1
|
Folahan JT, Fakir S, Barabutis N. Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects. Cell Biochem Funct 2024; 42:e70007. [PMID: 39449673 PMCID: PMC11528298 DOI: 10.1002/cbf.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The endothelial semipermeable monolayers ensure tissue homeostasis, are subjected to a plethora of stimuli, and their function depends on cytoskeletal integrity and remodeling. The permeability of those membranes can fluctuate to maintain organ homeostasis. In cases of severe injury, inflammation or disease, barrier hyperpermeability can cause irreparable damage of endothelium-dependent issues, and eventually death. Elucidation of the signaling regulating cytoskeletal structure and barrier integrity promotes the development of targeted pharmacotherapies towards disorders related to the impaired endothelium (e.g., acute respiratory distress syndrome, sepsis). Recent reports investigate the role of unfolded protein response in barrier function. Herein we review the cytoskeletal components, the unfolded protein response function; and their interrelations on health and disorder. Moreover, we emphasize on unfolded protein response modulators, since they ameliorate illness related to endothelial leak.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
2
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
|
5
|
Behl T, Kumar K, Singh S, Sehgal A, Sachdeva M, Bhatia S, Al-Harrasi A, Buhas C, Teodora Judea-Pusta C, Negrut N, Alexandru Munteanu M, Brisc C, Bungau S. Unveiling the role of polyphenols in diabetic retinopathy. J Funct Foods 2021. [DOI: https://doi.org/10.1016/j.jff.2021.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Li R, Ai X, Hou Y, Lai X, Meng X, Wang X. Amelioration of diabetic retinopathy in db/db mice by treatment with different proportional three active ingredients from Tibetan medicine Berberis dictyophylla F. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114190. [PMID: 33964362 DOI: 10.1016/j.jep.2021.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis dictyophylla F., a famous Tibetan medicine, has been used to prevent and treat diabetic retinopathy (DR) for thousands of years in clinic. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to probe the synergistic protection and involved mechanisms of berberine, magnoflorine and berbamine from Berberis dictyophylla F. on the spontaneous retinal damage of db/db mice. MATERIALS AND METHODS The 14-week spontaneous model of DR in db/db mice were randomly divided into eight groups: model group, calcium dobesilate (CaDob, 0.23 g/kg) group and groups 1-6 (different proportional three active ingredients from Berberis dictyophylla F.). All mice were intragastrically administrated for a continuous 12 weeks. Body weight and fasting blood glucose (FBG) were recorded and measured. Hematoxylin-eosin and periodic acid-Schiff (PAS) stainings were employed to evaluate the pathological changes and abnormal angiogenesis of the retina. ELISA was performed to assess the levels of IL-6, HIF-1α and VEGF in the serum. Immunofluorescent staining was applied to detect the protein levels of CD31, VEGF, p-p38, p-JNK, p-ERK and NF-κB in retina. In addition, mRNA expression levels of VEGF, Bax and Bcl-2 in the retina were monitored by qRT-PCR analysis. RESULTS Treatment with different proportional three active ingredients exerted no significant effect on the weight, but decreased the FBG, increased the number of retinal ganglionic cells and restored internal limiting membrane. The results of PAS staining demonstrated that the drug treatment decreased the ratio of endothelial cells to pericytes while thinned the basal membrane of retinal vessels. Moreover, these different proportional active ingredients can markedly downregulate the protein levels of retinal CD31 and VEGF, and serum HIF-1α and VEGF. The gene expression of retinal VEGF was also suppressed. The levels of retinal p-p38, p-JNK and p-ERK proteins were decreased by drug treatment. Finally, drug treatment reversed the proinflammatory factors of retinal NF-κB and serum IL-6, and proapoptotic Bax gene expression, while increased antiapoptotic Bcl-2 gene expression. CONCLUSIONS These results indicated that DR in db/db mice can be ameliorated by treatment with different proportional three active ingredients from Berberis dictyophylla F. The potential vascular protection mechanisms may be involved in inhibiting the phosphorylation of the MAPK signaling pathway, thus decreasing inflammatory and apoptotic events.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Liu X, Zheng F, Li S, Wang Z, Wang X, Wen L, He Y. Malvidin and its derivatives exhibit antioxidant properties by inhibiting MAPK signaling pathways to reduce endoplasmic reticulum stress in ARPE-19 cells. Food Funct 2021; 12:7198-7213. [PMID: 34232243 DOI: 10.1039/d1fo01345a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malvidin (MV) and its derivatives, such as malvidin-3-O-guaiacol (Mv3C) and malvidin-3-O-6-(acrylic acid-(2-hydroxy,4-carboxy-cyclohexanol)ester)-guaiacol (Mv3ACEC), are natural compounds with antioxidant properties. However, the basic mechanisms underlying their functional activities are unclear. In this study, we show that MV, Mv3C, and Mv3ACEC inhibit reactive oxygen species production and malondialdehyde content, promote glutathione peroxidase activity, and increase superoxide dismutase levels in ARPE-19 cells treated with H2O2. Western blotting and immunofluorescence analysis revealed that MV, Mv3C, and Mv3ACEC regulate mitogen-activated protein kinase signal transduction pathways related to endoplasmic reticulum stress. Interestingly, Mv3C and Mv3ACEC showed greater beneficial properties than MV. Our results show that MV and its derivatives have potential as therapeutic compounds for ocular diseases associated with oxidative stress, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Alam K, Akhter Y. The Impacts of Unfolded Protein Response in the Retinal Cells During Diabetes: Possible Implications on Diabetic Retinopathy Development. Front Cell Neurosci 2021; 14:615125. [PMID: 33613197 PMCID: PMC7886690 DOI: 10.3389/fncel.2020.615125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening, chronic, and challenging eye disease in the diabetic population. Despite recent advancements in the clinical management of diabetes, DR remains the major cause of blindness in working-age adults. A better understanding of the molecular and cellular basis of DR development will aid in identifying therapeutic targets. Emerging pieces of evidence from recent research in the field of ER stress have demonstrated a close association between unfolded protein response (UPR)-associated cellular activities and DR development. In this minireview article, we shall provide an emerging understating of how UPR influences DR pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Kaiser Alam
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
9
|
Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, Saleh H, Yu PB, Tawfik A, Ibrahim AS. Bone Morphogenetic Protein-2 Induces Non-Canonical Inflammatory and Oxidative Pathways in Human Retinal Endothelial Cells. Front Immunol 2021; 11:568795. [PMID: 33584642 PMCID: PMC7878387 DOI: 10.3389/fimmu.2020.568795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in experimental diabetes and in retinas of diabetic human subjects. The purpose of current study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced retinal endothelial cell (REC) barrier dysfunction. For this purpose, we used RT-PCR and western blotting to evaluate the levels of BMP2 signaling components (BMP2, BMP4, BMP receptors), VEGF, phosphorylated p38 MAPK and NFκB, and oxidative stress markers in cultured human retinal endothelial cells (HRECs) subjected to BMP2 (50ng/ml) for up to 24 h. Also, effect of high glucose (HG, 30mM D-glucose) on the expression of BMP2 and its downstream genes was examined in HRECs. H2-DCF is a fluorogenic dye that measures the levels of cellular reactive oxygen species (ROS) was used to measure the pro-oxidative effect of BMP2. Moreover, we evaluated the effect of inhibiting p38 and VEGF signaling on BMP2-induced HRECs barrier dysfunction by measuring the trans-endothelial cell electrical resistance (TER) using electric cell-substrate impedance sensing (ECIS). We also tested the effect of HG on the integrity of HRECs barrier in the presence or absence of inhibitors of BMP2 signaling. Our data reveals that BMP2 and high glucose upregulates BMP components of the BMP signaling pathway (SMAD effectors, BMP receptors, and TGFβ ligand itself) and induces phosphorylation of p38 MAPK and NFκB with nuclear translocation of NFκB. Inhibition of p38 or NFκB attenuated BMP2-induced VEGF expression and barrier dysfunction in HRECs. Also, inhibition of VEGFR2 attenuated BMP2-induced barrier dysfunction. Moreover, BMP2 induces generation of ROS and endothelial nitric oxide synthase (eNOS) expression and activity in HRECs. Finally, HG upregulated BMP2 and its downstream genes (SMAD, BMP4, ALKs, and TGF-β) in HRECs and BMP2 inhibitors attenuated HG-induced HRECs barrier dysfunction. Our results suggest that in addition to the regular canonical SMAD signaling BMP2 induces non-canonical inflammatory pathway in HRECs via activation of p38/NFκB pathway that causes the upregulation of VEGF and the disruption of HRECs. Inhibition of BMP2 signaling is a potential therapeutic intervention to preserve endothelial cell barrier function in DR.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled Hussein
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine and Surgery, Oral and Dental Research Division, National Research Centre, Cairo, Egypt
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Ming Wan
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Saleh
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ahmed S. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020; 12:nu12103169. [PMID: 33081260 PMCID: PMC7603001 DOI: 10.3390/nu12103169] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine. Flavonoids have anti-inflammatory, antioxidant and antiviral effects. Since it is known that diabetes induces oxidative stress and inflammation in the retina leading to neuronal death in the early stages of the disease, the use of these compounds can prove to be beneficial in the prevention or treatment of DR. In this review, we summarize the molecular and cellular effects of flavonoids in the diabetic retina.
Collapse
|
11
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
12
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
13
|
Long-Acting FGF21 Inhibits Retinal Vascular Leakage in In Vivo and In Vitro Models. Int J Mol Sci 2020; 21:ijms21041188. [PMID: 32054022 PMCID: PMC7072824 DOI: 10.3390/ijms21041188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of the current study was to investigate the impact of long-acting fibroblast growth factor 21 (FGF21) on retinal vascular leakage utilizing machine learning and to clarify the mechanism underlying the protection. To assess the effect on retinal vascular leakage, C57BL/6J mice were pre-treated with long-acting FGF21 analog or vehicle (Phosphate Buffered Saline; PBS) intraperitoneally (i.p.) before induction of retinal vascular leakage with intravitreal injection of mouse (m) vascular endothelial growth factor 164 (VEGF164) or PBS control. Five hours after mVEGF164 injection, we retro-orbitally injected Fluorescein isothiocyanate (FITC) -dextran and quantified fluorescence intensity as a readout of vascular leakage, using the Image Analysis Module with a machine learning algorithm. In FGF21- or vehicle-treated primary human retinal microvascular endothelial cells (HRMECs), cell permeability was induced with human (h) VEGF165 and evaluated using FITC-dextran and trans-endothelial electrical resistance (TEER). Western blots for tight junction markers were performed. Retinal vascular leakage in vivo was reduced in the FGF21 versus vehicle- treated mice. In HRMECs in vitro, FGF21 versus vehicle prevented hVEGF-induced increase in cell permeability, identified with FITC-dextran. FGF21 significantly preserved TEER compared to hVEGF. Taken together, FGF21 regulates permeability through tight junctions; in particular, FGF21 increases Claudin-1 protein levels in hVEGF-induced HRMECs. Long-acting FGF21 may help reduce retinal vascular leakage in retinal disorders and machine learning assessment can help to standardize vascular leakage quantification.
Collapse
|
14
|
Rostamkhani H, Mellati AA, Tabaei BS, Alavi M, Mousavi SN. Association of Serum Zinc and Vitamin A Levels with Severity of Retinopathy in Type 2 Diabetic Patients: a Cross-Sectional Study. Biol Trace Elem Res 2019; 192:123-128. [PMID: 30790120 DOI: 10.1007/s12011-019-01664-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular disorder which occurs in type 2 diabetes mellitus (T2DM) patients due to chronic hyperglycemia. Previous studies reported that serum zinc (Zn) and vitamin A levels were associated with certain diabetic microvascular complications. However, the relationship between Zn and vitamin A levels with the severity of DR in type 2 diabetic patients is not clear. We aimed to analyze the relationship between serum Zn and vitamin A levels with the severity of DR in T2DM. Sixty T2DM patients were selected from whom attending to the ophthalmology center of hospital from June 2017 and Feb 2018. Patients were categorized as controls, non-proliferative DR (NPDR), and proliferative DR (PDR). Anthropometric, dietary, and physical activity data were gathered. Fasting blood samples were taken to measure biochemical parameters. Serum Zn and vitamin A levels were measured via enzymatic-calorimetric and HPLC methods, respectively. Results showed that serum Zn and vitamin A levels were significantly lower in the PDR group than the controls (p = 0.03 and p = 0.008, respectively). Serum low-density lipoprotein (LDL.C) was significantly higher in the PDR than the control group (p = 0.02). Adjusting for the other variables, increase in serum Zn and vitamin A levels reduced risk of DR by 25.7% and 31.1%, respectively (p = 0.02 and p = 0.007). Higher serum LDL.C increased DR severity by 28.7%, adjusted for the variables (95% CI = 0.002, 0.02; p = 0.01). Lower serum Zn and vitamin A levels, as well as higher LDL.C in the T2DM patients, are related to DR severity.
Collapse
Affiliation(s)
- Hadi Rostamkhani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Student Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Banafsheh Sadat Tabaei
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadhossein Alavi
- Department of Biothechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
15
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
16
|
Schizandrin A Protects Human Retinal Pigment Epithelial Cell Line ARPE-19 against HG-Induced Cell Injury by Regulation of miR-145. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:42-49. [PMID: 31794890 PMCID: PMC6909158 DOI: 10.1016/j.omtn.2019.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes, which is the main cause of blindness among adults. Traditional Chinese medicines (TCMs) have been proven to delay the development of DR. Nonetheless, the effect of Schizandrin A (SchA) on DR remains uninvestigated. The present study aimed to probe the protective effect of SchA on high-glucose (HG)-induced injury in ARPE-19 cells. We observed that SchA accelerated cell proliferation, prohibited apoptosis, and restrained pro-inflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and reactive oxygen species (ROS) level in HG-stimulated cells. Additionally, miR-145 expression was upregulated in HG and SchA co-treated cells, and miR-145 inhibition reversed the protective effect of SchA on HG-managed ARPE-19 cells. Interestingly, downregulated myeloid differentiation factor 88 (MyD88) was found in HG and SchA co-treated cells, and upregulation of MyD88 was observed in miR-145 inhibitor-transfected cells. Additionally, SchA hindered nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in HG-treated ARPE-19 cells. The findings validated that SchA could protect ARPE-19 cells from HG-induced cell injury by regulation of miR-145.
Collapse
|
17
|
Zhong Z, Sun Y, Wang B, Sun Q, Yang G, Bian L. Involvement of mitogen-activated protein kinase pathways in ferrous iron-induced aquaporin-4 expression in cultured astrocytes. Neurotoxicology 2019; 73:142-149. [PMID: 30914277 DOI: 10.1016/j.neuro.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
Abstract
Iron is an essential element for multiple metabolic reactions, but excessive iron accumulation in the brain can lead to astrocyte swelling and death and cause cerebral edema. Aquaporin-4 (AQP4) is the important water channel expressed in the astrocytes, and maintains the water homeostasis of the brain. Previous study has shown that iron deposition could increase AQP4 expression, however, the mechanism of AQP4 expression upregulation after iron overload is still unclear. In this study, we investigated the effect of ferrous iron overload on AQP4 expression in cultured mouse astrocytes. Primary cultures of astrocytes were exposed to ferrous iron, and the expression of AQP4 as well as the swelling of astrocyte were determined. AQP4 expression was inhibited by small interfering RNA (siRNA). The role of oxidative stress and mitogen-activated protein kinases (MAPKs) signaling pathway in ferrous iron-induced AQP4 expression upregulation were further studied. Ferrous iron exposure induced astrocyte death as well as cell swelling, and increased AQP4 expression. AQP4 gene silencing after siRNA transfection attenuated ferrous iron-induced astrocyte death. After treatment with antioxidants, the increased AQP4 expression was diminished. MAPKs were activated after ferrous iron treatment, and inhibitors of ERK and p38-MAPK relieved AQP4 expression upregulation as well as astrocyte death. These results suggest that ferrous iron has distinctive toxic effects on cultured astrocytes and induces AQP4 expression upregulation. MAPKs activation may play important roles in ferrous iron-induced astrocyte death through upregulation of AQP4 expression.
Collapse
Affiliation(s)
- Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine 2019; 116:48-60. [PMID: 30685603 DOI: 10.1016/j.cyto.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Quercetin is a flavonoid polyphenolic compound present in fruits and vegetables that has proven anti-inflammatory activity. The goal of the present investigation was to investigate the effects of quercetin on tumor necrosis factor-α (TNF-α)-induced inflammatory responses via the expression of ICAM-1 and MMP-9 in human retinal pigment epithelial cells (ARPE-19 cells). Real-time PCR, gelatin zymography, and Western blot analysis showed that TNF-α induced the expression of ICAM-1 and MMP-9 protein and mRNA in a time-dependent manner. These effects were attenuated by pretreatment of ARPE-19 cells with quercetin. Quercetin inhibited the TNF-α-induced phosphorylation of PKCδ, JNK1/2, ERK1/2. Quercetin, rottlerin, SP600125 and U0126 attenuated TNF-α-stimulated c-Jun phosphorylation and AP-1-Luc activity. Pretreatment with quercetin, rottlerin, SP600125, or Bay 11-7082 attenuated TNF-α-induced NF-κB (p65) phosphorylation, translocation and RelA/p65-Luc activity. TNF-α significantly increased MMP-9 promoter activity and THP-1 cell adherence, and these effects were attenuated by pretreatment with quercetin, rottlerin, SP600125, U0126, tanshinone IIA or Bay 11-7082. These results suggest that quercetin attenuates TNF-α-induced ICAM-1 and MMP-9 expression in ARPE-19 cells via the MEK1/2-ERK1/2 and PKCδ-JNK1/2-c-Jun or NF-κB pathways.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Hung Huang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
19
|
Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp Mol Pathol 2019; 106:123-130. [PMID: 30625293 DOI: 10.1016/j.yexmp.2019.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common complication of diabetes mellitus, which is a major reason of blindness. Baicalin (BAI) is a flavonoid extracted from Scutellaria baicalensis, whose pharmacological characterizes have been widely reported in various diseases. However, it remains unclear the effect of BAI on DR. The study aimed to confirm the protective effect of BAI on DR. METHODS ARPE-19 cells and HRMECs were exposed to the high glucose (HG) environment to construct a cell injury model. After treatment with HG and BAI, cell viability, apoptosis, inflammatory cytokines and ROS generations were determined in ARPE-19 cells and HRMECs. Subsequently, microRNA-145 (miR-145) inhibitor and its negative control were transfected into ARPE-19 cells, and the regulatory effects on HG-and BAI-co-treated cells were detected. NF-κB and p38MAPK signaling pathways were finally examined to state the underling mechanisms. RESULTS HG treatment significantly induced ARPE-19 cells and HRMECs injury in vitro. BAI significantly promoted cell proliferation, reduced apoptosis, as well as inhibited the release of IL-1β, IL-6, IL-8 and ROS level in HG-injured ARPE-19 cells and HRMECs. Additionally, the expression level of miR-145 was up-regulated in HG-and BAI-co-treated cells. More importantly, miR-145 inhibition reversed the protective effect of BAI on HG-injured ARPE-19 cells. Besides, we observed that BAI inhibited the activations of NF-κB and p38MAPK pathways by up-regulating miR-145. CONCLUSIONS Results demonstrated that BAI exhibited the protective effect against HG-induced cell injury by up-regulation of miR-145.
Collapse
|
20
|
Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids 2018; 133:60-66. [PMID: 29129720 PMCID: PMC5875721 DOI: 10.1016/j.steroids.2017.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023]
Abstract
Glucocorticoids (GCs) are essential steroid hormones that regulate numerous metabolic and homeostatic functions in almost all physiological systems. Synthetic glucocorticoids are among the most commonly prescribed drugs for the treatment of various conditions including autoimmune, allergic and inflammatory diseases. Glucocorticoids are mainly used for their potent anti-inflammatory and immunosuppressive activities mediated through signal transduction by their nuclear receptor, the glucocorticoid receptor (GR). Emerging evidence showing that diverse physiological and therapeutic actions of glucocorticoids are tissue-, cell-, and sex-specific, suggests more complex actions of glucocorticoids than previously anticipated. While several synthetic glucocorticoids are widely used in the ophthalmology clinic for the treatment of several ocular diseases, little is yet known about the mechanism of glucocorticoid signaling in different layers of the eye. GR has been shown to be expressed in different cell types of the eye such as cornea, lens, and retina, suggesting an important role of GR signaling in the physiology of these ocular tissues. In this review, we provide an update on the recent findings from in vitro and in vivo studies reported in the last 5 years that aim at understanding the role of GR signaling specifically in the eye. Advances in studying the physiological effects of glucocorticoids in the eye are vital for the elaboration of optimized and targeted GC therapies with potent anti-inflammatory potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Rania S Sulaiman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mahita Kadmiel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
21
|
Zhou Y, Wu Y, Liu Y, He Z, Zou S, Wang Q, Li J, Zheng Z, Chen J, Wu F, Gong F, Zhang H, Xu H, Xiao J. The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury. Oncotarget 2018; 8:1688-1702. [PMID: 27926492 PMCID: PMC5352089 DOI: 10.18632/oncotarget.13777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury induces the disruption of blood-spinal cord barrier and triggers a complex array of tissue responses, including endoplasmic reticulum (ER) stress and autophagy. However, the roles of ER stress and autophagy in blood-spinal cord barrier disruption have not been discussed in acute spinal cord trauma. In the present study, we respectively detected the roles of ER stress and autophagy in blood-spinal cord barrier disruption after spinal cord injury. Besides, we also detected the cross-talking between autophagy and ER stress both in vivo and in vitro. ER stress inhibitor, 4-phenylbutyric acid, and autophagy inhibitor, chloroquine, were respectively or combinedly administrated in the model of acute spinal cord injury rats. At day 1 after spinal cord injury, blood-spinal cord barrier was disrupted and activation of ER stress and autophagy were involved in the rat model of trauma. Inhibition of ER stress by treating with 4-phenylbutyric acid decreased blood-spinal cord barrier permeability, prevented the loss of tight junction (TJ) proteins and reduced autophagy activation after spinal cord injury. On the contrary, inhibition of autophagy by treating with chloroquine exacerbated blood-spinal cord barrier permeability, promoted the loss of TJ proteins and enhanced ER stress after spinal cord injury. When 4-phenylbutyric acid and chloroquine were combinedly administrated in spinal cord injury rats, chloroquine abolished the blood-spinal cord barrier protective effect of 4-phenylbutyric acid by exacerbating ER stress after spinal cord injury, indicating that the cross-talking between autophagy and ER stress may play a central role on blood-spinal cord barrier integrity in acute spinal cord injury. The present study illustrates that ER stress induced by spinal cord injury plays a detrimental role on blood-spinal cord barrier integrity, on the contrary, autophagy induced by spinal cord injury plays a furthersome role in blood-spinal cord barrier integrity in acute spinal cord injury.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Zili He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Shuang Zou
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Zengming Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Jian Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Fenzan Wu
- Department of Neurosurgery, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Fanhua Gong
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
| |
Collapse
|
22
|
Zheng B, Zhou Y, Zhang H, Yang G, Hong Z, Han D, Wang Q, He Z, Liu Y, Wu F, Zhang X, Tong S, Xu H, Xiao J. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury. Int J Biol Sci 2017; 13:1520-1531. [PMID: 29230100 PMCID: PMC5723918 DOI: 10.7150/ijbs.21107] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/15/2017] [Indexed: 11/25/2022] Open
Abstract
After spinal cord injury (SCI), the destruction of blood-spinal cord barrier (BSCB) is shown to accelerate gathering of noxious blood-derived components in the nervous system, leading to secondary neurodegenerative damages. SCI activates endoplasmic reticulum stress (ER stress), which is considered to evoke secondary damages of neurons and glia. Recent evidence indicates that Dl-3-n-butylphthalide (NBP) has the neuroprotective effect in ischaemic brain injury, but whether it has protective effects on SCI or not is largely unclear. Here, we show that NBP prevented BSCB disruption after SCI via inhibition of ER stress. Following a moderate contusion injury of the T9 level of spinal cord, NBP was administered by oral gavage and further treated once a day. NBP significantly attenuated BSCB permeability and breakdown of adherens junction (AJ) and tight junction (TJ) proteins, then improved locomotion recovery following SCI. The protective role of NBP on BSCB disruption is associated with the restrain of ER stress caused by SCI. Furthermore, NBP considerably constrained the expression of ER stress-associated proteins and degradation of TJ and AJ in human brain microvascular endothelial cells (HBMECs) treated with TG. In conclusion, our results indicate that ER stress is associated with the disruption of BSCB integrity after injury, NBP attenuates BSCB disruption via inhibiting ER stress and improve functional recovery following SCI.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, 317000 PR China.,Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China.,Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Yulong Zhou
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China.,Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Guangyong Yang
- Department of Orthopaedics, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, 317000 PR China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, 317000 PR China
| | - Dandan Han
- Department of Orthopaedics, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, 317000 PR China
| | - Qingqing Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Zili He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Fenzan Wu
- Department of Neurosurgery, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, PR China
| | - Xie Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Li Hui-li Hospital, Ningbo, Zhejiang, 315040, PR China
| | - Songlin Tong
- Department of Neurosurgery, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, PR China
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 PR China
| |
Collapse
|
23
|
Zhang R, Garrett Q, Zhou H, Wu X, Mao Y, Cui X, Xie B, Liu Z, Cui D, Jiang L, Zhang Q, Xu S. Upregulation of miR-195 accelerates oxidative stress-induced retinal endothelial cell injury by targeting mitofusin 2 in diabetic rats. Mol Cell Endocrinol 2017; 452:33-43. [PMID: 28487236 DOI: 10.1016/j.mce.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
This study was performed to investigate the oxidative stress-induced miRNA changes in relation to pathogenesis of diabetic retinopathy (DR) and to establish a functional link between miRNAs and oxidative stress-induced retinal endothelial cell injury. Our results demonstrated that oxidative stress could induce alterations of miRNA expression profile, including up-regulation of miR-195 in the diabetic retina or cultured HMRECs after exposed to H2O2 or HG (P < 0.05). Oxidative stress also resulted in a significant reduction of MFN2 expression in diabetic retina or HMRECs (P < 0.05). Overexpression of miR-195 reduced MFN2 protein levels, and induced tube formation and increased permeability of diabetic retinal vasculature. The luciferase reporter assay confirmed that miR-195 binds to the 3' -untranslated region (3'-UTR) of MFN2 mRNA. This study suggested that miR-195 played a critical role in oxidative stress-induced retinal endothelial cell injury by targeting MFN2 in diabetic rats.
Collapse
Affiliation(s)
- Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Qian Garrett
- The University of New South Wales, Sydney, NSW 2052, Australia; The University of Notre Dame Australia, NSW 2008, Australia
| | - Huimin Zhou
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| | - Xiaoxi Wu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yueran Mao
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Ximing Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, PR China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Qingfu Zhang
- Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| |
Collapse
|
24
|
Geng P, Ma T, Xing J, Jiang L, Sun H, Zhu B, Zhang H, Xiao H, Wang J, Zhang J. Dexamethasone ameliorates H 2S-induced acute lung injury by increasing claudin-5 expression via the PI3K pathway. Hum Exp Toxicol 2017; 37:626-635. [PMID: 28741371 DOI: 10.1177/0960327117721961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is a major outcome of exposure to high levels of hydrogen sulfide (H2S). Dexamethasone (DXM) has been used to treat ALI. However, the mechanisms involved in H2S-induced ALI and the protective mechanisms of DXM in treating ALI are still nebulous. To explore the mechanisms involved, we evaluated the role of claudin-5 in the protective effect of DXM against H2S-induced ALI. Sprague-Dawley rats were exposed to H2S to establish the ALI model. In parallel with the animal model, a cell model was also established by incubating human umbilical vein endothelial cells (HUVECs) with NaHS. Lung hematoxylin-eosin staining, electron microscope assay, and wet/dry ratio were used to identify whether the ALI was successfully induced by H2S, and changes in claudin-5 expression were detected in both rats and HUVECs. Our results revealed that claudin-5 was markedly decreased after H2S exposure and that DXM significantly attenuated the H2S-induced downregulation of claudin-5 in both rats and HUVECs. In the animal experiment, p-Akt and p-FoxO1 presented a similar tendency as claudin-5, but their levels decreased 6 h prior to the levels of claudin-5. In a further investigation, the DXM-induced protective effect on ALI and rescue effect on downregulation of claudin-5 were both blocked by LY294002. The current study demonstrated that claudin-5 was involved in the development of H2S-induced ALI and that DXM exerted protective effects through increasing claudin-5 expression by activating the phosphatidylinositol 3-kinase pathway. Therefore, claudin-5 might represent a novel pharmacological target for treating ALI induced by H2S and other hazardous gases.
Collapse
Affiliation(s)
- P Geng
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| | - T Ma
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| | - J Xing
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| | - L Jiang
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| | - H Sun
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| | - B Zhu
- 2 Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - H Zhang
- 2 Department of Occupational Disease Prophylactic-Therapeutic Institution, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - H Xiao
- 3 Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Jiangsu, China
| | - J Wang
- 3 Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Jiangsu, China
| | - J Zhang
- 1 Department of Emergency Medicine, The First Affiliated Hospital to Nanjing Medical University, Jiangsu, China
| |
Collapse
|
25
|
Ohashi A, Yasuda H, Kamiya T, Hara H, Adachi T. CAPE increases the expression of SOD3 through epigenetics in human retinal endothelial cells. J Clin Biochem Nutr 2017; 61:6-13. [PMID: 28751803 PMCID: PMC5525008 DOI: 10.3164/jcbn.16-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Extracellular-superoxide dismutase (EC-SOD or SOD3), which catalyzes the dismutation of superoxide anions into hydrogen peroxide, plays a key role in vascular protection against reactive oxygen species (ROS). The excess generation of ROS is closely involved in the pathogenesis of diabetic retinopathy (DR); therefore, the maintenance of SOD3 expression at high levels is important for the prevention of DR. In the present study, we showed that caffeic acid phenethyl ester (CAPE) increased the expression of SOD3 through the acetylation of histone within the SOD3 promoter region in human retinal endothelial cells (HRECs). Histone acetylation within its promoter was focused on the inhibition of histone deacetylase (HDAC), and we examined the involvement of myocyte enhancer factor 2 (MEF2) and HDAC1 in CAPE-elicited SOD3 expression. Our results demonstrate that SOD3 silencing in basal HRECs is regulated by HDAC1 composed with MEF2A/2D hetero dimers. Moreover, phosphorylation of threonine 312 in MEF2A and dissociation of HDAC1 from SOD3 promoter play pivotal roles in CAPE-elicited SOD3 expression. Overall, our findings provide that CAPE may be one of the seed compounds that maintain redox homeostasis.
Collapse
Affiliation(s)
- Atsuko Ohashi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyuki Yasuda
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
26
|
Morisawa S, Yasuda H, Kamiya T, Hara H, Adachi T. Tumor necrosis factor-α decreases EC-SOD expression through DNA methylation. J Clin Biochem Nutr 2017. [PMID: 28584398 DOI: 10.3164/jcbn.16.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular-superoxide dismutase (EC-SOD) is a secreted antioxidative enzyme, and its presence in vascular walls may play an important role in protecting the vascular system against oxidative stress. EC-SOD expression in cultured cell lines is regulated by various cytokines including tumor necrosis factor-α (TNF-α). TNF-α is a major mediator of pathophysiological conditions and may induce or suppress the generation of various types of mediators. Epigenetics have been defined as mitotically heritable changes in gene expression that do not affect the DNA sequence, and include DNA methylation and histone modifications. The results of the present study demonstrated that TNF-α significantly decreased EC-SOD level in fibroblasts with an accompanying increase in methylated DNA. In DNA methylation and demethylation, cytosine is methylated to 5-methylcytosine (5mC) by DNA methyltransferase (DNMT), and 5mC is then converted to 5-hydroxymethylcytosine (5hmC) and cytosine in a stepwise manner by ten-eleven translocation methylcytosine dioxygenases (TETs). However, DNMT did not participate in TNF-α-induced DNA methylation within the EC-SOD promoter region. On the other hand, TNF-α significantly suppressed TET1 expression and EC-SOD mRNA levels were decreased by the silencing of TET1 in fibroblasts. These results demonstrate that the down-regulation of EC-SOD by TNF-α is regulated by DNA methylation through reductions in TET1.
Collapse
Affiliation(s)
- Shunpei Morisawa
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
27
|
Morisawa S, Yasuda H, Kamiya T, Hara H, Adachi T. Tumor necrosis factor-α decreases EC-SOD expression through DNA methylation. J Clin Biochem Nutr 2017; 60:169-175. [PMID: 28584398 PMCID: PMC5453018 DOI: 10.3164/jcbn.16-111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular-superoxide dismutase (EC-SOD) is a secreted antioxidative enzyme, and its presence in vascular walls may play an important role in protecting the vascular system against oxidative stress. EC-SOD expression in cultured cell lines is regulated by various cytokines including tumor necrosis factor-α (TNF-α). TNF-α is a major mediator of pathophysiological conditions and may induce or suppress the generation of various types of mediators. Epigenetics have been defined as mitotically heritable changes in gene expression that do not affect the DNA sequence, and include DNA methylation and histone modifications. The results of the present study demonstrated that TNF-α significantly decreased EC-SOD level in fibroblasts with an accompanying increase in methylated DNA. In DNA methylation and demethylation, cytosine is methylated to 5-methylcytosine (5mC) by DNA methyltransferase (DNMT), and 5mC is then converted to 5-hydroxymethylcytosine (5hmC) and cytosine in a stepwise manner by ten-eleven translocation methylcytosine dioxygenases (TETs). However, DNMT did not participate in TNF-α-induced DNA methylation within the EC-SOD promoter region. On the other hand, TNF-α significantly suppressed TET1 expression and EC-SOD mRNA levels were decreased by the silencing of TET1 in fibroblasts. These results demonstrate that the down-regulation of EC-SOD by TNF-α is regulated by DNA methylation through reductions in TET1.
Collapse
Affiliation(s)
- Shunpei Morisawa
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
28
|
Antiretroviral Treatment with Efavirenz Disrupts the Blood-Brain Barrier Integrity and Increases Stroke Severity. Sci Rep 2016; 6:39738. [PMID: 28008980 PMCID: PMC5180178 DOI: 10.1038/srep39738] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
The introduction of antiretroviral drugs (ARVd) changed the prognosis of HIV infection from a deadly disease to a chronic disease. However, even with undetectable viral loads, patients still develop a wide range of pathologies, including cerebrovascular complications and stroke. It is hypothesized that toxic side effects of ARVd may contribute to these effects. To address this notion, we evaluated the impact of several non-nucleoside reverse transcriptase inhibitors (NNRTI; Efavirenz, Etravirine, Rilpivirine and Nevirapine) on the integrity of the blood-brain barrier, and their impact on severity of stroke. Among studied drugs, Efavirenz, but not other NNRTIs, altered claudin-5 expression, increased endothelial permeability, and disrupted the blood-brain barrier integrity. Importantly, Efavirenz exposure increased the severity of stroke in a model of middle cerebral artery occlusion in mice. Taken together, these results indicate that selected ARVd can exacerbate HIV-associated cerebrovascular pathology. Therefore, careful consideration should be taken when choosing an anti-retroviral therapy regimen.
Collapse
|
29
|
Liu WY, Tzeng TF, Liu IM. Zerumbone, a Bioactive Sesquiterpene, Ameliorates Diabetes-Induced Retinal Microvascular Damage through Inhibition of Phospho-p38 Mitogen-Activated Protein Kinase and Nuclear Factor-κB Pathways. Molecules 2016; 21:molecules21121708. [PMID: 27973425 PMCID: PMC6273957 DOI: 10.3390/molecules21121708] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
Zerumbone ameliorates retinal damage by blocking advanced glycation end products and their receptor system in streptozotocin-diabetic rats. Because of the multiple factors involved in diabetic retinopathy (DR) etiology, the mechanisms of zerumbone that are mainly responsible for its ameliorative effect on DR need to be further clarified. In the present study, zerumbone (20 mg or 40 mg/kg) or fenofibric acid (100 mg/kg) was orally administered to diabetic rats by intragastric gavage once daily for three consecutive months. Zerumbone displayed similar characteristics to fenofibric acid in reducing retinal vascular permeability and leukostasis in diabetic rats. Fundus photographs showed that large retinal vessel diameters were decreased in zerumbone-treated diabetic rats. Zerumbone not only down-regulated the gene expression of retinal angiogenic parameters, but also reduced the expression of inflammatory cytokines and chemokines in the retina of diabetic rats. Moreover, zerumbone reduced the p38 MAPK phosphorylation and abrogated the nuclear translocation of NF-κB p65 in the retina of diabetic rats. In conclusion, treatment of diabetic rats with zerumbone attenuates the severity of retinal inflammation and angiogenesis, via inhibition of p38 MAPK and NF-κB signaling pathways. These benefits of zerumbone for DR appear to be linked to its antihyperglycemic and antihyperlipidemic effects.
Collapse
Affiliation(s)
- Wayne Young Liu
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
- Department of Urology, Jen-Ai Hospital, Taichung 41625, Taiwan.
| | - Thing-Fong Tzeng
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.
| |
Collapse
|
30
|
Anspach L, Unger RE, Gibson MI, Klok HA, Kirkpatrick CJ, Freese C. Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor. Nanotoxicology 2016; 10:1341-50. [PMID: 27492761 PMCID: PMC5166978 DOI: 10.1080/17435390.2016.1214761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 04/18/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modifications) for various times and evaluated their effects on cytotoxicity, proinflammatory mediators, barrier functions and factors involved in ER stress. We demonstrated a time-dependent uptake of all AuNPs and no cytotoxicity for up to 72 h of exposure. Exposure to certain AuNPs resulted in a time-dependent increase in the proinflammatory markers IL-8, MCP-1, sVCAM, sICAM. However, none of the AuNPs induced an increase in expression of the chaperones and stress sensor proteins BiP and GRP94, respectively, or the transcription factors ATF4 and ATF6. Furthermore, no upregulation of the UPR stress sensor receptor PERK, no active splicing product of the transcription factor XBP1 and no upregulation of the transcription factor CHOP were detectable. In conclusion, the results of the present study indicate that effects of different-sized gold nanoparticles modified with various polymers were not related to the induction of ER stress in brain microvascular endothelial cells or led to apoptosis.
Collapse
Affiliation(s)
- Laura Anspach
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| | - Ronald E. Unger
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| | - Matthew I. Gibson
- University of Warwick, Department of Chemistry, Coventry, CV4 7AL, United Kingdom
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - C. James Kirkpatrick
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| | - Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Mainz, Germany
| |
Collapse
|
31
|
Yasuda H, Ohashi A, Nishida S, Kamiya T, Suwa T, Hara H, Takeda J, Itoh Y, Adachi T. Exendin-4 induces extracellular-superoxide dismutase through histone H3 acetylation in human retinal endothelial cells. J Clin Biochem Nutr 2016; 59:174-181. [PMID: 27895384 PMCID: PMC5110938 DOI: 10.3164/jcbn.16-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022] Open
Abstract
Extracellular-superoxide dismutase (genetic name SOD3) is a secreted anti-oxidative enzyme, and its presence in vascular walls may play an important role in protecting the vascular system against oxidative stress. Oxidative stress has been implicated in the pathogenesis of diabetic retinopathy; therefore, increases in extracellular-superoxide dismutase have been suggested to inhibit the progression of diabetic retinopathy. Incretin-based drugs such as glucagon-like peptide-1 receptor agonists are used in the treatment of type 2 diabetes. Glucagon-like peptide-1 receptor agonists are expected to function as extrapancreatic agents because the glucagon-like peptide-1 receptor is expressed not only in pancreatic tissues, but also in many other tissue types. We herein demonstrated that exendin-4, a glucagon-like peptide-1 receptor agonist, induced the expression of extracellular-superoxide dismutase in human retinal microvascular endothelial cells through epigenetic regulation. The results of the present study demonstrated that exendin-4 induced the expression of extracellular-superoxide dismutase through histone H3 acetylation at the SOD3 proximal promoter region. Moreover, plasma extracellular-superoxide dismutase concentrations in diabetic patients were elevated by incretin-based therapies. Therefore, incretin-based therapies may exert direct extrapancreatic effects in order to protect blood vessels by enhancing anti-oxidative activity.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Atsuko Ohashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Shohei Nishida
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuya Suwa
- Department of Diabetes and Endocrinology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Jun Takeda
- Department of Diabetes and Endocrinology, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoshinori Itoh
- Department of Pharmacy, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
32
|
Chao AC, Lee TC, Juo SHH, Yang DI. Hyperglycemia Increases the Production of Amyloid Beta-Peptide Leading to Decreased Endothelial Tight Junction. CNS Neurosci Ther 2016; 22:291-7. [PMID: 26842741 DOI: 10.1111/cns.12503] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
AIMS Amyloid beta-peptide (Aβ), the main component of senile plaques in the Alzheimer's disease (AD) brains, is generated from sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretase. Hyperglycemia in diabetes may compromise barrier integrity in endothelial cells (ECs). However, the roles of endothelial APP in response to high glucose (HG) remain to be delineated. The aims of this study were to test whether HG may increase Aβ secretion, thereby leading to heightened paracellular permeability in ECs. METHODS We determined the effects of HG on production of Aβ, expression of full-length APP, intercellular permeability, and expression levels of specific junctional proteins in human umbilical vein endothelial cells (HUVECs). RESULTS HG at 30 mM significantly stimulated expression of full-length APP accompanied by heightened secretion of Aβ1-42, increased paracellular permeability, and attenuated expression of zona occluden-1 (ZO-1), claudin-5, occludin, and junctional adhesion molecule (JAM)-C in HUVECs; all of which were abolished by the γ-secretase inhibitor BMS299897. Exogenous application of Aβ1-42, but not the reverse peptide Aβ42-1, was sufficient to downregulate the expression of the same junction proteins. CONCLUSION Hyperglycemia enhances APP expression with increased Aβ production, which downregulates junctional proteins causing increased intercellular permeability in ECs.
Collapse
Affiliation(s)
- A-Ching Chao
- Department of Neurology, College of Medicine, Kaohsiung Medical University and Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tai-Chi Lee
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Suh-Hang Hank Juo
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Yang F, Tang XY, Liu H, Jiang ZW. Inhibition of mitogen-activated protein kinase signaling pathway sensitizes breast cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncol Rep 2016; 35:2113-20. [PMID: 26796921 DOI: 10.3892/or.2016.4580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress which is observed in many human diseases, including breast cancer. Cellular adaptation to ER stress is mediated by the unfolded protein response (UPR), which aims at restoring ER homeostasis. Higher levels of GRP78 expression indicates constitutive activation of the UPR in breast cancer leading to breast cancer cells that are relatively resistant to ER stress-induced apoptosis. Tunicamycin (TM), an ER stress inducer, constitutively activates the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK), and (MEK)/ERK pathway which plays a role in upregulation of GRP78 by ER stress in that inhibition of MEK by U0126 reduces the levels of GRP78 and blocks its upregulation by TM. Inhibition of the MEK/ERK pathway by U0126 sensitizes breast cancer cells to TM-induced apoptosis. Inhibition of GRP78 by siRNA knockdown enhances TM- and U0126-induced apoptosis in breast cancer cells. This sensitization of breast cancer cells to TM-induced apoptosis by inhibition of MEK/ERK and GRP78 is caspase-dependent, at least in part, by activation of caspase-4. These results seem to indicate that GRP78 has potential as a chemotherapeutical target and have important implications for new treatment strategies in breast cancer by combination with agents that induce ER stress with inhibitors of the MEK/ERK pathway.
Collapse
Affiliation(s)
- Fen Yang
- Department of Tumor Radiotherapy, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Xiao Yan Tang
- Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, Jiangsu, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Zhi Wen Jiang
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| |
Collapse
|
34
|
Yasuda H, Mizukami K, Hayashi M, Kamiya T, Hara H, Adachi T. Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation. J Clin Biochem Nutr 2015; 58:34-9. [PMID: 26798195 PMCID: PMC4706090 DOI: 10.3164/jcbn.15-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Exendin-4 is an agonist of the glucagon-like peptide 1 receptor (GLP-1R) and is used in the treatment of type 2 diabetes. Since human GLP-1R has been identified in various cells besides pancreatic cells, exendin-4 is expected to exert extrapancreatic actions. It has also been suggested to affect gene expression through epigenetic regulation, such as DNA methylation and/or histone modifications. Furthermore, the expression of extracellular-superoxide dismutase (EC-SOD), a major SOD isozyme that is crucially involved in redox homeostasis, is regulated by epigenetic factors. In the present study, we demonstrated that exendin-4 induced the demethylation of DNA in A549 cells, which, in turn, affected the expression of EC-SOD. Our results showed that the treatment with exendin-4 up-regulated the expression of EC-SOD through GLP-1R and demethylated some methyl-CpG sites (methylated cytosine at 5'-CG-3') in the EC-SOD gene. Moreover, the treatment with exendin-4 inactivated DNA methyltransferases (DNMTs), but did not change their expression levels. In conclusion, the results of the present study demonstrated for the first time that exendin-4 regulated the expression of EC-SOD by reducing the activity of DNMTs and demethylation of DNA within the EC-SOD promoter region in A549 cells.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Koji Mizukami
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Mutsuna Hayashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
35
|
Experimental study of the protective effects of SYVN1 against diabetic retinopathy. Sci Rep 2015; 5:14036. [PMID: 26358086 PMCID: PMC4642554 DOI: 10.1038/srep14036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of diabetic retinopathy (DR). While many studies have focused on genes that increase susceptibility to DR, herein, we aimed to explore genes that confer DR resistance. Previously, we identified Hmg CoA reductase degradation protein 1 (SYVN1) as a putative DR protective gene via gene expression analysis. Transgenic mice overexpressing SYVN1 and wild-type (WT) mice with streptozotocin-induced diabetes were used in this experiment. Retinal damage and vascular leakage were investigated 6 months after induction of diabetes by histopathological and retinal cell apoptosis analyses and by retinal perfusion of fluorescein isothiocyanate-conjugated dextran. Compared with diabetic WT mice, diabetic SYVN1 mice had significantly more cells and reduced apoptosis in the retinal ganglion layer. Retinal vascular leakage was significantly lower in diabetic SYVN1 mice than in diabetic WT mice. The expression levels of endoplasmic reticulum (ER) stress-related, pro-inflammatory, and pro-angiogenic genes were also analyzed. Lower expression levels were observed in diabetic SYVN1 mice than in WT controls, suggesting that SYVN1 may play an important role in inhibiting ER stress, chronic inflammation, and vascular overgrowth associated with DR. Thus, these results strongly supported our hypothesis that SYVN1 confers DR resistance.
Collapse
|
36
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endothelial NOS activation induces the blood-brain barrier disruption via ER stress following status epilepticus. Brain Res 2015; 1622:163-73. [PMID: 26115585 DOI: 10.1016/j.brainres.2015.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
The blood-brain barrier (BBB) maintains the unique brain microenvironment, which is separated from the systemic circulating system. Since the endoplasmic reticulum (ER) is an important cell organelle that is responsible for protein synthesis, the correct folding and sorting of proteins contributing to cell survivals, ER stress is a potential cause of cell damage in various diseases. Therefore, it would be worthy to explore the the relationship between the ER stress and BBB disruption during vasogenic edema formation induced by epileptogenic insults. In the present study, we investigated the roles of ER stress in vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced status epilepticus (SE). SE-induced eNOS activation induces BBB breakdown via up-regulation of GRP78 expression and dysfunction of SMI-71 (an endothelial BBB marker) in the piriform cortex (PC). In addition, caveolin-1 peptide (an eNOS inhibitor) effectively attenuated GRP78 expression and down-regulation of SMI-71. Taken together, our findings suggest that eNOS-mediated ER stress may participate in SE-induced vasogenic edema formation. Therefore, the modulation of ER stress may be a considerable strategy for therapy in impairments of endothelial cell function.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Ji Yang Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200702, South Korea.
| |
Collapse
|
37
|
Hu J, Li T, Du S, Chen Y, Wang S, Xiong F, Wu Q. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int J Mol Med 2015; 36:130-8. [PMID: 25936351 PMCID: PMC4494573 DOI: 10.3892/ijmm.2015.2195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/13/2015] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the major regulatory molecules in diabetic retinopathy (DR). In our previous study, we demonstrated that succinate levels were elevated in the retinas of diabetic rats and that the knockdown of the succinate receptor, G-protein-coupled receptor 91 (GPR91), inhibited the release of VEGF and attenuated retinal vascular disorder in the early stages of DR. In the present study, we examined the signaling pathways involved in the GPR91-dependent release of VEGF in the retinal ganglion cell line, RGC-5. The cells were infected with a lentiviral small hairpin RNA (shRNA) expression vector targeting GPR91 (LV.shGPR91). Immunofluorescence staining revealed that GPR91 was predominantly localized in the cell bodies of the RGC-5 cells. RT-qPCR, western blot analysis and ELISA indicated that succinate exposure upregulated VEGF expression, activated the extracellular signal-regulated protein kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways and led to the release of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). The knockdown of GPR91 inhibited ERK1/2 and JNK activity, but did not inhibit the activation of the p38 MAPK pathway. The increase in COX-2 expression and the release of PGE2 were inhibited by transduction with LV.shGPR91 and ERK1/2, JNK and COX-2 inhibitors. The expression and release of VEGF showed similar results. Cell Counting Kit-8 (CCK-8) assays revealed that the shRNA-mediated knockdown of GPR91 decreased the proliferation of RF/6A cells cultured in succinate-conditioned medium. Our data suggest that GPR91 modulates the succinate-induced release of VEGF through the MAPK/COX-2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Jianyan Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shanshan Du
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongdong Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Shuai Wang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Fen Xiong
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
38
|
Wu S, Gao X, Yang S, Meng M, Yang X, Ge B. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundam Clin Pharmacol 2015; 29:252-9. [PMID: 25623775 DOI: 10.1111/fcp.12101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/21/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
Our and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease. Acetylcholine (Ach)-induced endothelium-dependent relaxation (EDR) and biochemical parameters were measured in rat isolated aorta. The level of reactive oxygen species (ROS) and NO was designed by specific fluorescent probe DCFH-DA and DAF-FM DA separately. The nuclear translocation of the NF-κB was studied by immune-fluorescence. The mRNA expression and protein expression of GRP78--a key indicator for the induction of ER stress--were assessed by real-time PCR and Western blot. Two ER stress inhibitors-4-PBA (5 mm) and Tudca (500 μg/mL)--significantly prevented HTL-impaired EDR and increased NO release, endothelial nitric oxide synthase (eNOS) and SOD activity, decreased ROS production, NADPH activity, NOX-4 mRNA and MDA level. We also found that 4-PBA and Tudca blocked HTL--induced NF-κB activation thus inhibiting the downstream target gene production including TNF-α and ICAM-1. Simultaneously, HTL increased the mRNA and protein level of GRP78. HTL could induce ER stress leading to a downstream enhancement of oxidative stress and inflammation, which finally caused vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Shujin Wu
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Xiang Gao
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Shehua Yang
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Min Meng
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Xiaolai Yang
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| | - Bin Ge
- Department of Pharmacy, Gan Su Provincial Hospital, Lan Zhou, 73000, China
| |
Collapse
|
39
|
Leonard A, Paton AW, El-Quadi M, Paton JC, Fazal F. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation. PLoS One 2014; 9:e110949. [PMID: 25356743 PMCID: PMC4214695 DOI: 10.1371/journal.pone.0110949] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/17/2014] [Indexed: 01/11/2023] Open
Abstract
Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.
Collapse
Affiliation(s)
- Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Monaliza El-Quadi
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Deuring JJ, Fuhler GM, Konstantinov SR, Peppelenbosch MP, Kuipers EJ, de Haar C, van der Woude CJ. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut 2014; 63:1081-91. [PMID: 23964099 DOI: 10.1136/gutjnl-2012-303527] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Although genome wide association studies have partly uncovered the genetic basis of Crohn's disease (CD), it remains a challenge to link genetic polymorphisms to functional intestinal phenotypes. Paneth cells are specialised antimicrobial epithelial cells localised to the small-intestinal crypt-base. Here, we investigate whether genomic variations in ATG16L1 affect Paneth cell function. DESIGN Genomic variation of ATG16L1 (T300A, rs2241880) was determined in DNA from 78 patients with CD and 12 healthy controls. Paraffin-embedded ileal biopsies from patients with genotype AA (n=17), GA (n=38) and patients with the GG allele (n=23) were stained for GRP78, phospho-EIF2α, lysozyme, cleaved-caspase 3, phosphohistone H3, phospho-IκB, p65, phospho-p38MAPK and PHLDA1. Microbial composition of biopsies was assessed by PCR. Disease phenotype was scored. RESULTS In patients with quiescent disease but with an ATG16L1 risk allele, the endoplasmic reticulum (ER) stress markers GRP78 and pEIF2α were highly expressed in Paneth cells. Other CD risk gene variations did not correlate with Paneth cell ER stress. Functionally, patients with ER-stressed Paneth cells showed no changes in intestinal epithelial cells proliferation or apoptosis, Paneth cell or stem cell numbers, p65, phospho-IκB and phospho-p38 staining. However, a significantly increased presence of adherent-invasive Escherichia coli was observed in biopsies from patients with ER-stressed Paneth cells. Phenotypically, patients with GRP78 positive Paneth cells have relatively less colonic disease over ileal disease (-21%, p=0.04), more fistulas (+21%, p=0.05) and an increased need for intestinal surgery (+38%, p=0.002). CONCLUSIONS The ATG16L1 T300A polymorphism defines a specific subtype of patients with CD, characterised by Paneth cell ER stress even during quiescent disease. Paneth cell ER stress correlates with bacterial persistence, and is thus likely to modulate antimicrobial functionality of this cell type in patients with CD.
Collapse
Affiliation(s)
- J Jasper Deuring
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sergey R Konstantinov
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ernst J Kuipers
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Colin de Haar
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - C Janneke van der Woude
- Department Gastroenterology and Hepatology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Galán M, Kassan M, Kadowitz PJ, Trebak M, Belmadani S, Matrougui K. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1063-75. [PMID: 24576409 DOI: 10.1016/j.bbamcr.2014.02.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/07/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND We recently reported that ER stress plays a key role in vascular endothelial dysfunction during hypertension. In this study we aimed to elucidate the mechanisms by which ER stress induction and oxidative stress impair vascular endothelial function. METHODOLOGY/PRINCIPAL FINDINGS We conducted in vitro studies with primary endothelial cells from coronary arteries stimulated with tunicamycin, 1μg/mL, in the presence or absence of two ER stress inhibitors: tauroursodeoxycholic acid (Tudca), 500μg/mL, and 4-phenylbutyric acid (PBA), 5mM. ER stress induction was assessed by enhanced phosphorylation of PERK and eIF2α, and increased expression of CHOP, ATF6 and Grp78/Bip. The ER stress induction increased p38 MAPK phosphorylation, Nox2/4 mRNA levels and NADPH oxidase activity, and decreased eNOS promoter activity, eNOS expression and phosphorylation, and nitrite levels. Interestingly, the inhibition of p38 MAPK pathway reduced CHOP and Bip expressions enhanced by tunicamycin and restored eNOS promoter activation as well as phosphorylation. To study the effects of ER stress induction in vivo, we used C57BL/6J mice and p47phox(-/-) mice injected with tunicamycin or saline. The ER stress induction in mice significantly impaired vascular endothelium-dependent and independent relaxation in C57BL/6J mice compared with p47phox(-/-) mice indicating NADPH oxidase activity as an intermediate for ER stress in vascular endothelial dysfunction. CONCLUSION/SIGNIFICANCE We conclude that chemically induced ER stress leads to a downstream enhancement of p38 MAPK and oxidative stress causing vascular endothelial dysfunction. Our results indicate that inhibition of ER stress could be a novel therapeutic strategy to attenuate vascular dysfunction during cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Galán
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Philip J Kadowitz
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Mohamed Trebak
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, State University of New York (SUNY), 257 Fuller Rd., Albany, NY 12203, USA
| | - Souad Belmadani
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA
| | - Khalid Matrougui
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA; Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA.
| |
Collapse
|
42
|
Kawanami D, Matoba K, Okada R, Tsukamoto M, Kinoshita J, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K. Fasudil inhibits ER stress-induced VCAM-1 expression by modulating unfolded protein response in endothelial cells. Biochem Biophys Res Commun 2013; 435:171-5. [PMID: 23665024 DOI: 10.1016/j.bbrc.2013.04.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/28/2022]
Abstract
The process of atherosclerosis is affected by interactions among numerous biological pathways. Accumulating evidence shows that endoplasmic reticulum (ER) stress plays a crucial role in the development of atherosclerosis. Rho-kinase is an effector of small GTP-binding protein Rho, and has been implicated as an atherogenic factor. Previous studies demonstrated that fasudil, a specific Rho-kinase inhibitor, exerts a cardioprotective effect by downregulating ER stress signaling. However, the molecular link between ER stress and Rho-kinase in endothelial cells has not been elucidated. In this study, we investigated the mechanisms by which fasudil regulates endothelial inflammation during ER stress. Tunicamycin, an established ER stress inducer, increased vascular cellular adhesion molecule (VCAM)-1 expression in endothelial cells. Intriguingly, fasudil inhibited VCAM-1 induction. From a mechanistic stand point, fasudil inhibited expression of activating transcription factor (ATF)4 and subsequent C/EBP homologous protein (CHOP) induction by tunicamycin. Furthermore, fasudil attenuated tunicamycin-induced phophorylation of p38MAPK that is crucial for the atherogenic response during ER stress. These findings indicate that Rho-kinase regulates ER stress-mediated VCAM-1 induction by ATF4- and p38MAPK-dependent signaling pathways. Rho-kinase inhibition by fasudil would be an important therapeutic approach against atherosclerosis, in particular, under conditions of ER stress.
Collapse
Affiliation(s)
- Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, Hsiao LD, Yang CM. IL-1β promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-κB- and AP-1-dependent pathways. PLoS One 2013; 8:e57955. [PMID: 23505448 PMCID: PMC3591450 DOI: 10.1371/journal.pone.0057955] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shin-Ei Cheng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Ruey-Horng Shih
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Miao X, Sun W, Miao L, Fu Y, Wang Y, Su G, Liu Q. Zinc and diabetic retinopathy. J Diabetes Res 2013; 2013:425854. [PMID: 23671870 PMCID: PMC3647550 DOI: 10.1155/2013/425854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/08/2013] [Indexed: 02/02/2023] Open
Abstract
Zinc (Zn) is an important nutrient that is involved in various physiological metabolisms. Zn dyshomeostasis is often associated with various pathogeneses of chronic diseases, such as metabolic syndrome, diabetes, and related complications. Zn is present in ocular tissue in high concentrations, particularly in the retina and choroid. Zn deficiencies have been shown to affect ocular development, cataracts, age-related macular degeneration, and even diabetic retinopathy. However, the mechanism by which Zn deficiency increases the prevalence of diabetic retinopathy remains unclear. In addition, due to the negative effect of Zn deficiency on the eye, Zn supplementation should prevent diabetic retinopathy; however, limited available data do not always support this notion. Therefore, the goal of this paper was to summarize these pieces of available information regarding Zn prevention of diabetic retinopathy. Current theories and possible mechanisms underlying the role of Zn in the eye-related diseases are discussed. The possible factors that affect the preventive effect of Zn supplementation on diabetic retinopathy were also discussed.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun 130021, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Weixia Sun
- The First Hospital of Jilin University, Changchun 130021, China
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun 130021, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Yonggang Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guanfang Su
- The Second Hospital of Jilin University, Changchun 130021, China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- *Guanfang Su: and
| | - Quan Liu
- The First Hospital of Jilin University, Changchun 130021, China
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- *Quan Liu:
| |
Collapse
|
45
|
Kochetov AV, Merkulova TI, Merkulov VM. Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state. Med Hypotheses 2012; 79:709-12. [PMID: 22981593 DOI: 10.1016/j.mehy.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid hormones regulate numerous physiological processes and are widely used in the treatment of inflammation, autoimmune disease and cancer. Glucocorticoid receptor (GR) - a transcription factor, derived from a single gene, is responsible for the diverse actions of glucocorticoids. It was shown that GR gene gives rise a variety of mRNA species that produces several protein isoforms, among them GRα is the most abundant. In addition, GRα N-end-truncated protein isoforms (A, B, C, D) are generated by translational mechanisms. As it was found that the ratio between the translational isoforms amounts varied in different tissues and cell lines and distinct isoforms could control transcription of different sets of genes, molecular mechanisms underlining the synthesis of translational GRα isoforms are of great interest. It was considered that GRα isoform A is translated by a conventional linear scanning, isoform B is translated by leaky scanning, isoform C is translated by leaky scanning and ribosomal shunt whereas translation of isoform D occurs through ribosomal shunt only. Since the sequence organization of GRα mRNA strongly resembles the cases of ATF4 or ATF5, the well-known examples of reinitiation-dependent synthesis of functional isoforms, we hypothesize that translation of isoform C could be controlled by reinitiation mechanism also. If this assumption is correct, the ratio between GRα N-end isoforms could depend on the eIF2α phosphorylation state that could provide an additional connection between the GR and cellular stresses. We believe that this hypothesis could be of interest to plan more robust experiments or for better interpretation of available data.
Collapse
|