1
|
Vanický I, Blaško J, Tomori Z, Michalová Z, Székiová E. Rat ventral caudal nerve as a model for long distance regeneration. IBRO Neurosci Rep 2024; 16:476-484. [PMID: 39007082 PMCID: PMC11240296 DOI: 10.1016/j.ibneur.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/15/2024] [Indexed: 07/16/2024] Open
Abstract
In the rat, tail nerves are the longest peripheral nerves in their body. We suggest that ventral caudal nerve (VCN) may serve as a model for studying nerve injury and long distance regeneration. For this purpose, we have studied the anatomy and morphometry of the VCN in control animals. 10 cm long segment of the VCN was removed, and transversal sections were collected at 10 mm distances. The myelinated axons were counted, and the series of data were used to characterize the craniocaudal tapering of the nerve. In a separate group of animals, retrograde tracing with Fluorogold was used to localize and quantitate the spinal neurons projecting their axons into the VCN. After complete nerve transection, the time course of histopathological changes in the distal segment was studied. The primary goal was to define the time needed for axonal disintegration. In later periods, axonal debris removal and rearrangement of tissue elements was documented. After compression injury (axonotmesis), Wallerian degeneration was followed by spontaneous regeneration of axons. We show that the growing axons will span the 10 cm distance within 4-8 weeks. After different survival periods, the numbers of regenerating axons were counted at 10 mm distances. These data were used to characterize the dynamics of axonal regeneration during 4 months' survival period. In the present study we show that axonal regeneration across 10 cm distance can be studied and quantitatively analyzed in a small laboratory animal.
Collapse
Affiliation(s)
- Ivo Vanický
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Juraj Blaško
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Zoltán Tomori
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, Košice 04001, Slovakia
| | - Zuzana Michalová
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| | - Eva Székiová
- Institute of Neurobiology Biomedical Research Center Slovak Academy of Sciences, Šoltésovej 4, Košice 04001, Slovakia
| |
Collapse
|
2
|
Fogarty NL, Johnson T, Kwok B, Lin A, Tsinman TK, Jiang X, Koyama E, Han L, Baxter JR, Mauck RL, Dyment NA. Reduction in postnatal weight-bearing does not alter the trajectory of murine meniscus growth and maturation. J Orthop Res 2024; 42:894-904. [PMID: 37804210 PMCID: PMC10978302 DOI: 10.1002/jor.25711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The early postnatal period represents a critical window for the maturation and development of orthopedic tissues, including those within the knee joint. To understand how mechanical loading impacts the maturational trajectory of the meniscus and other tissues of the hindlimb, perturbation of postnatal weight bearing was achieved through surgical resection of the sciatic nerve in neonatal mice at 1 or 14 days old. Sciatic nerve resection (SNR) produced significant and persistent disruptions in gait, leading to reduced tibial length and reductions in Achilles tendon mechanical properties. However, SNR resulted in minimal disruptions in morphometric parameters of the menisci and other structures in the knee joint, with no detectable differences in Col1a1-YFP or Col2a1-CFP expressing cells within the menisci. Furthermore, micromechanical properties of the meniscus and cartilage (as assessed by atomic force microscopy-based nanoindentation testing) were not different between experimental groups. In contrast to our initial hypothesis, reduced hindlimb weight bearing via neonatal SNR did not significantly impact the growth and development of the knee meniscus. This unexpected finding demonstrates that the input mechanical threshold required to sustain meniscus development may be lower than previously hypothesized, though future studies incorporating skeletal kinematic models coupled with force plate measurements will be required to calculate the loads passing through the affected hindlimb and precisely define these thresholds. Collectively, these results provide insight into the mechanobiological responses of the meniscus to alterations in load, and contribute to our understanding of the factors that influence normal postnatal development.
Collapse
Affiliation(s)
- Natalie L Fogarty
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Talayah Johnson
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alisia Lin
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tonia K Tsinman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xi Jiang
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eiki Koyama
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Josh R Baxter
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Laboratory, CMC VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Allgood JE, Bittner GD, Bushman JS. Repair and regeneration of peripheral nerve injuries that ablate branch points. Neural Regen Res 2023; 18:2564-2568. [PMID: 37449590 DOI: 10.4103/1673-5374.373679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Jared S Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
4
|
Allgood JE, Roballo KCS, Sparks BB, Bushman JS. The effects of graft source and orientation on outcomes after ablation of a branched peripheral nerve. Front Cell Neurosci 2022; 16:1055490. [PMID: 36451654 PMCID: PMC9701849 DOI: 10.3389/fncel.2022.1055490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points. Such injuries present additional complexity compared to linear segmental defects. This study compared outcomes following ablation of a branch point with branched grafts, specifically examining how graft source and orientation of the branched graft contributed to regeneration. The model system was Lewis rats that underwent a 2.5 cm ablation that started in the sciatic nerve trunk and included the peroneal/tibial branch point. Rats received grafts that were rat sciatic autograft, inbred sciatic allograft, and inbred femoral allograft, each of which was a branched graft of 2.5 cm. Allografts were obtained from Lewis rats, which is an inbred strain. Both branches of the sciatic grafts were mixed motor and sensory while the femoral grafts were smaller in diameter than sciatic grafts and one branch of the femoral graft is sensory and the other motor. All branched grafts were sutured into the defect in two orientations dictated by which branch in the graft was sutured to the tibial vs peroneal stumps in recipients. Outcome measures include compound muscle action potentials (CMAPs) and CatWalk gait analysis throughout the recovery period, with toluidine blue for intrinsic nerve morphometry and retrograde labeling conducted at the 36-week experimental end point. Results indicate that graft source and orientation does play a significant role earlier in the regenerative process but by 36 weeks all groups showed very similar indications of regeneration across multiple outcomes.
Collapse
Affiliation(s)
| | | | | | - Jared S. Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
5
|
Functional Gait Assessment Using Manual, Semi-Automated and Deep Learning Approaches Following Standardized Models of Peripheral Nerve Injury in Mice. Biomolecules 2022; 12:biom12101355. [PMID: 36291564 PMCID: PMC9599622 DOI: 10.3390/biom12101355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To develop a standardized model of stretch−crush sciatic nerve injury in mice, and to compare outcomes of crush and novel stretch−crush injuries using standard manual gait and sensory assays, and compare them to both semi-automated as well as deep-learning gait analysis methods. Methods: Initial studies in C57/Bl6 mice were used to develop crush and stretch−crush injury models followed by histologic analysis. In total, 12 eight-week-old 129S6/SvEvTac mice were used in a six-week behavioural study. Behavioral assessments using the von Frey monofilament test and gait analysis recorded on a DigiGait platform and analyzed through both Visual Gait Lab (VGL) deep learning and standardized sciatic functional index (SFI) measurements were evaluated weekly. At the termination of the study, neurophysiological nerve conduction velocities were recorded, calf muscle weight ratios measured and histological analyses performed. Results: Histological evidence confirmed more severe histomorphological injury in the stretch−crush injured group compared to the crush-only injured group at one week post-injury. Von Frey monofilament paw withdrawal was significant for both groups at week one compared to baseline (p < 0.05), but not between groups with return to baseline at week five. SFI showed hindered gait at week one and two for both groups, compared to baseline (p < 0.0001), with return to baseline at week five. Hind stance width (HSW) showed similar trends as von Frey monofilament test as well as SFI measurements, yet hind paw angle (HPA) peaked at week two. Nerve conduction velocity (NCV), measured six weeks post-injury, at the termination of the study, did not show any significant difference between the two groups; yet, calf muscle weight measurements were significantly different between the two, with the stretch−crush group demonstrating a lower (poorer) weight ratio relative to uninjured contralateral legs (p < 0.05). Conclusion: Stretch−crush injury achieved a more reproducible and constant injury compared to crush-only injuries, with at least a Sunderland grade 3 injury (perineurial interruption) in histological samples one week post-injury in the former. However, serial behavioral outcomes were comparable between the two crush groups, with similar kinetics of recovery by von Frey testing, SFI and certain VGL parameters, the latter reported for the first time in rodent peripheral nerve injury. Semi-automated and deep learning-based approaches for gait analysis are promising, but require further validation for evaluation in murine hind-limb nerve injuries.
Collapse
|
6
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
7
|
Heinzel JC, Oberhauser V, Keibl C, Schädl B, Swiadek NV, Längle G, Frick H, Slezak C, Prahm C, Grillari J, Kolbenschlag J, Hercher D. ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting. Biomedicines 2022; 10:biomedicines10081777. [PMID: 35892677 PMCID: PMC9394363 DOI: 10.3390/biomedicines10081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Core Facility Morphology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole V. Swiadek
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Cyrill Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Physics, Utah Valley University, Orem, UT 84058, USA
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
8
|
Yafuso T, Kosaka Y, Shimizu-Okabe C, Okura N, Kobayashi S, Kim J, Matsuda K, Kinjo D, Okabe A, Takayama C. Slow progression of sciatic nerve degeneration and regeneration after loose ligation through microglial activation and decreased KCC2 levels in the mouse spinal cord ventral horn. Neurosci Res 2022; 177:52-63. [PMID: 34757085 DOI: 10.1016/j.neures.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Peripheral nerve injury affects motor functions. To reveal the mechanisms underlying motor dysfunction and recovery after nerve compression, which have not been precisely examined, we investigated the temporal relationship among changes in motor function, nerve histopathology, and marker molecule expression in the spinal cord after loose ligation of the mouse sciatic nerve. After ligation, sciatic motor function suddenly declined, and axons gradually degenerated. During degeneration, galanin was localized in motor neuron cell bodies. Then, in the ventral horn, microglia were activated, and expression of choline acetyltransferase (ChAT), a synthetic enzyme of acetylcholine, and potassium chloride co-transporter 2 (KCC2), which shifts the action of γ-amino butyric acid (GABA) and glycine to inhibitory, decreased. Motor function recovery was insufficient although axonal regeneration was complete. ChAT levels gradually recovered during axonal regeneration. When regeneration was nearly complete, microglial activation declined, and KCC2 expression started to increase. The KCC2 level sufficiently recovered when axonal regeneration was complete, suggesting that the excitatory action of GABA/glycine may participate in axonal regeneration. Furthermore, these changes proceeded slower than those after severance, suggesting that loose ligation, compression, may mediate slower progression of degeneration and regeneration than severance, and these changes may cause the motor dysfunction and its recovery.
Collapse
Affiliation(s)
- Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan; Department of Anatomy, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Koyata Matsuda
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Daichi Kinjo
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka, 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan.
| |
Collapse
|
9
|
Cho YH, Seo TB. Effect of treadmill exercise combined with bone marrow stromal cell transplantation on atrophy-related signaling pathway in the denervated soleus muscle. J Exerc Rehabil 2022; 17:395-402. [PMID: 35036388 PMCID: PMC8743607 DOI: 10.12965/jer.2142618.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate whether combination of low-intensity exercise with bone marrow stromal cell (BMSC) transplantation could regulate protein kinas B (Akt)-mammalian target of rapamycin (mTOR) and Wnt3a-β-catenin signaling pathways for prevention of soleus muscle atrophy after sciatic nerve injury (SNI). The experimental rats divided into 5 groups (n=10): normal control group, SNI+sedentary group (SED), SNI+low-intensity treadmill exercise group (TEX), SNI+BMSC transplantation group (BMSC), SNI+TEX+BMSC transplantation group (TEX+BMSC). Sciatic nerve crush injury was applied into the middle of thigh twice for 1 min and 30 sec at interval. Low-intensity treadmill exercise was comprised of walking at a speed of 4 to 8 m/min for 30 min once a day. cultured BMSC at a density of 5×106 in 50-μL phosphate-buffered saline was injected into the distal portion of the injured sciatic nerves. TEX+BMSC group dramatically up-regulated expression levels of growth-associated protein-43 in the injured sciatic nerve at 2 weeks postinjury. Also, although Akt and mTOR signaling pathway significantly increased in TEX and BMSC groups than SED group, TEX+BMSC group showed more potent increment on this signaling in soleus muscle after SNI. Lastly, Wnt3a and the nuclear translocation of β-catenin and nuclear factor-kappa B in soleus were increased by SNI, but TEX+BMSC group significantly downregulated activity of this signaling pathway in the nuclear cell lysate of soleus muscle. Present findings provide new information that combination of low-intensity treadmill exercise might be effective therapeutic approach on restriction of soleus muscle atrophy after peripheral nerve injury.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
10
|
Jakovcevski I, von Düring M, Lutz D, Vulović M, Hamad M, Reiss G, Förster E, Schachner M. Mice lacking perforin have improved regeneration of the injured femoral nerve. Neural Regen Res 2022; 17:1802-1808. [PMID: 35017441 PMCID: PMC8820721 DOI: 10.4103/1673-5374.332152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role that the immune system plays after injury of the peripheral nervous system is still not completely understood. Perforin, a natural killer cell- and T-lymphocyte-derived enzyme that mediates cytotoxicity, plays important roles in autoimmune diseases, infections and central nervous system trauma, such as spinal cord injury. To dissect the roles of this single component of the immune response to injury, we tested regeneration after femoral nerve injury in perforin-deficient (Pfp–/–) and wild-type control mice. Single frame motion analysis showed better motor recovery in Pfp–/– mice compared with control mice at 4 and 8 weeks after injury. Retrograde tracing of the motoneuron axons regrown into the motor nerve branch demonstrated more correctly projecting motoneurons in the spinal cord of Pfp–/– mice compared with wild-types. Myelination of regrown axons measured by g-ratio was more extensive in Pfp–/– than in wild-type mice in the motor branch of the femoral nerve. Pfp–/– mice displayed more cholinergic synaptic terminals around cell bodies of spinal motoneurons after injury than the injured wild-types. We histologically analyzed lymphocyte infiltration 10 days after surgery and found that in Pfp–/– mice the number of lymphocytes in the regenerating nerves was lower than in wild-types, suggesting a closed blood-nerve barrier in Pfp–/– mice. We conclude that perforin restricts motor recovery after femoral nerve injury owing to decreased survival of motoneurons and reduced myelination.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Monika von Düring
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Maja Vulović
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Mohammad Hamad
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
11
|
The Structure of the Brachial Plexus of the Djungarian Hamster (Phodopus sungorus). Vet Res Commun 2022; 46:499-506. [PMID: 34984572 PMCID: PMC9165282 DOI: 10.1007/s11259-021-09877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/19/2021] [Indexed: 12/02/2022]
Abstract
Hamsters are often chosen as companion animals but are also a group of animals frequently subjected to laboratory tests. As there are no scientific publications providing information on the anatomical architecture of the brachial plexus of the Djungarian hamster, this study analyses the structure of this part of the nervous system of this species. It is important to know the details of this structure not only for cognitive reasons, but also due to the increasing clinical significance of rodents, which are often used in scientific research. The study was conducted on 55 specimens. Like in humans, the brachial plexus of the Djungarian hamster has three trunks. The following individual nerves innervating the thoracic limb of the Djungarian hamster: the radial nerve, median nerve, ulnar nerve, musculocutaneous nerve, axillary nerve, suprascapular nerve, thoracodorsal nerve, cranial pectoral nerves, caudal pectoral nerve, lateral thoracic nerve, long thoracic nerve, and subscapular nerves. Similarly to other mammals of this order, the brachial plexus of the Djungarian hamster ranges widely (C5-T1). However, its nerves are formed from different ventral branches of the spinal nerves than in other mammals.
Collapse
|
12
|
Lee DH, You J, Jung JW, Park JW, Lee JI. Comparison between normal and reverse orientation of graft in functional and histomorphological outcomes after autologous nerve grafting: An experimental study in the mouse model. Microsurgery 2021; 41:645-654. [PMID: 34390500 DOI: 10.1002/micr.30795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/18/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autologous nerve grafting has been considered the gold standard for the treatment of irreparable nerve gaps. However, the choice of effective proximodistal orientation of autografts (normal or reversed) is controversial. Therefore, we compared functional and histological outcomes between normal and reversed orientations of autografts in a mouse sciatic nerve model. MATERIALS AND METHODS Thirty C57BL/6J mice weighing 20-25 g were assigned to the donor, normally oriented autograft, and reverse-oriented autograft groups (n = 10 per group). A 10-mm section of the sciatic nerve was harvested from a donor mouse. Half the harvested nerve was grafted onto an irreparable gap in a recipient mouse using either a normal or reversed orientation. The sciatic functional index (SFI) was measured biweekly for up to 12 weeks postoperatively. Morphological analysis was performed using immunofluorescence staining for neurofilament (NF) and myelin protein zero (P0) in cross-sectional and whole-mount nerve preparations in 12 weeks postoperatively. Additionally, morphological analysis of the tibialis anterior muscle was performed using hematoxylin and eosin staining. NF or P0-expressing axons were counted and cross-sectional area (CSA) and minimum Feret's diameter of myofibers were measured. RESULTS The SFI recovered gradually up to 12 weeks after autografting, but there were no significant differences in the SFI between the normal and reversed orientations. The number of NF-expressing axons in center of graft was significantly higher in the normal orientation than in the reversed orientation (P < .05). However, there were no significant differences in the number and mean intensity of P0-expressing axons between the orientations. The CSA of myofibers was significantly larger in the normal orientation than in the reversed orientation (P < .05). CONCLUSIONS Normally oriented autografts promote axonal regrowth and prevent neurogenic muscular atrophy compared with reverse-oriented autografts. However, despite these positive histomorphometric effects, the proximodistal orientation of the autograft does not affect functional outcomes.
Collapse
Affiliation(s)
- Duk Hee Lee
- Department of Emergency Medicine, Ewha Women's University Mokdong Hospital, Seoul, South Korea
| | - Jooyoung You
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - Ji Won Jung
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, South Korea
| | - Jung Il Lee
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
13
|
Heinzel JC, Oberhauser V, Keibl C, Swiadek N, Längle G, Frick H, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Evaluation of Functional Recovery in Rats After Median Nerve Resection and Autograft Repair Using Computerized Gait Analysis. Front Neurosci 2021; 14:593545. [PMID: 33551723 PMCID: PMC7859340 DOI: 10.3389/fnins.2020.593545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Computerized gait analysis is a common evaluation method in rat models of hind limb nerve injuries, but its use remains unpublished in models of segmental nerve injury of the forelimb. It was the aim of this work to investigate if computerized gait analysis is a feasible evaluation method in a rat model of segmental median nerve injury and autograft repair. Ten male Lewis rats underwent 7-mm resection of the right median nerve with immediate autograft repair. The left median nerve was resected without repair and served as an internal control. Animals were assessed for 12 weeks after surgery via CatWalk (CW) gait analysis every 2 weeks. Evaluation of motor recovery by means of the grasping test was performed weekly while electrophysiological measurements were performed at the end of the observation period. CW data were correlated with grasping strength at each post-operative time point. CW data were also correlated with electrophysiology using linear regression analysis. Principal component analysis was performed to identify clusters of outcome metrics. Recovery of motor function was observable 4 weeks after surgery, but grasping strength was significantly reduced (p < 0.01) compared to baseline values until post-operative week 6. In terms of sensory recovery, the pain-related parameter Duty Cycle showed significant (p < 0.05) recovery starting from post-operative week 8. The Print Area of the right paw was significantly (p < 0.05) increased compared to the left side starting from post-operative week 10. Various parameters of gait correlated significantly (p < 0.05) with mean and maximum grasping strength. However, only Stand Index showed a significant correlation with compound muscle action potential (CMAP) amplitude (p < 0.05). With this work, we prove that computerized gait analysis is a valid and feasible method to evaluate functional recovery after autograft repair of the rat median nerve. We were able to identify parameters such as Print Area, Duty Cycle, and Stand Index, which allow assessment of nerve regeneration. The course of these parameters following nerve resection without repair was also assessed. Additionally, external paw rotation was identified as a valid parameter to evaluate motor reinnervation. In summary, computerized gait analysis is a valuable additional tool to study nerve regeneration in rats with median nerve injury.
Collapse
Affiliation(s)
- Johannes C Heinzel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nicole Swiadek
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Cosima Prahm
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
14
|
Effect of Vitamin B Complex Treatment on Macrophages to Schwann Cells Association during Neuroinflammation after Peripheral Nerve Injury. Molecules 2020; 25:molecules25225426. [PMID: 33228193 PMCID: PMC7699497 DOI: 10.3390/molecules25225426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) triggers a complex multi-cellular response involving the injured neurons, Schwann cells (SCs), and immune cells, often resulting in poor functional recovery. The aim of this study was to investigate the effects of the treatment with vitamin B (B1, B2, B3, B5, B6, and B12) complex on the interaction between macrophages and SCs during the recovery period after PNI. Transection of the motor branch of the femoral nerve followed by reconstruction by termino-terminal anastomosis was used as an experimental model. Isolated nerves from the sham (S), operated (O), and operated groups treated with the B vitamins (OT group) were used for immunofluorescence analysis. The obtained data indicated that PNI modulates interactions between macrophages and SCs in a time-dependent manner. The treatment with B vitamins complex promoted the M1-to M2-macrophage polarization and accelerated the transition from the non-myelin to myelin-forming SCs, an indicative of SCs maturation. The effect of B vitamins complex on both cell types was accompanied with an increase in macrophage/SC interactions, all of which correlated with the regeneration of the injured nerve. Clearly, the capacity of B vitamins to modulate macrophages-SCs interaction may be promising for the treatment of PNI.
Collapse
|
15
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury – a systematic review. J Neurosci Methods 2020; 345:108889. [DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
|
16
|
Sasso LL, de Souza LG, Girasol CE, Marcolino AM, de Jesus Guirro RR, Barbosa RI. Photobiomodulation in Sciatic Nerve Crush Injuries in Rodents: A Systematic Review of the Literature and Perspectives for Clinical Treatment. J Lasers Med Sci 2020; 11:332-344. [PMID: 32802295 DOI: 10.34172/jlms.2020.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective : The aim of the study was to perform a literature review to analyze the effect of photobiomodulation in experimental studies on peripheral nerve regeneration after sciatic nerve crush injury in rodents. Methods: A bibliographic search was performed in the electronic databases, including MEDLINE (PubMed), SCOPUS, and SciELO, from 2008 to 2018. Results: A total of 1912 articles were identified in the search, and only 19 fulfilled all the inclusion criteria. Along with the parameters most found in the manuscripts, the most used wavelengths were 660 nm and 830 nm, power of 30 and 40 mW, and energy density of 4 and 10 J/cm2 . For total energy throughout the intervention period, the lowest energy found with positive effects was 0.70 J, and the highest 1.141 J. Seventeen studies reported positive effects on nerve regeneration. The variables selected to analyze the effect were: Sciatic Functional Index (SFI), Static Sciatic Index (SSI), morphometric, morphological, histological, zymographic, electrophysiological, resistance mechanics and range of motion (ROM). The variety of parameters used in the studies demonstrated that there is yet no pre-determined protocol for treating peripheral nerve regeneration. Only two studies by different authors used the same power, energy density, beam area, and power density. Conclusion: It was concluded that the therapeutic window of the photobiomodulation presents a high variability of parameters with the wavelength (632.8 to 940 nm), power (5 to 170 mW) and energy density (3 to 280 J /cm2 ), promoting nerve regeneration through the expression of cytokines and growth factors that aid in modulating the inflammatory process, improving morphological aspects, restoring the functionality to the animals in a brief period.
Collapse
Affiliation(s)
- Letícia Lemes Sasso
- Department of Health Sciences, Federal University of Santa Catarina/UFSC - Araranguá, Brazil
| | - Luana Gabriel de Souza
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | - Carlos Eduardo Girasol
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| | - Alexandre Márcio Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | | | - Rafael Inácio Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil.,Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Heinzel JC, Hercher D, Redl H. The course of recovery of locomotor function over a 10-week observation period in a rat model of femoral nerve resection and autograft repair. Brain Behav 2020; 10:e01580. [PMID: 32097542 PMCID: PMC7177579 DOI: 10.1002/brb3.1580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/26/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A great extent of knowledge on peripheral nerve regeneration has been gathered using the rat sciatic nerve model. The femoral nerve model of the rat offers an interesting alternative, as it lacks disadvantageous features such as automutilation. For the analysis of locomotor behavior in rats after sciatic nerve injury, the CatWalk™ XT Gait Analysis System is often used. However, lesions of the femoral nerve in the rat have yet remained unstudied with this method. MATERIAL AND METHODS Ten male Sprague Dawley rats were evaluated with the CatWalk XT to study their gait after a 6-mm resection of the right femoral nerve and reconstruction with an autologous nerve graft. Animals were observed for 10 weeks after surgery. RESULTS Print Area, Print Length, Swing Speed, and Duty Cycle decreased to a minimum of 40% of baseline 2 weeks after surgery. Swing Time was elevated more than twofold at this time point. However, all these parameters recovered back to >90% of baseline values at 10 weeks after surgery. This degree of functional recovery has not been reported after sciatic nerve resection and autograft repair. Base of support varied minimally postoperatively in contrast to a strong decrement after sciatic nerve resection and repair. CONCLUSION We hereby provide a comprehensive in-depth analysis of how to study functional recovery after injury of the femoral nerve in the rat via the CatWalk XT. We place special emphasis on highlighting the differences between the femoral nerve and sciatic nerve injury model in this context.
Collapse
Affiliation(s)
- Johannes Christoph Heinzel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
18
|
Vitamin B Complex Treatment Attenuates Local Inflammation after Peripheral Nerve Injury. Molecules 2019; 24:molecules24244615. [PMID: 31861069 PMCID: PMC6943485 DOI: 10.3390/molecules24244615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023] Open
Abstract
Peripheral nerve injury (PNI) leads to a series of cellular and molecular events necessary for axon regeneration and reinnervation of target tissues, among which inflammation is crucial for the orchestration of all these processes. Macrophage activation underlies the pathogenesis of PNI and is characterized by morphological/phenotype transformation from proinflammatory (M1) to an anti-inflammatory (M2) type with different functions in the inflammatory and reparative process. The aim of this study was to evaluate influence of the vitamin B (B1, B2, B3, B5, B6, and B12) complex on the process of neuroinflammation that is in part regulated by l-type CaV1.2 calcium channels. A controlled transection of the motor branch of the femoral peripheral nerve was used as an experimental model. Animals were sacrificed after 1, 3, 7, and 14 injections of vitamin B complex. Isolated nerves were used for immunofluorescence analysis. Treatment with vitamin B complex decreased expression of proinflammatory and increased expression of anti-inflammatory cytokines, thus contributing to the resolution of neuroinflammation. In parallel, B vitamins decreased the number of M1 macrophages that expressed the CaV1.2 channel, and increased the number of M2 macrophages that expressed this channel, suggesting their role in M1/M2 transition after PNI. In conclusion, B vitamins had the potential for treatment of neuroinflammation and neuroregeneration and thereby might be an effective therapy for PNI in humans.
Collapse
|
19
|
Uckermann O, Hirsch J, Galli R, Bendig J, Later R, Koch E, Schackert G, Steiner G, Tanaka E, Kirsch M. Label-free Imaging of Tissue Architecture during Axolotl Peripheral Nerve Regeneration in Comparison to Functional Recovery. Sci Rep 2019; 9:12641. [PMID: 31477751 PMCID: PMC6718386 DOI: 10.1038/s41598-019-49067-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Human peripheral nerves hold the potential to regenerate after injuries; however, whether a successful axonal regrowth was achieved can be elucidated only months after injury by assessing function. The axolotl salamander is a regenerative model where nerves always regenerate quickly and fully after all types of injury. Here, de- and regeneration of the axolotl sciatic nerve were investigated in a single and double injury model by label-free multiphoton imaging in comparison to functional recovery. We used coherent anti-Stokes Raman scattering to visualize myelin fragmentation and axonal regeneration. The presence of axons at the lesion site corresponded to onset of functional recovery in both lesion models. In addition, we detected axonal regrowth later in the double injury model in agreement with a higher severity of injury. Moreover, endogenous two-photon excited fluorescence visualized macrophages and revealed a similar timecourse of inflammation in both injury models, which did not correlate with functional recovery. Finally, using the same techniques, axonal structure and status of myelin were visualized in vivo after sciatic nerve injury. Label-free imaging is a new experimental approach that provides mechanistic insights in animal models, with the potential to be used in the future for investigation of regeneration after nerve injuries in humans.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany.
| | - Joana Hirsch
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas Bendig
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Robert Later
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elly Tanaka
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| |
Collapse
|
20
|
Hanwright PJ, Rath JL, Guionneau N, Harris TG, Sarhane KA, Kemp SW, Hoke A, Cederna PS, Tuffaha SH. Stimulated grip strength measurement: Validation of a novel method for functional assessment. Muscle Nerve 2019; 60:437-442. [DOI: 10.1002/mus.26646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Philip J. Hanwright
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| | - Jennifer L. Rath
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| | - Nicholas Guionneau
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| | - Thomas G.W Harris
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| | - Karim A. Sarhane
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| | - Stephen W.P. Kemp
- Section of Plastic and Reconstructive Surgery, Department of SurgeryUniversity of Michigan Ann Arbor Michigan
| | - Ahmet Hoke
- Department of NeurologyJohns Hopkins University School of Medicine Baltimore Maryland
| | - Paul S. Cederna
- Section of Plastic and Reconstructive Surgery, Department of SurgeryUniversity of Michigan Ann Arbor Michigan
| | - Sami H. Tuffaha
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
21
|
Raslan A, Salem MAM, Al‐Hussaini A, Guntinas‐Lichius O, Irintchev A. Brief Electrical Stimulation Improves Functional Recovery After Femoral But Not After Facial Nerve Injury in Rats. Anat Rec (Hoboken) 2019; 302:1304-1313. [DOI: 10.1002/ar.24127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/08/2018] [Accepted: 09/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ashraf Raslan
- Department of OtorhinolaryngologyJena University Hospital Jena Germany
- Department of OtorhinolaryngologyAssiut University Assiut Egypt
| | | | | | | | - Andrey Irintchev
- Department of OtorhinolaryngologyJena University Hospital Jena Germany
| |
Collapse
|
22
|
Botulinum Neurotoxin Application to the Severed Femoral Nerve Modulates Spinal Synaptic Responses to Axotomy and Enhances Motor Recovery in Rats. Neural Plast 2018; 2018:7975013. [PMID: 30254669 PMCID: PMC6145158 DOI: 10.1155/2018/7975013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/15/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022] Open
Abstract
Botulinum neurotoxin A (BoNT) and brain-derived neurotrophic factor (BDNF) are known for their ability to influence synaptic inputs to neurons. Here, we tested if these drugs can modulate the deafferentation of motoneurons following nerve section/suture and, as a consequence, modify the outcome of peripheral nerve regeneration. We applied drug solutions to the proximal stump of the freshly cut femoral nerve of adult rats to achieve drug uptake and transport to the neuronal perikarya. The most marked effect of this application was a significant reduction of the axotomy-induced loss of perisomatic cholinergic terminals by BoNT at one week and two months post injury. The attenuation of the synaptic deficit was associated with enhanced motor recovery of the rats 2–20 weeks after injury. Although BDNF also reduced cholinergic terminal loss at 1 week, it had no effect on this parameter at two months and no effect on functional recovery. These findings strengthen the idea that persistent partial deafferentation of axotomized motoneurons may have a significant negative impact on functional outcome after nerve injury. Intraneural application of drugs may be a promising way to modify deafferentation and, thus, elucidate relationships between synaptic plasticity and restoration of function.
Collapse
|
23
|
Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions. Sex Med Rev 2018; 6:234-241. [DOI: 10.1016/j.sxmr.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
|
24
|
Nedeljković P, Dacić S, Kovačević M, Peković S, Vučević D, Božić - Nedeljković B. VITAMIN B COMPLEX AS A POTENTIAL THERAPEU TICAL MODALITY IN COMBATING PERIPHERAL NERVE INJURY. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Vulovic M, Divac N, Jakovcevski I. Confocal Synaptology: Synaptic Rearrangements in Neurodegenerative Disorders and upon Nervous System Injury. Front Neuroanat 2018; 12:11. [PMID: 29497366 PMCID: PMC5818405 DOI: 10.3389/fnana.2018.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 01/26/2023] Open
Abstract
The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system. In the past decade the development of antibodies specific to presynaptic terminals has enabled us to assess, at the optical, laser scanning microscopy level, these subcellular structures, and has provided a simple method for the quantification of various synapses. Indeed, excitatory (glutamatergic) and inhibitory synapses can be visualized using antibodies against the respective vesicular transporters, and choline-acetyl transferase (ChAT) immunoreactivity identifies cholinergic synapses throughout the central nervous system. Here we review the results of several studies in which these methods were used to estimate synaptic numbers as the structural equivalent of functional outcome measures in spinal cord and femoral nerve injuries, as well as in genetic mouse models of neurodegeneration, including Alzheimer's disease (AD). The results implicate disease- and brain region-specific changes in specific types of synapses, which correlate well with the degree of functional deficit caused by the disease process. Additionally, results are reproducible between various studies and experimental paradigms, supporting the reliability of the method. To conclude, this quantitative approach enables fast and reliable estimation of the degree of the progression of neurodegenerative changes and can be used as a parameter of recovery in experimental models.
Collapse
Affiliation(s)
- Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Jakovcevski
- Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.,Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
26
|
Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model. Neuromolecular Med 2017; 19:357-374. [DOI: 10.1007/s12017-017-8450-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
|
27
|
McGrath AM, Lu JCY, Chang TNJ, Fang F, Chuang DCC. Proximal versus Distal Nerve Transfer for Biceps Reinnervation-A Comparative Study in a Rat's Brachial Plexus Injury Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 4:e1130. [PMID: 28293499 PMCID: PMC5222644 DOI: 10.1097/gox.0000000000001130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The exact role of proximal and distal nerve transfers in reconstruction strategies of brachial plexus injury remains controversial. We compared proximal with distal nerve reconstruction strategies in a rat model of brachial plexus injury. METHODS In rats, the C6 spinal nerve with a nerve graft (proximal nerve transfer model, n = 30, group A) and 50% of ulnar nerve (distal nerve transfer model, n = 30, group B) were used as the donor nerves. The targets were the musculocutaneous nerve and the biceps muscle. Outcomes were recorded at 4, 8, 12, and 16 weeks postoperatively. Outcome parameters included grooming test, biceps muscle weight, compound muscle action potentials, tetanic contraction force, and axonal morphology of the donor and target nerves. RESULTS The axonal morphology of the 2 donor nerves revealed no significant difference. Time interval analysis in the proximal nerve transfer group showed peak axon counts at 12 weeks and a trend of improvement in all functional and physiologic parameters across all time points with statistically significant differences for grooming test, biceps compound action potentials, tetanic muscle contraction force, and muscle weight at 16 weeks. In contrast, in the distal nerve transfer group, the only statistically significant difference was observed between the 4 and 8 week time points, followed by a plateau from 8 to 16 weeks. CONCLUSIONS Outcomes of proximal nerve transfers are ultimately superior to distal nerve transfers in our experimental model. Possible explanations for the superior results include a reduced need for cortical adaptation and higher proportions of motor units in the proximal nerve transfers.
Collapse
Affiliation(s)
- Aleksandra M McGrath
- Department of Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden; and Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taipei-Linkou, Taiwan
| | - Johnny Chuieng-Yi Lu
- Department of Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden; and Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taipei-Linkou, Taiwan
| | - Tommy Naj-Jen Chang
- Department of Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden; and Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taipei-Linkou, Taiwan
| | - Frank Fang
- Department of Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden; and Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taipei-Linkou, Taiwan
| | - David Chwei-Chin Chuang
- Department of Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden; and Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taipei-Linkou, Taiwan
| |
Collapse
|
28
|
Patel TT, Isaacs J. The Incidence of Positive Modifications to Nerve Conduits in Rodent Nerve Repair Models. Hand (N Y) 2016; 11:103-7. [PMID: 27418898 PMCID: PMC4920511 DOI: 10.1177/1558944715614859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nerve conduit is a generally accepted tool to facilitate the repair of short nerve gaps. Limitations in effectiveness have been recognized, and a steady stream of possible conduit improvements has been published in the scientific literature. Analysis of this information, particularly when small animal models have been utilized, seems to indicate that nearly any modification of a nerve conduit improves outcomes in repairs of short gaps over standard nerve conduits. This seems statistically and biologically improbable and suggests a bias in the literature. METHODS A standardized systemic review of the scientific literature on rodent model studies assessing conduit modifications was undertaken to determine the incidence of positive or supportive outcomes. RESULTS Modifications were deemed superior in 97.3% of studies when compared with unmodified conduits and deemed equivalent or superior in 52.1% of studies when compared with autograft. CONCLUSIONS A seemingly disproportionate number of positive results suggest that the literature on nerve conduit modifications may be skewed. We believe that there is a publication bias in the literature, and this warrants further investigation.
Collapse
Affiliation(s)
- Tejas T. Patel
- Virginia Commonwealth University Medical Center, Richmond, VA, USA,Tejas T. Patel, Department of Orthopedics, Virginia Commonwealth University Medical Center, 1200 E. Broad Street, P.O. Box 980153, Richmond, VA 23298, USA.
| | - Jonathan Isaacs
- Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
29
|
Xiao B, Zanoun RR, Carvell GE, Simons DJ, Washington KM. Response properties of whisker-associated primary afferent neurons following infraorbital nerve transection with microsurgical repair in adult rats. J Neurophysiol 2016; 115:1458-67. [PMID: 26792886 DOI: 10.1152/jn.00970.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/16/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent whisker/trigeminal system, characterized by high spatial and temporal resolution, provides an experimental model for developing new therapies for improving sensory functions of damaged peripheral nerves. Here, we use controlled whisker stimulation and single-unit recordings of trigeminal ganglion cells to examine in detail the nature and time course of functional recovery of mechanoreceptive afferents following nerve transection with microsurgical repair of the infraorbital nerve (ION) branch of the trigeminal nerve in adult rats. Response measures include rapid vs. slow adaptation, firing rate, interspike intervals, latency, and angular (directional) tuning. Whisker-evoked responses, readily observable by 3 wk post-transection, recover progressively for at least the next 5 wk. All cells in transected animals, as in control cases, responded to deflections of single whiskers only, but topography within the ganglion was clearly disrupted. The time course and extent of recovery of quantitative response measures were receptor dependent. Cells displaying slowly adapting (SA) properties recovered more quickly than rapidly adapting (RA) populations, and for some response measures-notably evoked firing rates-closely approached or attained control levels by 8 wk post-transection. Angular tuning of RA cells was slightly better than control units, whereas SA tuning did not differ from control values. Nerve conduction times and refractory periods, examined separately using electrical stimulation of the ION, were slower than normal in all transected animals and poorly reflected recovery of whisker-evoked response latencies and interspike intervals. Results underscore the need for multiple therapeutic strategies that target different aspects of functional restitution following peripheral nerve injury.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Plastic Surgery, University of Pittsburgh School of Medicine and Veterans Administration Healthcare System, Pittsburgh, Pennsylvania
| | - Rami R Zanoun
- Department of Plastic Surgery, University of Pittsburgh School of Medicine and Veterans Administration Healthcare System, Pittsburgh, Pennsylvania
| | - George E Carvell
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kia M Washington
- Department of Plastic Surgery, University of Pittsburgh School of Medicine and Veterans Administration Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Kou YH, Zhang PX, Wang YH, Chen B, Han N, Xue F, Zhang HB, Yin XF, Jiang BG. Sleeve bridging of the rhesus monkey ulnar nerve with muscular branches of the pronator teres: multiple amplification of axonal regeneration. Neural Regen Res 2015; 10:53-9. [PMID: 25788920 PMCID: PMC4357117 DOI: 10.4103/1673-5374.150706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple-bud regeneration, i.e., multiple amplification, has been shown to exist in peripheral nerve regeneration. Multiple buds grow towards the distal nerve stump during proximal nerve fiber regeneration. Our previous studies have verified the limit and validity of multiple amplification of peripheral nerve regeneration using small gap sleeve bridging of small donor nerves to repair large receptor nerves in rodents. The present study sought to observe multiple amplification of myelinated nerve fiber regeneration in the primate peripheral nerve. Rhesus monkey models of distal ulnar nerve defects were established and repaired using muscular branches of the right forearm pronator teres. Proximal muscular branches of the pronator teres were sutured into the distal ulnar nerve using the small gap sleeve bridging method. At 6 months after suture, two-finger flexion and mild wrist flexion were restored in the ulnar-sided injured limbs of rhesus monkey. Neurophysiological examination showed that motor nerve conduction velocity reached 22.63 ± 6.34 m/s on the affected side of rhesus monkey. Osmium tetroxide staining demonstrated that the number of myelinated nerve fibers was 1,657 ± 652 in the branches of pronator teres of donor, and 2,661 ± 843 in the repaired ulnar nerve. The rate of multiple amplification of regenerating myelinated nerve fibers was 1.61. These data showed that when muscular branches of the pronator teres were used to repair ulnar nerve in primates, effective regeneration was observed in regenerating nerve fibers, and functions of the injured ulnar nerve were restored to a certain extent. Moreover, multiple amplification was subsequently detected in ulnar nerve axons.
Collapse
Affiliation(s)
- Yu-Hui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Pei-Xun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yan-Hua Wang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Bo Chen
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Feng Xue
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Hong-Bo Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Bao-Guo Jiang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Kaya Y, Ozsoy U, Turhan M, Angelov DN, Sarikcioglu L. Hypoglossal-facial nerve reconstruction using a Y-tube-conduit reduces aberrant synkinetic movements of the orbicularis oculi and vibrissal muscles in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:543020. [PMID: 25574468 PMCID: PMC4276326 DOI: 10.1155/2014/543020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Abstract
The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis) which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex) and vibrissal (whisking) musculature. The abdominal aorta plus its bifurcation was harvested (N = 12) for Y-tube conduits. Animal groups comprised intact animals (Group 1), those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2), and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3). Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone.
Collapse
Affiliation(s)
- Yasemin Kaya
- Department of Anatomy, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey
| | - Umut Ozsoy
- Department of Anatomy, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey
| | - Murat Turhan
- Department of Ear Nose Throat, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey
| | | | - Levent Sarikcioglu
- Department of Anatomy, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey
| |
Collapse
|
32
|
Mehanna A, Szpotowicz E, Schachner M, Jakovcevski I. Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 2014; 261:147-55. [PMID: 24967682 DOI: 10.1016/j.expneurol.2014.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/18/2014] [Accepted: 06/15/2014] [Indexed: 02/05/2023]
Abstract
The immune system plays important functional roles in regeneration after injury to the mammalian central and peripheral nervous systems. After damage to the peripheral nerve several types of immune cells, invade the nerve within hours after the injury. To gain insights into the contribution of T- and B-lymphocytes to recovery from injury we used the mouse femoral nerve injury paradigm. RAG2-/- mice lacking mature T- and B-lymphocytes due to deletion of the recombination activating gene 2 were subjected to resection and surgical reconstruction of the femoral nerve, with the wild-type mice of the same inbred genetic background serving as controls. According to single frame motion analyses, RAG2-/- mice showed better motor recovery in comparison to control mice at four and eight weeks after injury. Retrograde tracing of regrown/sprouted axons of spinal motoneurons showed increased numbers of correctly projecting motoneurons in the lumbar spinal cord of RAG2-/- mice compared with controls. Whereas there was no difference in the motoneuron soma size between genotypes, RAG2-/- mice displayed fewer cholinergic and inhibitory synaptic terminals around somata of spinal motoneurons both prior to and after injury, compared with wild-type mice. Extent of myelination of regrown axons in the motor branch of the femoral nerve measured as g-ratio was more extensive in RAG2-/- than in control mice eight weeks after injury. We conclude that activated T- and B-lymphocytes restrict motor recovery after femoral nerve injury, associated with the increased survival of motoneurons and improved remyelination.
Collapse
Affiliation(s)
- Ali Mehanna
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Lebanese International University School of Arts & Sciences, P.O. Box: 146404 Mazraa, Beirut, Lebanon
| | - Emanuela Szpotowicz
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, PR China.
| | - Igor Jakovcevski
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Experimental Neurophysiology, University Hospital Cologne, Joseph-Stelzmann-Str. 9, 50931 Köln, Germany; German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
33
|
Kruspe M, Thieme H, Guntinas-Lichius O, Irintchev A. Motoneuron regeneration accuracy and recovery of gait after femoral nerve injuries in rats. Neuroscience 2014; 280:73-87. [DOI: 10.1016/j.neuroscience.2014.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
|
34
|
Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014; 227:166-80. [DOI: 10.1016/j.jneumeth.2014.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
|
35
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Hernández-Morato I, Berdugo-Vega G, Sañudo JR, Mchanwell S, Vázquez T, Valderrama-Canales FJ, Pascual-Font A. Somatotopic Changes in the Nucleus Ambiguus After Section and Regeneration of the Recurrent Laryngeal Nerve of the Rat. Anat Rec (Hoboken) 2014; 297:955-63. [DOI: 10.1002/ar.22877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Gabriel Berdugo-Vega
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Jose R. Sañudo
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | - Stephen Mchanwell
- School of Medical Sciences Education Development; Newcastle University; Newcastle, NE2 4BW UK
| | - Teresa Vázquez
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| | | | - Arán Pascual-Font
- Department of Human Anatomy and Embryology I; School of Medicine, Complutense University of Madrid; Madrid Spain
| |
Collapse
|
37
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Eng Part A 2013; 20:518-28. [PMID: 24011026 DOI: 10.1089/ten.tea.2013.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.
Collapse
Affiliation(s)
- Mindy Ezra
- 1 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
38
|
Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repair. Neuropharmacology 2013; 79:456-66. [PMID: 24067923 PMCID: PMC4618794 DOI: 10.1016/j.neuropharm.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
Abstract
Glycans attached to the cell surface via proteins or lipids or exposed in the extracellular matrix affect many cellular processes, including neuritogenesis, cell survival and migration, as well as synaptic activity and plasticity. These functions make glycans attractive molecules for stimulating repair of the injured nervous system. Yet, glycans are often difficult to synthesize or isolate and have the disadvantage to be unstable in a complex tissue environment. To circumvent these issues, we have screened a library of small organic compounds to search for structural and functional mimetics of the neurostimulatory glycan polysialic acid (PSA) and identified the 5-HT4 receptor agonist tegaserod as a PSA mimetic. The PSA mimicking activity of tegaserod was shown in cultures of central and peripheral nervous system cells of the mouse and found to be independent of its described function as a serotonin (5-HT4) receptor agonist. In an in vivo model for peripheral nerve regeneration, mice receiving tegaserod at the site of injury showed enhanced recovery compared to control mice receiving vehicle control as evidenced by functional measurements and histology. These data indicate that tegaserod could be repurposed for treatment of nervous system injuries and underscores the potential of using small molecules as mimetics of neurostimulatory glycans.
Collapse
|
39
|
Patterns of target tissue reinnervation and trophic factor expression after nerve grafting. Plast Reconstr Surg 2013; 131:989-1000. [PMID: 23385987 DOI: 10.1097/prs.0b013e3182870445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reinnervation of target tissues determines functional outcomes after nerve grafting, which is important in traumatic injury caused by accidents or consequences resulting from surgical removal of tumors. Previous studies documented the influences of nerve repair mainly based on nerve morphometry but rarely compared the final outcomes according to target reinnervation patterns by nerve fibers of different categories. METHODS In a mouse model of nerve grafting, the authors analyzed the innervation indexes of different target tissues after transection-reimplantation on the sciatic nerve, which were defined as a parameter on the operated side normalized to that on the control side. RESULTS Muscle reinnervation appeared to be the best compared with skin reinnervation (p < 0.0001) and sweat gland reinnervation (p < 0.0001) at postoperative month 3. The sudomotor reinnervation was relatively higher than the cutaneous reinnervation (p = 0.014). The abundance of trophin transcripts for brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin 3 (NT3) was higher in plantar muscles on the operated side than those on the control side. In contrast, transcripts of BDNF, GDNF, nerve growth factor, and NT3 were all similar in the footpad skin between the operated and control sides. CONCLUSIONS The results suggested that, compared with the skin, muscles achieved the best reinnervation after nerve grafting, which was related to higher expression of BDNF, GDNF, and NT3 in muscles than in the skin.
Collapse
|
40
|
Abstract
BACKGROUND The establishment of reliable methods for functional assessment in experimental models of peripheral nerve regeneration is crucial. METHODS We present a straightforward method for video analysis of the eye blink reflex in a model of facial nerve damage in a nonhuman primate (Callithrix sp.). RESULTS Our 6-level dynamic analysis demonstrated good reproducibility between independent observers, as measured by Cohen's kappa index. Our static analysis, which was based on 4 semiautomated metric parameters, showed low correlation during the early stage of facial movement recovery (the first and second weeks), but the correlation was excellent during the later stage of recovery (the third and fourth weeks). CONCLUSION Altogether, our results establish a viable and readily accessible method with good reproducibility and correlation for the analysis of functional facial nerve recovery in an experimental model and based on video images of the eye blink reflex.
Collapse
|
41
|
Raslan A, Ernst P, Werle M, Thieme H, Szameit K, Finkensieper M, Guntinas-Lichius O, Irintchev A. Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function. Brain Struct Funct 2013; 219:891-909. [DOI: 10.1007/s00429-013-0542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/12/2013] [Indexed: 02/02/2023]
|
42
|
Neiva FC, Borin A, Cinini S, Mello LEAM, Cruz OLM, Testa JRG. Experimental model of facial paralysis by nerve compression in primates (Callithrix sp.): a new model of facial paralysis in small nonhuman primates. Acta Otolaryngol 2012; 132:1239-42. [PMID: 22830957 DOI: 10.3109/00016489.2012.697639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION We conclude that facial nerve injury induced by compression is associated with a reasonable time window (4 weeks) that allows possible neurotrophic effects to be analyzed. Additionally, there are no hints of cross-innervation by the contralateral facial nerve or parallel innervation by other nerves in the hemiface ipsilateral to the injured nerve. OBJECTIVE The aim of this work was to develop an experimental model of facial nerve injury in nonhuman primates (Callithrix sp.). METHODS In this study, individuals of the non-human primate species Callithrix sp. were subjected to three different types of facial nerve injury, and they were observed for 27 days after surgery by video to record their facial movements. RESULTS Two types of nerve compression caused severe initial facial paralysis followed by gradual recovery until normal levels were reached at the end of the evaluation period. Injury induced by nerve resection was followed by a complete lack of facial movement recovery.
Collapse
Affiliation(s)
- Felipe Costa Neiva
- Otorhinolaryngology and Head and Neck Surgery Department, Federal University of SãoPaulo/UNIFESP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Masand SN, Chen J, Perron IJ, Hammerling BC, Loers G, Schachner M, Shreiber DI. The effect of glycomimetic functionalized collagen on peripheral nerve repair. Biomaterials 2012; 33:8353-62. [PMID: 22917737 DOI: 10.1016/j.biomaterials.2012.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests that the improper synaptic reconnection of regenerating axons is a significant cause of incomplete functional recovery following peripheral nerve injury. In this study, we evaluate the use of collagen hydrogels functionalized with two peptide glycomimetics of naturally occurring carbohydrates-polysialic acid (PSA) and human natural killer cell epitope epitope (HNK-1)-that have been independently shown to encourage nerve regeneration and axonal targeting. Our novel biomaterial was used to bridge a critical gap size (5 mm) in a mouse femoral nerve injury model. Functional recovery was assessed using gait and hind limb extension, and was significantly better in all glycomimetic peptide-coupled collagen conditions versus non-functional scrambled peptide-coupled collagen, native collagen, and saline controls. Analysis of cross-sections of the regenerated nerve demonstrated that hydrogels coupled with the PSA glycomimetic, but not HNK, had significant increases in the number of myelinated axons over controls. Conversely, hydrogels coupled with HNK, but not PSA, showed improvement in myelination. Additionally, significantly more correctly projecting motoneurons were observed in groups containing coupled HNK-1 mimicking peptide, but not PSA mimicking peptide. Given the distinct morphological outcomes between the two glycomimetics, our study indicates that the enhancement of recovery following peripheral nerve injury induced by PSA- and HNK-functionalized collagen hydrogels likely occurs through distinct mechanisms.
Collapse
Affiliation(s)
- Shirley N Masand
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|