1
|
Chen S, Geng X, Lou J, Huang D, Mao H, Lin X. Overexpression of a plasmalemma Na +/H + antiporter from the halophyte Nitraria sibirica enhances the salt tolerance of transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112061. [PMID: 38461863 DOI: 10.1016/j.plantsci.2024.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The plasmalemma Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) is responsible for the efflux of Na+ from the cytoplasm, an important determinant of salt resistance in plants. In this study, an ortholog of SOS1, referred to as NsSOS1, was cloned from Nitraria sibirica, a typical halophyte that grows in deserts and saline-alkaline land, and its expression and function in regulating the salt tolerance of forest trees were evaluated. The expression level of NsSOS1 was higher in leaves than in roots and stems of N. sibirica, and its expression was upregulated under salt stress. Histochemical staining showed that β-glucuronidase (GUS) driven by the NsSOS1 promoter was strongly induced by abiotic stresses and phytohormones including salt, drought, low temperature, gibberellin, and methyl jasmonate, suggesting that NsSOS1 is involved in the regulation of multiple signaling pathways. Transgenic 84 K poplar (Populus alba × P. glandulosa) overexpressing NsSOS1 showed improvements in survival rate, root biomass, plant height, relative water levels, chlorophyll and proline levels, and antioxidant enzyme activities versus non-transgenic poplar (NT) under salt stress. Transgenic poplars accumulated less Na+ and more K+ in roots, stems, and leaves, which had a lower Na+/K+ ratio compared to NT under salt stress. These results indicate that NsSOS1-mediated Na+ efflux confers salt tolerance to transgenic poplars, which show more efficient photosynthesis, better scavenging of reactive oxygen species, and improved osmotic adjustment under salt stress. Transcriptome analysis of transgenic poplars confirmed that NsSOS1 not only mediates Na+ efflux but is also involved in the regulation of multiple metabolic pathways. The results provide insight into the regulatory mechanisms of NsSOS1 and suggest that it could be used to improve the salt tolerance of forest trees.
Collapse
Affiliation(s)
- Shouye Chen
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xin Geng
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Lou
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Duoman Huang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huiping Mao
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
2
|
Xie Q, Yin X, Wang Y, Qi Y, Pan C, Sulaymanov S, Qiu QS, Zhou Y, Jiang X. The signalling pathways, calcineurin B-like protein 5 (CBL5)-CBL-interacting protein kinase 8 (CIPK8)/CIPK24-salt overly sensitive 1 (SOS1), transduce salt signals in seed germination in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:1486-1502. [PMID: 38238896 DOI: 10.1111/pce.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 04/06/2024]
Abstract
For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.
Collapse
Affiliation(s)
- Qing Xie
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaochang Yin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, China
| | - Yu Wang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuting Qi
- MOE Key Laboratory of Cell Activities and Stress Adaptations/School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chengcai Pan
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sunnatulla Sulaymanov
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations/School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, China
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
3
|
Zhang Y, Zhou J, Ni X, Wang Q, Jia Y, Xu X, Wu H, Fu P, Wen H, Guo Y, Yang G. Structural basis for the activity regulation of Salt Overly Sensitive 1 in Arabidopsis salt tolerance. NATURE PLANTS 2023; 9:1915-1923. [PMID: 37884652 DOI: 10.1038/s41477-023-01550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
The plasma membrane Na+/H+ exchanger Salt Overly Sensitive 1 (SOS1) is crucial for plant salt tolerance. Unlike typical sodium/proton exchangers, SOS1 contains a large cytoplasmic domain (CPD) that regulates Na+/H+ exchange activity. However, the underlying modulation mechanism remains unclear. Here we report the structures of SOS1 from Arabidopsis thaliana in two conformations, primarily differing in CPD flexibility. The CPD comprises an interfacial domain, a cyclic nucleotide-binding domain-like domain (CNBD-like domain) and an autoinhibition domain. Through yeast cell-based Na+ tolerance test, we reveal the regulatory role of the interfacial domain and the activation role of the CNBD-like domain. The CPD forms a negatively charged cavity that is connected to the ion binding site. The transport of Na+ may be coupled with the conformational change of CPD. These findings provide structural and functional insight into SOS1 activity regulation.
Collapse
Affiliation(s)
- Yanming Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiaqi Zhou
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuping Ni
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Yutian Jia
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xia Xu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haoyang Wu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han Wen
- DP Technology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guanghui Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Pasam RK, Kant S, Thoday-Kennedy E, Dimech A, Joshi S, Keeble-Gagnere G, Forrest K, Tibbits J, Hayden M. Haplotype-Based Genome-Wide Association Analysis Using Exome Capture Assay and Digital Phenotyping Identifies Genetic Loci Underlying Salt Tolerance Mechanisms in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2367. [PMID: 37375992 DOI: 10.3390/plants12122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Soil salinity can impose substantial stress on plant growth and cause significant yield losses. Crop varieties tolerant to salinity stress are needed to sustain yields in saline soils. This requires effective genotyping and phenotyping of germplasm pools to identify novel genes and QTL conferring salt tolerance that can be utilised in crop breeding schemes. We investigated a globally diverse collection of 580 wheat accessions for their growth response to salinity using automated digital phenotyping performed under controlled environmental conditions. The results show that digitally collected plant traits, including digital shoot growth rate and digital senescence rate, can be used as proxy traits for selecting salinity-tolerant accessions. A haplotype-based genome-wide association study was conducted using 58,502 linkage disequilibrium-based haplotype blocks derived from 883,300 genome-wide SNPs and identified 95 QTL for salinity tolerance component traits, of which 54 were novel and 41 overlapped with previously reported QTL. Gene ontology analysis identified a suite of candidate genes for salinity tolerance, some of which are already known to play a role in stress tolerance in other plant species. This study identified wheat accessions that utilise different tolerance mechanisms and which can be used in future studies to investigate the genetic and genic basis of salinity tolerance. Our results suggest salinity tolerance has not arisen from or been bred into accessions from specific regions or groups. Rather, they suggest salinity tolerance is widespread, with small-effect genetic variants contributing to different levels of tolerance in diverse, locally adapted germplasm.
Collapse
Affiliation(s)
- Raj K Pasam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | | | - Adam Dimech
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Sameer Joshi
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400, Australia
| | | | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
5
|
Liu HF, Zhang TT, Liu YQ, Kang H, Rui L, Wang DR, You CX, Xue XM, Wang XF. Genome-wide analysis of the 6B-INTERACTING PROTEIN1 gene family with functional characterization of MdSIP1-2 in Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:89-100. [PMID: 36621305 DOI: 10.1016/j.plaphy.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Trihelix transcription factors consist of five subfamilies, including GT-1, GT-2, SH4, GTγ, and SIP1, which play important roles in the responses to biotic and abiotic stresses, however, seldom is known about the role of the SIP1 genes in apples. In this study, 12 MdSIP1 genes were first identified in apples by genome-wide analysis, and contained conserved MYB/SANT-like domains. Expression patterns analyses showed that the MdSIP1 genes had different tissue expression patterns, and different transcription levels in response to abiotic stresses, indicating that MdSIP1s may play multiple roles under various abiotic stresses. Among them, the MdSIP1-2 gene was cloned and ectopic transformed into Arabidopsis, and its biology function was identified. The subcellular localization showed that MdSIP1-2 protein was specifically localized in the nucleus, and that overexpression of MdSIP1-2 promoted the development of lateral roots, increased abscisic acid (ABA) sensitivity, and improved salt and drought tolerance. These findings suggested that MdSIP1-2 plays an important role in root development, ABA synthesis, and salt and drought stress tolerance. In conclusion, these results lay a solid foundation for determining the role of MdSIP1 in the growth and development and abiotic stress tolerance of apples.
Collapse
Affiliation(s)
- Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Min Xue
- Shandong Institute of Pomology, Taian, Shandong, 271000, China.
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
6
|
Run Y, Cheng X, Dou W, Dong Y, Zhang Y, Li B, Liu T, Xu H. Wheat potassium transporter TaHAK13 mediates K + absorption and maintains potassium homeostasis under low potassium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1103235. [PMID: 36618640 PMCID: PMC9816385 DOI: 10.3389/fpls.2022.1103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Potassium (K) is an essential nutrient for plant physiological processes. Members of the HAK/KUP/KT gene family act as potassium transporters, and the family plays an important role in potassium uptake and utilization in plants. In this study, the TaHAK13 gene was cloned from wheat and its function characterized. Real-time quantitative PCR (RT-qPCR) revealed that TaHAK13 expression was induced by environmental stress and up-regulated under drought (PEG6000), low potassium (LK), and salt (NaCl) stress. GUS staining indicated that TaHAK13 was mainly expressed in the leaf veins, stems, and root tips in Arabidopsis thaliana, and expression varied with developmental stage. TaHAK13 mediated K+ absorption when heterologously expressed in yeast CY162 strains, and its activity was slightly stronger than that of a TaHAK1 positive control. Subcellular localization analysis illustrated that TaHAK13 was located to the plasma membrane. When c(K+) ≤0.01 mM, the root length and fresh weight of TaHAK13 transgenic lines (athak5/TaHAK13, Col/TaHAK13) were significantly higher than those of non-transgenic lines (athak5, Col). Non-invasive micro-test technology (NMT) indicated that the net K influx of the transgenic lines was also higher than that of the non-transgenic lines. This suggests that TaHAK13 promotes K+ absorption, especially in low potassium media. Membrane-based yeast two-hybrid (MbY2H) and luciferase complementation assays (LCA) showed that TaHAK13 interacted with TaNPF5.10 and TaNPF6.3. Our findings have helped to clarify the biological functions of TaHAK13 and established a theoretical framework to dissect its function in wheat.
Collapse
|
7
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
8
|
Zheng M, Li J, Zeng C, Liu X, Chu W, Lin J, Wang F, Wang W, Guo W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z. Subgenome-biased expression and functional diversification of a Na +/H + antiporter homoeologs in salt tolerance of polyploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1072009. [PMID: 36570929 PMCID: PMC9768589 DOI: 10.3389/fpls.2022.1072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is an allohexaploid species combines the D genome from Ae. tauschii and with the AB genomes from tetraploid wheat (Triticum turgidum). Compared with tetraploid wheat, hexaploid wheat has wide-ranging adaptability to environmental adversity such as salt stress. However, little is known about the molecular basis underlying this trait. The plasma membrane Na+/H+ transporter Salt Overly Sensitive 1 (SOS1) is a key determinant of salt tolerance in plants. Here we show that the upregulation of TaSOS1 expression is positively correlated with salt tolerance variation in polyploid wheat. Furthermore, both transcriptional analysis and GUS staining on transgenic plants indicated TaSOS1-A and TaSOS1-B exhibited higher basal expression in roots and leaves in normal conditions and further up-regulated under salt stress; while TaSOS1-D showed markedly lower expression in roots and leaves under normal conditions, but significant up-regulated in roots but not leaves under salt stress. Moreover, transgenic studies in Arabidopsis demonstrate that three TaSOS1 homoeologs display different contribution to salt tolerance and TaSOS1-D plays the prominent role in salt stress. Our findings provide insights into the subgenomic homoeologs variation potential to broad adaptability of natural polyploidy wheat, which might effective for genetic improvement of salinity tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Mei Zheng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaowu Zeng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumuqi, China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weiwei Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Han QQ, Wang YP, Li J, Li J, Yin XC, Jiang XY, Yu M, Wang SM, Shabala S, Zhang JL. The mechanistic basis of sodium exclusion in Puccinellia tenuiflora under conditions of salinity and potassium deprivation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:322-338. [PMID: 35979653 DOI: 10.1111/tpj.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a significant threat to global agriculture. Understanding salt exclusion mechanisms in halophyte species may be instrumental in improving salt tolerance in crops. Puccinellia tenuiflora is a typical salt-excluding halophytic grass often found in potassium-deprived saline soils. Our previous work showed that P. tenuiflora possesses stronger selectivity for K+ than for Na+ ; however, the mechanistic basis of this phenomenon remained elusive. Here, P. tenuiflora PutHKT1;5 was cloned and the functions of PutHKT1;5 and PutSOS1 were characterized using heterologous expression systems. Yeast assays showed that PutHKT1;5 possessed Na+ transporting capacity and was highly selective for Na+ over K+ . PutSOS1 was located at the plasma membrane and operated as a Na+ /K+ exchanger, with much stronger Na+ extrusion capacity than its homolog from Arabidopsis. PutHKT2;1 mediated high-affinity K+ and Na+ uptake and its expression levels were upregulated by mild salinity and K+ deprivation. Salinity-induced changes of root PutHKT1;5 and PutHKT1;4 transcript levels matched the expression pattern of root PutSOS1, which was consistent with root Na+ efflux. The transcript levels of root PutHKT2;1 and PutAKT1 were downregulated by salinity. Taken together, these findings demonstrate that the functional activity of PutHKT1;5 and PutSOS1 in P. tenuiflora roots is fine-tuned under saline conditions as well as by operation of other ion transporters/channel (PutHKT1;4, PutHKT2;1, and PutAKT1). This leads to the coordination of radial Na+ and K+ transport processes, their loading to the xylem, or Na+ retrieval and extrusion under conditions of mild salinity and/or K+ deprivation.
Collapse
Affiliation(s)
- Qing-Qing Han
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Yong-Ping Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jian Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jing Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Xiao-Chang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Xing-Yu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Sergey Shabala
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| |
Collapse
|
10
|
Xie Q, Zhou Y, Jiang X. Structure, Function, and Regulation of the Plasma Membrane Na +/H + Antiporter Salt Overly Sensitive 1 in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866265. [PMID: 35432437 PMCID: PMC9009148 DOI: 10.3389/fpls.2022.866265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 05/24/2023]
Abstract
Physiological studies have confirmed that export of Na+ to improve salt tolerance in plants is regulated by the combined activities of a complex transport system. In the Na+ transport system, the Na+/H+ antiporter salt overly sensitive 1 (SOS1) is the main protein that functions to excrete Na+ out of plant cells. In this paper, we review the structure and function of the Na+/H+ antiporter and the physiological process of Na+ transport in SOS signaling pathway, and discuss the regulation of SOS1 during phosphorylation activation by protein kinase and the balance mechanism of inhibiting SOS1 antiporter at molecular and protein levels. In addition, we carried out phylogenetic tree analysis of SOS1 proteins reported so far in plants, which implied the specificity of salt tolerance mechanism from model plants to higher crops under salt stress. Finally, the high complexity of the regulatory network of adaptation to salt tolerance, and the feasibility of coping strategies in the process of genetic improvement of salt tolerance quality of higher crops were reviewed.
Collapse
Affiliation(s)
- Qing Xie
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
11
|
Mao P, Run Y, Wang H, Han C, Zhang L, Zhan K, Xu H, Cheng X. Genome-Wide Identification and Functional Characterization of the Chloride Channel TaCLC Gene Family in Wheat (Triticum aestivum L.). Front Genet 2022; 13:846795. [PMID: 35368658 PMCID: PMC8966409 DOI: 10.3389/fgene.2022.846795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
In plants, chloride channels (CLC) are involved in a series of specific functions, such as regulation of nutrient transport and stress tolerance. Members of the wheat Triticum aestivum L. CLC (TaCLC) gene family have been proposed to encode anion channels/transporters that may be related to nitrogen transportation. To better understand their roles, TaCLC family was screened and 23 TaCLC gene sequences were identified using a Hidden Markov Model in conjunction with wheat genome database. Gene structure, chromosome location, conserved motif, and expression pattern of the resulting family members were then analyzed. Phylogenetic analysis showed that the TaCLC family can be divided into two subclasses (I and II) and seven clusters (-a, -c1, -c2, -e, -f1, -f2, and -g2). Using a wheat RNA-seq database, the expression pattern of TaCLC family members was determined to be an inducible expression type. In addition, seven genes from seven different clusters were selected for quantitative real-time PCR (qRT-PCR) analysis under low nitrogen stress or salt stress conditions, respectively. The results indicated that the gene expression levels of this family were up-regulated under low nitrogen stress and salt stress, except the genes of TaCLC-c2 cluster which were from subfamily -c. The yeast complementary experiments illustrated that TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL all had anion transport functions for NO3− or Cl−, and compensated the hypersensitivity of yeast GEF1 mutant strain YJR040w (Δgef1) in restoring anion-sensitive phenotype. This study establishes a theoretical foundation for further functional characterization of TaCLC genes and provides an initial reference for better understanding nitrate nitrogen transportation in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haixia Xu
- *Correspondence: Haixia Xu, ; Xiyong Cheng,
| | | |
Collapse
|
12
|
Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, V. VT, Sheoran S, T. RK, Longmei N, Rakshit S, Siddique KHM. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity (Edinb) 2022; 128:497-518. [DOI: 10.1038/s41437-022-00516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
|
13
|
Wu N, Li Z, Wu F, Zhen L. Sex-specific photosynthetic capacity and Na + homeostasis in Populus euphratica exposed to NaCl stress and AMF inoculation. FRONTIERS IN PLANT SCIENCE 2022; 13:1066954. [PMID: 36518519 PMCID: PMC9742411 DOI: 10.3389/fpls.2022.1066954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 05/07/2023]
Abstract
Soil salinity and associated land degradation are major ecological problems. Excess Na+ ions in soil impede the plant photosynthetic process and Na+ homeostasis status. Arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in host plants. Although a number of studies have demonstrated that Na+ accumulation is decreased by mycorrhizae, the molecular mechanisms involved have received little attention from researchers. Populus euphratica is a typical natural woody tree with excellent salt tolerance. Due to its symbiosis forming capability with AMF, we explored the influence of Funneliformis mosseae on the growth, photosynthesis, and expression of three genes involved in Na+ homeostasis within dioecious P. euphratica under salt stress. The results indicated that salt stress significantly increases Na+ contents and inhibits growth status and photosynthetic capacity, especially in females. However, AMF had positive effects on the growth status, photosynthetic capacity and Na+ homeostasis, especially in males. The expression levels of NHX1 in shoots and HKT1 and SOS1 in roots, all of which are involved in Na+ homeostasis, were upregulated by F. mosseae under salt stress. For males, the beneficial effect of AMF centered on extruding, sequestering and long-distance transporting of Na+ ions . For females, the beneficial effect of AMF centered on extruding excessive Na+.
Collapse
Affiliation(s)
- Na Wu
- Institute of Applied Biotechnology, College of Agriculture and Life Science, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of State Forestry and Grassland Administration on Graphene Forestry Application, Shanxi Datong University, Datong, Shanxi, China
| | - Zhen Li
- Institute of Applied Biotechnology, College of Agriculture and Life Science, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of State Forestry and Grassland Administration on Graphene Forestry Application, Shanxi Datong University, Datong, Shanxi, China
- *Correspondence: Zhen Li,
| | - Fei Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Lina Zhen
- Institute of Applied Biotechnology, College of Agriculture and Life Science, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of State Forestry and Grassland Administration on Graphene Forestry Application, Shanxi Datong University, Datong, Shanxi, China
| |
Collapse
|
14
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
15
|
Zhou JY, Hao DL, Yang GZ. Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H +-ATPases and Multiple Transporters. Int J Mol Sci 2021; 22:12998. [PMID: 34884802 PMCID: PMC8657649 DOI: 10.3390/ijms222312998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.
Collapse
Affiliation(s)
- Jin-Yan Zhou
- Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guang-Zhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| |
Collapse
|
16
|
Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, Pareek A, Singla-Pareek SL. Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:593-604. [PMID: 34186283 DOI: 10.1016/j.plaphy.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
In rice (Oryza sativa), Si nutrition is known to improve salinity tolerance; however, limited efforts have been made to elucidate the underlying mechanism. Salt-Overly Sensitive (SOS) pathway contributes to salinity tolerance in plants in a major way which works primarily through Na+ exclusion from the cytosol. SOS1, a vital component of SOS pathway is a Na+/H+ antiporter that maintains ion homeostasis. In this study, we evaluated the effect of overexpression of Oryza sativa SOS1 (OsSOS1) in tobacco (cv. Petit Havana) and rice (cv. IR64) for modulating its response towards salinity further exploring its correlation with Si nutrition. OsSOS1 transgenic tobacco plants showed enhanced tolerance to salinity as evident by its high chlorophyll content and maintaining favorable ion homeostasis under salinity stress. Similarly, transgenic rice overexpressing OsSOS1 also showed improved salinity stress tolerance as shown by higher seed germination percentage, seedling survival and low Na+ accumulation under salinity stress. At their mature stage, compared with the non-transgenic plants, the transgenic rice plants showed better growth and maintained better photosynthetic efficiency with reduced chlorophyll loss under stress. Also, roots of transgenic rice plants showed reduced accumulation of Na+ leading to reduced oxidative damage and cell death under salinity stress which ultimately resulted in improved agronomic traits such as higher number of panicles and fertile spikelets per panicle. Si nutrition was found to improve the growth of salinity stressed OsSOS1 rice by upregulating the expression of Si transporters (Lsi1 and Lsi2) that leads to more uptake and accumulation of Si in the rice shoots. Metabolite profiling showed better stress regulatory machinery in the transgenic rice, since they maintained higher abundance of most of the osmolytes and free amino acids.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ramsong C Nongpiur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
17
|
He N, Fang C, Qiu Z, Bao J. Increasing sodium lactate production by enhancement of Na + transmembrane transportation in Pediococcus acidilactici. BIORESOURCE TECHNOLOGY 2021; 323:124562. [PMID: 33360114 DOI: 10.1016/j.biortech.2020.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Fermentative production of sodium lactate generally is a low efficient process because of the high Na+ osmatic stress on lactic acid bacterium cells. In this study, the homogeneous genes encoding Na+/H+ antiporters were screened and overexpressed in Pediococcus acidilactici for the enhancement of Na+ transmembrane transportation. The function of the gene RS02775 was identified and its overexpressing in P. acidilactici resulted in the significantly improved sodium lactate production. The recombinant not only accelerated the sugar consumption, but also achieved the record high titer of sodium lactate by 121.1 g/L using pure sugars and 132.4 g/L using wheat straw. The transcription analysis shows that the overexpression of Na+/H+ antiporter significantly upregulated the transcription of the sugar phosphorylation genes of P. acidilactici under high Na+ stress. This study provides an effective method for high titer production of sodium lactate using both pure sugars and lignocellulose feedstocks.
Collapse
Affiliation(s)
- Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
18
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
19
|
Huang L, Wu DZ, Zhang GP. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B 2020; 21:426-441. [PMID: 32478490 PMCID: PMC7306632 DOI: 10.1631/jzus.b1900510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Abstract
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
Collapse
|
20
|
Kiani-Pouya A, Rasouli F, Shabala L, Tahir AT, Zhou M, Shabala S. Understanding the role of root-related traits in salinity tolerance of quinoa accessions with contrasting epidermal bladder cell patterning. PLANTA 2020; 251:103. [PMID: 32372252 DOI: 10.1007/s00425-020-03395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/26/2020] [Indexed: 05/02/2023]
Abstract
To compensate for the lack of capacity for external salt storage in the epidermal bladder cells, quinoa plants employ tissue-tolerance traits, to confer salinity stress tolerance. Our previous studies indicated that sequestration of toxic Na+ and Cl- ions into epidermal bladder cells (EBCs) is an efficient mechanism conferring salinity tolerance in quinoa. However, some halophytes do not develop EBCs but still possess superior salinity tolerance. To elucidate the possible compensation mechanism(s) underlying superior salinity tolerance in the absence of the external salt storage capacity, we have selected four quinoa accessions with contrasting patterns of EBC development. Whole-plant physiological and electrophysiological characteristics were assessed after 2 days and 3 weeks of 400 mM NaCl stress. Both accessions with low EBC volume utilised Na+ exclusion at the root level and could maintain low Na+ concentration in leaves to compensate for the inability to sequester Na+ load in EBC. These conclusions were further confirmed by electrophysiological experiments showing higher Na+ efflux from roots of these varieties (measured by a non-invasive microelectrode MIFE technique) as compared to accessions with high EBC volume. Furthermore, accessions with low EBC volume had significantly higher K+ concentration in their leaves upon long-term salinity exposures compared to plants with high EBC sequestration ability, suggesting that the ability to maintain high K+ content in the leaf mesophyll was as another important compensation mechanism.
Collapse
Affiliation(s)
- Ali Kiani-Pouya
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Ayesha T Tahir
- Department of Biosciences, COMSATS University Islamabad, Park road, Islamabad, 45550, Pakistan
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
21
|
Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1801-1814. [PMID: 31858132 PMCID: PMC7242078 DOI: 10.1093/jxb/erz549] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/08/2019] [Indexed: 05/10/2023]
Abstract
Salt tolerance in plants is mediated by Na+ extrusion from the cytosol by the plasma membrane Na+/H+ antiporter SOS1. This is activated in Arabidopsis root by the protein kinase complex SOS2-SOS3 and in Arabidopsis shoot by the protein kinase complex CBL10-SOS2, with SOS2 as a key node in the two pathways. The sos1 mutant is more sensitive than the sos2 mutant, suggesting that other partners may positively regulate SOS1 activity. Arabidopsis has 26 CIPK family proteins of which CIPK8 is the closest homolog to SOS2. It is hypothesized that CIPK8 can activate Na+ extrusion by SOS1 similarly to SOS2. The plasma membrane Na+/H+ exchange activity of transgenic yeast co-expressing CBL10, CIPK8, and SOS1 was higher than that of untransformed and SOS1 transgenic yeast, resulting in a lower Na+ accumulation and a better growth phenotype under salinity. However, CIPK8 could not interact with SOS3, and the co-expression of SOS3, CIPK8, and SOS1 in yeast did not confer a significant salt tolerance phenotype relative to SOS1 transgenic yeast. Interestingly, cipk8 displayed a slower Na+ efflux, a higher Na+ level, and a more sensitive phenotype than wild-type Arabidopsis, but grew better than sos2 under salinity stress. As expected, sos2cipk8 exhibited a more severe salt damage phenotype relative to cipk8 or sos2. Overexpression of CIPK8 in both cipk8 and sos2cipk8 attenuated the salt sensitivity phenotype. These results suggest that CIPK8-mediated activation of SOS1 is CBL10-dependent and SOS3-independent, indicating that CIPK8 and SOS2 activity in shoots is sufficient for regulating Arabidopsis salt tolerance.
Collapse
Affiliation(s)
- Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yuxin Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Gangping Hao
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| |
Collapse
|
22
|
Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X. Effect of Overexpression of JERFs on Intracellular K +/Na + Balance in Transgenic Poplar ( Populus alba × P. berolinensis) Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1192. [PMID: 32922413 PMCID: PMC7456863 DOI: 10.3389/fpls.2020.01192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Salt stress is one of the main factors that affect both growth and development of plants. Maintaining K+/Na+ balance in the cytoplasm is important for metabolism as well as salt resistance in plants. In the present study, we monitored the growth (height and diameter) of transgenic Populus alba × P. berolinensis trees (ABJ01) carrying JERF36s gene (a tomato jasmonic/ethylene responsive factors gene) over 4 years, which showed faster growth and significant salt tolerance compared with non-transgenic poplar trees (9#). The expression of NHX1 and SOS1 genes that encode Na+/H+ antiporters in the vacuole and plasma membranes was measured in leaves under NaCl stress. Non-invasive micro-test techniques (NMT) were used to analyse ion flux of Na+, K+, and H+ in the root tip of seedlings under treatment with100 mM NaCl for 7, 15, and 30 days. Results showed that the expression of NHX1 and SOS1 was much higher in ABJ01 compared with 9#, and the Na+ efflux and H+ influx fluxes of root were remarkable higher in ABJ01 than in 9#, but K+ efflux exhibited lower level. All above suggest that salt stress induces NHX1 and SOS1 to a greater expression level in ABJ01, resulting in the accumulation of Na+/H+ antiporter to better maintain K+/Na+ balance in the cytoplasm of this enhanced salt resistant variety. This may help us to better understand the mechanism of transgenic poplars with improving salt tolerance by overexpressing JERF36s and could provide a basis for future breeding programs aimed at improving salt resistance in transgenic poplar.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Junlong Liu
- Industry of Timber and Bamboo, Anhui Academy of Forestry, Hefei, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| |
Collapse
|
23
|
Pandey A, Khan MK, Hakki EE, Gezgin S, Hamurcu M. Combined Boron Toxicity and Salinity Stress-An Insight into Its Interaction in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E364. [PMID: 31547605 PMCID: PMC6843824 DOI: 10.3390/plants8100364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.
Collapse
Affiliation(s)
- Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Erdogan Esref Hakki
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| |
Collapse
|
24
|
Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. RICE (NEW YORK, N.Y.) 2019; 12:58. [PMID: 31375941 PMCID: PMC6890918 DOI: 10.1186/s12284-019-0316-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice productivity is adversely affected by environmental stresses. Transcription factors (TFs), as the regulators of gene expression, are the key players contributing to stress tolerance and crop yield. Histone gene binding protein-1b (OsHBP1b) is a TF localized within the Saltol QTL in rice. Recently, we have reported the characterization of OsHBP1b in relation to salinity and drought tolerance in a model system tobacco. In the present study, we over-express the full-length gene encoding OsHBP1b in the homologous system (rice) to assess its contribution towards multiple stress tolerance and grain yield. RESULTS We provide evidence to show that transgenic rice plants over-expressing OsHBP1b exhibit better survival and favourable osmotic parameters under salinity stress than the wild type counterparts. These transgenic plants restricted reactive oxygen species accumulation by exhibiting high antioxidant enzyme activity (ascorbate peroxidase and superoxide dismutase), under salinity conditions. Additionally, these transgenic plants maintained the chlorophyll concentration, organellar structure, photosynthesis and expression of photosynthesis and stress-related genes even when subjected to salinity stress. Experiments conducted for other abiotic stresses such as drought and high temperature revealed improved tolerance in these transgenic plants with better root and shoot growth, better photosynthetic parameters, and enhanced antioxidant enzyme activity, in comparison with WT. Further, the roots of transgenic lines showed large cortical cells and accumulated a good amount of callose, unlike the WT roots, thus enabling them to penetrate hard soil and prevent the entry of harmful ions in the cell. CONCLUSION Collectively, our results show that rice HBP1b gene contributes to multiple abiotic stress tolerance through several molecular and physiological pathways and hence, may serve as an important gene for providing multiple stress tolerance and improving crop yield in rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
25
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
26
|
Fan Y, Yin X, Xie Q, Xia Y, Wang Z, Song J, Zhou Y, Jiang X. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC PLANT BIOLOGY 2019; 19:74. [PMID: 30764771 PMCID: PMC6376693 DOI: 10.1186/s12870-019-1680-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Na+ extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na+/H+ antiporter located in the plasma membrane (PM), functions in toxic Na+ extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H+-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress. RESULTS In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na+ and H+ in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na+ and H+ efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na+ than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K+ level was the highest. CONCLUSION These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na+ extrusion to maintain K+ homeostasis and protect the PM from oxidative damage induced by salt stress.
Collapse
Affiliation(s)
- Yafei Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| |
Collapse
|
27
|
Wang H, Shabala L, Zhou M, Shabala S. Hydrogen Peroxide-Induced Root Ca 2+ and K⁺ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. Int J Mol Sci 2018; 19:E702. [PMID: 29494514 PMCID: PMC5877563 DOI: 10.3390/ijms19030702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops-barley (Hordeum vulgare) and wheat (Triticum aestivum)-was investigated by measuring the magnitude of ROS-induced net K⁺ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H₂O₂ treatment, a significant positive correlation was found for the magnitude of ROS-induced K⁺ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H₂O₂-induced net K⁺ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
28
|
Chen G, Liu C, Gao Z, Zhang Y, Zhang A, Zhu L, Hu J, Ren D, Yu L, Xu G, Qian Q. Variation in the Abundance of OsHAK1 Transcript Underlies the Differential Salinity Tolerance of an indica and a japonica Rice Cultivar. FRONTIERS IN PLANT SCIENCE 2018; 8:2216. [PMID: 29354152 PMCID: PMC5760540 DOI: 10.3389/fpls.2017.02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 05/03/2023]
Abstract
Salinity imposes a major constraint over the productivity of rice. A set of chromosome segment substitution lines (CSSLs), derived from a cross between the japonica type cultivar (cv.) Nipponbare (salinity sensitive) and the indica type cv. 9311 (moderately tolerant), was scored using a hydroponics system for their salinity tolerance at the seedling stage. Two of the CSSLs, which share a ∼1.2 Mbp stretch of chromosome 4 derived from cv. Nipponbare, were as sensitive to the stress as cv. Nipponbare itself. Fine mapping based on an F2 population bred from a backcross between one of these CSSLs and cv. 9311 narrowed this region to 95 Kbp, within which only one gene (OsHAK1) exhibited a differential (lower) transcript abundance in cv. Nipponbare and the two CSSLs compared to in cv. 9311. The gene was up-regulated by exposure to salinity stress both in the root and the shoot, while a knockout mutant proved to be more salinity sensitive than its wild type with respect to its growth at both the vegetative and reproductive stages. Seedlings over-expressing OsHAK1 were more tolerant than wild type, displaying a superior photosynthetic rate, a higher leaf chlorophyll content, an enhanced accumulation of proline and a reduced level of lipid peroxidation. At the transcriptome level, the over-expression of OsHAK1 stimulated a number of stress-responsive genes as well as four genes known to be involved in Na+ homeostasis and the salinity response (OsHKT1;5, OsSOS1, OsLti6a and OsLti6b). When the stress was applied at booting through to maturity, the OsHAK1 over-expressors out-yielded wild type by 25%, and no negative pleiotropic effects were expressed in plants gown under non-saline conditions. The level of expression of OsHAK1 was correlated with Na+/K+ homeostasis, which implies that the gene should be explored a target for molecular approaches to the improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
29
|
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 2017; 12:e0181450. [PMID: 28723926 PMCID: PMC5517032 DOI: 10.1371/journal.pone.0181450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of NaCl (200 mM), while its transcript abundance was increased when exposed to low temperature and drought stresses. Localization analysis using onion epidermal cells showed that the GhSOS1 protein was localized to the plasma membrane. The overexpression of GhSOS1 in Arabidopsis enhanced tolerance to salt stress, as indicated by a lower MDA content and decreased Na+/K+ ratio in transgenic plants. Moreover, the transcript levels of stress-related genes were significantly higher in GhSOS1 overexpression lines than in wild-type plants under salt treatment. Hence, GhSOS1 may be a potential target gene for enhancing salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoning Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weili Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
30
|
Feki K, Tounsi S, Masmoudi K, Brini F. The durum wheat plasma membrane Na +/H + antiporter SOS1 is involved in oxidative stress response. PROTOPLASMA 2017; 254:1725-1734. [PMID: 28013410 DOI: 10.1007/s00709-016-1066-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 05/25/2023]
Abstract
We have shown previously that the durum wheat TdSOS1 excludes Na+ and Li+ ions outside cells. Moreover, this protein is activated by Arabidopsis kinase SOS2 through phosphorylation. The elimination of both SOS2 phosphorylation sites and the auto-inhibitory domain produces a hyperactive TdSOS1∆972 form, which have a maximal activity independent from the regulatory SOS2/SOS3 complex. We demonstrated that the expression of TdSOS1 enhances salt tolerance of the transgenic Arabidopsis plants. In this study, we analyzed the response to H2O2-induced oxidative stress of the transgenic Arabidopsis expressing one of the two TdSOS1 forms. Firstly, we showed that the exogenous H2O2 treatment leads to an accumulation of SOS1 transcripts in leaves and roots of the durum wheat and also in the transgenic plants. These transgenic plants showed significant oxidative stress tolerance compared to control plants, especially the plants expressing the hyperactive form. This tolerance was manifested by high proline accumulation and low malonyldialdehyde (MDA), O2˙- and H2O2 contents. Furthermore, the activities of three essential ROS scavenging enzymes (SOD, CAT, and POD) were higher in the transgenic plants under oxidative stress, as compared to control plants. Taken together, these data suggested that TdSOS1 plays a crucial role in response to oxidative stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia
- International center for Biosaline Agriculture (ICBA), P.O. Box 14660, Dubai, UAE
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
31
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
32
|
Zhang WD, Wang P, Bao Z, Ma Q, Duan LJ, Bao AK, Zhang JL, Wang SM. SOS1, HKT1;5, and NHX1 Synergistically Modulate Na + Homeostasis in the Halophytic Grass Puccinellia tenuiflora. FRONTIERS IN PLANT SCIENCE 2017; 8:576. [PMID: 28450879 PMCID: PMC5390037 DOI: 10.3389/fpls.2017.00576] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 05/03/2023]
Abstract
Puccinellia tenuiflora is a typical salt-excluding halophytic grass with excellent salt tolerance. Plasma membrane Na+/H+ transporter SOS1, HKT-type protein and tonoplast Na+/H+ antiporter NHX1 are key Na+ transporters involved in plant salt tolerance. Based on our previous research, we had proposed a function model for these transporters in Na+ homeostasis according to the expression of PtSOS1 and Na+, K+ levels in P. tenuiflora responding to salt stress. Here, we analyzed the expression patterns of PtSOS1, PtHKT1;5, and PtNHX1 in P. tenuiflora under 25 and 150 mM NaCl to further validate this model by combining previous physiological characteristics. Results showed that the expressions of PtSOS1 and PtHKT1;5 in roots were significantly induced and peaked at 6 h under both 25 and 150 mM NaCl. Compared to the control, the expression of PtSOS1 significantly increased by 5.8-folds, while that of PtHKT1;5 increased only by 1.2-folds in roots under 25 mM NaCl; on the contrary, the expression of PtSOS1 increased by 1.4-folds, whereas that of PtHKT1;5 increased by 2.2-folds in roots under 150 mM NaCl. In addition, PtNHX1 was induced instantaneously under 25 mM NaCl, while its expression was much higher and more persistent in shoots under 150 mM NaCl. These results provide stronger evidences for the previous hypothesis and extend the model which highlights that SOS1, HKT1;5, and NHX1 synergistically regulate Na+ homeostasis by controlling Na+ transport systems at the whole-plant level under both lower and higher salt conditions. Under mild salinity, PtNHX1 in shoots compartmentalized Na+ into vacuole slowly, and vacuole potential capacity for sequestering Na+ would enhance Na+ loading into the xylem of roots by PtSOS1 through feedback regulation; and consequently, Na+ could be transported from roots to shoots by transpiration stream for osmotic adjustment. While under severe salinity, Na+ was rapidly sequestrated into vacuoles of mesophyll cells by PtNHX1 and the vacuole capacity became saturated for sequestering more Na+, which in turn regulated long-distance Na+ transport from roots to shoots. As a result, the expression of PtHKT1;5 was strongly induced so that the excessive Na+ was unloaded from xylem into xylem parenchyma cells by PtHKT1;5.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
33
|
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 2017; 40:326-345. [PMID: 28350038 PMCID: PMC5452131 DOI: 10.1590/1678-4685-gmb-2016-0106] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.
Collapse
Affiliation(s)
- Diego M Almeida
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Margarida Oliveira
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nelson J M Saibo
- Genomics of Plant Stress Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa and Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
34
|
Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X. Hyperactive mutant of a wheat plasma membrane Na +/H + antiporter improves the growth and salt tolerance of transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:176-186. [PMID: 27968986 DOI: 10.1016/j.plantsci.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/04/2023]
Abstract
Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na+ transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na+ efflux and K+ influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na+ efflux and K+ influx, resulting in less Na+ and more K+ accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions.
Collapse
Affiliation(s)
- Yang Zhou
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Zesen Lai
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaochang Yin
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Shan Yu
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuanyuan Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinli Cong
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuehua Luo
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Haixia Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xingyu Jiang
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
35
|
Wang CM, Xia ZR, Wu GQ, Yuan HJ, Wang XR, Li JH, Tian FP, Zhang Q, Zhu XQ, He JJ, Kumar T, Wang XL, Zhang JL. The coordinated regulation of Na + and K + in Hordeum brevisubulatum responding to time of salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:358-366. [PMID: 27717472 DOI: 10.1016/j.plantsci.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
Hordeum brevisubulatum, called as wild barley, is a useful monocotyledonous halophyte for soil improvement in northern China. Although previously studied, its main salt tolerance mechanism remained controversial. The current work showed that shoot Na+ concentration was increased rapidly with stress time and significantly higher than in wheat during 0-168h of 100mM NaCl treatment. Similar results were also found under 25 and 50mM NaCl treatments. Even K+ was increased from 0.01 to 50mM in the cultural solution, no significant effect was found on tissue Na+ concentrations. Interestingly, shoot growth was improved, and stronger root activity was maintained in H. brevisubulatum compared with wheat after 7days treatment of 100mM NaCl. To investigate the long-term stress impact on tissue Na+, 100mM NaCl was prolonged to 60 days. The maximum values of Na+ concentrations were observed at 7th in shoot and 14th day in roots, respectively, and then decreased gradually. Micro-electrode ion flux estimation was used and it was found that increasing Na+ efflux while maintaining K+ influx were the major strategies to reduce the Na+ concentration during long-term salt stress. Moreover, leaf Na+ secretions showed little contribution to the tissue Na+ decrease. Thereby, the physiological mechanism for H. brevisubulatum to survive from long-term salt stress was proposed that rapid Na+ accumulation occurred in the shoot to respond the initial salt shock, then Na+ efflux was triggered and K+ influx was activated to maintain a stable K+/Na+ ratio in tissues.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Zeng-Run Xia
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | - Hui-Jun Yuan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | - Xin-Rui Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jin-Hua Li
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Fu-Ping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Qian Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Xin-Qiang Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Jiong-Jie He
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Tanweer Kumar
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Xiao-Li Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China.
| |
Collapse
|
36
|
Arabidopsis YL1/BPG2 Is Involved in Seedling Shoot Response to Salt Stress through ABI4. Sci Rep 2016; 6:30163. [PMID: 27444988 PMCID: PMC4957093 DOI: 10.1038/srep30163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
The chloroplast-localized proteins play roles in plant salt stress response, but their mechanisms remain largely unknown. In this study, we screened a yellow leaf mutant, yl1-1, whose shoots exhibited hypersensitivity to salt stress. We mapped YL1 to AT3G57180, which encodes a YqeH-type GTPase. YL1, as a chloroplast stroma-localized protein, could be markedly reduced by high salinity. Upon exposure to high salinity, seedling shoots of yl1-1 and yl1-2 accumulated significantly higher levels of Na+ than wild type. Expression analysis of factors involved in plant salt stress response showed that the expression of ABI4 was increased and HKT1 was evidently suppressed in mutant shoots compared with the wild type under normal growth conditions. Moreover, salinity effects on ABI4 and HKT1 were clearly weakened in the mutant shoots, suggesting that the loss of YL1 function impairs ABI4 and HKT1 expression. Notably, the shoots of yl1-2 abi4 double mutant exhibited stronger resistance to salt stress and accumulated less Na+ levels after salt treatment compared with the yl1-2 single mutant, suggesting the salt-sensitive phenotype of yl1-2 seedlings could be rescued via loss of ABI4 function. These results reveal that YL1 is involved in the salt stress response of seedling shoots through ABI4.
Collapse
|
37
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
38
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
39
|
Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J. Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC PLANT BIOLOGY 2016; 16:98. [PMID: 27098270 PMCID: PMC4839091 DOI: 10.1186/s12870-016-0781-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peipei Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Zhou Y, Yin X, Duan R, Hao G, Guo J, Jiang X. SpAHA1 and SpSOS1 Coordinate in Transgenic Yeast to Improve Salt Tolerance. PLoS One 2015; 10:e0137447. [PMID: 26340746 PMCID: PMC4560418 DOI: 10.1371/journal.pone.0137447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Ruijun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Gangping Hao
- Department of Biochemistry, Taishan Medical University, Tai’an, China
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| |
Collapse
|
41
|
Nie WX, Xu L, Yu BJ. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. PROTOPLASMA 2015; 252:127-34. [PMID: 24934653 DOI: 10.1007/s00709-014-0663-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 05/11/2023]
Abstract
The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant.
Collapse
Affiliation(s)
- Wang-Xing Nie
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | |
Collapse
|
42
|
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1787-800. [PMID: 25262536 DOI: 10.1016/j.jplph.2014.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.
Collapse
|
43
|
Feki K, Brini F, Ben Amar S, Saibi W, Masmoudi K. Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions. J Appl Genet 2014; 56:15-26. [DOI: 10.1007/s13353-014-0228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
44
|
Li Q, Tang Z, Hu Y, Yu L, Liu Z, Xu G. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Mol Biol Rep 2014; 41:5097-108. [PMID: 24771143 DOI: 10.1007/s11033-014-3375-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
45
|
Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F. A constitutively active form of a durum wheat Na⁺/H⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. PLANT CELL REPORTS 2014; 33:277-88. [PMID: 24150094 DOI: 10.1007/s00299-013-1528-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 05/04/2023]
Abstract
The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na⁺ and K⁺ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na⁺/H⁺ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1∆972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na⁺ and Li⁺ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1∆972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na⁺ or Li⁺ salts. The root elongation of TdSOS1∆972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1∆972 transgenic lines showed greater water retention capacity and retained low Na⁺ and high K⁺ in their shoots and roots. Our data showed that the hyperactive form TdSOS1∆972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.
Collapse
Affiliation(s)
- Kaouthar Feki
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), Route Sidi Mansour Km 6, B.P '1177', 3018, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
46
|
Xu Y, Zhou Y, Hong S, Xia Z, Cui D, Guo J, Xu H, Jiang X. Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K(+)/H(+) exchanger. PLoS One 2013; 8:e78098. [PMID: 24223765 PMCID: PMC3815223 DOI: 10.1371/journal.pone.0078098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 12/22/2022] Open
Abstract
The subcellular localization of a wheat NHX antiporter, TaNHX2, was studied in Arabidopsis protoplasts, and its function was evaluated using Saccharomyces cerevisiae as a heterologous expression system. Fluorescence patterns of TaNHX2-GFP fusion protein in Arabidopsis cells indicated that TaNHX2 localized at endomembranes. TaNHX2 has significant sequence homology to NHX sodium exchangers from Arabidopsis, is abundant in roots and leaves and is induced by salt or dehydration treatments. Western blot analysis showed that TaNHX2 could be expressed in transgenic yeast cells. Expressed TaNHX2 protein suppressed the salt sensitivity of a yeast mutant strain by increasing its K+ content when exposed to salt stress. TaNHX2 also increased the tolerance of the strain to potassium stress. However, the expression of TaNHX2 did not affect the sodium concentration in transgenic cells. Western blot analysis for tonoplast proteins indicated that the TaNHX2 protein localized at the tonoplast of transgenic yeast cells. The tonoplast vesicles from transgenic yeast cells displayed enhanced K+/H+ exchange activity but very little Na+/H+ exchange compared with controls transformed with the empty vector; Na+/H+ exchange was not detected with concentrations of less than 37.5 mM Na+ in the reaction medium. Our data suggest that TaNHX2 is a endomembrane-bound protein and may primarily function as a K+/H+ antiporter, which is involved in cellular pH regulation and potassium nutrition under normal conditions. Under saline conditions, the protein mediates resistance to salt stress through the intracellular compartmentalization of potassium to regulate cellular pH and K+ homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sha Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Dangqun Cui
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haixia Xu
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- * E-mail: (HX); (XJ)
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
- * E-mail: (HX); (XJ)
| |
Collapse
|
47
|
Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:410. [PMID: 24146669 PMCID: PMC3797977 DOI: 10.3389/fpls.2013.00410] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/27/2013] [Indexed: 05/18/2023]
Abstract
Since sodium, Na, is a non-essential element for the plant growth, the molecular mechanism of Na(+) transport system in plants has remained elusive for the last two decades. The accumulation of Na(+) in soil through irrigation for sustainable agricultural crop production, particularly in arid land, and by changes in environmental and climate conditions leads to the buildup of toxic level of salts in the soil. Since the latter half of the twentieth century, extensive molecular research has identified several classes of Na(+) transporters that play major roles in the alleviation of ionic stress by excluding toxic Na(+) from the cytosol or preventing Na(+) transport to the photosynthetic organs, and also in osmotic stress by modulating intra/extracellular osmotic balance. In this review, we summarize the current knowledge of three major Na(+) transporters, namely NHX, SOS1, and HKT transporters, including recently revealed characteristics of these transporters.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- Department of Microbiology, Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life SciencesNiigata, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku UniversitySendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku UniversitySendai, Japan
| |
Collapse
|
48
|
Ramezani A, Niazi A, Abolimoghadam AA, Zamani Babgohari M, Deihimi T, Ebrahimi M, Akhtardanesh H, Ebrahimie E. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Mol Biotechnol 2013; 53:189-97. [PMID: 22367644 DOI: 10.1007/s12033-012-9513-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salt stress is a mixture of ionic, osmotic, and oxidative stresses. The expression of TaSOS1 (a transmembrane Na(+)/H(+) antiporter) and TaSOS4 [a cytoplasmic pyridoxal (PL) kinase] genes were measured in four different salinity levels and different time courses of salinity exposure using qRT-PCR technique. Mahuti (salt tolerant) and Alamut (salt sensitive) cultivars were used as cultivated wheat, and T. boeticum and Aegilops crassa as wild wheat plants. Salt-induced expression of TaSOS1 in these wild wheat plants indicates the presence of active TaSOS1 gene on the genomes A and D. The TaSOS1 and TaSOS4 transcript levels were found to be downregulated after salt treatment in all cultivars except in A. crassa, which was in contrast with its expression pattern in roots that was being upregulated from a very low-basal expression, after salt treatments. Duncan's Multiple Range Test showed a significant difference between expression in the 200-mM NaCl concentration with the 50 and 100 mM for the TaSOS1 gene, and no significant difference for TaSOS4. Lack of significant correlation between the TaSOS1 and TaSOS4 gene expressions confirms the theory that PLP has no significant effect on the expression of the TaSOS1 gene in wheat leaves.
Collapse
Affiliation(s)
- Amin Ramezani
- Biotechnology Institute, Shiraz University, 71441-65186 Bajgah, Shiraz, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hong S, Cong X, Jing H, Xia Z, Huang X, Hu X, Jiang X. Characterization of Ca(2+)/H(+) exchange in the plasma membrane of Saccharomyces cerevisiae. Arch Biochem Biophys 2013; 537:125-32. [PMID: 23871844 DOI: 10.1016/j.abb.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022]
Abstract
The characteristics of the Ca(2+)/H(+) exchange were directly investigated in functionally inverted (inside-out) plasma membrane vesicles isolated from yeast using an aqueous two-phase partitioning method. Results showed that following the generation of an inside-acid pH gradient (fluorescence quenching), addition of Ca(2+) caused movement of H(+) out of the vesicles (fluorescence recovery). The Ca(2+)/H(+) exchange displayed saturation kinetics with respect to extravesicular Ca(2+) and ATP concentrations in the plasma membrane, and showed specificity for Ca(2+). The protonophore FCCP (carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone), abolished the fluorescence quenching and consequently inhibited Ca(2+)/H(+) exchange in plasma membrane vesicles. Vanadate, which is known to inhibit the plasma membrane H(+)-ATPase, significantly decreased the Ca(2+)-dependent transport of H(+) out of vesicles. When the electrical potential across the plasma membrane was dissipated with valinomycin and potassium, the rate of Ca(2+)/H(+) exchange increased compared to that of the control without valinomycin, indicating that the stoichiometric ratio for this exchange is greater than 2H(+):Ca(2+). These data suggest that Ca(2+) is transported out of yeast cells through a Ca(2+)/H(+) exchange system that is driven by the proton-motive force generated by the plasma membrane H(+)-ATPase.
Collapse
Affiliation(s)
- Sha Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013; 115:1-22. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|