1
|
Gillies NA, Milan AM, Cameron-Smith D, Mumme KD, Conlon CA, von Hurst PR, Haskell-Ramsay CF, Jones B, Roy NC, Coad J, Wall CR, Beck KL. Vitamin B and One-Carbon Metabolite Profiles Show Divergent Associations with Cardiometabolic Risk Markers but not Cognitive Function in Older New Zealand Adults: A Secondary Analysis of the REACH Study. J Nutr 2023; 153:3529-3542. [PMID: 37863266 DOI: 10.1016/j.tjnut.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Vitamin B inadequacies and elevated homocysteine status have been associated with impaired cognitive and cardiometabolic health with aging. There is, however, a scarcity of research investigating integrated profiles of one-carbon (1C) metabolites in this context, including metabolites of interconnected folate, methionine, choline oxidation, and transsulfuration pathways. OBJECTIVES The study aimed to examine associations between vitamins B and 1C metabolites with cardiometabolic health and cognitive function in healthy older adults, including the interactive effects of Apolipoprotein E-ε4 status. METHODS Three hundred and thirteen healthy participants (65-74 y, 65% female) were analyzed. Vitamins B were estimated according to dietary intake (4-d food records) and biochemical status (serum folate and vitamin B12). Fasting plasma 1C metabolites were quantified by liquid chromatography with tandem mass spectrometry. Measures of cardiometabolic health included biochemical (lipid panel, blood glucose) and anthropometric markers. Cognitive function was assessed by the Computerized Mental Performance Assessment System (COMPASS) and Montreal Cognitive Assessment (MoCA). Associations were analyzed using multivariate linear (COMPASS, cardiometabolic health) and Poisson (MoCA) regression modeling. RESULTS Over 90% of participants met dietary recommendations for riboflavin and vitamins B6 and B12, but only 78% of males and 67% of females achieved adequate folate intakes. Higher serum folate and plasma betaine and glycine concentrations were associated with favorable cardiometabolic markers, whereas higher plasma choline and homocysteine concentrations were associated with greater cardiometabolic risk based on body mass index and serum lipids concentration values (P< 0.05). Vitamins B and homocysteine were not associated with cognitive performance in this cohort, though higher glycine concentrations were associated with better global cognitive performance (P = 0.017), episodic memory (P = 0.016), and spatial memory (P = 0.027) scores. Apolipoprotein E-ε4 status did not modify the relationship between vitamins B or 1C metabolites with cognitive function in linear regression analyses. CONCLUSIONS Vitamin B and 1C metabolite profiles showed divergent associations with cardiometabolic risk markers and limited associations with cognitive performance in this cohort of healthy older adults.
Collapse
Affiliation(s)
- Nicola A Gillies
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand
| | - Amber M Milan
- The Liggins Institute, The University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; AgResearch Ltd, Grasslands Research Centre, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Australia
| | - Karen D Mumme
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | - Cathryn A Conlon
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | | | | | - Beatrix Jones
- Department of Statistics, University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand
| | - Nicole C Roy
- The Riddet Institute, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; Department of Human Nutrition, University of Otago, New Zealand
| | - Jane Coad
- College of Sciences, Massey University, New Zealand
| | - Clare R Wall
- Discipline of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| | - Kathryn L Beck
- School of Sport Exercise and Nutrition, Massey University, New Zealand.
| |
Collapse
|
2
|
Kussmann M. Mass spectrometry as a lens into molecular human nutrition and health. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:370-379. [PMID: 37587732 DOI: 10.1177/14690667231193555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Mass spectrometry (MS) has developed over the last decades into the most informative and versatile analytical technology in molecular and structural biology (). The platform enables discovery, identification, and characterisation of non-volatile biomolecules, such as proteins, peptides, DNA, RNA, nutrients, metabolites, and lipids at both speed and scale and can elucidate their interactions and effects. The versatility, robustness, and throughput have rendered MS a major research and development platform in molecular human health and biomedical science. More recently, MS has also been established as the central tool for 'Molecular Nutrition', enabling comprehensive and rapid identification and characterisation of macro- and micronutrients, bioactives, and other food compounds. 'Molecular Nutrition' thereby helps understand bioaccessibility, bioavailability, and bioefficacy of macro- and micronutrients and related health effects. Hence, MS provides a lens through which the fate of nutrients can be monitored along digestion via absorption to metabolism. This in turn provides the bioanalytical foundation for 'Personalised Nutrition' or 'Precision Nutrition' in which design and development of diets and nutritional products is tailored towards consumer and patient groups sharing similar genetic and environmental predisposition, health/disease conditions and lifestyles, and/or objectives of performance and wellbeing. The next level of integrated nutrition science is now being built as 'Systems Nutrition' where public and personal health data are correlated with life condition and lifestyle factors, to establish directional relationships between nutrition, lifestyle, environment, and health, eventually translating into science-based public and personal heath recommendations and actions. This account provides a condensed summary of the contributions of MS to a precise, quantitative, and comprehensive nutrition and health science and sketches an outlook on its future role in this fascinating and relevant field.
Collapse
Affiliation(s)
- Martin Kussmann
- Abteilung Wissenschaft, Kompetenzzentrum für Ernährung (KErn), Germany
- Kussmann Biotech GmbH, Germany
| |
Collapse
|
3
|
Zhang M, Li Q, Yu K, Li J, Wu J, Li S, Chen Y, Cai W, Ma J. Systemic chemical characterization of Lemna minor by UHPLC-Q-Exactive Orbitrap MS coupled with parallel reaction monitoring. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4923. [PMID: 37177835 DOI: 10.1002/jms.4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Lemna minor L. (LM) has been used for measles opacity, rubella itching, edema, and oliguria, and the main active ingredients were flavonoids, namely, apigenin, apigenin-7-O-glucoside, and luteolin-7-O-glucoside. However, few systematic analyses of their constituents have been performed; thus, it was necessary to establish a fast and efficient method to identify the chemical composition of LM. In this study, the UHPLC-Q-Exactive Orbitrap mass spectrometry coupled with parallel reaction monitoring was established. Finally, a total of 112 constituents, including 30 dipeptides, 28 nucleosides, 11 amino acids, 10 organic acids, 10 flavonoids, and 23 other compounds, were identified by MS, diagnostic fragment ions, and retention time. One hundred one of those chemicals were first found in LM, which was very beneficial for the further development and utilization of nutriments and the medicinal use of LM.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Qing Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jiaxin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jili Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yuqi Chen
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jieyao Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
4
|
Gillies NA, Sharma P, Han SM, Teh R, Fraser K, Roy NC, Cameron-Smith D, Milan AM. The acute postprandial response of homocysteine to multivitamin and mineral supplementation with a standard meal is not impaired in older compared to younger adults. Eur J Nutr 2023; 62:1309-1322. [PMID: 36539620 DOI: 10.1007/s00394-022-03068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE B vitamins are required for the complex regulation of homocysteine and one-carbon (1C) metabolism. Nutritional supplements are frequently used by older adults to counter nutritional inadequacies. However, the postprandial use of B vitamins from supplements in 1C metabolism may be altered with age owing to impaired nutrient absorption and metabolic regulation. Despite implications for health and nutritional status, postprandial 1C metabolite responses have not been characterised in older adults. METHODS Healthy older (n = 20, 65-76 years) and younger (n = 20, 19-30 years) participants were recruited through online and printed advertisements in Auckland, New Zealand. Participants consumed a multivitamin and mineral supplement with a standard breakfast meal. Blood samples were collected at baseline and hourly for 4 h following ingestion. Plasma 1C metabolites (betaine, choline, cysteine, dimethylglycine, glycine, methionine, serine) were quantified using liquid chromatography coupled with mass spectrometry. Serum homocysteine, folate and vitamin B12 were quantified on a Cobas e411 autoanalyzer. RESULTS Older adults had higher fasting homocysteine concentrations (older: 14.0 ± 2.9 µmol/L; younger: 12.2 ± 2.5 µmol/L; p = 0.036) despite higher folate (older: 36.7 ± 17.4 nmol/L; younger: 21.6 ± 7.6 nmol/L; p < 0.001) and similar vitamin B12 concentrations (p = 0.143) to younger adults. However, a similar postprandial decline in homocysteine was found in older and younger subjects in response to the combined meal and supplement. Except for a faster decline of cystathionine in older adults (p = 0.003), the postprandial response of other 1C metabolites was similar between young and older adults. CONCLUSION Healthy older adults appear to maintain postprandial responsiveness of 1C metabolism to younger adults, supported by a similar postprandial decline in homocysteine concentrations.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
| | - Soo Min Han
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ruth Teh
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Nicole C Roy
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, The University of Otago, Dunedin, New Zealand
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Palmerston North, New Zealand
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
- College of Health, Medicine, and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Amber M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand.
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand.
| |
Collapse
|
5
|
Chen P, Tang Y, He Q, Liu L, Zhou Z, Song Y, Zhang N, Wang B, Zhou H, Shi H, Jiang J. A sensitive UPLC-MS/MS method for simultaneous quantification of one-carbon metabolites & co-factors in human plasma. J Pharm Biomed Anal 2022; 219:114944. [PMID: 35863169 DOI: 10.1016/j.jpba.2022.114944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
One-carbon metabolism is an important metabolic pathway involved in many diseases, such as congenital malformations, tumours, cardiovascular diseases, anaemia, depression, cognitive diseases and liver disease. However, the current methods have specific defects in detecting and qualifying the related compounds of one-carbon metabolism. In this study, a validated method was established to simultaneously quantify 22 one-carbon metabolites & co-factors in human plasma and applied to the study of correlation between one-carbon metabolism and colorectal cancer in human plasma samples, which were from 44 healthy subjects and 55 colorectal cancer patients. The method used ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS), and the analytes included betaine, L-carnitine, L-cystathionine, L-cysteine, dimethylglycine, DL-homocysteic acid, homocysteine, methionine, pyridoxal hydrochloride, pyridoxamine dihydrochloride, pyridoxine dihydrochloride, S-(5'-Adenosyl)-L-homocysteine, serine, choline chloride, folic acid, glycine, pyridoxal phosphate monohydrate, riboflavin, taurine, 5-methyltetrahydrofolate, S-(5'-adenosyl)-L-methionine disulfate salt, trimethylamine oxide. The developed method was successfully applied to the quantification of 22 one-carbon metabolites & co-factors in human plasma from colorectal cancer patients and healthy individuals. The plasma concentrations of dimethylglycine was significantly decreased in the patients compared with the healthy individuals, while L-cystathionine was increased.
Collapse
Affiliation(s)
- Ping Chen
- Jinan University College of Pharmacy, Guangzhou 510630, PR China
| | - Yun Tang
- Shenzhen Tailored Medical Laboratory, Shenzhen 518055, PR China; Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen 518055, PR China
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China; Institute of Biomedicine, Anhui Medical University, Hefei 230000, PR China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 10034, PR China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen 518057, PR China; Institute of Biomedicine, Anhui Medical University, Hefei 230000, PR China
| | - Houqing Zhou
- Department of Clinical Laboratory, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, PR China
| | - Hanping Shi
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, PR China
| | - Jie Jiang
- Jinan University College of Pharmacy, Guangzhou 510630, PR China.
| |
Collapse
|
6
|
Schuett T, Wejner M, Kimmig J, Zechel S, Wilke T, Schubert US. Improvement of High-Throughput Experimentation Using Synthesis Robots by the Implementation of Tailor-Made Sensors. Polymers (Basel) 2022; 14:polym14030361. [PMID: 35160352 PMCID: PMC8838243 DOI: 10.3390/polym14030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
A small, low-cost, self-produced photometer is implemented into a synthesis robot and combined with a modified UV chamber to enable automated sampling and online characterization. In order to show the usability of the new approach, two different reversible addition–fragmentation chain transfer (RAFT) polymers were irradiated with UV light. Automated sampling and subsequent characterization revealed different reaction kinetics depending on polymer type. Thus, a long initiation time (20 min) is required for the end-group degradation of poly(ethylene glycol) ether methyl methacrylate (poly(PEGMEMA)), whereas poly(methyl methacrylate) (PMMA) is immediately converted. Lastly, all photometric samples are characterized via size-exclusion chromatography using UV and RI detectors to prove the results of the self-produced sensor and to investigate the molar mass shift during the reaction.
Collapse
Affiliation(s)
- Timo Schuett
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (T.S.); (J.K.); (S.Z.)
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
| | - Manuel Wejner
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
- Institute for Inorganic Chemistry and Analytical Chemistry, Chemistry Education, Friedrich Schiller University Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Julian Kimmig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (T.S.); (J.K.); (S.Z.)
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (T.S.); (J.K.); (S.Z.)
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
| | - Timm Wilke
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
- Institute for Inorganic Chemistry and Analytical Chemistry, Chemistry Education, Friedrich Schiller University Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
- Correspondence: (T.W.); (U.S.S.)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; (T.S.); (J.K.); (S.Z.)
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany;
- Correspondence: (T.W.); (U.S.S.)
| |
Collapse
|
7
|
Andraos S, Beck KL, Jones MB, Han TL, Conlon CA, de Seymour JV. Characterizing patterns of dietary exposure using metabolomic profiles of human biospecimens: a systematic review. Nutr Rev 2022; 80:699-708. [PMID: 35024860 DOI: 10.1093/nutrit/nuab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CONTEXT Establishing diet-disease associations requires reliable assessment of dietary intake. With the rapid advancement of metabolomics, its use in identifying objective biomarkers of dietary exposure has substantially increased. OBJECTIVE The aim of our review was to systematically combine all observational studies linking dietary intake patterns with metabolomic profiles of human biospecimens. DATA SOURCES Five databases were searched - MEDLINE, Embase, Scopus, Web of Science, and Cochrane CENTRAL - to March 2020. DATA EXTRACTION Of the 14 328 studies initially screened, 35 observational studies that met the specified inclusion criteria were included. DATA ANALYSIS All reviewed studies indicated that metabolomic measures were significantly correlated with dietary patterns, demonstrating the potential for using objective metabolomic measures to characterize individuals' dietary intake. However, similar dietary patterns did not always result in similar metabolomic profiles across different study populations. CONCLUSION Metabolomic profiles reflect a multitude of factors, including diet, genetic, phenotypic, and environmental influences, thereby providing a more comprehensive picture of the impact of diet on metabolism and health outcomes. Further exploration of dietary patterns and metabolomic profiles across different population groups is warranted.
Collapse
Affiliation(s)
- Stephanie Andraos
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kathryn Louise Beck
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mary Beatrix Jones
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cathryn Anne Conlon
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jamie Violet de Seymour
- S. Andraos, K.L. Beck, C.A. Conlon, and J.V. de Seymour are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand. M.B. Jones is with the Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand. T.-L. Han is with the Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Zhang Q, Zhang X, Yang B, Liu S, Wen M, Bao L, Jiang L. Development of a highly efficient in-tube solid-phase microextraction system coupled with UHPLC-MS/MS for analyzing trace hydroxyl polycyclic aromatic hydrocarbons in biological samples. J Sep Sci 2021; 45:919-928. [PMID: 34923746 DOI: 10.1002/jssc.202100751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022]
Abstract
Hydroxyl polycyclic aromatic hydrocarbons are considered active mutagenic and carcinogenic substances and are found in extremely low levels (ng/g) in biological samples. As a result, their determination in urine and blood samples is challenging, and a sensitive and effective method for the analysis of trace hydroxyl polycyclic aromatic hydrocarbons in complex biological matrices is required. In this work, a novel macroporous in-tube solid-phase microextraction monolith was prepared via a thiol-yne click reaction, and a highly efficient analytical method based on in-tube solid-phase microextraction coupled with UHPLC-MS/MS was developed to determine hydroxyl polycyclic aromatic hydrocarbons with low detection limits of 0.137-11.0 ng/L in complex biological samples. Four hydroxyl polycyclic aromatic hydrocarbons, namely, 2-hydroxyanthraquinone, 1-hydroxypyrene, 1,8-dihydroxyanthraquinone, and 6-hydroxychrysene, were determined in the urine samples of smokers, non-smokers, and whole blood samples of mice. Satisfactory recoveries were achieved in the range of 83.1-113% with relative standard deviations of 3.2-9.7%. It was found that implementation of the macroporous monolith gave a highly efficient approach for enriching trace hydroxyl polycyclic aromatic hydrocarbons in biological samples.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Xiaolan Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Bingnian Yang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Shan Liu
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Ming Wen
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Linchun Bao
- Clinical Laboratory, Qian Xi Nan People's Hospital, Xingyi, P. R. China
| | - Li Jiang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| |
Collapse
|
9
|
Schuett T, Geitner R, Zechel S, Schubert US. Dialysis Diffusion Kinetics in Polymer Purification. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timo Schuett
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Robert Geitner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
10
|
Gillies NA, Franzke B, Wessner B, Schober-Halper B, Hofmann M, Oesen S, Tosevska A, Strasser EM, Roy NC, Milan AM, Cameron-Smith D, Wagner KH. Nutritional supplementation alters associations between one-carbon metabolites and cardiometabolic risk profiles in older adults: a secondary analysis of the Vienna Active Ageing Study. Eur J Nutr 2021; 61:169-182. [PMID: 34240265 PMCID: PMC8783863 DOI: 10.1007/s00394-021-02607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
Purpose Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. Methods 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. Results Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). Conclusion Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02607-y.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Sports Medicine, Exercise Physiology and Prevention, University of Vienna, Vienna, Austria
| | - Barbara Schober-Halper
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marlene Hofmann
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Anela Tosevska
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Strasser
- Institute for Physical Medicine and Rehabilitation, Kaiser Franz Josef Hospital - Social Medical Center South, Vienna, Austria
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Food, Nutrition and Health, AgResearch, Hamilton, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition and Health, AgResearch, Hamilton, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Gillies NA, Milan AM, Chia PHP, Sharma P, Mitchell SM, Zeng N, Ramzan F, D'Souza RF, Mitchell CJ, Knowles SO, Andraos S, Sjödin A, Wagner KH, Roy NC, Cameron-Smith D. Responsiveness of one-carbon metabolites to a high-protein diet in older men: Results from a 10-wk randomized controlled trial. Nutrition 2021; 89:111231. [PMID: 33930787 DOI: 10.1016/j.nut.2021.111231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Dietary strategies to promote successful aging are divergent. Higher-protein diets are recommended to preserve skeletal muscle mass and physical function. Conversely, increased B-vitamin intake, supporting one-carbon (1C) metabolism, reduces the risk of cognitive decline and cardiovascular disease. On the hypothesis that higher protein intake through animal-based sources will benefit 1C regulation by the supply of B vitamins (folate, riboflavin, and vitamins B6 and B12) and methyl donors (choline) despite higher methionine intake, this study explored the effect of a higher-protein diet on 1C metabolite status in older men compared to current protein recommendations. METHODS Older men (age, 74 ± 3 y) were randomized to receive a diet for 10 wk containing either the recommended dietary allowance (RDA) of protein (0.8 g/kg body weight/d, n = 14), or double that amount (2RDA, n = 15), with differences in protein accounted for by modifying carbohydrate intake. Intervention diets were matched to each individual's energy requirements based on the Harris-Benedict equation and adjusted fortnightly as required depending on physical activity and satiety. Fasting plasma 1C metabolite concentrations were quantified by liquid chromatography coupled with mass spectrometry at baseline and after 10 wk of intervention. RESULTS Plasma homocysteine concentrations were reduced from baseline to follow-up with both diets. Changes in metabolite ratios reflective of betaine-dependent homocysteine remethylation were specific to the RDA diet, with an increase in the betaine-to-choline ratio and a decrease in the dimethylglycine-to-betaine ratio. Comparatively, increasing folate intake was positively associated with a change in choline concentration and inversely with the betaine-to-choline ratio for the 2RDA group. CONCLUSIONS Adding to the known benefits of higher protein intake in older people, this study supports a reduction of homocysteine with increased consumption of animal-based protein, although the health effects of differential response of choline metabolites to a higher-protein diet remain uncertain.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Pamela H P Chia
- Liggins Institute, University of Auckland, Auckland, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pankaja Sharma
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nina Zeng
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Randall F D'Souza
- Liggins Institute, University of Auckland, Auckland, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott O Knowles
- Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand
| | | | - Anders Sjödin
- Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen,Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Sinapore.
| |
Collapse
|
12
|
Population epidemiology and concordance for plasma amino acids and precursors in 11-12-year-old children and their parents. Sci Rep 2021; 11:3619. [PMID: 33574360 PMCID: PMC7878730 DOI: 10.1038/s41598-020-80923-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 01/23/2023] Open
Abstract
Amino acid (AA) concentrations are influenced by both exogenous (e.g. diet, lifestyle) and endogenous factors (e.g. genetic, transcriptomic, epigenetic, and metabolomic). Fasting plasma AA profiles in adulthood are predictive of diabetes risk over periods of up to 12 years. Data on AA profiles in cross-generational cohorts, including individuals from shared gene-environment settings are scarce, but would allow the identification of the contribution of heritable and environmental factors characterising the levels of circulating AAs. This study aimed to investigate parent–child (familial dyad) concordance, absolute differences between generations- (children versus adults), age- (in adults: 28–71 years), and sex-dependent differences in plasma AA concentrations. Plasma AA concentrations were measured by UHPLC/MS–MS in 1166 children [mean (SD) age 11 (0.5) years, 51% female] and 1324 of their parents [44 (5.1) years, 87% female]. AA concentrations were variably concordant between parents and their children (5–41% of variability explained). Most AA concentrations were higher in adults than children, except for the non-essential AAs arginine, aspartic acid, glutamine, hydroxy-proline, proline, and serine. Male adults and children typically had higher AA concentrations than females. The exceptions were alanine, glutamine, glycine, hydroxy-proline, serine, and threonine in girls; and glycine and serine in women. Age, sex, and shared familial factors are important determinants of plasma AA concentrations.
Collapse
|
13
|
Andraos S, Jones B, Lange K, Clifford SA, Thorstensen EB, Kerr JA, Wake M, Saffery R, Burgner DP, O'Sullivan JM. Trimethylamine N-oxide (TMAO) Is not Associated with Cardiometabolic Phenotypes and Inflammatory Markers in Children and Adults. Curr Dev Nutr 2021; 5:nzaa179. [PMID: 33501405 PMCID: PMC7813154 DOI: 10.1093/cdn/nzaa179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a diet- and microbiome-derived metabolite and a proposed biomarker of adverse cardiometabolic outcomes. TMAO studies have mainly been conducted in individuals with cardiometabolic disease, and studies in population-derived samples are limited. OBJECTIVE We aimed to investigate the associations between plasma TMAO concentrations and its precursors [carnitine, choline, betaine, and dimethylglycine (DMG)] with metabolic syndrome (MetS) scores, preclinical cardiovascular phenotypes, and inflammatory biomarkers (i.e. high-sensitivity C-reactive protein and serum glycoprotein acetyls) in a population-derived cohort of children and their parents. METHODS The concentrations of TMAO and its precursors were quantified using UHPLC coupled with tandem MS (UHPLC/MS-MS) in 1166 children (mean age 11 y ± 0.5 y, 51% female) and 1324 adults (44 y ± 5.1 y, 87% female) participating in The Growing Up in Australia's Child Health CheckPoint Study. We developed multivariable fractional polynomial models to analyze associations between TMAO, its precursors, MetS (adjusted for sex and age), and cardiovascular phenotypes (adjusted for sex, age, BMI, household income, and the urinary albumin to creatinine ratio). Pearson's correlations were computed to identify associations between TMAO, its precursors, and inflammatory biomarkers. RESULTS The concentrations of TMAO precursors, but not TMAO itself, were associated with MetS, cardiovascular phenotypes, and inflammatory biomarkers in children and adults. CONCLUSIONS TMAO precursors, but not TMAO itself, were associated with adverse cardiometabolic and inflammatory phenotypes in children and adults. TMAO precursor concentrations may better reflect cardiovascular health and inflammatory status within the wider population. Replication in other population settings and mechanistic studies are warranted.
Collapse
Affiliation(s)
- Stephanie Andraos
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Beatrix Jones
- Department of Statistics, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Katherine Lange
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Susan A Clifford
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jessica A Kerr
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa Wake
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Saffery
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - David P Burgner
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Inflight Polymerase Chain Reaction of samples with drones. Anal Biochem 2020; 616:114098. [PMID: 33388295 DOI: 10.1016/j.ab.2020.114098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
A system devised to conduct Polymerase Chain Reaction (PCR) in-flight on drones that uses the spatial displacement of capillary tubes on thermal blocks kept at 94 °C, 58 °C and 72 °C corresponding to cycling temperatures for denaturation, annealing and extension is demonstrated here. The use of acetal as the thermal block material reduced heat loss and the input power (within 18.5 W) needed to maintain the required temperatures. Tests showed that concentrations of samples down to 1.16 × 106 DNA copies/μL could be significantly and consistently detected above the background emission of the fluorescence signal intensity.
Collapse
|
15
|
Andraos S, Lange K, Clifford SA, Jones B, Thorstensen EB, Kerr JA, Wake M, Saffery R, Burgner DP, O'Sullivan JM. Plasma Trimethylamine N-Oxide and Its Precursors: Population Epidemiology, Parent-Child Concordance, and Associations with Reported Dietary Intake in 11- to 12-Year-Old Children and Their Parents. Curr Dev Nutr 2020; 4:nzaa103. [PMID: 32666035 PMCID: PMC7335361 DOI: 10.1093/cdn/nzaa103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a microbiome- and diet-derived metabolite implicated in adverse cardiovascular outcomes. To date, studies of plasma TMAO concentrations have largely focused on individuals with metabolic disease. As such, data on TMAO concentrations in population settings and parent-child dyads are lacking. OBJECTIVES This study aimed to investigate parent-child concordance, age, and sex effects on plasma concentrations of TMAO and its precursors [l-carnitine, choline, betaine, and dimethylglycine (DMG)]. Associations between concentrations of TMAO and its precursors and self-reported dietary intakes of animal protein (i.e., red meat, meat products, chicken, fish, milk products, and cheese) and fast-food meals were also investigated. METHODS A total of 1166 children (mean ± SD age: 11 ± 0.5 y, 51% female) and 1324 parents (mean ± SD age: 44 ± 5.1 y, 87% female) had a biomedical assessment as part of Growing Up in Australia's Child Health Checkpoint. Plasma TMAO and precursor concentrations were quantified using ultra-high-pressure LC coupled with tandem MS. RESULTS Familial dyads significantly contributed to plasma TMAO and precursor concentrations (P < 0.0001), explaining 37% of variance for TMAO concentrations. Least-square mean ± SE plasma TMAO was lower in children (0.79 ± 0.02 µM on the log-scale) than in adults (1.22 ± 0.02 µM). By contrast, children's betaine (40.30 ± 0.34 µM) and DMG concentrations (1.02 ± 0.01 µM on the log-scale) were higher than adults' betaine (37.50 ± 0.32 µM) and DMG concentrations (0.80 ± 0.01 µM) (P < 0.0001). Mean values of all metabolites, except adult TMAO, were higher in males than in females (P < 0.001). Greater reported intake of red meat and fish was associated with higher TMAO concentrations in both children [estimates (95% CIs) for red meat: 0.06 (0.01, 0.10); fish: 0.11 (0.06, 0.17)] and adults [red meat: 0.13 (0.08, 0.17); meat products: 0.07 (0.03, 0.12); and fish: 0.09 (0.04, 0.14)]. CONCLUSIONS Age, sex, and shared family factors, including diet, contribute to variation in plasma concentrations of TMAO and its precursors.
Collapse
Affiliation(s)
- Stephanie Andraos
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Katherine Lange
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Susan A Clifford
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Beatrix Jones
- Department of Statistics, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | | | - Jessica A Kerr
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa Wake
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Saffery
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - David P Burgner
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|