.)
| | - Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.A.); (E.M.B.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Application of high hydrostatic pressure (HHP) shock to induce triploid development in the European grayling (Thymallus thymallus L.). Anim Reprod Sci 2022; 237:106929. [DOI: 10.1016/j.anireprosci.2022.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
18
|
Tong JF, Zhou L, Li S, Lu LF, Li ZC, Li Z, Gan RH, Mou CY, Zhang QY, Wang ZW, Zhang XJ, Wang Y, Gui JF. Two Duplicated Ptpn6 Homeologs Cooperatively and Negatively Regulate RLR-Mediated IFN Response in Hexaploid Gibel Carp. Front Immunol 2021; 12:780667. [PMID: 34899743 PMCID: PMC8662705 DOI: 10.3389/fimmu.2021.780667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023] Open
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.
Collapse
Affiliation(s)
- Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Keszte S, Ferincz A, Tóth-Ihász K, Balogh RE, Staszny Á, Hegyi Á, Takács P, Urbanyi B, Kovács B. Mitochondrial sequence diversity reveals the hybrid origin of invasive gibel carp ( Carassius gibelio) populations in Hungary. PeerJ 2021; 9:e12441. [PMID: 34966576 PMCID: PMC8663655 DOI: 10.7717/peerj.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Invasive gibel carp, Carassius gibelio (Bloch, 1782) has become well-established in the Hungarian waters and now are spreading in the European waters. On major concern now is the potential hybridization between gibel carp and the other invasive species in the Carassius auratus complex (CAC), which may further accelerate the spread of the whole invasive species complex. The identification of gibel carp and their hybrids is difficult because of its morphological similarity to the other species in CAC. Here we carry out a genomic assessment to understand the history of gibel carp invasion and its phylogenetic relationship with the other species in CAC. Three loci of the mitochondrial genome (D-loop, CoI, Cytb) were used to determine the phylogenetic origin of individuals and relarionship among six gibel carp populations and the other species in the CAC. METHODOLGY A total of 132 gibel carp samples from six locations in Southern Transdanubia (Hungary) were collected after phenotypic identification to measure the genetic diversity within and among gibel carp populations of Southern Transdanubia (Hungary). The genetic background was examined by the sequences of the mitochondrial genome: D-loop, Cytochrome c oxidase I (CoI) and Cytochrome b (Cytb). Mitochondrial genetic markers are excellent tools for phylogenetic studies because they are maternally inherited. Successfully identified haplotypes were aligned and with reference sequences in nucleotide databases (i.e., NCBI-BLAST: National Centre for Biotechnology Information and BOLD: Barcode of Life Data System). The phylogenetic relationships among gibel carp populations were then analyzed together with the reference sequences to understand the relationship and the level of hybridization with the species in CAC. RESULTS Among the 132 aligned D-loop sequences 22 haplotypes were identified. Further examination of representative individuals of the 22 haplotypes, six Cytb and four CoI sequences were detected. The largest number of haplotypes of all three loci were found in Lake Balaton, the largest shallow lake in Central Europe. Based on the NCBI-BLAST alignment of the D-loop, haplotypes of Carassius auratus auratus and Carassius a. buergeri in CAC were identified in the C. gibelio samples. Further analysis of haplotypes with the other two mitochondrial markers confirmed the occurrence of intragenus hybridization of C. gibelio in the Hungarian waters. CONCLUSION By using three mitochondrial markers (D-loop, Cytb, CoI), we genomically characterized a gibel carp-complex in Hungarian waters and assessed the C. gibelio phylogenetic status between them. Hybrid origin of locally invasive Carassius taxon was detected in Hungary. It points out that invasive species are not only present in Hungary but reproduce with each other in the waters, further accelerating their spread.
Collapse
Affiliation(s)
- Szilvia Keszte
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Sciences, Gödöllő, Magyarország
| | - Arpad Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Sciences, Gödöllő, Magyarország
| | - Katalin Tóth-Ihász
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Science, Gödöllő, Magyarország
| | - Réka Enikő Balogh
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Science, Gödöllő, Magyarország
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Sciences, Gödöllő, Magyarország
| | - Árpád Hegyi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Sciences, Gödöllő, Magyarország
| | - Péter Takács
- Fish and Conservation Ecology Research Group, Balaton Limnological Research Institute, Tihany, Magyarország
| | - Bela Urbanyi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Sciences, Gödöllő, Magyarország
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agricultural and Life Science, Gödöllő, Magyarország
| |
Collapse
|
20
|
Káldy J, Patakiné Várkonyi E, Fazekas GL, Nagy Z, Sándor ZJ, Bogár K, Kovács G, Molnár M, Lázár B, Goda K, Gyöngy Z, Ritter Z, Nánási P, Horváth Á, Ljubobratović U. Effects of Hydrostatic Pressure Treatment of Newly Fertilized Eggs on the Ploidy Level and Karyotype of Pikeperch Sander lucioperca (Linnaeus, 1758). Life (Basel) 2021; 11:life11121296. [PMID: 34947827 PMCID: PMC8708264 DOI: 10.3390/life11121296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
We studied the effect of different magnitudes (7000 PSI (48.26 MPa), 8000 PSI (55.16 MPa), and 9000 PSI (62.05 MPa)) of hydrostatic pressure on the ploidy of pikeperch larvae. Pressure shock was applied 5 min after the fertilization of eggs at a water temperature of 14.8 ± 1 °C. A 7000 PSI pressure shock was applied for 10 or 20 min, while 8000 and 9000 PSI treatments lasted for 10 min. Each treatment with its respective control was completed in triplicate, where different females’ eggs served as a replicate. In the treatment groups exposed to 7000 PSI for 10 min, only diploid and triploid larvae were identified, while 2n/3n mosaic individuals were found after a 20-min exposure to a 7000 PSI pressure shock. The application of 8000 or 9000 PSI pressure shocks resulted in only triploid and mosaic individuals. Among larvae from eggs treated with 8000 PSI, three mosaic individuals with 2n/3n karyotype were identified (4.0 ± 6.9%), while a single (2.0 ± 3.5%) 1n/3n mosaic individual was found in the 9000 PSI-treated group. To our knowledge, this is the first report that demonstrates the induction of a haplo-triploid karyotype by hydrostatic pressure shock in teleost fish. The dominance of triploid individuals with a reasonable survival rate (36.8 ± 26.1%) after 8000 PSI shock supports the suitability of the hydrostatic pressure treatment of freshly fertilized eggs for triploid induction in pikeperch.
Collapse
Affiliation(s)
- Jenő Káldy
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
- Correspondence:
| | - Eszter Patakiné Várkonyi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, H-2100 Gödöllő, Hungary; (E.P.V.); (M.M.); (B.L.)
| | - Georgina Lea Fazekas
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Zoltán Nagy
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
| | - Zsuzsanna J. Sándor
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
| | - Katalin Bogár
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
| | - Gyula Kovács
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
- Festetics György Doctoral School, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mariann Molnár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, H-2100 Gödöllő, Hungary; (E.P.V.); (M.M.); (B.L.)
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Bence Lázár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, H-2100 Gödöllő, Hungary; (E.P.V.); (M.M.); (B.L.)
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (K.G.); (Z.G.); (Z.R.); (P.N.J.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (K.G.); (Z.G.); (Z.R.); (P.N.J.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (K.G.); (Z.G.); (Z.R.); (P.N.J.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (K.G.); (Z.G.); (Z.R.); (P.N.J.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Uroš Ljubobratović
- Research Center of Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (G.L.F.); (Z.N.); (Z.J.S.); (K.B.); (G.K.); (U.L.)
| |
Collapse
|
21
|
Ruan R, Feng T, Li Y, Yue H, Ye H, Du H, Liu Q, Ruan J, Li C, Wei Q. Screening and identification of female-specific DNA sequences in octaploid sturgeon using comparative genomics with high-throughput sequencing. Genomics 2021; 113:4237-4244. [PMID: 34785350 DOI: 10.1016/j.ygeno.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/15/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
In this study, six candidate female-specific DNA sequences of octaploid Amur sturgeon (Acipenser schrenckii) were identified using comparative genomic approaches with high-throughput sequencing data. Their specificity was confirmed by traditional PCR. Two of these sex-specific sequences were also validated as female-specific in other eight sturgeon species and two hybrid sturgeons. The identified female-specific DNA fragments suggest that the family Acipenseridae has a ZZ/ZW sex-determining system. However, one of the two DNA sequences has been deleted in some sturgeons such as Sterlet sturgeon (Acipenser ruthenus), Beluga (Huso huso) and Kaluga (H. dauricus). The difference of sex-specific sequences among sturgeons indicates that there are different sex-specific regions among species of sturgeon. This study not only provided the sex-specific DNA sequences for management, conservation and studies of sex-determination mechanisms in sturgeons, but also confirmed the capability of the workflow to identify sex-specific DNA sequences in the polyploid species with complex genomes.
Collapse
Affiliation(s)
- Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tong Feng
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ying Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
22
|
Zhou Y, Zhu L, Sun Y, Zhang H, Wang J, Qin W, He W, Zhou L, Li Q, Zhao R, Luo K, Tang C, Zhang C, Liu S. Localization of RNA Pol II CTD (S5) and Transcriptome Analysis of Testis in Diploid and Tetraploid Hybrids of Red Crucian Carp (♀) × Common Carp (♂). Front Genet 2021; 12:717871. [PMID: 34567072 PMCID: PMC8458772 DOI: 10.3389/fgene.2021.717871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Polyploidy occurs naturally in fish; however, the appearance of these species is an occasional and gradual process, which makes it difficult to trace the changes in phenotypes, genotypes, and regulation of gene expression. The allotetraploid hybrids (4nAT) of red crucian carp (RCC; ♀) × common carp (CC; ♂) generated from interspecies crossing are a good model to investigate the initial changes after allopolyploidization. In the present study, we focused on the changes in the active sites of the testicular transcriptome of the allotetraploid by localization of RNA Pol II CTD YSPTSPS (phospho S5) using immunofluorescence and RNA-seq data via bioinformatic analysis. The results showed that there was no significant difference in signal counts of the RNA Pol II CTD (S5) between the different types of fish at the same stages, including RCC, CC, 2nF1, and 4nAT, which means that the number of transcriptionally active sites on germ cell chromosomes was not affected by the increase in chromosome number. Similarly, RNA-seq analysis indicated that in the levels of chromosomes and 10-kb regions in the genome, there were no significant changes in the highly active sites in RCC, 2nF1, and 4nAT. These findings suggest that at the beginning of tetraploid origin, the active transcriptome site of 4nAT in the testis was conserved in the regions of the genome compared to that in RCC and 2nF1. In conclusion, 4nAT shared a similar gene expression model in the regions of the genome with RCC and 2nF1 with significantly different expression levels.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - La Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Yu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Hui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Jiaojiao Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Weilin Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Wangchao He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Luojing Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Qi Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Mou CY, Li S, Lu LF, Wang Y, Yu P, Li Z, Tong JF, Zhang QY, Wang ZW, Zhang XJ, Wang GX, Zhou L, Gui JF. Divergent Antiviral Mechanisms of Two Viperin Homeologs in a Recurrent Polyploid Fish. Front Immunol 2021; 12:702971. [PMID: 34531856 PMCID: PMC8438203 DOI: 10.3389/fimmu.2021.702971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Polyploidy and subsequent diploidization provide genomic opportunities for evolutionary innovations and adaptation. The researches on duplicated gene evolutionary fates in recurrent polyploids have seriously lagged behind that in paleopolyploids with diploidized genomes. Moreover, the antiviral mechanisms of Viperin remain largely unclear in fish. Here, we elaborate the distinct antiviral mechanisms of two viperin homeologs (Cgviperin-A and Cgviperin-B) in auto-allo-hexaploid gibel carp (Carassius gibelio). First, Cgviperin-A and Cgviperin-B showed differential and biased expression patterns in gibel carp adult tissues. Subsequently, using co-immunoprecipitation (Co-IP) screening analysis, both CgViperin-A and CgViperin-B were found to interact with crucian carp (C. auratus) herpesvirus (CaHV) open reading frame 46 right (ORF46R) protein, a negative herpesvirus regulator of host interferon (IFN) production, and to promote the proteasomal degradation of ORF46R via decreasing K63-linked ubiquitination. Additionally, CgViperin-B also mediated ORF46R degradation through autophagosome pathway, which was absent in CgViperin-A. Moreover, we found that the N-terminal α-helix domain was necessary for the localization of CgViperin-A and CgViperin-B at the endoplasmic reticulum (ER), and the C-terminal domain of CgViperin-A and CgViperin-B was indispensable for the interaction with degradation of ORF46R. Therefore, the current findings clarify the divergent antiviral mechanisms of the duplicated viperin homeologs in a recurrent polyploid fish, which will shed light on the evolution of teleost duplicated genes.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Xin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Ding M, Li XY, Zhu ZX, Chen JH, Lu M, Shi Q, Wang Y, Li Z, Zhao X, Wang T, Du WX, Miao C, Yao TZ, Wang MT, Zhang XJ, Wang ZW, Zhou L, Gui JF. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet 2021; 17:e1009760. [PMID: 34491994 PMCID: PMC8448357 DOI: 10.1371/journal.pgen.1009760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Unisexual taxa are commonly considered short-lived as the absence of meiotic recombination is supposed to accumulate deleterious mutations and hinder the creation of genetic diversity. However, the gynogenetic gibel carp (Carassius gibelio) with high genetic diversity and wide ecological distribution has outlived its predicted extinction time of a strict unisexual reproduction population. Unlike other unisexual vertebrates, males associated with supernumerary microchromosomes have been observed in gibel carp, which provides a unique system to explore the rationales underlying male occurrence in unisexual lineage and evolution of unisexual reproduction. Here, we identified a massively expanded satellite DNA cluster on microchromosomes of hexaploid gibel carp via comparing with the ancestral tetraploid crucian carp (Carassius auratus). Based on the satellite cluster, we developed a method for single chromosomal fluorescence microdissection and isolated three male-specific microchromosomes in a male metaphase cell. Genomic anatomy revealed that these male-specific microchromosomes contained homologous sequences of autosomes and abundant repetitive elements. Significantly, several potential male-specific genes with transcriptional activity were identified, among which four and five genes displayed male-specific and male-biased expression in gonads, respectively, during the developmental period of sex determination. Therefore, the male-specific microchromosomes resembling common features of sex chromosomes may be the main driving force for male occurrence in gynogenetic gibel carp, which sheds new light on the evolution of unisexual reproduction.
Collapse
Affiliation(s)
- Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Xuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Hui Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- ShenZhen People’s Hospital, Shenzhen, China
| | - Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ren L, Zhang X, Li J, Yan X, Gao X, Cui J, Tang C, Liu S. Diverse transcriptional patterns of homoeologous recombinant transcripts in triploid fish (Cyprinidae). SCIENCE CHINA. LIFE SCIENCES 2021; 64:1491-1501. [PMID: 33420922 DOI: 10.1007/s11427-020-1749-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
Homoeologous recombination (HR), the exchange of homoeologous chromosomes, contributes to subgenome adaptation to diverse environments by producing various phenotypes. However, the potential relevance of HR and innate immunity is rarely described in triploid cyprinid fish species. In our study, two allotriploid genotypes (R2C and RC2), whose innate immunity was stronger than their inbred parents (Carassius auratus red var. and Cyprinus carpio L.), were obtained from backcrossing between male allotetraploids of C. auratus red var.×C. carpio L. and females of their two inbred parents, respectively. The work detected 140 HRs shared between the two triploids at the genomic level. Further, transcriptions of 54 homoeologous recombinant genes (HRGs) in R2C and 65 HRGs in RC2 were detected using both Illumina and PacBio data. Finally, by comparing expressed recombinant reads to total expressed reads in each of the genes, a range of 0.1%-10% was observed in most of the 99-193 HRGs, of which six recombinant genes were classified as "response to stimulus". These results not only provide a novel way to predict HRs in allopolyploids based on cross prediction at both genomic and transcriptional levels, but also insight into the potential relationship between HRs related to innate immunity and adaptation of the triploids and allotetraploids.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xueyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jiaming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaojing Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
26
|
Integration of miRNA-mRNA co-expression network reveals potential regulation of miRNAs in hypothalamus from sterile triploid crucian carp. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
27
|
Zhao X, Li Z, Ding M, Wang T, Wang MT, Miao C, Du WX, Zhang XJ, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Genotypic Males Play an Important Role in the Creation of Genetic Diversity in Gynogenetic Gibel Carp. Front Genet 2021; 12:691923. [PMID: 34122529 PMCID: PMC8194356 DOI: 10.3389/fgene.2021.691923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Unisexual lineages are commonly considered to be short-lived in the evolutionary process as accumulation of deleterious mutations stated by Muller’s ratchet. However, the gynogenetic hexaploid gibel carp (Carassius gibelio) with existence over 0.5 million years has wider ecological distribution and higher genetic diversity than its sexual progenitors, which provides an ideal model to investigate the underlying mechanisms on countering Muller’s ratchet in unisexual taxa. Unlike other unisexual lineages, the wild populations of gibel carp contain rare and variable proportions of males (1–26%), which are determined via two strategies including genotypic sex determination and temperature-dependent sex determination. Here, we used a maternal gibel carp from strain F to be mated with a genotypic male from strain A+, a temperature-dependent male from strain A+, and a male from another species common carp (Cyprinus carpio), respectively. When the maternal individual was mated with the genotypic male, a variant of gynogenesis was initiated, along with male occurrence, accumulation of microchromosomes, and creation of genetic diversity in the offspring. When the maternal individual was mated with the temperature-dependent male and common carp, typical gynogenesis was initiated that all the offspring showed the same genetic information as the maternal individual. Subsequently, we found out that the genotypic male nucleus swelled and contacted with the female nucleus after fertilization although it was extruded from the female nucleus eventually, which might be associated with the genetic variation in the offspring. These results reveal that genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp, which provides insights into the evolution of unisexual reproduction.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Zhang XJ, Zhou L, Lu WJ, Du WX, Mi XY, Li Z, Li XY, Wang ZW, Wang Y, Duan M, Gui JF. Comparative transcriptomic analysis reveals an association of gibel carp fatty liver with ferroptosis pathway. BMC Genomics 2021; 22:328. [PMID: 33952209 PMCID: PMC8101161 DOI: 10.1186/s12864-021-07621-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fatty liver has become a main problem that causes huge economic losses in many aquaculture modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring mechanism are remaining enigmatic. METHODS Each three liver samples from the control group of allogynogenetic gibel carp with normal liver and the overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure, lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and hepatocyte mitochondria analyses. RESULTS Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver. Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis, degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated ferroptosis pathway in the fatty liver. qPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl, were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and some of their outer membranes were almost ruptured. CONCLUSIONS We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish fatty liver problems.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Sox9a, not sox9b is required for normal cartilage development in zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Bishani A, Prokopov DY, Romanenko SA, Molodtseva AS, Perelman PL, Interesova EA, Beklemisheva VR, Graphodatsky AS, Trifonov VA. Evolution of Tandemly Arranged Repetitive DNAs in Three Species of Cyprinoidei with Different Ploidy Levels. Cytogenet Genome Res 2021; 161:32-42. [PMID: 33677437 DOI: 10.1159/000513274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.
Collapse
Affiliation(s)
- Ali Bishani
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation, .,Novosibirsk State University, Novosibirsk, Russian Federation,
| | - Dmitry Y Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Svetlana A Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Anna S Molodtseva
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Elena A Interesova
- Department of Ichthyology and Hydrobiology, Tomsk State University, Tomsk, Russian Federation
| | | | | | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
31
|
Yu P, Zhou L, Yang WT, Miao LJ, Li Z, Zhang XJ, Wang Y, Gui JF. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics 2021; 22:50. [PMID: 33446100 PMCID: PMC7809818 DOI: 10.1186/s12864-020-07360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Loaches of Cobitinae, widely distributed in Eurasian continent, have high economic, ornamental and scientific value. However, the phylogeny of Cobitinae fishes within genera or family level remains complex and controversial. Up to now, about 60 Cobitinae mitogenomes had been deposited in GenBank, but their integrated characteristics were not elaborated. RESULTS In this study, we sequenced and analyzed the complete mitogenomes of a female Cobits macrostigma. Then we conducted a comparative mitogenome analysis and revealed the conserved and unique characteristics of 58 Cobitinae mitogenomes, including C. macrostigma. Cobitinae mitogenomes display highly conserved tRNA secondary structure, overlaps and non-coding intergenic spacers. In addition, distinct base compositions were observed among different genus and significantly negative linear correlation between AT% and AT-skew were found among Cobitinae, genus Cobitis and Pangio mitogenomes, respectively. A specific 3 bp insertion (GCA) in the atp8-atp6 overlap was identified as a unique feature of loaches, compared to other Cypriniformes fish. Additionally, all protein coding genes underwent a strong purifying selection. Phylogenetic analysis strongly supported the paraphyly of Cobitis and polyphyly of Misgurnus. The strict molecular clock predicted that Cobitinae might have split into northern and southern lineages in the late Eocene (42.11 Ma), furthermore, mtDNA introgression might occur (14.40 Ma) between ancestral species of Cobitis and ancestral species of Misgurnus. CONCLUSIONS The current study represents the first comparative mitogenomic and phylogenetic analyses within Cobitinae and provides new insights into the mitogenome features and evolution of fishes belonging to the cobitinae family.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Tao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Wang C, Zhou Y, Qin H, Zhao C, Yang L, Yu T, Zhang Y, Xu T, Qin Q, Liu S. Genetic and Epigenetic Changes Are Rapid Responses of the Genome to the Newly Synthesized Autotetraploid Carassius auratus. Front Genet 2021; 11:576260. [PMID: 33488668 PMCID: PMC7817996 DOI: 10.3389/fgene.2020.576260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/07/2020] [Indexed: 01/15/2023] Open
Abstract
Whole genome duplication events have occurred frequently during the course of vertebrate evolution. To better understand the influence of polyploidization on the fish genome, we herein used the autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR) resulting from the whole genome duplication of Carassius auratus (2n = 100, RR) (RCC) to explore the genomic and epigenetic alterations after polyploidization. We subsequently performed analyses of full-length transcriptome dataset, amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) on 4nRR and RCC. By matching the results of 4nRR and RCC isoforms with reference genome in full-length transcriptome dataset, 649 and 1,971 novel genes were found in the RCC and 4nRR full-length geneset, respectively. Compared to Carassius auratus and Megalobrama amblycephala, 4nRR presented 3,661 unexpressed genes and 2,743 expressed genes. Furthermore, GO enrichment analysis of expressed genes in 4nRR revealed that they were enriched in meiosis I, whereas KEGG enrichment analysis displayed that they were mainly enriched in proteasome. Using AFLP analysis, we noted that 32.61% of RCC fragments had disappeared, while 32.79% of new bands were uncovered in 4nRR. Concerning DNA methylation, 4nRR exhibited a lower level of global DNA methylation than RCC. Additionally, 60.31% of methylation patterns in 4nRR were altered compared to RCC. These observations indicated that transcriptome alterations, genomic changes and regulation of DNA methylation levels and patterns had occurred in the newly established autotetraploid genomes, suggesting that genetic and epigenetic alterations were influenced by autotetraploidization. In summary, this study provides valuable novel insights into vertebrate genome evolution and generates relevant information for fish breeding.
Collapse
Affiliation(s)
- Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | - Tao Xu
- Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
Lu WJ, Zhou L, Gao FX, Zhou YL, Li Z, Zhang XJ, Wang Y, Gui JF. Dynamic and Differential Expression of Duplicated Cxcr4/Cxcl12 Genes Facilitates Antiviral Response in Hexaploid Gibel Carp. Front Immunol 2020; 11:2176. [PMID: 33013914 PMCID: PMC7516010 DOI: 10.3389/fimmu.2020.02176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemokine receptor cxcr4 and its ligand cxcl12 have evolved two paralogs in the teleost lineage. In this study, we have identified four duplicated cxcr4 and cxcl12 genes from hexaploid gibel carp, Carassius gibelio, respectively. Cgcxcr4bs and Cgcxcl12as were dynamically and differentially expressed in immune-related tissues, and significantly up-regulated in head kidney and spleen after crucian carp herpesvirus (CaHV) infection. Blocking Cxcr4/Cxcl12 axis by injecting AMD3100 brought more severe bleeding symptom and lower survival rate in CaHV-infected fish. AMD3100 treatment also suppressed the up-regulation of key antiviral genes in head kidney and spleen, and resulted in more acute replication of CaHV in vivo. Consistently, the similar suppression of up-regulated expression of key antiviral genes were also observed in CAB cells treated by AMD3100 after poly(I:C) stimulation. Finally, MAPK3 and JAK/STAT were identified as the possible pathways that CgCxcr4s and CgCxcl12s participate in to promote the antiviral response in vitro.
Collapse
Affiliation(s)
- Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Fan-Xiang Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
34
|
Gianì S, Silletti S, Gavazzi F, Morello L, Spinsanti G, Parati K, Breviario D. aTBP: A versatile tool for fish genotyping. PLoS One 2020; 15:e0237111. [PMID: 32750100 PMCID: PMC7402489 DOI: 10.1371/journal.pone.0237111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Animal Tubulin-Based-Polymorphism (aTBP), an intron length polymorphism method recently developed for vertebrate genotyping, has been successfully applied to the identification of several fish species. Here, we report data that demonstrate the ability of the aTBP method to assign a specific profile to fish species, each characterized by the presence of commonly shared amplicons together with additional intraspecific polymorphisms. Within each aTBP profile, some fragments are also recognized that can be attributed to taxonomic ranks higher than species, e.g. genus and family. Versatility of application across different taxonomic ranks combined with the presence of a significant number of DNA polymorphisms, makes the aTBP method an additional and useful tool for fish genotyping, suitable for different purposes such as species authentication, parental recognition and detection of allele variations in response to environmental changes.
Collapse
Affiliation(s)
- Silvia Gianì
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Silvia Silletti
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Floriana Gavazzi
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Laura Morello
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | | | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Rivolta d’Adda (CR), Italy
| | - Diego Breviario
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
- * E-mail:
| |
Collapse
|
35
|
Huang X, Wu C, Gong K, Chen Q, Gu Q, Qin H, Zhao C, Yu T, Yang L, Fu W, Wang Y, Qin Q, Liu S. Sox Gene Family Revealed Genetic Variations in Autotetraploid Carassius auratus. Front Genet 2020; 11:804. [PMID: 32849805 PMCID: PMC7399338 DOI: 10.3389/fgene.2020.00804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
The Sox gene family encoded transcription factors that played key roles in developmental processes in vertebrates. To further understand the evolutionary fate of the Sox gene family in teleosts, the Sox genes were comprehensively characterized in fish of different ploidy levels, including blunt snout bream (2n = 48, Megalobrama amblycephala, BSB), goldfish (2n = 100, Carassius auratus red var., 2nRCC), and autotetraploid C. auratus (4n = 200, 4nRCC). The 4nRCC, which derived from the whole genome duplication (WGD) of 2nRCC, were obtained through the distant hybridization of 2nRCC (♀) × BSB (♂). Compared with the 26 Sox genes in zebrafish (2n = 50, Danio rerio), 26, 47, and 92 putative Sox genes were identified in the BSB, 2nRCC, and 4nRCC genomes, respectively, and classified into seven subfamilies (B1, B2, C, D, E, F, and K). Comparative analyses showed that 89.36% (42/47) of Sox genes were duplicated in 2nRCC compared with those in BSB, while 97.83% (90/92) of Sox genes were duplicated in 4nRCC compared with those in 2nRCC, meaning the Sox gene family had undergone an expansion in BSB, 2nRCC, and 4nRCC, respectively, following polyploidization events. In addition, potential gene loss, genetic variations, and paternal parent SNP locus insertion occurred during the polyploidization events. Our data provided new insights into the evolution of the Sox gene family in polyploid vertebrates after several rounds of WGD events.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaijun Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qian Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
36
|
Yasui GS, Bertolini RM, Suárez-López L, Xavier PP, Monzani PS, Ferreira do Nascimento N, Castilho AL, Okada Nakaghi LS, Alves Dos Santos SC, Senhorini JA. Flow cytometric analysis from fish samples stored at low, ultra-low and cryogenic temperatures. Cryobiology 2020; 95:68-71. [PMID: 32505625 DOI: 10.1016/j.cryobiol.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/30/2022]
Abstract
Flow cytometry is a valuable tool in biomedical and animal sciences. However, equipment used for such analysis presents limitations at field conditions, suggesting then preservation procedures for future analysis at laboratory conditions. In this study, freezing at low (-20 °C), ultra-low (-80 °C) and cryogenic temperatures (-196 °C, i.e. liquid nitrogen) were used as preservation procedures of fish tissue. Samples were maintained in 0.9% NaCl or lysing solution, and stored at the temperatures above for 0 (fresh control), 60, 120 and 180 days of storage. After storage, the samples were thawed and proceeded to flow cytometric analysis. Storage at low temperatures (-20 °C), both in lysing and 0.9% NaCl, exhibited poor results when analyzed after 60, 120 and 180 days, showing noisy peaks, deviation in the DNA content and absence of peaks. Ultralow (-80 °C) and cryogenic (-196 °C) temperatures, both in lysing solution and 0.9% NaCl, showed good results and high quality of histograms. Both storage procedures gave similar histograms and DNA content in comparison with control group (fresh) even after 60, 120 and 180 days of storage, exhibiting the main peak at 2C content from diploid cells and a secondary peak at 4C derived from dividing cells. In conclusion, samples may be stored for 180 days at -80 °C and -196 °C in both, 0.9% NaCl or lysing solution. As cryogenic temperatures in liquid nitrogen permits indefinite storage, this procedure should be used for long-term preservation.
Collapse
Affiliation(s)
- George Shigueki Yasui
- Department of Animal Reproduction - FMVZ, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo-SP, 05508-270, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil.
| | - Rafaela Manchin Bertolini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil; Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho, Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Rubião Junior District, 18618-689, São Paulo, Botucatu, Brazil
| | - Lucia Suárez-López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil; Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho, Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Rubião Junior District, 18618-689, São Paulo, Botucatu, Brazil
| | - Pedro Porfírio Xavier
- Department of Veterinary Medicine - FZEA, University of Sao Paulo, Avenida Duque de Caxias Norte 225, Pirassununga, SP, 13630-080, Brazil
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil
| | - Nivaldo Ferreira do Nascimento
- Department of Animal Reproduction - FMVZ, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo-SP, 05508-270, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil
| | - Antonio Leão Castilho
- Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho, Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Rubião Junior District, 18618-689, São Paulo, Botucatu, Brazil
| | - Laura Satiko Okada Nakaghi
- Aquaculture Center, Sao Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | | | - José Augusto Senhorini
- Department of Animal Reproduction - FMVZ, University of Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo-SP, 05508-270, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP, 13630-970, Brazil
| |
Collapse
|
37
|
Cao L, Zhao C, Wang C, Qin H, Qin Q, Tao M, Zhang C, Zhao R, Liu S. Evolutionary dynamics of 18S and 5S rDNA in autotriploid Carassius auratus. Gene 2020; 737:144433. [PMID: 32014563 DOI: 10.1016/j.gene.2020.144433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The Carassius auratus (crucian carp) complex of the Dongting water system exhibits coexistence of diploid and triploid forms. As reported, triploid C. auratus is autotriploid origin. Ribosomal DNA (rDNA) with evolutionary conservation is widely used to study polyploidization. Here, we investigated genomic and transcribed rDNA sequences (18S and 5S) in diploid (2nCC, 2n = 100) and triploid (3nCC, 3n = 150) C. auratus. The results showed that the genetic traits and expression of 18S and 5S rDNA from 2nCC individuals were identified in 3nCC individuals. Moreover, pseudogenization of rDNA (18S and 5S) sequences were also observed in both 2nCC and 3nCC individuals, but expression of these variants was not detected. Based on the transcribed rDNA consensus sequence between 2nCC and 3nCC individuals, the functional secondary structures of 18S rRNA (expansion segments, ES6S) and 5S rRNA were predicted. These data demonstrated that complex evolutionary dynamics existed in the rDNA family of C. auratus. The evolutionary conservation of rDNA revealed that autotriploidization could not induce the divergence in Carassius taxa of the Dongting water system. These observations will expand our knowledge of the evolutionary dynamics of the rDNA family in vertebrates.
Collapse
Affiliation(s)
- Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
38
|
Chen F, Li XY, Zhou L, Yu P, Wang ZW, Li Z, Zhang XJ, Wang Y, Gui JF. Stable Genome Incorporation of Sperm-derived DNA Fragments in Gynogenetic Clone of Gibel Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:54-66. [PMID: 31902020 DOI: 10.1007/s10126-019-09930-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
How unisexual animals eliminate deleterious mutations to avoid dead ends is one of the most interesting puzzles in evolutionary genetics. Incorporation of microchromosomes derived from exogenous sperm had been observed in gynogenetic animals, but little is known about their detailed process and hereditary fate. Here, we show a stable genome incorporation case in an artificial clone F of gynogenetic gibel carp (Carassius gibelio). A total of 12 exogenous DNA fragments were screened through a read depth-dependent comparison strategy and confirmed to be specific to the clone F and the paternal blunt snout bream (Megalobrama amblycephala Yin) by SCAR (sequence characterized amplified regions) marker detection. Moreover, these sperm-derived DNA fragments were not detected in some samples in early gynogenetic generations, but they were found to exist in all examined individuals through artificial gynogenetic selections of 13 generations, implying that they might have stably incorporated into the genome of clone F. Furthermore, chromosome localization and sequence characterization indicate that the largest fragment CgA22_34 is derived from blunt snout bream non-LTR retrotransposon and durably incorporated into only one of three homologous chromosomes of gibel carp clone F. Our results suggest that the incorporated sperm-derived DNA fragments by allogynogenesis should increase genetic diversity and introduce new traits into unisexual animals which will benefit genetic breeding of gibel carp. During the process, transposable elements (TEs) may play significant roles in shaping the genome structures. Simultaneously, the incorporated DNA fragments are able to be used as genetic markers to perform selective breeding programs in aquaculture practices of gibel carp.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology 2019; 140:33-43. [PMID: 31425935 DOI: 10.1016/j.theriogenology.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
We report for the first time, a comparison of two approaches for artificially induced triploidy in zebrafish (Danio rerio) using cold shock and heat shock treatments. Of the two methods, heat shock treatment proved more effective with a triploid production rate of 100% in particular females. Subsequently, triploid zebrafish larvae were used as recipients for intraperitoneal transplantation of ovarian and testicular cells originating from vas:EGFP strain in order to verify their suitability for surrogate reproduction. Production of donor-derived sperm was achieved in 23% of testicular cell recipients and 16% of ovarian cell recipients, indicating the suitability of triploids as surrogate hosts for germ cell transplantation. Success of the transplantation was confirmed by positive GFP signal detected in gonads of dissected fish and stripped sperm. Germline transmission was confirmed by fertilization tests followed by PCR analysis of embryos with GFP specific primers. Reproductive success of germline chimera triploids evaluated as fertilization rate and progeny development was comparable to control groups.
Collapse
Affiliation(s)
- Roman Franěk
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Tomáš Tichopád
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Michaela Fučíková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
40
|
Salmina K, Gerashchenko BI, Hausmann M, Vainshelbaum NM, Zayakin P, Erenpreiss J, Freivalds T, Cragg MS, Erenpreisa J. When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers. Genes (Basel) 2019; 10:E551. [PMID: 31331093 PMCID: PMC6678365 DOI: 10.3390/genes10070551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ninel M Vainshelbaum
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Juris Erenpreiss
- Riga Stradins University, LV-1007 Riga, Latvia
- Clinic IVF-Riga, LV-1010 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
41
|
Lu WJ, Gao FX, Wang Y, Zhang QY, Li Z, Zhang XJ, Zhou L, Gui JF. Differential expression of innate and adaptive immune genes in the survivors of three gibel carp gynogenetic clones after herpesvirus challenge. BMC Genomics 2019; 20:432. [PMID: 31138127 PMCID: PMC6540555 DOI: 10.1186/s12864-019-5777-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Accompanied with rapid growth and high density aquaculture, gibel carp has been seriously threatened by Carassius auratus herpesvirus (CaHV) since 2012. In previous study, distinct CaHV resistances and immune responses were revealed in the diseased individuals of three gibel carp gynogenetic clones (A+, F and H). However, little is known about the gene expression changes in the survivors after CaHV challenge, particularly their differences of innate and adaptive immune system between susceptible clone and resistant clone. RESULTS We firstly confirmed the CaHV carrier state in the survivors of three gibel carp clones after CaHV challenge by evaluating the abundances of five CaHV genes. The assay of viral loads indicated the resistant clone H possessed not only stronger resistance but also higher tolerance to CaHV. Then, 2818, 4047 and 3323 differentially expressed unigenes (DEUs) were screened from the head-kidney transcriptome profiles of survivors compared with controls from clone A+, F and H. GO and KEGG analysis suggested that a persistent immune response might sustain in resistant clone H and F, while susceptible clone A+ had a long-term impact on the circulatory system which was consistent with the major symptoms of bleeding caused by CaHV. Among the top 30 enriched pathways of specifically up-regulated DEUs in respective clones, 26, 7 and 15 pathways in clone H, F and A+ were associated with infections, diseases, or immune-related pathways respectively. In addition, 20 pathways in clone F belonged to "metabolism" or "biogenesis", and 7 pathways involved in "circulatory system" were enriched in clone A+. Significantly, we revealed the differential expression changes of IFN system genes and immunoglobulin (Ig) genes among the survivors of three clones. Finally, myosins and Igs were identified as co-expression modules which were positively or negatively correlated to CaHV viral loads respectively. CONCLUSIONS Our results revealed the common and distinct gene expression changes in immune and circulatory system in the survivors of three gibel carp gynogenetic clones with different CaHV resistances. The current study represents a paradigm of differential innate and adaptive immune reactions in teleost, and will be beneficial to the disease-resistance breeding of gibel carp.
Collapse
Affiliation(s)
- Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098 China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
42
|
Maxwell O, Emmanuel JS, Olusegun AO, Cyril EEO, Ifeanyi AT, Embong Z. A STUDY OF NATURAL RADIOACTIVITY IN SOME BUILDING MATERIALS IN NIGERIA. RADIATION PROTECTION DOSIMETRY 2019; 183:332-335. [PMID: 30085254 DOI: 10.1093/rpd/ncy121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Building materials of different brands were assessed for the concentrations of 226Ra, 232Th and 40K using HPGe detector. The activity concentrations in the measured samples ranged from 27 ± 8 to 82 ± 8 Bq kg-1 for 226Ra, 41 ± 4 to 101 ± 8 Bq kg-1 for 232Th and 140 ± 8 to 940 ± 19 Bq kg-1 for 40K, respectively. The Radium equivalent (Raeq) activity from the samples was found to be <370 Bq kg-1 as the recommended value for construction materials. This study will set a baseline data for significant standards on radiation exposure of the measured radionuclides in the selected building materials used in Nigeria.
Collapse
Affiliation(s)
- Omeje Maxwell
- Department of Physics, College of Science and Technology, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Joel S Emmanuel
- Department of Physics, College of Science and Technology, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Adewoyin O Olusegun
- Department of Physics, College of Science and Technology, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Ehi-Eromosele O Cyril
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Araka T Ifeanyi
- Department of Physics, College of Science and Technology, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Zaidi Embong
- Faculty of Applied Science and Technology (FAST), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Campus, Km 1, Jalan Panchor, Pagoh, Muar, Johor, Malaysia
| |
Collapse
|
43
|
Qin QB, Liu QW, Zhou YW, Wang CQ, Qin H, Zhao C, Liu SJ. Differential expression of HPG-axis genes in autotetraploids derived from red crucian carp Carassius auratus red var., ♀ × blunt snout bream Megalobrama amblycephala, ♂. JOURNAL OF FISH BIOLOGY 2018; 93:1082-1089. [PMID: 30260011 DOI: 10.1111/jfb.13818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Autotetraploid fish (4n = 200, abbreviated as 4nRR), which reach sexual maturity at 1 year of age, were derived from the whole genome duplication of red crucian carp Carassius auratus red var. (RCC; 2n = 100) and possess four sets of chromosomes from RCC. The histological features of the gonads showed that the RCC and 4nRR both possessed normal gonadal structure and could arrive at maturation. To understand the expression characteristics of genes related to reproductive development in the autotetraploid fish, we analysed the nucleotide sequence and expression characteristics of the gnrh2, gthb and gthr genes, which are the pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis. We found that the gnrh2, gthb and gthr genes in 4nRR share remarkable homology with RCC, but there were obvious differences in expression levels between 4nRR and RCC. These results demonstrate that autotetraploidization can lead to gene expression changes. This study provides insights into the molecular mechanism underlying the reproductive development of autotetraploid fish and is expected to be of great significance for subsequent research on polyploidization.
Collapse
Affiliation(s)
- Qin B Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qi W Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu W Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Q Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shao J Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
44
|
He WX, Wu M, Liu Z, Li Z, Wang Y, Zhou J, Yu P, Zhang XJ, Zhou L, Gui JF. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA (NEW YORK, N.Y.) 2018; 24:1738-1748. [PMID: 30185624 PMCID: PMC6239174 DOI: 10.1261/rna.067090.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA metabolism in mammals. Zebrafish possesses two slbps, and slbp1 is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyte-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Δ4-/-) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Δ4-/- embryos. However, homozygous mutant MZslbp1Δ1-/- developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Δ4-/- embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2a, H2b, H3, and H4, all reduced their expression, while histone variant h2afx significantly increased in MZslbp2Δ4-/- embryos at the 256-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Δ4-/- embryos can be partially rescued by overexpression of H2b. The current data indicate that maternal Slbp2 plays a pivotal role in the storage of replication-dependent histone mRNAs and proteins during zebrafish oogenesis.
Collapse
Affiliation(s)
- Wen-Xia He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Li XY, Gui JF. Diverse and variable sex determination mechanisms in vertebrates. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1503-1514. [PMID: 30443862 DOI: 10.1007/s11427-018-9415-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
Sex is prevalent in nature and sex determination is one of the most fundamental biological processes, while the way of initiating female and male development exhibits remarkable diversity and variability across vertebrates. The knowledge on why and how sex determination mechanisms evolve unusual plasticity remains limited. Here, we summarize sex determination systems, master sex-determining genes and gene-regulatory networks among vertebrates. Recent research advancements on sex determination system transition are also introduced and discussed in some non-model animals with multiple sex determination mechanisms. This review will provide insights into the origin, transition and evolutionary adaption of different sex determination strategies in vertebrates, as well as clues for future perspectives in this field.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
46
|
Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides. Int J Mol Sci 2018; 19:ijms19102943. [PMID: 30262794 PMCID: PMC6213054 DOI: 10.3390/ijms19102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemokine receptor Cxcr4 evolved two paralogs in the teleost lineage. However, cxcr4a and cxcr4b have been characterized only in a few species. In this study, we identified two cxcr4 paralogs from the orange-spotted grouper, Epinephelus coioides. The phylogenetic relationship and gene structure and synteny suggest that the duplicated cxcr4a/b should result from the teleost-specific genome duplication (Ts3R). The teleost cxcr4 gene clusters in two paralogous chromosomes exhibit a complementary gene loss/retention pattern. Ec_cxcr4a and Ec_cxcr4b show differential and biased expression patterns in grouper adult tissue, gonads, and embryos at different stages. During embryogenesis, Ec_cxcr4a/b are abundantly transcribed from the neurula stage and mainly expressed in the neural plate and sensory organs, indicating their roles in neurogenesis. Ec_Cxcr4a and Ec_Cxcr4b possess different chemotactic migratory abilities from the human SDF-1α, Ec_Cxcl12a, and Ec_Cxcl12b. Moreover, we uncovered the N-terminus and TM5 domain as the key elements for specific ligand⁻receptor recognition of Ec_Cxcr4a-Ec_Cxcl12b and Ec_Cxcr4b-Ec_Cxcl12a. Based on the biased and divergent expression patterns of Eccxcr4a/b, and specific ligand⁻receptor recognition of Ec_Cxcl12a/b⁻Ec_Cxcr4b/a, the current study provides a paradigm of sub-functionalization of two teleost paralogs after Ts3R.
Collapse
|
47
|
Shao GM, Li XY, Wang Y, Wang ZW, Li Z, Zhang XJ, Zhou L, Gui JF. Whole Genome Incorporation and Epigenetic Stability in a Newly Synthetic Allopolyploid of Gynogenetic Gibel Carp. Genome Biol Evol 2018; 10:2394-2407. [PMID: 30085110 PMCID: PMC6143163 DOI: 10.1093/gbe/evy165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidization plays an important role in speciation, and some natural or synthetic allopolyploid fishes have been extensively applied to aquaculture. Although genetic and epigenetic inheritance and variation associated with plant allopolyploids have been well documented, the relative research in allopolyploid animals is scarce. In this study, the genome constitution and DNA methylation inheritance in a newly synthetic allopolyploid of gynogenetic gibel carp were analyzed. The incorporation of a whole genome of paternal common carp sperm in the allopolyploid was confirmed by genomic in situ hybridization, chromosome localization of 45S rDNAs, and sequence comparison. Pooled sample-based methylation sensitive amplified polymorphism (MSAP) revealed that an overwhelming majority (98.82%) of cytosine methylation patterns in the allopolyploid were inherited from its parents of hexaploid gibel carp clone D and common carp. Compared to its parents, 11 DNA fragments in the allopolyploid were proved to be caused by interindividual variation, recombination, deletion, and mutation through individual sample-based MSAP and sequencing. Contrast to the rapid and remarkable epigenetic changes in most of analyzed neopolyploids, no cytosine methylation variation was detected in the gynogenetic allopolyploid. Therefore, the newly synthetic allopolyploid of gynogenetic gibel carp combined genomes from its parents and maintained genetic and epigenetic stability after its formation and subsequently seven successive gynogenetic generations. Our current results provide a paradigm for recurrent polyploidy consequences in the gynogenetic allopolyploid animals.
Collapse
Affiliation(s)
- Guang-Ming Shao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Mou CY, Wang Y, Zhang QY, Gao FX, Li Z, Tong JF, Zhou L, Gui JF. Differential interferon system gene expression profiles in susceptible and resistant gynogenetic clones of gibel carp challenged with herpesvirus CaHV. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:52-64. [PMID: 29727627 DOI: 10.1016/j.dci.2018.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Interferon (IFN) system plays a vital role in the first line of defense against viruses. In this study, we first identified multiple transcripts of 15 IFN system genes, including PRRs (TLR2, TLR3, RIG-I, and LGP2), PRR-mediated IFN signal pathway (MyD88, MITA, and MAVS), IFN regulatory factors (IRF1, IRF3, IRF7, and IRF9), IFNs (IFNφ1 and IFNφ3), and ISGs (Mx and viperin), and one transcript of TLR9 in de novo transcriptome assembly data of gibel carp head-kidney. Multiple nucleotide alignments and phylogenetic analysis of common region showed that the transcripts of every of the 15 IFN system genes were classified into two homologs with distinctly divergent sequences, indicating that hexaploid gibel carp may be an allopolyploid. During Carassius auratus herpesvirus (CaHV) infection, gibel carp resistant clone H significantly suppressed CaHV replication with markedly less viral loads than those in highly susceptible clone A+ and moderately resistant clone F. Then, qPCR analyses were performed to reveal their differential and dynamic expression changes during CaHV infection in head kidney, spleen and liver among three gibel carp gynogenetic clones. Through qPCR and hierarchical clustering analysis, 8 genes, such as RIG-Is, LGP2s, IRF1-B, IRF3s, IRF7s, IRF9-B, Mxs, and viperins, were identified as candidate resistant-related genes. They remarkably increased their expression in immune tissues of three clones after CaHV infection. Significantly, the up-regulation folds of these genes in clone A+, F and H were related to their resistance ability to CaHV, progressively increasing from susceptible clone to resistant clone at 1 dpi. The positive correlation to the resistance ability suggested that resistant clone H immediately triggered stronger IFN response. IFNφ3 showed a different dynamic change and was sharply induced in moderately resistant clone F at 3 dpi. The other 5 IFN system genes (TLR2, TLR3, TLR9, MyD88, and MITA) maintained a low expression level after CaHV challenge. Interestingly, the A or B copies/homologs of almost these IFN system genes exhibited differential transcript abundance in immune tissue after CaHV challenge, suggesting A or B homologs might occur dominant or biased expression of homeologs during gibel carp evolution. These data provide candidate resistant-related genes for disease-resistance breeding of gibel carp.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
49
|
Gao FX, Lu WJ, Wang Y, Zhang QY, Zhang YB, Mou CY, Li Z, Zhang XJ, Liu CW, Zhou L, Gui JF. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:396-407. [PMID: 29555550 DOI: 10.1016/j.dci.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Diverse immunoglobulin (Ig) domain-containing protein (DICP) family is a novel bony fish-specific multi-gene family encoding diversified immune receptors. However, their function and the implication of binding partners remain unknown. In this study, we first identified 28 DICPs from three gibel carp gynogenetic clones and revealed their high variability and clone-specific feature. After crucian carp herpesvirus (CaHV) infection, these DICPs were significantly upregulated in head kidney, kidney and spleen. The up-regulation folds in clone A+, F and H were related to the susceptibility to CaHV, progressively increasing from resistant clone to susceptible clone. Overexpression of gibel carp DICPs inhibited interferon (IFN) and viperin promoter-driven luciferase activity. The additions of E. coli extracts and lipid A significantly enhanced the inhibition effect. In addition, gibel carp DICPs can interact with SHP-1 and SHP-2. These findings suggest that gible carp DICPs, as inhibitory receptors, might specifically recognize lipid A, and then interact with SHP-1 and SHP-2 to inhibit the induction of IFN and ISGs.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chao-Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Li XY, Liu XL, Zhu YJ, Zhang J, Ding M, Wang MT, Wang ZW, Li Z, Zhang XJ, Zhou L, Gui JF. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity (Edinb) 2018; 121:64-74. [PMID: 29391565 PMCID: PMC5997666 DOI: 10.1038/s41437-017-0049-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022] Open
Abstract
Most vertebrates reproduce sexually, and plastic sex determination mechanisms including genotypic sex determination (GSD) and environmental sex determination (ESD) have been extensively revealed. However, why sex determination mechanisms evolve diversely and how they correlate with diverse reproduction strategies remain largely unclear. Here, we utilize the superiority of a hexaploid gibel carp (Carassius gibelio) that is able to reproduce by unisexual gynogenesis and contains a rare but diverse proportion of males to investigate these puzzles. A total of 2248 hexaploid specimens were collected from 34 geographic wild populations throughout mainland China, in which 24 populations were revealed to contain 186 males with various incidences ranging from 1.2 to 26.5%. Subsequently, the proportion of temperature-dependent sex determination (TSD) was revealed to be positively correlated to average annual temperature in wild populations, and male incidence in lab gynogenetic progenies was demonstrated to increase with the increasing of larval rearing temperature. Meanwhile, extra microchromosomes were confirmed to play genotypic male determination role as previously reported. Thereby, GSD and TSD were found to coexist in gibel carp, and the proportions of GSD were observed to be much higher than that of TSD in sympatric wild populations. Our findings uncover a potential new mechanism in the evolution of sex determination system in polyploid vertebrates with unisexual gynogenesis ability, and also reveal a possible association of sex determination mechanism transition between TSD and GSD and reproduction mode transition between unisexual gynogenesis and bisexual reproduction.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yao-Jun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|