1
|
Guo YX, Fan T, Liu XQ, Chen MJ, Zhang NN, Chen YH, Wang XD. Nanosecond-pulsed plasma protects against bacterial fruit blotch and promotes melon seedling growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7917-7927. [PMID: 38829244 DOI: 10.1002/jsfa.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bacterial fruit blotch (BFB), known as the 'cancer' of cucurbits, is a seed-borne disease of melons caused by Acidovorax citrulli. Traditional chemical treatments for BFB are ineffective and adversely affect the environment. Using dielectric barrier discharge (DBD) nanosecond-pulsed plasma technology, melon seeds were treated to promote germination and growth and to control BFB. RESULTS Based on the evaluation parameters of seed germination, seedling growth, leaf yellowing and bacterial infection after seed plasma treatments, 9 min at 20 kV was selected as the optimal plasma discharge parameter. In this study, seedling growth was significantly improved after treating melon seeds carrying A. citrulli using this discharge parameter. The number of first true leaves measured on the eighth day was 2.3 times higher and the disease index was reduced by 60.5% compared to the control group. Attenuated total reflectance-Fourier transform infrared measurements show that plasma treatments penetrate the seed coat and denature polysaccharides and proteins in the seed kernel, affecting their growth and sterilization properties. CONCLUSION Pre-sowing treatment of melon seeds carrying A. citrulli using nanosecond-pulsed plasma technology can effectively control seedling BFB disease and promote melon seedling growth by optimizing DBD parameters. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Xi Guo
- College of Sciences/Xinjiang Production and Construction Corps, Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, China
| | - Ting Fan
- College of Sciences/Xinjiang Production and Construction Corps, Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, China
| | - Xiao-Qin Liu
- Department of Agriculture, Shihezi University, Shihezi, China
| | - Man-Jie Chen
- College of Sciences/Xinjiang Production and Construction Corps, Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, China
| | - Na-Na Zhang
- College of Sciences/Xinjiang Production and Construction Corps, Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, China
| | - Yu-He Chen
- College of Sciences/Xinjiang Production and Construction Corps, Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, China
| | - Xiao-Dong Wang
- Department of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Čėsnienė I, Čėsna V, Miškelytė D, Novickij V, Mildažienė V, Sirgedaitė-Šėžienė V. Seed Treatment with Cold Plasma and Electromagnetic Field: Changes in Antioxidant Capacity of Seedlings in Different Picea abies (L.) H. Karst Half-Sib Families. PLANTS (BASEL, SWITZERLAND) 2024; 13:2021. [PMID: 39124139 PMCID: PMC11314105 DOI: 10.3390/plants13152021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In the context of climate change, methods to improve the resistance of coniferous trees to biotic and abiotic stress are in great demand. The common plant response to exposure to vastly different stressors is the generation of reactive oxygen species (ROS) followed by activation of the defensive antioxidant system. We aimed to evaluate whether seed treatment with physical stressors can activate the activity of antioxidant enzymes and radical scavenging activity in young Picea abies (L.) H. Karst seedlings. For this, we applied seed treatment with cold plasma (CP) and electromagnetic field (EMF) and compared the response in ten different half-sib families of Norway spruce. The impact of the treatments with CP (1 min-CP1; 2 min-CP2) and EMF (2 min) on one-year-old and two-year-old P. abies seedlings was determined by the emergence rate, parameters of growth, and spectrophotometric assessment of antioxidant capacity (enzyme activity; DPPH and ABTS scavenging) in needles. The results indicated that the impact of seed treatment is strongly dependent on the genetic family. In the 577 half-sib family, the activity of antioxidant enzymes catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX), and glutathione reductase (GR) increased after EMF-treatment in one-year-old seedlings, while similar effects in 477 half-sib family were induced by CP2 treatment. In two-year-old seedlings, CP1-treatment increased CAT, APX, POX, GR, SOD, DPPH, and ABTS activity in the 457 half-sib family. However, no significant impact of the treatment with CP1 was determined in one-year-old seedlings in this family. The application of novel technologies and the consideration of the combinatory impact of genetic and physical factors could have the potential to improve the accumulation of compounds that play an essential role in the defense mechanisms of P. abies. Nevertheless, for different resistance and responses to stressors of plants, their genetic properties play an essential role. A comprehensive analysis of interactions among the stress factors (CP and EMF), genetic properties, and changes induced in the antioxidant system can be of importance both for the practical application of seed treatment in forestry and for understanding fundamental adaptation mechanisms in conifers.
Collapse
Affiliation(s)
- Ieva Čėsnienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| | - Vytautas Čėsna
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, LT-53361 Kaunas, Lithuania;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicien, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto 10, Akademija, LT-53361 Kaunas, Lithuania;
| | - Vaida Sirgedaitė-Šėžienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| |
Collapse
|
3
|
Almarashi JQM. Second grounded electrode non-equilibrium atmospheric pressure argon plasma jet impact on germination of basil ( Ocimum basilicum) seeds. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2194847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Perea-Brenes A, Garcia JL, Cantos M, Cotrino J, Gonzalez-Elipe AR, Gomez-Ramirez A, Lopez-Santos C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2023; 3:760-770. [PMID: 37766795 PMCID: PMC10520973 DOI: 10.1021/acsagscitech.3c00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Numerous works have demonstrated that cold plasma treatments constitute an effective procedure to accelerate seed germination under nonstress conditions. Evidence also exists about a positive effect of plasmas for germination under environmental stress conditions. For barley seeds, this work studies the influence of cold plasma treatments on the germination rate and initial stages of plant growth in common stress environments, such as drought, salinity, and low-temperature conditions. As a general result, it has been found that the germination rate was higher for plasma-treated than for untreated seeds. Plasma also induced favorable changes in plant and radicle dimensions, which depended on the environment. The obtained results demonstrate that plasma affects the biochemical metabolic chains of seeds and plants, resulting in changes in the concentration of biochemical growing factors, a faster germination, and an initially more robust plant growth, even under stress conditions. These changes in phenotype are accompanied by differences in the concentration of biomarkers such as photosynthetic pigments (chlorophylls a and b and carotenoids), reactive oxygen species, and, particularly, the amino acid proline in the leaves of young plants, with changes that depend on environmental conditions and the application of a plasma treatment. This supports the idea that, rather than an increase in seed water imbibition capacity, there are clear beneficial effects on seedling of plasma treatments.
Collapse
Affiliation(s)
- Alvaro Perea-Brenes
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Luis Garcia
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Manuel Cantos
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Cotrino
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Agustín R. Gonzalez-Elipe
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
| | - Ana Gomez-Ramirez
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Carmen Lopez-Santos
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville 41011, Spain
| |
Collapse
|
5
|
Zhang L, Guo Y, Tie J, Yao Z, Feng Z, Wu Q, Wang X, Luo H. Grating-like DBD plasma for air disinfection: Dose and dose-response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130780. [PMID: 36669408 DOI: 10.1016/j.jhazmat.2023.130780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Atmospheric pressure dielectric barrier discharge (DBD) plasma is an emerging technique for effective bioaerosol decontamination and is promising to be used in indoor environments to reduce infections. However, fundamental knowledge of the dose and dose-response characteristics of plasma-based disinfection technology is very limited. By examining the single-pass removal efficiency of S. lentus aerosol by in-duct grating-like DBD plasma reactors with varied discharge setups (gap distance, electrode size, number of discharge layers, frequency, dielectric material), it was found that the specific input energy (SIE) could be served as the dose for disinfection, and the efficiency was exponentially dependent on SIE in most cases. The corresponding susceptibility constants (Z values) were obtained hereinafter. Humidity was a prominent factor boosting the efficiency with a Z value of 0.36 L/J at relative humidity (RH) of 20% and 1.68 L/J at RH of 60%. MS2 phage showed a much higher efficiency of 2.66-3.08 log10 of reduction than those of S. lentus (38-85%) and E. coli (42%-95%) under the same condition. Using SIE as the dose, the performance of plasma reactors in the literature was compared and evaluated. This work provides a theoretical and engineering basis for air disinfection by plasma-based technology.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuntao Guo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jinfeng Tie
- Disinfection and Infection Control, Chinese PLA Center for Disease Prevention and Control, Beijing 100071, China.
| | - Zenghui Yao
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zihao Feng
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Wang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Leti LI, Gerber IC, Mihaila I, Galan PM, Strajeru S, Petrescu DE, Cimpeanu MM, Topala I, Gorgan DL. The Modulatory Effects of Non-Thermal Plasma on Seed’s Morphology, Germination and Genetics—A Review. PLANTS 2022; 11:plants11162181. [PMID: 36015483 PMCID: PMC9415020 DOI: 10.3390/plants11162181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Non-thermal plasma (NTP) is a novel and promising technique in the agricultural field that has the potential to improve vegetal material by modulating the expression of various genes involved in seed germination, plant immune response to abiotic stress, resistance to pathogens, and growth. Seeds are most frequently treated, in order to improve their ability to growth and evolve, but the whole plant can also be treated for a fast adaptive response to stress factors (heat, cold, pathogens). This review focuses mainly on the application of NTP on seeds. Non-thermal plasma treated seeds present both external and internal changes. The external ones include the alterations of seed coat to improve hydrophilicity and the internal ones refer to interfere with cellular processes that are later visible in metabolic and plant biology modifications. The usage of plasma aims to decrease the usage of fertilizers and pesticides in order to reduce the negative impact on natural ecosystem and to reduce the costs of production.
Collapse
Affiliation(s)
- Livia-Ioana Leti
- Plant Genetic Resources Bank, 720224 Suceava, Romania
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania
| | - Ioana Cristina Gerber
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Ilarion Mihaila
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Paula-Maria Galan
- Plant Genetic Resources Bank, 720224 Suceava, Romania
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania
| | | | | | | | - Ionut Topala
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania
- Correspondence: (I.T.); (D.-L.G.)
| | - Dragos-Lucian Gorgan
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania
- Correspondence: (I.T.); (D.-L.G.)
| |
Collapse
|
8
|
Sirgedaitė-Šėžienė V, Lučinskaitė I, Mildažienė V, Ivankov A, Koga K, Shiratani M, Laužikė K, Baliuckas V. Changes in Content of Bioactive Compounds and Antioxidant Activity Induced in Needles of Different Half-Sib Families of Norway Spruce ( Picea abies (L.) H. Karst) by Seed Treatment with Cold Plasma. Antioxidants (Basel) 2022; 11:1558. [PMID: 36009278 PMCID: PMC9405162 DOI: 10.3390/antiox11081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
In order to ensure sufficient food resources for a constantly growing human population, new technologies (e.g., cold plasma technologies) are being developed for increasing the germination and seedling growth without negative effects on the environment. Pinaceae species are considered a natural source of antioxidant compounds and are valued for their pharmaceutical and nutraceutical properties. In this study, the seeds of seven different Norway spruce half-sib families were processed for one or two minutes with cold plasma (CP) using dielectric barrier discharge (DBD) plasma equipment. At the end of the second vegetation season, the total flavonoid content (TFC), DPPH (2,2- diphenyl-1-picryl-hydrazyl-hydrate), and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) antioxidant activity, and the amounts of six organic acids (folic, malic, citric, oxalic, succinic, and ascorbic) were determined in the needles of different half-sib families of Norway spruce seedlings. The results show that the TFC, antioxidant activity, and amounts of organic acids in the seedling needles depended on both the treatment duration and the genetic family. The strongest positive effect on the TFC was determined in the seedlings of the 477, 599, and 541 half-sib families after seed treatment with CP for 1 min (CP1). The TFC in these families increased from 118.06 mg g-1 to 312.6 mg g-1 compared to the control. Moreover, seed treatment with CP1 resulted in the strongest increase in the antioxidant activity of the needles of the 541 half-sib family seedlings; the antioxidant activity, determined by DPPH and ABTS tests, increased by 30 and 23%, respectively, compared to the control. The obtained results indicate that the CP effect on the amount of organic acids in the needles was dependent on the half-sib family. It was determined that treatment with CP1 increased the amount of five organic acids in the needles of the 541 half-sib family seedlings. The presented results show future possibilities for using cold plasma seed treatment in the food and pharmacy industries.
Collapse
Affiliation(s)
- Vaida Sirgedaitė-Šėžienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Kaunas District, LT-53101 Girionys, Lithuania
| | - Ieva Lučinskaitė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Kaunas District, LT-53101 Girionys, Lithuania
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Str. 8, LT-44404 Kaunas, Lithuania
| | - Anatolii Ivankov
- Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Str. 8, LT-44404 Kaunas, Lithuania
| | - Kazunori Koga
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- National Institutes of Natural Sciences, Center for Novel Science Initiatives, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kristina Laužikė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas District, LT-54333 Babtai, Lithuania
| | - Virgilijus Baliuckas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Kaunas District, LT-53101 Girionys, Lithuania
| |
Collapse
|
9
|
Priatama RA, Pervitasari AN, Park S, Park SJ, Lee YK. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. Int J Mol Sci 2022; 23:4609. [PMID: 35562997 PMCID: PMC9105374 DOI: 10.3390/ijms23094609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows pesticide removal, and enhances biomass and yield. Currently, the complex molecular mechanisms of plasma treatment in plasma agriculture are fully unexplored, especially those related to seed germination and plant growth. Therefore, in this review, we have summarized the current progress in the application of the plasma treatment technique in plants, including plasma treatment methods, physical and chemical effects, and the molecular mechanism underlying the effects of low-temperature plasma treatment. Additionally, we have discussed the interactions between plasma and seed germination that occur through seed coat modification, reactive species, seed sterilization, heat, and UV radiation in correlation with molecular phenomena, including transcriptional and epigenetic regulation. This review aims to present the mechanisms underlying the effects of plasma treatment and to discuss the potential applications of plasma as a powerful tool, priming agent, elicitor or inducer, and disinfectant in the future.
Collapse
Affiliation(s)
- Ryza A. Priatama
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Aditya N. Pervitasari
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| |
Collapse
|
10
|
Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, Shinde M, Laux P, Luch A, Mathe V, Jahnke T, Chaskar M, Patil R. Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Adv 2022; 12:10467-10488. [PMID: 35425017 PMCID: PMC8982346 DOI: 10.1039/d2ra00809b] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/27/2022] [Indexed: 12/17/2022] Open
Abstract
Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University Pune 411007 India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Paul Dietrich
- SPECS Surface Nano Analysis GmbH Voltastrasse 5 13355 Berlin Germany
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Andreas Thissen
- SPECS Surface Nano Analysis GmbH Voltastrasse 5 13355 Berlin Germany
| | - Pravin N Didwal
- Department of Materials, University of Oxford Parks Road Oxford OX1 3PH UK
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET) Panchawati Pune 411008 India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR) Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Vikas Mathe
- Department of Physics, Savitribai Phule Pune University Pune 411007 India
| | - Timotheus Jahnke
- Max Planck Institute for Medical Research 61920 Heidelberg Germany
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University Pune 411007 India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University Pune 411007 India
| |
Collapse
|
11
|
Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:856. [PMID: 35406836 PMCID: PMC9003542 DOI: 10.3390/plants11070856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.
Collapse
Affiliation(s)
- Vida Mildaziene
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Anatolii Ivankov
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
| |
Collapse
|
12
|
Singh R, Kishor R, Singh V, Singh V, Prasad P, Aulakh NS, Tiwari UK, Kumar B. Radio-frequency (RF) room temperature plasma treatment of sweet basil seeds ( Ocimum basilicum L.) for germination potential enhancement by immaculation. JOURNAL OF APPLIED RESEARCH ON MEDICINAL AND AROMATIC PLANTS 2022; 26:100350. [PMID: 36568438 PMCID: PMC9764344 DOI: 10.1016/j.jarmap.2021.100350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 05/17/2023]
Abstract
Ocimum basilicum L. is an antiviral and immunity boosting medicinal plant and culinary herb. Potential use of sweet basils in COVID 19 prevention and management is making its demand rise. This study is aimed at germination potential enhancement of sweet basil seeds. Reported study is evidenced with scientific data of radio-frequency cold plasma treatment using Ar + O2 feed gas. O. basilicum seeds, placed inside the rotating glass bottle, were directly exposed to RF (13.56 MHz) plasma produced in Ar + O2 feed gas. Seed treatment was done using RF source power (60 W, 150 W, 240 W), process pressure (0.2 mbar, 0.4 mbar, 0.6 mbar), and treatment time (5 min, 10 min, 15 min) at different combinations. Results show that, the most efficient treatment provide up to ∼89 % of the germination percentage which is an enhancement by 32.3 % from the control. SEM images revealed slight shrinkage in the seed size with eroded appearance over the seed. Enhancement of lipid peroxidation, show that oxidation of seed coat may propagate internally. Water imbibition analysis, of the treated seeds, was carried out for 2-12 hours. Further analysis of seed weight, on every one hour, after soaking shows enhanced water absorption capability except the treatment at 240 W, 0.6 mbar and 15 min. Plasma treatment enhanced carbohydrate content and protein content which is reported to be due to increased primary metabolism. Whereas, increased activity of secondary metabolism results in the enhancement of enzymatic (catalase) and non-enzymatic antioxidants (proline). Vital growth parameters, such as SVI I and SVI II, got amplified by 37 % and 133 % respectively after treatment. Ameliorative effects of plasma treatment are found highly significant with a positive and significant correlation value (p < 0.01) between germination percentages, SVI I, SVI II, carbohydrate, protein and proline show their interrelationship. Ar + O2 plasma treatment is found to bring forth significant changes in the O. basilicum seeds which eventually enhanced the germination potential and it could be a very promising technology for the medicinal crop.
Collapse
Affiliation(s)
- Rajesh Singh
- Council of Scientific and Industrial Research (CSIR)-Central Scientific Instruments Organization (CSIO), Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Kishor
- Seed Quality Lab on MAPs, Genetics & Plant Breeding Division, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Singh
- Seed Quality Lab on MAPs, Genetics & Plant Breeding Division, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Vagmi Singh
- Seed Quality Lab on MAPs, Genetics & Plant Breeding Division, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Prasad
- Seed Quality Lab on MAPs, Genetics & Plant Breeding Division, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Navneet Singh Aulakh
- Council of Scientific and Industrial Research (CSIR)-Central Scientific Instruments Organization (CSIO), Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh Kumar Tiwari
- Council of Scientific and Industrial Research (CSIR)-Central Scientific Instruments Organization (CSIO), Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Birendra Kumar
- Seed Quality Lab on MAPs, Genetics & Plant Breeding Division, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Waskow A, Ibba L, Leftley M, Howling A, Ambrico PF, Furno I. An In Situ FTIR Study of DBD Plasma Parameters for Accelerated Germination of Arabidopsis thaliana Seeds. Int J Mol Sci 2021; 22:ijms222111540. [PMID: 34768976 PMCID: PMC8584140 DOI: 10.3390/ijms222111540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Current agricultural practices are not sustainable; however, the non-thermal plasma treatment of seeds may be an eco-friendly alternative to alter macroscopic plant growth parameters. Despite numerous successful results of plasma-seed treatments reported in the literature, the plasma-treatment parameters required to improve plant growth remain elusive due to the plethora of physical, chemical, and biological variables. In this study, we investigate the optimal conditions in our surface dielectric barrier discharge (SDBD) setup, using a parametric study, and attempt to understand relevant species in the plasma treatment using in situ Fourier transform infrared (FTIR) absorption spectroscopy. Our results suggest that treatment time and voltage are key parameters for accelerated germination; however, no clear conclusion on causative agents can be drawn.
Collapse
Affiliation(s)
- Alexandra Waskow
- Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.I.); (M.L.); (A.H.); (I.F.)
- Correspondence:
| | - Lorenzo Ibba
- Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.I.); (M.L.); (A.H.); (I.F.)
| | - Max Leftley
- Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.I.); (M.L.); (A.H.); (I.F.)
| | - Alan Howling
- Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.I.); (M.L.); (A.H.); (I.F.)
| | - Paolo F. Ambrico
- CNR, Istituto per la Scienza e Tecnologia dei Plasmi, Sede di Bari, Via Amendola 122/D, 70126 Bari, Italy;
| | - Ivo Furno
- Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.I.); (M.L.); (A.H.); (I.F.)
| |
Collapse
|
14
|
Development of a Multihole Atmospheric Plasma Jet for Growth Rate Enhancement of Broccoli Seeds. Processes (Basel) 2021. [DOI: 10.3390/pr9071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work aims to develop a multihole atmospheric pressure plasma jet (APPJ) device to increase the plasma area and apply it to a continuous seed treatment system. Broccoli seed was used to study the effects of an atmospheric pressure plasma jet on seed germination and growth rate. An argon flow rate of 4.2 lpm, a plasma power of 412 W, and discharge frequency of 76 kHz were used for seed treatment. The contact angle decreased strongly with the increase in treatment time from 20 s to 80 s. The broccoli seed’s outer surface morphology seemed to have been slightly modified to a smoother surface by the plasma treatment during the treatment time of 80 s. However, the cross-sectional images resulted from Synchrotron radiation X-ray tomographic microscopy (SRXTM) confirmed no significant difference between seeds untreated and treated by plasma for 80 s. This result indicates that plasma does not affect the bulk characteristics of the seed but does provide delicate changes to the top thin layer on the seed surface. After seven days of cultivation, the seed treated by plasma for 30 s achieved the highest germination and yield.
Collapse
|
15
|
Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M, Mildaziene V. Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Sci Rep 2021; 11:2539. [PMID: 33510231 PMCID: PMC7844220 DOI: 10.1038/s41598-021-81175-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
The use of low-temperature plasma for the pre-sowing seed treatment is still in the early stage of research; thus, numerous factors affecting germination percentage, seedling growth, and yield remains unknown. This study aimed to estimate how two critical factors, such as harvest year and seed coat color, affect the percentage of germination and seedling growth after plasma treatment. Radish seeds stored for 2 and 1 year after harvesting (harvested in 2017 and 2018) were sorted into two colors (brown and grey) to investigate the plasma effect on harvest year and seed coat color. We analyzed the amounts of seed phytohormones and antioxidant (γ-tocopherol) were analyzed using mass spectrometry, and physical changes were studied using SEM, EDX, and EPR to understand the mechanism of plasma-induced changes in radish seeds. The obtained results revealed that plasma treatment on seeds affects the germination kinetics, and the maximal germination percentage depends on seed color and the time of seed storage after harvest. Through this study, for the first time, we demonstrated that physical and chemical changes in radish seeds after plasma treatment depends upon the seed color and harvest year. Positive effects of plasma treatment on growth are stronger for sprouts from seeds harvested in 2017 than in 2018. The plasma treatment effect on the sprouts germinated from grey seeds effect was stronger than sprouts from brown radish seeds. The amounts of gibberellin A3 and abscisic acid in control seeds strongly depended on the seed color, and plasma induced changes were better in grey seeds harvested in 2017. Therefore, this study reveals that Air scalar-DBD plasma's reactive oxygen and nitrogen species (RONS) can efficiently accelerate germination and growth in older seeds.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Kenji Ishikawa
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takamasa Okumura
- Department of Electronics, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazunori Koga
- Department of Electronics, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Department of Electronics, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vida Mildaziene
- Faculty of Natural Sciences, Vytautas Magnus University, 44404, Kaunas, Lithuania
| |
Collapse
|
16
|
A Coaxial Dielectric Barrier Discharge Reactor for Treatment of Winter Wheat Seeds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-thermal atmospheric pressure plasmas have been recently explored for their potential usage in agricultural applications as an interesting alternative solution for a potential increase in food production with a minor impact on the ecosystem. However, the adjustment and optimization of plasma sources for agricultural applications in general is an important study that is commonly overlooked. Thus, in the present work, a dielectric barrier discharge (DBD) reactor with coaxial geometry designed for the direct treatment of seeds is presented and investigated. To ensure reproducible and homogeneous treatment results, the reactor mechanically shakes the seeds during treatment, and ambient air is admixed while the discharge runs. The DBD, operating with argon and helium, produces two different chemically active states of the system for seed modification. The temperature evolution was monitored to guarantee a safe manipulation of seeds, whereas a physiological temperature was assured by controlling the exposure time. Both treatments led to a remarkable increase in wettability and acceleration in germination. The present study showed faster germination acceleration (60% faster after 24 h) and a lower water contact angle (WCA) (82% reduction) for winter wheat seeds by using the described argon discharge (with air impurities). Furthermore, the treatment can be easily optimized by adjusting the electrical parameters.
Collapse
|
17
|
The Effects of Plasma on Plant Growth, Development, and Sustainability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cold atmospheric or low pressure plasma has activation effects on seed germination, plant growth and development, and plant sustainability, and prior experimental studies showing these effects are summarized in this review. The accumulated data indicate that the reactive species generated by cold plasma at atmospheric or low pressure may be involved in changing and activating the physical and chemical properties, physiology, and biochemical and molecular processes in plants, which enhances germination, growth, and sustainability. Although laboratory and field experiments are still required, plasma may represent a tool for efficient adaptation to changes in the climate and agricultural environments.
Collapse
|
18
|
Abstract
In recent years, non-thermal plasma (NTP) application in agriculture is rapidly increasing. Many published articles and reviews in the literature are focus on the post-harvest use of plasma in agriculture. However, the pre-harvest application of plasma still in its early stage. Therefore, in this review, we covered the effect of NTP and plasma-treated water (PTW) on seed germination and growth enhancement. Further, we will discuss the change in biochemical analysis, e.g., the variation in phytohormones, phytochemicals, and antioxidant levels of seeds after treatment with NTP and PTW. Lastly, we will address the possibility of using plasma in the actual agriculture field and prospects of this technology.
Collapse
|
19
|
Attri P, Razzokov J, Yusupov M, Koga K, Shiratani M, Bogaerts A. Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study. Int J Biol Macromol 2020; 148:657-665. [DOI: 10.1016/j.ijbiomac.2020.01.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
|
20
|
Lee EJ, Khan MSI, Shim J, Kim YJ. Roles of oxides of nitrogen on quality enhancement of soybean sprout during hydroponic production using plasma discharged water recycling technology. Sci Rep 2018; 8:16872. [PMID: 30443039 PMCID: PMC6237935 DOI: 10.1038/s41598-018-35385-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 01/30/2023] Open
Abstract
This study was performed to assess the effect of plasma-discharged water recycling technology as irrigation water on soybean sprout production. Two different types of irrigation water were used individually for cultivation, including plasma discharged water as a source of oxides of nitrogen and tap water, irrigation water was recycled for every 30 minutes. Plasma discharged irrigation water reduced overall 4.3 log CFU/ml aerobic microbe and 7.0 log CFU/ml of artificially inoculated S. Typhimurium within 5 minutes and 2 minutes, respectively, therefore sprout production occurs in a hygienic environment. Using of plasma-discharged water for cultivation, increases the amount of ascorbate, asparagine, and γ-aminobutyric acid (GABA) significantly (p < 0.05), in the part of cotyledon and hypocotyl of soybean sprout during 1 to 4 days of farming. A NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (cPTIO), was added in irrigation water to elucidate the roles of the oxides of nitrogen such as NO3-, NO2- generated in plasma discharged water. It was observed that all three nutrients decreased in the cotyledon part, whereas ascorbate and GABA contents increased in the hypocotyl and radicle part of bean sprout for the same duration of farming. The addition of NO scavenger in the irrigation water also reduced growth and overall yield of the soybean sprouts. A recycling water system with plasma-discharged water helped to reduce the amount of water consumption and allowed soybean sprouts growth in a hygienic environment during the hydroponic production.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Faculty of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Saiful Islam Khan
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea
| | - Jaewon Shim
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea
| | - Yun-Ji Kim
- Division of Food Safety and Distribution, Korea Food Research Institute, Wanju-Gun, Jeollabuk-Do, 55365, Republic of Korea.
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350, Republic of Korea.
| |
Collapse
|
21
|
Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 2018; 8:10218. [PMID: 29977069 PMCID: PMC6033864 DOI: 10.1038/s41598-018-28600-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Collapse
Affiliation(s)
- Pankaj Attri
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea.
| |
Collapse
|
22
|
Attri P, Kim M, Sarinont T, Ha Choi E, Seo H, Cho AE, Koga K, Shiratani M. The protective action of osmolytes on the deleterious effects of gamma rays and atmospheric pressure plasma on protein conformational changes. Sci Rep 2017; 7:8698. [PMID: 28821765 PMCID: PMC5562882 DOI: 10.1038/s41598-017-08643-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023] Open
Abstract
Both gamma rays and atmospheric pressure plasma are known to have anticancer properties. While their mechanism actions are still not clear, in some contexts they work in similar manner, while in other contexts they work differently. So to understand these relationships, we have studied Myoglobin protein after the treatment of gamma rays and dielectric barrier discharge (DBD) plasma, and analyzed the changes in thermodynamic properties and changes in the secondary structure of protein after both treatments. The thermodynamic properties were analyzed using chemical and thermal denaturation after both treatments. We have also studied the action of gamma rays and DBD plasma on myoglobin in the presence of osmolytes, such as sorbitol and trehalose. For deep understanding of the action of gamma rays and DBD plasma, we have analyzed the reactive species generated by them in buffer at all treatment conditions. Finally, we have used molecular dynamic simulation to understand the hydrogen peroxide action on myoglobin with or without osmolytes, to gain deeper insight into how the osmolytes can protect the protein structure from the reactive species generated by gamma rays and DBD plasma.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.,Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea
| | - Thapanut Sarinont
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Hyunwoong Seo
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong, 02841, Korea.
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
23
|
Sarinont T, Katayama R, Wada Y, Koga K, Shiratani M. Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water. ACTA ACUST UNITED AC 2017. [DOI: 10.1557/adv.2017.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Attri P, Kim M, Choi EH, Cho AE, Koga K, Shiratani M. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays. Phys Chem Chem Phys 2017; 19:25277-25288. [DOI: 10.1039/c7cp04083k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TEMS IL can protect proteins against the reactive species generated by gamma rays and plasma.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 01897
- Korea
- Faculty of Information Science and Electrical Engineering
| | - Minsup Kim
- Department of Bioinformatics
- Korea University
- Sejong 02841
- Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 01897
- Korea
| | - Art E. Cho
- Department of Bioinformatics
- Korea University
- Sejong 02841
- Korea
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering
- Kyushu University
- Fukuoka
- Japan
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering
- Kyushu University
- Fukuoka
- Japan
| |
Collapse
|
25
|
Hori M, Choi EH, Toyokuni S. Low-temperature plasma in biology and medicine. Arch Biochem Biophys 2016; 605:1-2. [DOI: 10.1016/j.abb.2016.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|