1
|
Li Y, Ye Y, Zhu Y, Yao Z, Zhou K, Wei Y, Zhang L, Bao N, Zhao Y, Lai Q. Effects of Dietary 5-Aminolevulinic Acid on Growth, Nutrient Composition, and Intestinal Microflora in Juvenile Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1307-1323. [PMID: 39305390 DOI: 10.1007/s10126-024-10373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/07/2024] [Indexed: 11/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is an endogenous non-protein amino acid and has been used as a new type of growth promoter in aquaculture feed. This study explored the effects of 5-ALA on growth and intestinal health in juvenile shrimp, Litopenaeus vannamei. Shrimps were fed diets containing five different 5-ALA levels (0, 15, 30, 45, and 60 g/t) for 90 days. A concentration of 45 g/t 5-ALA significantly improved growth metrics, including the specific growth rate, protein efficiency, and feed conversion (P < 0.05). The optimal concentration of 5-ALA was 38.3 g/t, as indicated by broken-line regression. Dietary supplementation with 5-ALA increased the crude protein content of whole shrimp, but had no significant effect on the moisture, ash, or crude lipid content (P > 0.05). Suitable supplementation of 5-ALA (45 g/t, 60 g/t) improved the activities of the digestive enzymes alpha-amylase, pepsin, trypsin, and lipase, thus promoting digestion and absorption. Shrimp fed with 45 g/t 5-ALA had increased levels of essential amino acids in the muscles and a higher proportion of polyunsaturated fatty acids in the hepatopancreas. Supplementation with 45 or 60 g/t 5-ALA upregulated the expression of genes related to growth and molting, including chitinase, ecdysone receptor, retinoic X receptor, calcium/calmodulin-dependent protein kinase I, heat shock protein 60, and heat shock protein 70. Moreover, dietary supplementation with 5-ALA affected the abundance of intestinal flora, increased the number of beneficial bacteria, and improved intestinal health. These results indicated that 5-ALA may significantly benefit shrimp health and aquaculture productivity, providing a novel theoretical basis for further research into 5-ALA as a dietary supplement.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yashi Zhu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuxing Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Lin Zhang
- Beijing Challenge Bio-Technology Co., Ltd, Beijing, 100081, China
| | - Ning Bao
- Beijing Challenge Bio-Technology Co., Ltd, Beijing, 100081, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
2
|
Lee HJ, Shin DJ, Nho SB, Lee KW, Kim SK. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Biotechnol J 2024; 19:e202400351. [PMID: 39380497 DOI: 10.1002/biot.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in Saccharomyces cerevisiae D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (HMX1) on heme production efficiency. Of the knock-out strains constructed in this study, only the HMX1-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of PUG1 encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the HMX1-deficient strain overexpressing HEM3, HEM12, and PUG1, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.
Collapse
Affiliation(s)
- Hyun-Jae Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Joo Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Soo Bin Nho
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
3
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. GeroScience 2024; 46:5235-5245. [PMID: 38809391 PMCID: PMC11335709 DOI: 10.1007/s11357-024-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here, we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to a significant extension of yeast replicative lifespan. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology, and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Vyacheslav M Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
4
|
Akabane T, Sagae H, van Wijk K, Saitoh S, Kimura T, Okano S, Kodama K, Takahashi K, Nakajima M, Tanaka T, Takagi M, Nakajima O. Heme deficiency in skeletal muscle exacerbates sarcopenia and impairs autophagy by reducing AMPK signaling. Sci Rep 2024; 14:22147. [PMID: 39333763 PMCID: PMC11437137 DOI: 10.1038/s41598-024-73049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Heme serves as a prosthetic group in hemoproteins, including subunits of the mammalian mitochondrial electron transfer chain. The first enzyme in vertebrate heme biosynthesis, 5-aminolevulinic acid synthase 1 (ALAS1), is ubiquitously expressed and essential for producing 5-aminolevulinic acid (ALA). We previously showed that Alas1 heterozygous mice at 20-35 weeks (aged-A1+/-s) manifested impaired glucose metabolism, mitochondrial malformation in skeletal muscle, and reduced exercise tolerance, potentially linked to autophagy dysfunction. In this study, we investigated autophagy in A1+/-s and a sarcopenic phenotype in A1+/-s at 75-95 weeks (senile-A1+/-s). Senile-A1+/-s exhibited significantly reduced body and gastrocnemius muscle weight, and muscle strength, indicating an accelerated sarcopenic phenotype. Decreases in total LC3 and LC3-II protein and Map1lc3a mRNA levels were observed in aged-A1+/-s under fasting conditions and in Alas1 knockdown myocyte-differentiated C2C12 cells (A1KD-C2C12s) cultured in high- or low-glucose medium. ALA treatment largely reversed these declines. Reduced AMP-activated protein kinase (AMPK) signaling was associated with decreased autophagy in aged-A1+/-s and A1KD-C2C12s. AMPK modulation using AICAR (activator) and dorsomorphin (inhibitor) affected LC3 protein levels in an AMPK-dependent manner. Our findings suggest that heme deficiency contributes to accelerated sarcopenia-like defects and reduced autophagy in skeletal muscle, primarily due to decreased AMPK signaling.
Collapse
Affiliation(s)
- Takeru Akabane
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiromori Sagae
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Koen van Wijk
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
| | - Shinichi Saitoh
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
| | - Tomohiro Kimura
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
| | - Satoshi Okano
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan
| | | | | | | | | | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Osamu Nakajima
- Department of Functional Genomics, Major of Innovative Medical Science Research, Yamagata University School of Medicine/Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Iida-Nishi 2-2-2 Yamagata, Yamagata, 990-9585, Japan.
| |
Collapse
|
5
|
Ruhi MK, Rickard BP, Overchuk M, Sinawang PD, Stanley E, Mansi M, Sierra RG, Hayes B, Tan X, Akin D, Chen B, Demirci U, Rizvi I. PpIX-enabled fluorescence-based detection and photodynamic priming of platinum-resistant ovarian cancer cells under fluid shear stress. Photochem Photobiol 2024. [PMID: 39189505 DOI: 10.1111/php.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/28/2024]
Abstract
Over 75% percent of ovarian cancer patients are diagnosed with advanced-stage disease characterized by unresectable intraperitoneal dissemination and the presence of ascites, or excessive fluid build-up within the abdomen. Conventional treatments include cytoreductive surgery followed by multi-line platinum and taxane chemotherapy regimens. Despite an initial response to treatment, over 75% of patients with advanced-stage ovarian cancer will relapse and succumb to platinum-resistant disease. Recent evidence suggests that fluid shear stress (FSS), which results from the movement of fluid such as ascites, induces epithelial-to-mesenchymal transition and confers resistance to carboplatin in ovarian cancer cells. This study demonstrates, for the first time, that FSS-induced platinum resistance correlates with increased cellular protoporphyrin IX (PpIX), the penultimate downstream product of heme biosynthesis, the production of which can be enhanced using the clinically approved pro-drug aminolevulinic acid (ALA). These data suggest that, with further investigation, PpIX could serve as a fluorescence-based biomarker of FSS-induced platinum resistance. Additionally, this study investigates the efficacy of PpIX-enabled photodynamic therapy (PDT) and the secretion of extracellular vesicles under static and FSS conditions in Caov-3 and NIH:OVCAR-3 cells, two representative cell lines for high-grade serous ovarian carcinoma (HGSOC), the most lethal form of the disease. FSS induces resistance to ALA-PpIX-mediated PDT, along with a significant increase in the number of EVs. Finally, the ability of PpIX-mediated photodynamic priming (PDP) to enhance carboplatin efficacy under FSS conditions is quantified. These preliminary findings in monolayer cultures necessitate additional studies to determine the feasibility of PpIX as a fluorescence-based indicator, and mediator of PDP, to target chemoresistance in the context of FSS.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Brittany P Rickard
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Prima Dewi Sinawang
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, California, USA
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Jiang C, Zou D, Jiang X, Han W, Chen K, Ma A, Wei X. Enhancement of Green Production of Heme by Deleting Odor-Related Genes from Bacillus amyloliquefaciens Based on CRISPR/Cas9n. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16412-16422. [PMID: 38982640 DOI: 10.1021/acs.jafc.4c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in Bacillus amyloliquefaciens to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively. Meanwhile, the hemA gene was confirmed to be the key gene for enhanced heme synthesis. Various hemA genes were compared to obtain the best gene dhemA, and the catalysis mechanism was explained by molecular docking simulation. After further expression of dhemA in HZC9nΔGPSU, the heme titer of HZC9nΔGPSU/pHY-dhemA reached 11.31 ± 0.51 mg/L, 1.70-fold higher than that of HZC9n/pHY-dhemA. The knockout of off-odor-related genes reduced the odor substances and enhanced the heme synthesis, which is promising for the green production of high-quality heme.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Xuedeng Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Kang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| |
Collapse
|
7
|
Zhou H, Tian T, Liu J, Lu H, Yu Y, Wang Y. Efficient and markerless gene integration with SlugCas9-HF in Kluyveromyces marxianus. Commun Biol 2024; 7:797. [PMID: 38956406 PMCID: PMC11219867 DOI: 10.1038/s42003-024-06487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.
Collapse
Affiliation(s)
- Huanyu Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Jingtong Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| | - Yongming Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, 201399, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
8
|
Liu H, Zhu L, Ji Z, Zhang M, Yang X. Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures. Food Chem 2024; 442:138420. [PMID: 38237294 DOI: 10.1016/j.foodchem.2024.138420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
This study presents a novel fluorescence imaging method for the real-time monitoring of beef quality deterioration and freshness. The fluorescence property of porphyrin in the form of heme can be used to characterize quality changes in beef during storage. Therefore, a fluorescence imaging system with an excitation light source of 440 nm and a CCD camera with a specific wavelength filter of 595 nm was constructed, and the porphyrin fluorescence images of beef samples stored at different temperatures were then collected. The quantitative model for predicting the microbial freshness indicator (TVC) of beef was built with the support vector machine regression (SVR) algorithm and produced satisfactory results with Rc2 and Rp2 of 0.858 and 0.812, respectively. The classification model based on the support vector machine (SVM) algorithm classified beef freshness into "fresh" and "spoiled", with calibration and prediction accuracy of 100 % and 90.9 %, respectively.
Collapse
Affiliation(s)
- Huan Liu
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Lei Zhu
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Zengtao Ji
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Xinting Yang
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
9
|
Ren X, Trotter T, Ashwath N, Stanley D, Bajagai YS, Brewer PB. Transcriptomic Insights: Phytogenic Modulation of Buffel Grass ( Cenchrus ciliaris) Seedling Emergence. PLANTS (BASEL, SWITZERLAND) 2024; 13:1174. [PMID: 38732389 PMCID: PMC11085557 DOI: 10.3390/plants13091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
This study explores the impact of a novel phytogenic product containing citric acid, carvacrol, and cinnamaldehyde on buffel grass (Cenchrus ciliaris) seedling emergence. A dilution series of the phytogenic solution revealed a concentration range that promoted seedling emergence, with an optimal concentration of 0.5%. Transcriptomic analysis using RNA-seq was performed to investigate gene expression changes in seedlings under the influence of the phytogenic product. The results revealed that the phytogenic treatment significantly altered the gene expression, with a prevalent boost in transcriptional activity compared to the control. Functional analysis indicated the positive alteration of key metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis, and pentose phosphate pathways. Moreover, pathways related to amino acids, nucleotide biosynthesis, heme biosynthesis, and formyltetrahydrofolate biosynthesis showed substantial modulation. The study provides valuable insights into the molecular mechanisms underlying the phytogenic product's effects on grass seedling establishment and highlights its ability to promote energy metabolism and essential biosynthetic pathways for plant growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip B. Brewer
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia; (X.R.); (T.T.); (Y.S.B.)
| |
Collapse
|
10
|
Boutin J, Genevois C, Couillaud F, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Amintas S, Moranvillier I, Richard E, Blouin JM, Dabernat S, Moreau-Gaudry F, Bedel A. CRISPR editing to mimic porphyria combined with light: A new preclinical approach for prostate cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200772. [PMID: 38596305 PMCID: PMC10899051 DOI: 10.1016/j.omton.2024.200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024]
Abstract
Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.
Collapse
Affiliation(s)
- Julian Boutin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Coralie Genevois
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Franck Couillaud
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Isabelle Lamrissi-Garcia
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Veronique Guyonnet-Duperat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Alice Bibeyran
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Magalie Lalanne
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samuel Amintas
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Tumor Biology and Tumor Bank Laboratory, 33000 Bordeaux, France
| | - Isabelle Moranvillier
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Emmanuel Richard
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Jean-Marc Blouin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Sandrine Dabernat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - François Moreau-Gaudry
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Aurélie Bedel
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| |
Collapse
|
11
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
12
|
Patnaik PK, Nady N, Barlit H, Gülhan A, Labunskyy VM. Lifespan regulation by targeting heme signaling in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576446. [PMID: 38293148 PMCID: PMC10827197 DOI: 10.1101/2024.01.20.576446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Heme is an essential prosthetic group that serves as a co-factor and a signaling molecule. Heme levels decline with age, and its deficiency is associated with multiple hallmarks of aging, including anemia, mitochondrial dysfunction, and oxidative stress. Dysregulation of heme homeostasis has been also implicated in aging in model organisms suggesting that heme may play an evolutionarily conserved role in controlling lifespan. However, the underlying mechanisms and whether heme homeostasis can be targeted to promote healthy aging remain unclear. Here we used Saccharomyces cerevisiae as a model to investigate the role of heme in aging. For this, we have engineered a heme auxotrophic yeast strain expressing a plasma membrane-bound heme permease from Caenorhabditis elegans (ceHRG-4). This system can be used to control intracellular heme levels independently of the biosynthetic enzymes by manipulating heme concentration in the media. We observed that heme supplementation leads to significant lifespan extension in yeast. Our findings revealed that the effect of heme on lifespan is independent of the Hap4 transcription factor. Surprisingly, heme-supplemented cells had impaired growth on YPG medium, which requires mitochondrial respiration to be used, suggesting that these cells are respiratory deficient. Together, our results demonstrate that heme homeostasis is fundamentally important for aging biology and manipulating heme levels can be used as a promising therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Praveen K. Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Nour Nady
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Graf J, Schöpperle M, Pernil R, Schleiff E. Two TonB-dependent outer membrane transporters involved in heme uptake in Anabaena sp. PCC 7120. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:16-28. [PMID: 38234586 PMCID: PMC10792254 DOI: 10.15698/mic2024.01.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Low availability of micronutrients such as iron has enforced the evolution of uptake systems in all kingdoms of life. In Gram-negative bacteria, outer membrane, periplasmatic and plasma membrane localized proteins facilitate the uptake of iron-loaded chelators, which are energized by TonB proteins. The specificity of different uptake systems likely depends either on the endogenously produced siderophore or on the bioavailability of iron-chelator complexes in the environment. Hence, an uptake system for schizokinen produced by the model cyanobacterium Anabaena sp. PCC 7120 exists, while bioinformatics analysis suggests the existence of additional systems, likely for uptake of xenosiderophores. Consistently, proteins encoded by alr2153 (hutA1) and alr3242 (hutA2) are assigned as outer membrane heme transporters. Indeed, Anabaena sp. PCC 7120 can utilize external heme as an iron source. The addition of heme resulted in an induction of genes involved in heme degradation and chlorophyll a synthesis and in an increase of the chlorophyll a content. Moreover, iron starvation induced the expression of hutA1, while the addition of heme led to its repression. Remarkably, the addition of a high concentration of heme but not iron starvation resulted in hutA2 induction. Plasmid insertion mutants of both genes exhibited a reduced capacity to recover from iron starvation by heme addition, which indicates a dependence of heme uptake on functional HutA1 and HutA2 proteins. The structural model generated by bioinformatics methods is further in agreement with a role in heme uptake. Thus, we provide evidence that Anabaena sp. PCC 7120 uses a heme uptake system in parallel to other iron acquisition systems.
Collapse
Affiliation(s)
- Julia Graf
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Martin Schöpperle
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Current address: Lonza Cologne GmbH, Köln, Germany:
| | - Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Max von Laue Str. 11, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Du S, Tong X, Leung MHY, Betts RJ, Woo AC, Bastien P, Misra N, Aguilar L, Clavaud C, Lee PKH. Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus-host interactions. THE ISME JOURNAL 2024; 18:wrae218. [PMID: 39450991 PMCID: PMC11549919 DOI: 10.1093/ismejo/wrae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in polluted air influences the composition of the skin microbiome, which in turn is associated with altered skin phenotypes. However, the interactions between PAH exposure and viromes are unclear. This study aims to elucidate how PAH exposure affects the composition and function of skin viruses, their role in shaping the metabolism of bacterial hosts, and the subsequent effects on skin phenotype. We analyzed metagenomes from cheek skin swabs collected from 124 Chinese women in our previous study and found that the viruses associated with the two microbiome cutotypes had distinct diversities, compositions, functions, and lifestyles following PAH exposure. Moreover, exposure to high concentrations of PAHs substantially increased interactions between viruses and certain biodegrading bacteria. Under high-PAH exposure, the viruses were enriched in xenobiotic degradation functions, and there was evidence suggesting that the insertion of bacteriophage-encoded auxiliary metabolic genes into hosts aids biodegradation. Under low-PAH exposure conditions, the interactions followed the "Piggyback-the-Winner" model, with Cutibacterium acnes being "winners," whereas under high-PAH exposure, they followed the "Piggyback-the-Persistent" model, with biodegradation bacteria being "persistent." These findings highlight the impact of air pollutants on skin bacteria and viruses, their interactions, and their modulation of skin health. Understanding these intricate relationships could provide insights for developing targeted strategies to maintain skin health in polluted environments, emphasizing the importance of mitigating pollutant exposure and harnessing the potential of viruses to help counteract the adverse effects.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Ren’ai Road, Suzhou, 215123, P. R. China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard J Betts
- L’Oréal Research and Innovation, Raffles Quay, North Tower, 048583, Singapore
| | - Anthony C Woo
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Philippe Bastien
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Namita Misra
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Luc Aguilar
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| |
Collapse
|
15
|
Mo J, Lv R, Qin X, Wu X, Chen H, Yan N, Shi J, Wu Y, Liu W, Kong RYC, Guo J. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115242. [PMID: 37441949 DOI: 10.1016/j.ecoenv.2023.115242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yinglin Wu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Richard Y C Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
16
|
Park J, Lee HH, Moon H, Lee N, Kim S, Kim JE, Lee Y, Min K, Kim H, Choi GJ, Lee YW, Seo YS, Son H. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol Spectr 2023; 11:e0148523. [PMID: 37671872 PMCID: PMC10581207 DOI: 10.1128/spectrum.01485-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio 2023; 14:e0132023. [PMID: 37462360 PMCID: PMC10470608 DOI: 10.1128/mbio.01320-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.
Collapse
Affiliation(s)
- Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Zamarreño Beas J, Videira MAM, Karavaeva V, Lourenço FM, Almeida MR, Sousa F, Saraiva LM. In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase. Front Genet 2023; 14:1199357. [PMID: 37415606 PMCID: PMC10320005 DOI: 10.3389/fgene.2023.1199357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.
Collapse
Affiliation(s)
- Jordi Zamarreño Beas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Frederico M. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda R. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipa Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
19
|
Howley R, Chandratre S, Chen B. 5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10040496. [PMID: 37106683 PMCID: PMC10136048 DOI: 10.3390/bioengineering10040496] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid synthesized in all nucleated mammalian cells. As a porphyrin precursor, ALA is metabolized in the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a fluorophore and photosensitizing agent. ALA administered exogenously bypasses the rate-limit step in the pathway, resulting in PpIX accumulation in tumor tissues. Such tumor-selective PpIX disposition following ALA administration has been exploited for tumor fluorescence diagnosis and photodynamic therapy (PDT) with much success. Five ALA-based drugs have now received worldwide approval and are being used for managing very common human (pre)cancerous diseases such as actinic keratosis and basal cell carcinoma or guiding the surgery of bladder cancer and high-grade gliomas, making it the most successful drug discovery and development endeavor in PDT and photodiagnosis. The potential of ALA-induced PpIX as a fluorescent theranostic agent is, however, yet to be fully fulfilled. In this review, we would like to describe the heme biosynthesis pathway in which PpIX is produced from ALA and its derivatives, summarize current clinical applications of ALA-based drugs, and discuss strategies for enhancing ALA-induced PpIX fluorescence and PDT response. Our goal is two-fold: to highlight the successes of ALA-based drugs in clinical practice, and to stimulate the multidisciplinary collaboration that has brought the current success and will continue to usher in more landmark advances.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Ge J, Wang X, Bai Y, Wang Y, Wang Y, Tu T, Qin X, Su X, Luo H, Yao B, Huang H, Zhang J. Engineering Escherichia coli for efficient assembly of heme proteins. Microb Cell Fact 2023; 22:59. [PMID: 36978060 PMCID: PMC10053478 DOI: 10.1186/s12934-023-02067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Heme proteins, such as hemoglobin, horseradish peroxidase and cytochrome P450 (CYP) enzyme, are highly versatile and have widespread applications in the fields of food, healthcare, medical and biological analysis. As a cofactor, heme availability plays a pivotal role in proper folding and function of heme proteins. However, the functional production of heme proteins is usually challenging mainly due to the insufficient supply of intracellular heme. RESULTS Here, a versatile high-heme-producing Escherichia coli chassis was constructed for the efficient production of various high-value heme proteins. Initially, a heme-producing Komagataella phaffii strain was developed by reinforcing the C4 pathway-based heme synthetic route. Nevertheless, the analytical results revealed that most of the red compounds generated by the engineered K. phaffii strain were intermediates of heme synthesis which were unable to activate heme proteins. Subsequently, E. coli strain was selected as the host to develop heme-producing chassis. To fine-tune the C5 pathway-based heme synthetic route in E. coli, fifty-two recombinant strains harboring different combinations of heme synthesis genes were constructed. A high-heme-producing mutant Ec-M13 was obtained with negligible accumulation of intermediates. Then, the functional expression of three types of heme proteins including one dye-decolorizing peroxidase (Dyp), six oxygen-transport proteins (hemoglobin, myoglobin and leghemoglobin) and three CYP153A subfamily CYP enzymes was evaluated in Ec-M13. As expected, the assembly efficiencies of heme-bound Dyp and oxygen-transport proteins expressed in Ec-M13 were increased by 42.3-107.0% compared to those expressed in wild-type strain. The activities of Dyp and CYP enzymes were also significantly improved when expressed in Ec-M13. Finally, the whole-cell biocatalysts harboring three CYP enzymes were employed for nonanedioic acid production. High supply of intracellular heme could enhance the nonanedioic acid production by 1.8- to 6.5-fold. CONCLUSION High intracellular heme production was achieved in engineered E. coli without significant accumulation of heme synthesis intermediates. Functional expression of Dyp, hemoglobin, myoglobin, leghemoglobin and CYP enzymes was confirmed. Enhanced assembly efficiencies and activities of these heme proteins were observed. This work provides valuable guidance for constructing high-heme-producing cell factories. The developed mutant Ec-M13 could be employed as a versatile platform for the functional production of difficult-to-express heme proteins.
Collapse
Affiliation(s)
- Jianzhong Ge
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Hatalová T, Erhart J, Kopáček P, Perner J. On the haem auxotrophy of the soft tick Ornithodoros moubata. Ticks Tick Borne Dis 2023; 14:102170. [PMID: 36958097 DOI: 10.1016/j.ttbdis.2023.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Genomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Genomic retention of porphobilinogen synthase seems to be soft tick-restricted as no such homologue has been identified in any hard tick species. Bioinformatic mining is thus strongly indicative of the lack of biochemical capacity for de novo haem biosynthesis, suggesting a requirement for dietary haem. In the hard tick Ixodes ricinus, depletion of dietary haem, i.e. serum feeding, leads to oviposition of haem-free eggs, with no apparent embryogenesis and larvae formation. In this work, we show that serum-fed Ornithodoros moubata females, unlike those of I. ricinus, laid haem-containing eggs similarly to blood-fed controls, but only by a small proportion of the serum-fed females. To enhance the effect of dietary haem depletion, O. moubata ticks were serum-fed consecutively as last nymphal instars and females. These females laid eggs with profoundly reduced haem deposits, confirming the host origin of the haem. These data confirm the ability of soft ticks to take up and allocate host haem to their eggs in order to drive reproduction of the ticks.
Collapse
Affiliation(s)
- Tereza Hatalová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jan Erhart
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
22
|
Ushimaru R, Lyu J, Abe I. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad016. [PMID: 37422437 PMCID: PMC10548856 DOI: 10.1093/jimb/kuad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Tetrapyrroles represent a unique class of natural products that possess diverse chemical architectures and exhibit a broad range of biological functions. Accordingly, they attract keen attention from the natural product community. Many metal-chelating tetrapyrroles serve as enzyme cofactors essential for life, while certain organisms produce metal-free porphyrin metabolites with biological activities potentially beneficial for the producing organisms and for human use. The unique properties of tetrapyrrole natural products derive from their extensively modified and highly conjugated macrocyclic core structures. Most of these various tetrapyrrole natural products biosynthetically originate from a branching point precursor, uroporphyrinogen III, which contains propionate and acetate side chains on its macrocycle. Over the past few decades, many modification enzymes with unique catalytic activities, and the diverse enzymatic chemistries employed to cleave the propionate side chains from the macrocycles, have been identified. In this review, we highlight the tetrapyrrole biosynthetic enzymes required for the propionate side chain removal processes and discuss their various chemical mechanisms. ONE-SENTENCE SUMMARY This mini-review describes various enzymes involved in the propionate side chain cleavages during the biosynthesis of tetrapyrrole cofactors and secondary metabolites.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqi Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Yang Y, Zhou J, Wu F, Tong D, Chen X, Jiang S, Duan Y, Yao C, Wang T, Du A, Gasser RB, Ma G. Haem transporter HRG-1 is essential in the barber's pole worm and an intervention target candidate. PLoS Pathog 2023; 19:e1011129. [PMID: 36716341 PMCID: PMC9910794 DOI: 10.1371/journal.ppat.1011129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic roundworms (nematodes) have lost genes involved in the de novo biosynthesis of haem, but have evolved the capacity to acquire and utilise exogenous haem from host animals. However, very little is known about the processes or mechanisms underlying haem acquisition and utilisation in parasites. Here, we reveal that HRG-1 is a conserved and unique haem transporter in a broad range of parasitic nematodes of socioeconomic importance, which enables haem uptake via intestinal cells, facilitates cellular haem utilisation through the endo-lysosomal system, and exhibits a conspicuous distribution at the basal laminae covering the alimentary tract, muscles and gonads. The broader tissue expression pattern of HRG-1 in Haemonchus contortus (barber's pole worm) compared with its orthologues in the free-living nematode Caenorhabditis elegans indicates critical involvement of this unique haem transporter in haem homeostasis in tissues and organs of the parasitic nematode. RNAi-mediated gene knockdown of hrg-1 resulted in sick and lethal phenotypes of infective larvae of H. contortus, which could only be rescued by supplementation of exogenous haem in the early developmental stage. Notably, the RNAi-treated infective larvae could not establish infection or survive in the mammalian host, suggesting an indispensable role of this haem transporter in the survival of this parasite. This study provides new insights into the haem biology of a parasitic nematode, demonstrates that haem acquisition by HRG-1 is essential for H. contortus survival and infection, and suggests that HRG-1 could be an intervention target candidate in a range of parasitic nematodes.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengjun Jiang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Duan
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (AD); (RBG); (GM)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AD); (RBG); (GM)
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AD); (RBG); (GM)
| |
Collapse
|
24
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
25
|
Efficient De Novo Biosynthesis of Heme by Membrane Engineering in Escherichia coli. Int J Mol Sci 2022; 23:ijms232415524. [PMID: 36555164 PMCID: PMC9779679 DOI: 10.3390/ijms232415524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Heme is of great significance in food nutrition and food coloring, and the successful launch of artificial meat has greatly improved the application of heme in meat products. The precursor of heme, 5-aminolevulinic acid (ALA), has a wide range of applications in the agricultural and medical fields, including in the treatment of corona virus disease 2019 (COVID-19). In this study, E. coli recombinants capable of heme production were developed by metabolic engineering and membrane engineering. Firstly, by optimizing the key genes of the heme synthesis pathway and the screening of hosts and plasmids, the recombinant strain EJM-pCD-AL produced 4.34 ± 0.02 mg/L heme. Then, the transport genes of heme precursors CysG, hemX and CyoE were knocked out, and the extracellular transport pathways of heme Dpp and Ccm were strengthened, obtaining the strain EJM-ΔCyoE-pCD-AL that produced 9.43 ± 0.03 mg/L heme. Finally, fed-batch fermentation was performed in a 3-L fermenter and reached 28.20 ± 0.77 mg/L heme and 303 ± 1.21 mg/L ALA. This study indicates that E. coli recombinant strains show a promising future in the field of heme and ALA production.
Collapse
|
26
|
Novakova Z, Milosevic M, Kutil Z, Ondrakova M, Havlinova B, Kasparek P, Sandoval-Acuña C, Korandova Z, Truksa J, Vrbacky M, Rohlena J, Barinka C. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep 2022; 12:17081. [PMID: 36224252 PMCID: PMC9556554 DOI: 10.1038/s41598-022-21147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
Collapse
Affiliation(s)
- Zora Novakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Mirko Milosevic
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic ,grid.4491.80000 0004 1937 116XFaculty of Science, Charles University, Vinicna 5, Prague, 12108 Czech Republic
| | - Zsofia Kutil
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marketa Ondrakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Barbora Havlinova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Petr Kasparek
- grid.418827.00000 0004 0620 870XCzech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cristian Sandoval-Acuña
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Zuzana Korandova
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Charles University, Katerinska 32, Prague, 12108 Czech Republic
| | - Jaroslav Truksa
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marek Vrbacky
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic
| | - Jakub Rohlena
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cyril Barinka
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| |
Collapse
|
27
|
Mischkulnig M, Kiesel B, Rötzer-Pejrimovsky T, Borkovec M, Lang A, Millesi M, Wadiura LI, Hervey-Jumper S, Penninger JM, Berger MS, Widhalm G, Erhart F. The impact of heme biosynthesis regulation on glioma aggressiveness: Correlations with diagnostic molecular markers. Front Mol Neurosci 2022; 15:928355. [PMID: 36187350 PMCID: PMC9515895 DOI: 10.3389/fnmol.2022.928355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background The prognosis of diffusely infiltrating glioma patients is dismal but varies greatly between individuals. While characterization of gliomas primarily relied on histopathological features, molecular markers increasingly gained importance and play a key role in the recently published 5th edition of the World Health Organization (WHO) classification. Heme biosynthesis represents a crucial pathway due to its paramount importance in oxygen transport, energy production and drug metabolism. Recently, we described a “heme biosynthesis mRNA expression signature” that correlates with histopathological glioma grade and survival. The aim of the current study was to correlate this heme biosynthesis mRNA expression signature with diagnostic molecular markers and investigate its continued prognostic relevance. Materials and methods In this study, patient data were derived from the “The Cancer Genome Atlas” (TCGA) lower-grade glioma and glioblastoma cohorts. We identified diffusely infiltrating gliomas correlating molecular tumor diagnosis according to the most recent WHO classification with heme biosynthesis mRNA expression. The following molecular markers were analyzed: EGFR amplification, TERT promoter mutation, CDKN2A/B homozygous loss, chromosome 7 + /10- aneuploidy, MGMT methylation, IDH mutation, ATRX loss, p53 mutation and 1p19q codeletion. Subsequently, we calculated the heme biosynthesis mRNA expression signature for correlation with distinct molecular glioma markers/molecular subgroups and performed survival analyses. Results A total of 649 patients with available data on up-to-date molecular markers and heme biosynthesis mRNA expression were included. According to analysis of individual molecular markers, we found a significantly higher heme biosynthesis mRNA expression signature in gliomas with IDH wildtype (p < 0.0005), without 1p19q codeletion (p < 0.0005), with homozygous CDKN2A/B loss (p < 0.0005) and with EGFR amplification (p = 0.001). Furthermore, we observed that the heme biosynthesis mRNA expression signature increased with molecular subgroup aggressiveness (p < 0.0005), being lowest in WHO grade 2 oligodendrogliomas and highest in WHO grade 4 glioblastomas. Finally, the heme biosynthesis mRNA expression signature was a statistically significant survival predictor after multivariate correction for all molecular markers (p < 0.0005). Conclusion Our data demonstrate a significant correlation between heme biosynthesis regulation and diagnostic molecular markers and a prognostic relevance independent of these established markers. Consequently, heme biosynthesis expression is a promising biomarker for glioma aggressiveness and might constitute a potential target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Rötzer-Pejrimovsky
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Millesi
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- *Correspondence: Georg Widhalm,
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Friedrich Erhart,
| |
Collapse
|
28
|
Iron Metabolism in the Disorders of Heme Biosynthesis. Metabolites 2022; 12:metabo12090819. [PMID: 36144223 PMCID: PMC9505951 DOI: 10.3390/metabo12090819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncontrolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme—the iron-chelated form of protoporphyrin IX—is a macrocyclic tetrapyrrole and a coordination complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen-binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron-dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different porphyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mitochondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay between iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Collapse
|
29
|
FECH Expression Correlates with the Prognosis and Tumor Immune Microenvironment in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8943643. [PMID: 36059798 PMCID: PMC9436586 DOI: 10.1155/2022/8943643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is, by far, the most prevalent and fatal kind of kidney cancer. Ferrochelatase (FECH) is an enzyme that performs a significant function in the onset and progression of many distinct kinds of malignant tumors. Nevertheless, its predictive usefulness in renal clear cell carcinoma (RCC) has not yet been fully investigated. Methods FECH expression in ccRCC and healthy adjoining tissues was primarily screened utilizing data sourced from The Cancer Genome Atlas (TCGA) and subsequently validated using data from an independent cohort derived from the Gene Expression Omnibus (GEO) and the Human Protein Atlas HPA databases. The relationship among FECH expression, clinicopathological parameters, and overall survival (OS) was assessed utilizing multivariate analysis and Kaplan–Meier survival curves. Additionally, the protein networks with FECH interaction were constructed with the aid of the online Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Gene ontology (GO) analysis, and gene set enrichment analysis (GSEA) were conducted based on TCGA data, and a single-sample GSEA was utilized to explore the link between FECH expression and the infiltration status of immune cells in the tumor. The Gene Expression Profiling Interactive Analysis (GEPIA) and TIMER databases were utilized to investigate the relationships of FECH expression with the infiltrating immune cells and the matching gene marker sets. Results FECH expression was shown to be substantially lowered in ccRCC tumors as opposed to that observed in normal tissues (p < 0.05). Lower levels of FECH expression were shown to have a strong association with higher grades of cancer and more advanced TNM stages. The findings of multivariate and univariate analyses illustrated that the OS in patients with ccRCC with low FECH expression is shorter in contrast with that in the high FECH expression group (p < 0.05). It was discovered that CPOX and frataxin are key proteins that interact with FECH. ccRCC with FECH deficiency was linked to the lack of infiltrating immune cells and their respective marker sets, which included CD4+ T cells. Conclusion In ccRCC, decreased FECH expression was linked to disease progression, unfavorable prognosis, and impaired immune cell infiltration.
Collapse
|
30
|
Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2022; 119:e2108245119. [PMID: 35858410 PMCID: PMC9335255 DOI: 10.1073/pnas.2108245119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme availability in the cell enables the proper folding and function of enzymes, which carry heme as a cofactor. Using genome-scale modeling, we identified metabolic fluxes and genes that limit heme production. Our study experimentally validates ecYeast8 model predictions. Moreover, we developed an approach to predict gene combinations, which provides an in silico design of a viable strain able to overproduce the metabolite of interest. Using our approach, we constructed a yeast strain that produces 70-fold-higher levels of intracellular heme. With its high-capacity metabolic subnetwork, our engineered strain is a suitable platform for the production of additional heme enzymes. The heme ligand-binding biosensor (Heme-LBB) detects the cotranslational incorporation of heme into the heme-protein hemoglobin. Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.
Collapse
|
31
|
Katyal G, Ebanks B, Dowle A, Shephard F, Papetti C, Lucassen M, Chakrabarti L. Quantitative Proteomics and Network Analysis of Differentially Expressed Proteins in Proteomes of Icefish Muscle Mitochondria Compared with Closely Related Red-Blooded Species. BIOLOGY 2022; 11:biology11081118. [PMID: 35892974 PMCID: PMC9330239 DOI: 10.3390/biology11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Antarctic icefish are unusual in that they are the only vertebrates that survive without the protein haemoglobin. One way to try and understand the biological processes that support this anomaly is to record how proteins are regulated in these animals and to compare what we find to closely related Antarctic fish that do still retain haemoglobin. The part of the cell that most clearly utilises oxygen, which is normally transported by haemoglobin, is the mitochondrion. Therefore, we chose to catalogue all the proteins and their relative quantities in the mitochondria (pl.) from two different muscle types in two species of icefish and two species of red-blooded notothenioids. We used an approach called mass spectrometry to reveal relative amounts of the proteins from the muscles of each fish. We present analysis that shows how the connections and relative quantities of proteins differ between these species. Abstract Antarctic icefish are extraordinary in their ability to thrive without haemoglobin. We wanted to understand how the mitochondrial proteome has adapted to the loss of this protein. Metabolic pathways that utilise oxygen are most likely to be rearranged in these species. Here, we have defined the mitochondrial proteomes of both the red and white muscle of two different icefish species (Champsocephalus gunnari and Chionodraco rastrospinosus) and compared these with two related red-blooded Notothenioids (Notothenia rossii, Trematomus bernacchii). Liquid Chromatography-Mass spectrometry (LC-MS/MS) was used to generate and examine the proteomic profiles of the two groups. We recorded a total of 91 differentially expressed proteins in the icefish red muscle mitochondria and 89 in the white muscle mitochondria when compared with the red-blooded related species. The icefish have a relatively higher abundance of proteins involved with Complex V of oxidative phosphorylation, RNA metabolism, and homeostasis, and fewer proteins for striated muscle contraction, haem, iron, creatine, and carbohydrate metabolism. Enrichment analyses showed that many important pathways were different in both red muscle and white muscle, including the citric acid cycle, ribosome machinery and fatty acid degradation. Life in the Antarctic waters poses extra challenges to the organisms that reside within them. Icefish have successfully inhabited this environment and we surmise that species without haemoglobin uniquely maintain their physiology. Our study highlights the mitochondrial protein pathway differences between similar fish species according to their specific tissue oxygenation idiosyncrasies.
Collapse
Affiliation(s)
- Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Adam Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Chiara Papetti
- Biology Department, University of Padova, Via U. Bassi, 58/b, 35121 Padova, Italy;
| | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
32
|
Kiening M, Lange N. A Recap of Heme Metabolism towards Understanding Protoporphyrin IX Selectivity in Cancer Cells. Int J Mol Sci 2022; 23:ijms23147974. [PMID: 35887311 PMCID: PMC9324066 DOI: 10.3390/ijms23147974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of proteins. These complexes are termed hemoproteins and are usually vital to the whole cell comportment, such as the proteins hemoglobin, myoglobin or cytochromes, but also enzymes such as catalase and peroxidases. The building block of porphyrins is the 5-aminolevulinic acid, whose exogenous administration is able to stimulate the entire heme biosynthesis route. In neoplastic cells, this methodology repeatedly demonstrated an accumulation of the ultimate heme precursor, the fluorescent protoporphyrin IX photosensitizer, rather than in healthy tissues. While manifold players have been proposed, numerous discrepancies between research studies still dispute the mechanisms underlying this selective phenomenon that yet requires intensive investigations. In particular, we wonder what are the respective involvements of enzymes and transporters in protoporphyrin IX accretion. Is this mainly due to a boost in protoporphyrin IX anabolism along with a drop of its catabolism, or are its transporters deregulated? Additionally, can we truly expect to find a universal model to explain this selectivity? In this report, we aim to provide our peers with an overview of the currently known mitochondrial heme metabolism and approaches that could explain, at least partly, the mechanism of protoporphyrin IX selectivity towards cancer cells.
Collapse
Affiliation(s)
| | - Norbert Lange
- Correspondence: ; Tel.: +41-22-379-33-35; Fax: +41-22-379-65-67
| |
Collapse
|
33
|
Wakamatsu JI. Evidence of the mechanism underlying zinc protoporphyrin IX formation in nitrite/nitrate-free dry-cured Parma ham. Meat Sci 2022; 192:108905. [PMID: 35842957 DOI: 10.1016/j.meatsci.2022.108905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
A large amount of zinc protoporphyrin IX (ZnPP) is found in nitrite/nitrate-free dry-cured meat products, such as Parma ham, and is known to contribute to the favorable bright red color of the latter. ZnPP is a metalloporphyrin, in which zinc is coordinated, instead of iron, in the porphyrin ring. ZnPP proved to be more stable than heme, and its formation should be favored in dried meat products to improve color without the addition of nitrites or nitrates. Toward that, understanding the mechanisms of formation of ZnPP in nitrite/nitrate-free dry-cured ham would be important. In this lecture, I introduce some of our research group's findings regarding the endogenous and exogenous factors contributing to the formation and distribution of ZnPP in Parma ham and why ZnPP formation is suppressed in common cured meat products.
Collapse
Affiliation(s)
- Jun-Ichi Wakamatsu
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
34
|
Mischkulnig M, Roetzer-Pejrimovsky T, Lötsch-Gojo D, Kastner N, Bruckner K, Prihoda R, Lang A, Martinez-Moreno M, Furtner J, Berghoff A, Woehrer A, Berger W, Widhalm G, Kiesel B. Heme Biosynthesis Factors and 5-ALA Induced Fluorescence: Analysis of mRNA and Protein Expression in Fluorescing and Non-fluorescing Gliomas. Front Med (Lausanne) 2022; 9:907442. [PMID: 35665365 PMCID: PMC9157484 DOI: 10.3389/fmed.2022.907442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The intraoperative visualization of adult-type diffuse gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence is widely used in the neurosurgical field. While visible 5-ALA induced fluorescence is found in the majority of high-grade gliomas, most low-grade gliomas lack visible fluorescence during surgery. Recently, the heme biosynthesis pathway was identified as crucial influencing factor for presence of visible fluorescence since it metabolizes 5-ALA to fluorescing Protoporphyrin IX (PpIX). However, the exact alterations within the heme biosynthesis pathway resulting in visible 5-ALA induced fluorescence in gliomas are still unclear. The aim of the present study was thus to compare the mRNA and protein expression of promising intramitochondrial heme biosynthesis enzymes/transporters in glioma tissue samples of different fluorescence behavior. Methods A total of 19 strongly fluorescing and 21 non-fluorescing tissue samples from neurosurgical adult-type diffuse gliomas (WHO grades II-IV) were included in the current analysis. In these samples, we investigated the mRNA expression by quantitative real time PCR and protein expression using immunohistochemistry of the intramitochondrial heme biosynthesis enzymes Coproporphyrinogen Oxidase (CPOX), Protoporphyrinogen Oxidase (PPOX), Ferrochelatase (FECH), and the transporter ATP-binding Cassette Subfamily B Member 2 (ABCG2). Results Regarding mRNA expression analysis, we found a significantly decreased ABCG2 expression in fluorescing specimens compared to non-fluorescing samples (p = 0.001), whereas no difference in CPOX, PPOX and FECH was present. With respect to protein expression, significantly higher levels of CPOX (p = 0.005), PPOX (p < 0.01) and FECH (p = 0.003) were detected in fluorescing samples. Similar to mRNA expression analysis, the protein expression of ABCG2 (p = 0.001) was significantly lower in fluorescing samples. Conclusion Distinct alterations of the analyzed heme biosynthesis factors were found primarily on protein level. Our data indicate that heme biosynthesis pathway activity in general is enhanced in fluorescing gliomas with upregulation of PpIX generating enzymes and decreased ABCG2 mediated PpIX efflux outweighing the also increased further metabolization of PpIX to heme. Intramitochondrial heme biosynthesis factors thus constitute promising pharmacological targets to optimize intraoperative 5-ALA fluorescence visualization of usually non-fluorescing tumors such as low-grade gliomas.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer-Pejrimovsky
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Prihoda
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, University Hospital of St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | | | - Julia Furtner
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Berghoff
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Barbara Kiesel,
| |
Collapse
|
35
|
Uterus-specific transcriptional regulation underlies eggshell pigment production in Japanese quail. PLoS One 2022; 17:e0265008. [PMID: 35271636 PMCID: PMC8912178 DOI: 10.1371/journal.pone.0265008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
The precursor of heme, protoporphyrin IX (PPIX), accumulates abundantly in the uteri of birds, such as Japanese quail, Coturnix japonica, which has brown-speckled eggshells; however, the molecular basis of PPIX production in the uterus remains largely unknown. Here, we investigated the cause of low PPIX production in a classical Japanese quail mutant exhibiting white eggshells by comparing its gene expression in the uterus with that of the wild type using transcriptome analysis. We also performed genetic linkage analysis to identify the causative genomic region of the white eggshell phenotype. We found that 11 genes, including 5’-aminolevulinate synthase 1 (ALAS1) and hephaestin-like 1 (HEPHL1), were specifically upregulated in the wild-type uterus and downregulated in the mutant. We mapped the 172 kb candidate genomic region on chromosome 6, which contains several genes, including a part of the paired-like homeodomain 3 (PITX3), which encodes a transcription factor. ALAS1, HEPHL1, and PITX3 were expressed in the apical cells of the luminal epithelium and lamina propria cells of the uterine mucosa of the wild-type quail, while their expression levels were downregulated in the cells of the mutant quail. Biochemical analysis using uterine homogenates indicated that the restricted availability of 5’-aminolevulinic acid is the main cause of low PPIX production. These results suggest that uterus-specific transcriptional regulation of heme-biosynthesis-related genes is an evolutionarily acquired mechanism of eggshell pigment production in Japanese quail. Based on these findings, we discussed the molecular basis of PPIX production in the uteri of Japanese quails.
Collapse
|
36
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Cheng J, Liu WQ, Zhu X, Zhang Q. Functional Diversity of HemN-like Proteins. ACS BIO & MED CHEM AU 2022; 2:109-119. [PMID: 37101745 PMCID: PMC10114718 DOI: 10.1021/acsbiomedchemau.1c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyu Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
38
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
39
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
40
|
Zhan L, Zhang J, Zhao B, Li X, Zhang X, Hu R, Elken EM, Kong L, Gao Y. Genomic and Transcriptomic Analysis of Bovine Pasteurella multocida Serogroup A Strain Reveals Insights Into Virulence Attenuation. Front Vet Sci 2021; 8:765495. [PMID: 34859092 PMCID: PMC8631534 DOI: 10.3389/fvets.2021.765495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pasteurella multocida is one of the primary pathogens of bovine respiratory disease (BRD), and causes huge losses in the cattle industry. The Pm3 strain was a natural isolate, which is a strong form of pathogen and is sensitive to fluoroquinolones antibiotics. A high fluoroquinolone resistant strain, Pm64 (MIC = 64 μg/mL), was formed after continuous induction with subinhibitory concentration (1/2 MIC) of enrofloxacin, with the enhanced growth characteristics and large attenuation of pathogenicity in mice. This study reports the whole genome sequence and the transcription profile by RNA-Seq of strain Pm3/Pm64. The results showed an ineffective difference between the two strains at the genome level. However, 32 genes could be recognized in the gene islands (GIs) of Pm64, in which 24 genes were added and 8 genes were lost. Those genes are involved in DNA binding, trehalose metabolism, material transportation, capsule synthesis, prophage, amino acid metabolism, and other functions. In Pm3 strain, 558 up-regulated and 568 down-regulated genes were found compared to Pm64 strain, from which 20 virulence factor-related differentially expressed genes (DEGs) were screened. Mainly differentially transcribed genes were associated with capsular polysaccharide (CPS), lipopolysaccharide (LPS), lipooligosaccharide (LOS). Iron utilization, and biofilm composition. We speculated that the main mechanism of virulence attenuation after the formation of resistance of Pm64 comes from the change of the expression profile of these genes. This report elucidated the toxicity targets of P. multocida serogroup A which provide fundamental information toward the understanding of the pathogenic mechanism and to decreasing antimicrobial drugs resistance.
Collapse
Affiliation(s)
- Li Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Boyu Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xintian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Renge Hu
- Marine College, Shandong University, Weihai, China
| | - Emad Mohammed Elken
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
41
|
5-Aminolevulinic acid level and dye-decolorizing peroxidase expression regulate heme synthesis in Escherichia coli. Biotechnol Lett 2021; 44:271-277. [PMID: 34826004 DOI: 10.1007/s10529-021-03212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To investigate the level of 5-aminolevulinic acid (5-ALA), a key precursor of heme, and expression of heme-peroxidase on the regulation of heme synthesis in E. coli. METHODS A transporter gene (eamA) was knocked out, and glutamyl-tRNA reductase gene (hemA) for 5-ALA synthesis and a dye-decolorizing peroxidase gene (DyP) were overexpressed. RESULTS Knockout of eamA caused decrease of 5-ALA secretion, indicating EamA participates in 5-ALA transportation. Overexpression of hemA elevated intracellular 5-ALA and heme levels. However, overexpression of hemA in eamA knockout mutant led to decrease of intracellular heme content and down-regulation of the transcription of heme synthetic gene hemL by ~ 5.2-fold. When overexpressing both hemA and DyP in the mutant, hemL was up-regulated suggesting the binding of heme to DyP released the feedback repression of hemL. CONCLUSION HemL expression is heme-mediated and the approach of intracellular immobilization of free heme by overexpression of heme-peroxidase benefits the understanding and application of heme regulation.
Collapse
|
42
|
Kaur P, Nagar S, Bhagwat M, Uddin M, Zhu Y, Vancurova I, Vancura A. Activated heme synthesis regulates glycolysis and oxidative metabolism in breast and ovarian cancer cells. PLoS One 2021; 16:e0260400. [PMID: 34807950 PMCID: PMC8608300 DOI: 10.1371/journal.pone.0260400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism. In addition, increased heme synthesis may trigger oxidative stress. Since many cancers are characterized by a high glycolytic rate regardless of oxygen availability, targeting glycolysis, ETC, and OXPHOS have emerged as a potential therapeutic strategy. Here, we report that enhancing heme synthesis through exogenous supplementation of heme precursor 5-aminolevulinic acid (ALA) suppresses oxidative metabolism as well as glycolysis and significantly reduces proliferation of both ovarian and breast cancer cells. ALA supplementation also destabilizes Bach1 and inhibits migration of both cell types. Our data indicate that the underlying mechanisms differ in ovarian and breast cancer cells, but involve destabilization of Bach1, AMPK activation, and induction of oxidative stress. In addition, there appears to be an inverse correlation between the activity of oxidative metabolism and ALA sensitivity. Promoting heme synthesis by ALA supplementation may thus represent a promising new anti-cancer strategy, particularly in cancers that are sensitive to altered redox signaling, or in combination with strategies that target the antioxidant systems or metabolic weaknesses of cancer cells.
Collapse
Affiliation(s)
- Pritpal Kaur
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Shreya Nagar
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Mohammad Uddin
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Yan Zhu
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, United States of America
| | - Ales Vancura
- Department of Biological Sciences, St. John’s University, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Novakova Z, Khuntsaria D, Gresova M, Mikesova J, Havlinova B, Shukla S, Kolarova L, Vesela K, Martasek P, Barinka C. Heterologous expression and purification of recombinant human protoporphyrinogen oxidase IX: A comparative study. PLoS One 2021; 16:e0259837. [PMID: 34793488 PMCID: PMC8601502 DOI: 10.1371/journal.pone.0259837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.
Collapse
Affiliation(s)
- Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Daria Khuntsaria
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marketa Gresova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Mikesova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Shivam Shukla
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Lucie Kolarova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Katerina Vesela
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Martasek
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- * E-mail:
| |
Collapse
|
44
|
Ogedengbe-Olowofoyeku AN, Ademola IO, Wright CW, Idowu SO, Fatokun AA. Anthelmintic activity and non-cytotoxicity of phaeophorbide-a isolated from the leaf of Spondias mombin L. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114392. [PMID: 34233206 DOI: 10.1016/j.jep.2021.114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helminthosis (worm infection) is a disease of grazing livestock, with significant economic implications. Increasing resistance to existing synthetic anthelmintics used to control helminthosis and the unwanted presence of residues of the anthelmintics reported in meat and dairy products present a serious global health challenge. These challenges have necessitated the development of novel anthelmintics that could combat drug resistance and exhibit better safety profiles. Spondias mombin L. (Anacardiaceae) is a plant that has been used traditionally as a worm expeller. AIM OF STUDY The aim of the work reported herein was to isolate and characterise anthelmintic compound(s) from S. mombin leaf, establishing their bioactivity and safety profile. MATERIALS AND METHODS Adult Haemonchus placei motility assay was used to assess anthelmintic bioactivity. Bioassay-guided chromatographic fractionation of acetone extract of S. mombin leaf was carried out on a silica gel stationary phase. The structure of the compound was elucidated using spectroscopy (1H and 13C NMR) and Liquid Chromatography-Mass Spectrometry (LC-ESI-MS). Screening to exclude potential cytotoxicity against mammalian cells (H460, Caco-2, MC3T3-E1) was done using alamar blue (AB) and CellTitreGlo (CTG) viability reagents. RESULTS The acetone extract yielded an active fraction 8 (Ethyl acetate: methanol 90:10; anthelmintic LC50: 3.97 mg/mL), which yielded an active sub-fraction (Ethyl acetate: Methanol 95:5; anthelmintic LC50: 53.8 μg/mL), from which active compound 1 was isolated and identified as phaeophorbide-a (LC50: 23.0 μg/mL or 38.8 μM). The compound was not toxic below 200 μM but weakly cytotoxic at 200 μM. CONCLUSIONS Phaeophorbide-a (1) isolated from S. mombin leaf extract and reported in the plant for the first time in this species demonstrated anthelmintic activity. No significant toxicity to mammalian cells was observed. It therefore represents a novel anthelmintic pharmacophore as a potential lead for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Abosede N Ogedengbe-Olowofoyeku
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Isaiah O Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Sunday O Idowu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.
| | - Amos A Fatokun
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
45
|
Dey D, Dhar D, Fortunato H, Obata D, Tanaka A, Tanaka R, Basu S, Ito H. Insights into the structure and function of the rate-limiting enzyme of chlorophyll degradation through analysis of a bacterial Mg-dechelatase homolog. Comput Struct Biotechnol J 2021; 19:5333-5347. [PMID: 34745453 PMCID: PMC8531759 DOI: 10.1016/j.csbj.2021.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
The Mg-dechelatase enzyme encoded by the Stay-Green (SGR) gene catalyzes Mg2+ dechelation from chlorophyll a. This reaction is the first committed step of chlorophyll degradation pathway in plants and is thus indispensable for the process of leaf senescence. There is no structural information available for this or its related enzymes. This study aims to provide insights into the structure and reaction mechanism of the enzyme through biochemical and computational analysis of an SGR homolog from the Chloroflexi Anaerolineae (AbSGR-h). Recombinant AbSGR-h with its intact sequence and those with mutations were overexpressed in Escherichia coli and their Mg-dechelatase activity were compared. Two aspartates - D34 and D62 were found to be essential for catalysis, while R26, Y28, T29 and D114 were responsible for structural maintenance. Gel filtration analysis of the recombinant AbSGR-h indicates that it forms a homo-oligomer. The three-dimensional structure of AbSGR-h was predicted by a deep learning-based method, which was evaluated by protein structure quality evaluation programs while structural stability of wild-type and mutant forms were investigated through molecular dynamics simulations. Furthermore, in concordance with the results of enzyme assay, molecular docking concluded the significance of D34 in ligand interaction. By combining biochemical analysis and computational prediction, this study unveils the detailed structural characteristics of the enzyme, including the probable pocket of interaction and the residues of structural and functional importance. It also serves as a basis for further studies on Mg-dechelatase such as elucidation of its reaction mechanism or inhibitor screening.
Collapse
Affiliation(s)
- Debayan Dey
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Dipanjana Dhar
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.,Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Helena Fortunato
- Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Daichi Obata
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, Kolkata 700019, India
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|
46
|
Imi Y, Shibata K. Nutritional Factors That Affect the Formation of 5-Aminolevulinic Acid, a Key Intermediate of Heme Biosynthesis. J Nutr Sci Vitaminol (Tokyo) 2021; 67:339-350. [PMID: 34719620 DOI: 10.3177/jnsv.67.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
5-Aminolevulinic acid (ALA) is a key intermediate of heme biosynthesis, which is an essential component of the respiratory chain. Therefore, nutrients that affect ALA biosynthesis eventually affect ATP production, which is the basis of mitochondrial function. Although the effects of various non-nutrient components that affect ALA after biosynthesis have been reported, there are few reports on the effects of dietary amino acids/protein on ALA formation and the effects of dietary vitamins that are involved in amino acid metabolism. In mitochondria, ALA is synthesized from succinyl-CoA and glycine by the pyridoxal phosphate-dependent enzyme ALA synthase [EC 2.3.1.37]. In this study, the effects of dietary amino acids/protein and vitamins on the amount of ALA synthesized were investigated using mice, rats, and cultured cells. Amounts of ALA in plasma and urine, and porphyrins in plasma increased with increasing protein intake. Vitamin B1 insufficiency did not affect ALA synthesis. Vitamin B6 insufficiency increased the amount of ALA synthesized, while niacin deficiency markedly reduced ALA synthesis. Thus, for heme synthesis, an essential biological substance for life, the amounts of amino acids, as well as the pathways metabolizing amino acids to glycine and succinyl-CoA are very important. Specifically, it is important that niacin is associated with the formation of glycine and succinyl-CoA from amino acids.
Collapse
Affiliation(s)
- Yukiko Imi
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University
| | - Katsumi Shibata
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University.,Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| |
Collapse
|
47
|
Scott AF, Deery E, Lawrence AD, Warren MJ. Plasmodium falciparum hydroxymethylbilane synthase does not house any cosynthase activity within the haem biosynthetic pathway. MICROBIOLOGY-SGM 2021; 167. [PMID: 34661520 PMCID: PMC8698207 DOI: 10.1099/mic.0.001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD− mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.
Collapse
Affiliation(s)
- Alan F. Scott
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Present address: School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
- *Correspondence: Alan F. Scott,
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Andrew D. Lawrence
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Martin J. Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
48
|
Yuan C, Mao J, Sun H, Wang Y, Guo M, Wang X, Tian Y, Hao Z, Ding J, Chang Y. Genome-wide DNA methylation profile changes associated with shell colouration in the Yesso scallop (Patinopecten yessoensis) as measured by whole-genome bisulfite sequencing. BMC Genomics 2021; 22:740. [PMID: 34649514 PMCID: PMC8515700 DOI: 10.1186/s12864-021-08055-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mollusca, a phylum of highly rich species, possess vivid shell colours, but the underlying molecular mechanism remains to be elucidated. DNA methylation, one of the most common epigenetic modifications in eukaryotes, is believed to play a vital role in various biological processes. However, analysis of the effects of DNA methylation on shell colouration has rarely been performed in molluscs, limiting the current knowledge of the molecular mechanism of shell colour formation. RESULTS In the present study, to reveal the role of epigenetic regulation in shell colouration, WGBS, the "gold standard" of DNA methylation analysis, was first performed on the mantle tissues of Yesso scallops (Patinopecten yessoensis) with different shell colours (brown and white), and DNA methylomes at single-base resolution were generated. About 3% of cytosines were methylated in the genome of the Yesso scallop. A slight increase in mCG percentage and methylation level was found in brown scallops. Sequence preference of nearby methylated cytosines differed between high and low methylation level sites and between the brown- and white-shelled scallops. DNA methylation levels varied among the different genomic regions; all the detected regions in the brown group exhibited higher methylation levels than the white group. A total of 41,175 DMRs (differentially methylated regions) were detected between brown and white scallops. GO functions and pathways associated with the biosynthesis of melanin and porphyrins were significantly enriched for DMRs, among which several key shell colour-related genes were identified. Further, different correlations between mRNA expression levels and DNA methylation status were found in these genes, suggesting that DNA methylation regulates shell colouration in the Yesso scallop. CONCLUSIONS This study provides genome-wide DNA methylation landscapes of Yesso scallops with different shell colours, offering new insights into the epigenetic regulatory mechanism underlying shell colour.
Collapse
Affiliation(s)
- Changzi Yuan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Hongyan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ming Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
49
|
Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol 2021; 9:702974. [PMID: 34595164 PMCID: PMC8476872 DOI: 10.3389/fcell.2021.702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and are central to sensing chemical perturbations that can lead to oxidative stress. The degree of stress is correlated with divergent phenotypes such as quiescence, cell death, or senescence. Each possible cell fate is relevant for a different aspect of endothelial function, and hence, the regulation of cell fate decisions is critically important in maintaining vascular health. This study examined the oxidative stress response (OSR) in human ECs at the boundary of cell survival and death through longitudinal measurements, including cellular, gene expression, and perturbation measurements. 0.5 mM hydrogen peroxide (HP) produced significant oxidative stress, placed the cell at this junction, and provided a model to study the effectors of cell fate. The use of systematic perturbations and high-throughput measurements provide insights into multiple regimes of the stress response. Using a systems approach, we decipher molecular mechanisms across these regimes. Significantly, our study shows that heme oxygenase-1 (HMOX1) acts as a gatekeeper of cell fate decisions. Specifically, HP treatment of HMOX1 knockdown cells reversed the gene expression of about 51% of 2,892 differentially expressed genes when treated with HP alone, affecting a variety of cellular processes, including anti-oxidant response, inflammation, DNA injury and repair, cell cycle and growth, mitochondrial stress, metabolic stress, and autophagy. Further analysis revealed that these switched genes were highly enriched in three spatial locations viz., cell surface, mitochondria, and nucleus. In particular, it revealed the novel roles of HMOX1 on cell surface receptors EGFR and IGFR, mitochondrial ETCs (MTND3, MTATP6), and epigenetic regulation through chromatin modifiers (KDM6A, RBBP5, and PPM1D) and long non-coding RNA (lncRNAs) in orchestrating the cell fate at the boundary of cell survival and death. These novel aspects suggest that HMOX1 can influence transcriptional and epigenetic modulations to orchestrate OSR affecting cell fate decisions.
Collapse
Affiliation(s)
- Sindhushree Raghunandan
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Eugene Ke
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, United States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
50
|
Yang G, Li G, Du X, Zhou W, Zou X, Liu Y, Lv H, Li Z. Down-regulation of IGHG1 enhances Protoporphyrin IX accumulation and inhibits hemin biosynthesis in colorectal cancer by suppressing the MEK-FECH axis. Open Life Sci 2021; 16:930-936. [PMID: 34553073 PMCID: PMC8422984 DOI: 10.1515/biol-2021-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin γ-1 heavy chain constant region (IGHG1) is a functional isoform of immunoglobulins and plays an important role in the cytolytic activity of immune effector cells. Dysregulated IGHG1 was implicated in the occurrence and development of various tumors. Protoporphyrin IX (PpIX) is an endogenous fluorophore and is used in photodynamic therapy, which induces the generation of reactive oxygen species to initiate the death of tumor cells. However, the roles of IGHG1 in the colorectal cancer cell proliferation and PpIX accumulation have not been reported yet. Data from qRT-PCR and western blot analysis showed that IGHG1 was up-regulated in the colorectal cancer cells. Colorectal cancer cells were then transfected with shRNA targeting IGHG1 to down-regulate IGHG1 and conducted with Cell Counting Kit 8 (CCK8) and colony formation assays. Results demonstrated that shRNA-mediated down-regulation of IGHG1 decreased cell viability of colorectal cancer and suppressed cell proliferation. Moreover, PpIX accumulation was promoted and the hemin content was decreased by the silence of IGHG1. Interference of IGHG1 reduced the phosphorylated extracellular signal-regulated kinase (ERK) and ferrochelatase (FECH) expression, resulting in retarded cell proliferation in an MEK-FECH axis-dependent pathway.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Gang Li
- Department of Anorectal, The First People’s Hospital of Longquanyi District of Chengdu, No. 201, Group 3, Chengdu, Sichuan, 610100, China
| | - Xuemei Du
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Wenting Zhou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Xiaohong Zou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Yuanfu Liu
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Hong Lv
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Zhenjiang Li
- Department of Research and Development, Sichuan Haosidelifu Science and Technology Ltd, Chengdu, Sichuan, 610041, China
| |
Collapse
|