1
|
Attia A, Bertherat J. Cushing's syndrome and COVID-19. Pituitary 2024; 27:945-954. [PMID: 39541074 DOI: 10.1007/s11102-024-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This review aims to present current data on the course of COVID-19 in patients with Cushing syndrome (CS) and discuss treatment for CS during to the pandemic. METHODS Literature review using PubMed (pubmed.ncbi.nlm.nih.gov). The search included the following terms: "COVID19" in combination with "Cushing syndrome", "Hypercortisolism" and "Glucocorticoid". RESULTS Chronic hypercortisolism has been reported to increase infectious risk and worsens prognostic of patients with COVID-19 potentially due to its direct impact on the immune system: lymphopenia, impairment of monocytes and neutrophils activity, diminution of complement activation. Main metabolic complications of CS - i.e. diabetes, hypertension and obesity - have been recognized as COVID-19 complications risk factors. Patients with CS treated with steroidogenesis inhibitors might experience adrenal insufficiency during COVID-19. Special attention should be paid to patients with CS and COVID-19. The pandemic has impacted - and delayed - care of chronic illnesses including CS. Specific recommendations had been provided during the pandemic: favor telemedicine consultations, limit in-hospital explorations and postpone surgery when feasible. CONCLUSION There are enough evidence for an increased prevalence and severity of COVID-19 to recommend a specific attention and caution in patients with CS.
Collapse
Affiliation(s)
- Amina Attia
- Université Paris-Cité, Paris, 75006, France.
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, 75014, France.
| | - Jérôme Bertherat
- Université Paris-Cité, Paris, 75006, France
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, 75014, France
- INSERM U1016, Institut Cochin, Paris, 75014, France
| |
Collapse
|
2
|
Determination of IgG1 and IgG3 SARS-CoV-2 Spike Protein and Nucleocapsid Binding-Who Is Binding Who and Why? Int J Mol Sci 2022; 23:ijms23116050. [PMID: 35682724 PMCID: PMC9181569 DOI: 10.3390/ijms23116050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
The involvement of immunoglobulin (Ig) G3 in the humoral immune response to SARS-CoV-2 infection has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) in COVID-19. The exact molecular mechanism is unknown, but it is thought to involve this IgG subtype’s differential ability to fix, complement and stimulate cytokine release. We examined the binding of convalescent patient antibodies to immobilized nucleocapsids and spike proteins by matrix-assisted laser desorption/ionization–time of flight (MALDI-ToF) mass spectrometry. IgG3 was a major immunoglobulin found in all samples. Differential analysis of the spectral signatures found for the nucleocapsid versus the spike protein demonstrated that the predominant humoral immune response to the nucleocapsid was IgG3, whilst for the spike protein it was IgG1. However, the spike protein displayed a strong affinity for IgG3 itself, as it would bind from control plasma samples, as well as from those previously infected with SARS-CoV-2, similar to the way protein G binds IgG1. Furthermore, detailed spectral analysis indicated that a mass shift consistent with hyper-glycosylation or glycation was a characteristic of the IgG3 captured by the spike protein.
Collapse
|
3
|
Ashraf JM. 3-Deoxyglucosone as a Potential Agent That Alters IgG Protein Through Advanced Glycation End Products. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Hara T, Toyoshima M, Hisano Y, Balan S, Iwayama Y, Aono H, Futamura Y, Osada H, Owada Y, Yoshikawa T. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons. Transl Psychiatry 2021; 11:275. [PMID: 33966051 PMCID: PMC8106684 DOI: 10.1038/s41398-021-01392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hara
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Manabu Toyoshima
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Yasuko Hisano
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shabeesh Balan
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,Neuroscience Research Laboratory, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode, Kerala 673008 India
| | - Yoshimi Iwayama
- grid.474690.8Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Harumi Aono
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yushi Futamura
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Hiroyuki Osada
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yuji Owada
- grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
5
|
Dispinseri S, Lampasona V, Secchi M, Cara A, Bazzigaluppi E, Negri D, Brigatti C, Pirillo MF, Marzinotto I, Borghi M, Rovere-Querini P, Tresoldi C, Ciceri F, Scavini M, Scarlatti G, Piemonti L. Robust Neutralizing Antibodies to SARS-CoV-2 Develop and Persist in Subjects with Diabetes and COVID-19 Pneumonia. J Clin Endocrinol Metab 2021; 106:1472-1481. [PMID: 33513242 PMCID: PMC7928901 DOI: 10.1210/clinem/dgab055] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Demonstrating the ability to mount a neutralizing antibody response to SARS-CoV-2 in the presence of diabetes is crucial to understand COVID-19 pathogenesis, reinfection potential, and vaccine development. OBJECTIVE The aim of this study was to characterize the kinetics and durability of neutralizing antibody (Nab) response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of hyperglycemia. METHODS Using a lentiviral vector-based SARS-CoV-2 neutralization assay to measure Nabs, we characterized 150 patients randomly selected from a cohort of 509 patients with confirmed COVID-19 pneumonia. We analyzed Nab response according to the presence of diabetes or hyperglycemia, at the time of hospitalization and during the postdischarge follow-up: 1-, 3-, and 6-month outpatient visits. RESULTS Among 150 randomly selected patients 40 (26.6%) had diabetes. Diabetes (hazard ratio [HR] 8.9, P < .001), glucose levels (HR 1.25 × 1.1 mmol/L, P < .001), and glucose variability (HR 1.17 × 0.6 mmol/L, P < .001) were independently associated with an increased risk of mortality. The neutralizing activity of SARS-CoV-2 antibodies in patients with diabetes was superimposable, as for kinetics and extent, to that of patients without diabetes. It was similar across glucose levels and correlated with the humoral response against the SARS-CoV-2 spike protein. Positivity for Nabs at the time of hospital admission conferred protection on mortality, both in the presence (HR 0.28, P = .046) or absence of diabetes (HR 0.26, P = .030). The longevity of the Nab response was not affected by diabetes. CONCLUSION Diabetes and hyperglycemia do not affect the kinetics and durability of the neutralizing antibody response to SARS-CoV-2. These findings provide the rational to include patients with diabetes in the early phase of the vaccination campaign against SARS-CoV-2.
Collapse
Affiliation(s)
- Stefania Dispinseri
- Viral Evolution and Trasmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Rovere-Querini
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Ciceri
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Trasmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Rock CA, Keeney S, Zakharchenko A, Takano H, Spiegel DA, Krieger AM, Ferrari G, Levy RJ. Model studies of advanced glycation end product modification of heterograft biomaterials: The effects of in vitro glucose, glyoxal, and serum albumin on collagen structure and mechanical properties. Acta Biomater 2021; 123:275-285. [PMID: 33444798 DOI: 10.1016/j.actbio.2020.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.
Collapse
Affiliation(s)
- Christopher A Rock
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Samuel Keeney
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Andrey Zakharchenko
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Hajime Takano
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Abba M Krieger
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, United States
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States.
| |
Collapse
|
7
|
Pal R, Banerjee M. Are people with uncontrolled diabetes mellitus at high risk of reinfections with COVID-19? Prim Care Diabetes 2021; 15:18-20. [PMID: 32800450 PMCID: PMC7413202 DOI: 10.1016/j.pcd.2020.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Several cases of positive real time-polymerase chain reaction (RT-PCR) results (called "re-positives") after recovery from COVID-19 have emerged worldwide. These cases could represent patients experiencing a "turn positive" of nucleic acid detection attributed to the high false-negative rate of RT-PCR. On the contrary, in symptomatic patients, the possibility of reactivation or true reinfection remains. We hypothesize that people with uncontrolled diabetes mellitus might be at a high risk of reinfections with COVID-19 attributed to the impaired adaptive immune response. In fact, multiple cases of re-positives/re-infections in people with diabetes mellitus have hitherto been reported.
Collapse
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Mainak Banerjee
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, 700007, India
| |
Collapse
|
8
|
Milordini G, Zacco E, Percival M, Puglisi R, Dal Piaz F, Temussi P, Pastore A. The Role of Glycation on the Aggregation Properties of IAPP. Front Mol Biosci 2020; 7:104. [PMID: 32582762 PMCID: PMC7284065 DOI: 10.3389/fmolb.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Epidemiological evidence shows an increased risk for developing Alzheimer's disease in people affected by diabetes, a pathology associated with increased hyperglycemia. A potential factor that could explain this link could be the role that sugars may play in both diseases under the form of glycation. Contrary to glycosylation, glycation is an enzyme-free reaction that leads to formation of toxic advanced glycation end-products (AGEs). In diabetes, the islet amyloid polypeptide (IAPP or amylin) is found to be heavily glycated and to form toxic amyloid-like aggregates, similar to those observed for the Aβ peptides, often also heavily glycated, observed in Alzheimer patients. Here, we studied the effects of glycation on the structure and aggregation properties of IAPP with several biophysical techniques ranging from fluorescence to circular dichroism, mass spectrometry and atomic force microscopy. We demonstrate that glycation occurs exclusively on the N-terminal lysine leaving the only arginine (Arg11) unmodified. At variance with recent studies, we show that the dynamical interplay between glycation and aggregation affects the structure of the peptide, slows down the aggregation process and influences the aggregate morphology.
Collapse
Affiliation(s)
- Giulia Milordini
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Elsa Zacco
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Matthew Percival
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Fabrizio Dal Piaz
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pierandrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, United Kingdom
| |
Collapse
|
9
|
Martínez-Orozco H, Mariño L, Uceda AB, Ortega-Castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+-Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019; 10:2919-2930. [PMID: 30973706 DOI: 10.1021/acschemneuro.9b00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Waris S, Habib S, Tantry IQ, Khan RH, Mahmood R, Ali A. Acetaldehyde-induced structural and conformational alterations in human immunoglobulin G: A physicochemical and multi-spectroscopic study. Int J Biol Macromol 2018; 113:701-710. [PMID: 29510169 DOI: 10.1016/j.ijbiomac.2018.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/24/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
|
11
|
Emendato A, Milordini G, Zacco E, Sicorello A, Dal Piaz F, Guerrini R, Thorogate R, Picone D, Pastore A. Glycation affects fibril formation of Aβ peptides. J Biol Chem 2018; 293:13100-13111. [PMID: 29959224 PMCID: PMC6109928 DOI: 10.1074/jbc.ra118.002275] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence shows that β-amyloid (Aβ) peptides, which are associated with Alzheimer disease (AD), are heavily glycated in patients, suggesting a role of this irreversible nonenzymatic post-translational modification in pathology. Previous reports have shown that glycation increases the toxicity of the Aβ peptides, although little is known about the mechanism. Here, we used the natural metabolic by-product methylglyoxal as a glycating agent and exploited various spectroscopic methods and atomic force microscopy to study how glycation affects the structures of the Aβ40 and Aβ42 peptides, the aggregation pathway, and the morphologies of the resulting aggregates. We found that glycation significantly slows down but does not prevent β-conversion to mature fibers. We propose that the previously reported higher toxicity of the glycated Aβ peptides could be explained by a longer persistence in an oligomeric form, usually believed to be the toxic species.
Collapse
Affiliation(s)
- Alessandro Emendato
- From the Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy
| | - Giulia Milordini
- King's College London and UK Dementia Research Institute at King's College London, Denmark Hill Campus, London SE5 9RT, United Kingdom
| | - Elsa Zacco
- King's College London and UK Dementia Research Institute at King's College London, Denmark Hill Campus, London SE5 9RT, United Kingdom
| | - Alessandro Sicorello
- King's College London and UK Dementia Research Institute at King's College London, Denmark Hill Campus, London SE5 9RT, United Kingdom
| | | | - Remo Guerrini
- the Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Richard Thorogate
- the London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom, and
| | - Delia Picone
- From the Department of Chemical Sciences, University of Naples Federico II, via Cintia, Napoli 80126, Italy,
| | - Annalisa Pastore
- King's College London and UK Dementia Research Institute at King's College London, Denmark Hill Campus, London SE5 9RT, United Kingdom, .,the Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Abstract
Methylglyoxal (MGO), a reactive dicarbonyl metabolite is a potent arginine directed glycating agent which has implications for diabetes-related complications. Dicarbonyl metabolites are produced endogenously and in a state of misbalance, they contribute to cell and tissue dysfunction through protein and DNA modifications causing dicarbonyl stress. MGO is detoxified by glyoxalase 1 (GLO1) system in the cytoplasm. Reactive oxygen species (ROS) are known to aggravate the glycation process. Both the processes are closely linked, and their combined activity is often referred to as "glycoxidation" process. Glycoxidation of proteins has several consequences such as type 2 diabetes mellitus (T2DM), aging etc. In this study, we have investigated the glycation of low-density lipoprotein (LDL) using different concentrations of MGO for varied incubation time periods. The structural perturbations induced in LDL were analyzed by UV-Vis, fluorescence, circular dichroism spectroscopy, molecular docking studies, polyacrylamide gel electrophoresis, FTIR, thermal denaturation studies, Thioflavin T assay and isothermal titration calorimetry. The ketoamine moieties, carbonyl content and HMF content were quantitated in native and glycated LDL. Simulation studies were also done to see the effect of MGO on the secondary structure of the protein. We report structural perturbations, increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analog (native LDL). We report the structural perturbations in LDL upon modification with MGO which could obstruct its normal physiological functions and hence contribute to disease pathogenesis and associated complications.
Collapse
|
13
|
Methylglyoxal produces more changes in biochemical and biophysical properties of human IgG under high glucose compared to normal glucose level. PLoS One 2018; 13:e0191014. [PMID: 29351321 PMCID: PMC5774746 DOI: 10.1371/journal.pone.0191014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperglycaemia triggers increased production of methylglyoxal which can cause gross modification in proteins’ structure vis-a-vis function though advanced glycation end products (AGEs). The AGEs may initiate vascular and nonvascular pathologies. In this study, we have examined the biochemical and biophysical changes in human IgG under normal and high glucose after introducing methylglyoxal into the assay mixture. This non-enzymatic reaction mainly engaged lysine residues as indicated by TNBS results. The UV results showed hyperchromicity in modified-IgG samples while fluorescence data supported AGEs formation during the course of reaction. Shift in amide I and amide II band position indicated perturbations in secondary structure. Increase carbonyl content and decrease in sulfhydryl suggests that the modification is accompanied by oxidative stress. All modified-IgG samples showed more thermostability than native IgG; the highest Tm was shown by IgG-high glucose-MGO variant. Results of ANS, Congo red and Thioflavin T dyes clearly suggest increase in hydrophobic patches and aggregation, respectively. SEM and TEM images support aggregates generation in modified-IgG samples.
Collapse
|
14
|
Raghav A, Ahmad J, Alam K, Khan AU. New insights into non-enzymatic glycation of human serum albumin biopolymer: A study to unveil its impaired structure and function. Int J Biol Macromol 2017; 101:84-99. [DOI: 10.1016/j.ijbiomac.2017.03.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
16
|
Mir AR, Moinuddin, Habib S. Amorphous aggregate adducts of linker histone H1 turn highly immunologic in the cancers of oesophagus, stomach, gall bladder and ovary. Int J Biol Macromol 2017; 96:507-517. [PMID: 28027900 DOI: 10.1016/j.ijbiomac.2016.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023]
|
17
|
He Z, Tong C, Sheng L, Ma M, Cai Z. Monitoring glycation-induced structural and biofunctional changes in chicken immunoglobulin Y by different monosaccharides. Poult Sci 2016; 95:2715-2723. [DOI: 10.3382/ps/pew223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 11/20/2022] Open
|
18
|
Arfat MY, Arif Z, Chaturvedi SK, Moinuddin, Alam K. Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study. Arch Biochem Biophys 2016; 603:72-80. [DOI: 10.1016/j.abb.2016.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
|
19
|
Jyoti, Mir AR, Habib S, Siddiqui SS, Ali A, Moinuddin. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes. Int J Biol Macromol 2016; 86:799-809. [PMID: 26861824 DOI: 10.1016/j.ijbiomac.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications.
Collapse
Affiliation(s)
- Jyoti
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biotechnology, Government Degree College, Baramulla, Jammu and Kashmir, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sheelu Shafiq Siddiqui
- Rajeev Gandhi Centre for Diabetes, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
20
|
Mir AR, Moinuddin, Habib S, Khan F, Alam K, Ali A. Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology 2015; 26:129-41. [PMID: 26408820 DOI: 10.1093/glycob/cwv082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
Abstract
The role of aberrant protein modifications in cancer and its diagnosis have emerged as a promising research field. Nonenzymatic glyco-oxidation of proteins under oxidative stress has been associated with carcinogenesis through advanced glycation end products (AGE)-receptors for advanced glycation end products (RAGE) axis. Modified proteins that are immunogenic and stimulate cellular and humoral immune responses are being studied to develop early detection markers of cancer. This study has probed the structural alternations; leading to the formation of adducts and aggregates, in histone H2A upon in vitro modification by methylglyoxal (MG). The immunogenicity of modified histone H2A and its binding with cancer autoantibodies was also assessed. MG induced lysine side chain modifications, blocking of free amino groups and the formation of condensed cross structures in histone H2A; and its effect was inhibited by carbonyl scavengers. It led to the adduct formation and generation of N-epsilon-(carboxyethyl)lysine (CEL) and its decomposition forms as revealed by Matrix-assisted laser desorption ionization-mass spectrometry, high-performance liquid chromatography and LC-MS. MG-H2A showed amorphous aggregate formation under electron microscopy and altered binding with DNA in circular dichroism studies. The modified histone elicited high titer immunogen-specific antibodies in rabbits when compared with the native, thus pointing toward the generation of neo-epitopes in MG-H2A. The autoantibodies derived from cancer patients exhibited enhanced binding with MG-H2A as compared with the native histone in enzyme-linked immunosorbent assay and gel retardation assay. This reflects sharing of epitopes on MG-H2A and histones in cancer patients. The neo-epitopes on H2A may be responsible for induction and elevated levels of antibodies in cancer patients. Thus, MG-H2A may be considered as potential antigenic candidate for auto-immune response in cancer.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Farzana Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| |
Collapse
|
21
|
Arfat MY, Ashraf JM, Arif Z, Alam K. Fine characterization of glucosylated human IgG by biochemical and biophysical methods. Int J Biol Macromol 2014; 69:408-15. [PMID: 24953604 DOI: 10.1016/j.ijbiomac.2014.05.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 11/17/2022]
Abstract
Nonenzymatic glycosylation of proteins finally generates advanced glycation end products (AGEs). The Schiff's base and Amadori adduct are stages of early glycation. AGE-modified IgG may undergo conformational alterations and the final entity of the process may be involved in the pathogenesis of Rheumatoid Arthritis (RA). In this study, glycation of human IgG was carried out with varying concentrations of glucose. Effect of incubation period on glycation of IgG has also been studied. Amadori adduct was detected by nitroblue tetrazolium (NBT) dye. The glucose mediated structural alterations in IgG were studied by UV, fluorescence, CD, FT-IR, DLS and DSC spectroscopy, and SDS-PAGE. Glycation-induced aggregation in AGE-IgG was reported in the form of binding of thioflavin T and congo red. Furthermore, AGE-modified IgG exhibited hyperchromicity, decrease of tryptophan fluorescence accompanied by increase in AGE specific fluorescence, loss of β-sheet, appearance of new peak in FT-IR, increase in hydrodynamic size and melting temperature. SDS-PAGE results showed decrease in the band intensity of glycosylated-IgG compared to native IgG. Glycation-induced modifications and aggregation of IgG might be important in the pathogenesis of RA.
Collapse
Affiliation(s)
- Mir Yasir Arfat
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Jalaluddin M Ashraf
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarina Arif
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
22
|
Pun PBL, Logan A, Darley-Usmar V, Chacko B, Johnson MS, Huang GW, Rogatti S, Prime TA, Methner C, Krieg T, Fearnley IM, Larsen L, Larsen DS, Menger KE, Collins Y, James AM, Kumar GDK, Hartley RC, Smith RAJ, Murphy MP. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radic Biol Med 2014; 67:437-50. [PMID: 24316194 PMCID: PMC3978666 DOI: 10.1016/j.freeradbiomed.2013.11.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Abstract
The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography-tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging.
Collapse
Affiliation(s)
- Pamela Boon Li Pun
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Victor Darley-Usmar
- Department of Pathology, Centre for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Balu Chacko
- Department of Pathology, Centre for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle S Johnson
- Department of Pathology, Centre for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guang W Huang
- Department of Pathology, Centre for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sebastian Rogatti
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Carmen Methner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Lesley Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Katja E Menger
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Yvonne Collins
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - G D Kishore Kumar
- Centre for the Chemical Research of Ageing, WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard C Hartley
- Centre for the Chemical Research of Ageing, WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robin A J Smith
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK.
| |
Collapse
|
23
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
24
|
Suravajjala S, Cohenford M, Frost LR, Pampati PK, Dain JA. Glycation of human erythrocyte glutathione peroxidase: effect on the physical and kinetic properties. Clin Chim Acta 2013; 421:170-6. [PMID: 23524033 DOI: 10.1016/j.cca.2013.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glutathione peroxidase (GPx) is a significant antioxidant enzyme that plays a key role in protecting the body from reactive oxygen species (ROS) and their toxicity. As a biocatalyst, the enzyme has been shown to reduce hydrogen peroxide to water and lipid hydroperoxides to their respective alcohols. The increased levels of ROS in patients with diabetes have been speculated to arise, in part, from alterations in the activity of glutathione antioxidant enzymes, perhaps, by mechanisms such as the glycation of the protein, in vivo. METHODS Under physiological conditions of temperature and pH, we investigated the susceptibility of human glutathione peroxidase to glycation, determined the effects of glycation on the physical and kinetic properties of the enzyme, and identified the protein's vulnerable amino acid sites of glycation. RESULTS Circular dichroism, UV and mass spectrometry studies revealed that methylglyoxal and DL-glyceraldehyde are potent glycators of glutathione peroxidase; destabilizing its structure, altering its pH activity and stability profiles and increasing its Km value. CONCLUSIONS In comparison to DL-glyceraldehyde, methylglyxol was a more potent glycator of the enzyme and was found to nonenzymatically condense with Arg-177, located near the glutathione binding site of GPx.
Collapse
Affiliation(s)
- Sreekanth Suravajjala
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, United States
| | | | | | | | | |
Collapse
|
25
|
Vetter SW, Indurthi VS. Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta 2011; 412:2105-16. [DOI: 10.1016/j.cca.2011.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
|
26
|
DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711:13-27. [PMID: 21419140 DOI: 10.1016/j.mrfmmm.2011.03.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 12/16/2022]
Abstract
DNA damage plays a major role in various pathophysiological conditions including carcinogenesis, aging, inflammation, diabetes and neurodegenerative diseases. Oxidative stress and cell processes such as lipid peroxidation and glycation induce the formation of highly reactive endogenous aldehydes that react directly with DNA, form aldehyde-derived DNA adducts and lead to DNA damage. In occasion of persistent conditions that influence the formation and accumulation of aldehyde-derived DNA adducts the resulting unrepaired DNA damage causes deregulation of cell homeostasis and thus significantly contributes to disease phenotype. Some of the most highly reactive aldehydes produced endogenously are 4-hydroxy-2-nonenal, malondialdehyde, acrolein, crotonaldehyde and methylglyoxal. The mutagenic and carcinogenic effects associated with the elevated levels of these reactive aldehydes, especially, under conditions of stress, are attributed to their capability of causing directly modification of DNA bases or yielding promutagenic exocyclic adducts. In this review, we discuss the current knowledge on DNA damage induced by endogenously produced reactive aldehydes in relation to the pathophysiology of human diseases.
Collapse
|