1
|
Abbasi Moajani F, Soozangar N, Amani M, Jeddi F, Salimnejad R, Aslani MR. The suppressive effects of crocin from saffron on allergic airway inflammation through Drp1/Nfr1/Mfn2/Pgc1-alpha signaling pathway in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118862. [PMID: 39326816 DOI: 10.1016/j.jep.2024.118862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron is derived from the dried stigmas of Crocus sativus L., which was considered by ancient nations for food and medicinal purposes. In traditional medicine, the therapeutic use of Crocus sativus includes antispasmodic, antitussive and expectorant. AIM OF THE STUDY Mitochondrial fusion, fission, biogenesis, and mitophagy are essential processes for maintaining mitochondrial dynamics in response to cellular stress. The primary objective of this research was to examine how crocin affected the levels of important mitochondrial regulators, including Drp1, Pgc1α, Nrf1, and Mfn2, in the lung tissue of ovalbumin-sensitized mice. MATERIALS AND METHODS A total of fifty male BALB/C mice were randomly assigned to five unique groups (n = 10 for each group), including the control group, ovalbumin-sensitized group (OVA), OVA group treated with 30 mg/kg of crocin, OVA group treated with 60 mg/kg of crocin, and OVA group treated with 1 mg/kg of dexamethasone. Post-sensitization and ovalbumin challenge, mice lung tissues were evaluated for the expression of Drp1, Pgc1α, Nrf1, and Mfn2 mRNA levels using real-time PCR as well as histopathological assessments. RESULTS In the OVA group, there was a significant elevated in inflammatory cells such as eosinophils, neutrophils, macrophages, and lymphocytes; however, crocin (both concentrations) and dexamethasone intervention showed significant inhibitory effects (P < 0.01 to P < 0.001). Moreover, an increase in the expression of Drp1, Pgc1α, and Nrf1 levels was seen in the OVA group, while crocin and dexamethasone showed protective benefits (P < 0.05 to P < 0.001). Furthermore, the levels of Mfn2 were reduced in the lung tissue of mice exposed to ovalbumin, but this decrease was reversed by crocin 60 (P < 0.05) and dexamethasone treatment (P < 0.001). CONCLUSION In mice with OVA sensitization, the balance of mitochondrial dynamics in lung tissue was disrupted, but intervention of crocin identified to have a protective effect.
Collapse
Affiliation(s)
- Fatima Abbasi Moajani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mojtaba Amani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ramin Salimnejad
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Morris DR, Qu Y, de Mello AH, Jones-Hall YL, Liu T, Weglarz M, Ivanciuc T, Garofalo RP, Casola A. Hypoxia-inducible-factors differentially contribute to clinical disease and viral replication during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553422. [PMID: 37645750 PMCID: PMC10461990 DOI: 10.1101/2023.08.15.553422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hypoxia-inducible-factors (HIF) are transcription factors that regulate cellular adaptation to hypoxic conditions, enabling cells to survive in low-oxygen environments. Viruses have evolved to activate this pathway to promote successful viral infection, therefore modulation of HIFs could represent a novel antiviral strategy. In previous in vitro studies, we found that respiratory syncytial virus (RSV), a leading cause of respiratory illness, stabilizes HIFs under normoxic conditions, with inhibition of HIF-1α resulting in reduced viral replication. Despite several HIF modulating compounds being tested/approved for use in other non-infectious models, little is known about their efficacy against respiratory viruses using relevant animal models. This study aimed to characterize the disease modulating properties and antiviral potential of HIF-1α (PX478) and HIF-2α (PT2385) inhibitors in RSV-infected BALB/c mice. We found that inhibition of HIF-1α worsen clinical disease parameters, while simultaneously improving lung inflammation and airway function. Additionally, blocking HIF-1α resulted in significantly reduced viral titer at early and peak time points of RSV replication. In contrast, inhibition of HIF-2α was associated with improved clinical parameters, with no changes in airway function, enhanced immune responses and reduced early and peak lung viral replication. Analysis of lung cells found significant modification in the T-cell compartment that correlated with changes in lung pathology and viral titers in response to each HIF inhibitor administration. This study underscores the differential roles of HIF proteins in RSV infection and highlights the need for further characterization of the compounds that are currently in use or under therapeutic consideration.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- School of Population & Public Health, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Meredith Weglarz
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P. Garofalo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Wang C, Liu Z, Xie X, Li Y, Sun L. Klotho improves Der p1-induced bronchial epithelial cell damage by inhibiting endoplasmic reticulum stress to regulate mitochondrial function. Tissue Cell 2024; 93:102646. [PMID: 39693897 DOI: 10.1016/j.tice.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Asthma is a prevalent chronic pediatric lung disease which is commonly perceived as a syndrome of airway inflammation characterized by cough and wheeze in clinic. Klotho is implicated in diverse cellular activities, including inflammation, oxidative stress and apoptosis. This paper aims to explore the role of klotho in asthma and investigate the relevant molecular reaction mechanisms. To this end, we used Der p1 to induce an in vitro asthma model in BEAS-2B cells. Klotho expression was manipulated in Der p1-induced BEAS-2B cells with overexpression and its effects on Der p1-induced pathologies including apoptosis and inflammatory cytokine levels and the expressions of oxidative stress-related markers and major mediators in endoplasmic reticulum stress (ER stress) were investigated. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening were also detected. Our data demonstrated that Der p1 stimulation decreased klotho expression and klotho overexpression inhibited the Der p1-induced inflammation, oxidative stress and apoptosis. Overexpressing klotho inhibited ER stress to modulate mitochondrial function. The inhibitory effects of klotho overexpression were reversed by ER stress agonist tunicamycin. This paper validated the role of klotho in asthma pathogenies and developed prospective therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Caiwen Wang
- Changchun University of Chinese Medicine, Changchun City, Jilin Province 130117, PR China
| | - Zhimei Liu
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China
| | - Xiaofei Xie
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China
| | - Yiquan Li
- Changchun University of Chinese Medicine, Changchun City, Jilin Province 130117, PR China.
| | - Liping Sun
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province 130000, PR China.
| |
Collapse
|
4
|
Davigo M, Van Schooten FJ, Wijnhoven B, Drittij MJ, Dubois L, Opperhuizen A, Talhout R, Remels AHV. Alterations in the molecular regulation of mitochondrial metabolism in human alveolar epithelial cells in response to cigarette- and heated tobacco product emissions. Toxicol Lett 2024; 401:89-100. [PMID: 39284537 DOI: 10.1016/j.toxlet.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Mitochondrial abnormalities in lung epithelial cells have been associated with chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke (CS) can induce alterations in the molecular pathways regulating mitochondrial function in lung epithelial cells. Recently, heated tobacco products (HTPs) have been marketed as harm reduction products compared with regular cigarettes. However, the effects of HTP emissions on human alveolar epithelial cell metabolism and on the molecular mechanisms regulating mitochondrial content and function are unclear. In this study, human alveolar epithelial cells (A549) were exposed to cigarette or HTP emissions in the form of liquid extracts. The oxygen consumption rate of differently exposed cells was measured, and mRNA and protein abundancy of key molecules involved in the molecular regulation of mitochondrial metabolism were assessed. Furthermore, we used a mitophagy detection probe to visualize mitochondrial breakdown over time in response to the extracts. Both types of extracts induced increases in basal-, maximal- and spare respiratory capacity, as well as in cellular ATP production. Moreover, we observed alterations in the abundancy of regulatory molecules controlling mitochondrial biogenesis and mitophagy. Mitophagy was not significantly altered in response to the extracts, as no significant differences compared to vehicle-treated cells were observed.
Collapse
Affiliation(s)
- Michele Davigo
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands; Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Frederik Jan Van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Bas Wijnhoven
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marie Jose Drittij
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Antoon Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands; Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Reinskje Talhout
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, the Netherlands
| | - Alexander H V Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
5
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Bergwik J, Liu J, Padra M, Bhongir RKV, Tanner L, Xiang Y, Lundblad M, Egesten A, Adner M. A novel quinoline with airway relaxant effects and anti-inflammatory properties. Respir Res 2024; 25:146. [PMID: 38555460 PMCID: PMC10981829 DOI: 10.1186/s12931-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Médea Padra
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | | | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden.
| |
Collapse
|
7
|
An N, An J, Zeng T, Wang S, Li P, Hu X, Shen Y, Liu L, Wen F. Research progress of mitochondria in chronic obstructive pulmonary disease: a bibliometric analysis based on the Web of Science Core Collection. J Thorac Dis 2024; 16:215-230. [PMID: 38410585 PMCID: PMC10894413 DOI: 10.21037/jtd-23-777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/10/2023] [Indexed: 02/28/2024]
Abstract
Background Due to its high morbidity and mortality, chronic obstructive pulmonary disease (COPD) has become a major global healthcare issue. Although there is abundant research regarding COPD, a bibliometric analysis of the literature related to mitochondria and COPD is lacking. Thus this study aimed to summarize the research status, research direction, and research hotspots of the published articles concerning COPD and mitochondria. Methods A literature search for included publications related to COPD and mitochondria was carried out on the Web of Science Core Collection from the date of database establishment to December 15, 2022. A subsequent bibliometric and visual analysis of the included publications was conducted via Microsoft Excel, R software, CiteSpace, and VOSviewer. Results A total of 227 published articles on COPD and mitochondria from 139 journals were included. Over the study period, the annual publication number and citation frequency in this field both showed a trend of continuous growth. The United States had the highest centrality and was the most productive country. The frequently occurring keywords were "oxidative stress", "obstructive pulmonary disease", "dysfunction", "mitochondria", "inflammation", and "cigarette smoke", among others. Recent research hotspots included autophagy, model, mitochondria, health, and extracellular vesicles (EVs). Despite an abundance and variety of research, there is still relatively little academic communications between scholars and institutions. Conclusions This bibliometric study can help researchers gain a quick overview of the research into mitochondria and COPD and thus inform novel ideas and directions for future research in this field.
Collapse
Affiliation(s)
- Naer An
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Jing An
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Tingting Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Shuyan Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xueru Hu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Lian Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
8
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Wan X, Chen L, Zhu Z, Luo P, Hang D, Su J, Tao R, Zhou J, Fan X. Association of Serum Calcium with the Risk of Chronic Obstructive Pulmonary Disease: A Prospective Study from UK Biobank. Nutrients 2023; 15:3439. [PMID: 37571375 PMCID: PMC10421293 DOI: 10.3390/nu15153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Although intracellular calcium had been demonstrated to involve in the pathogenesis of chronic obstructive pulmonary disease (COPD), the association between serum calcium and COPD risk remains unclear. METHODS We included 386,844 participants with serum calcium measurements and without airway obstruction at the baseline from UK Biobank. The restricted cubic splines were used to assess the dose-response relationship. Multivariable cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of albumin-corrected calcium concentrations with the risk of COPD incidence and mortality. RESULTS During a median of 12.3 years of follow-up, 10,582 incident COPD cases were documented. A linear positive association was observed between serum calcium concentrations and the risk of COPD incidence. Compared to participants with normal serum calcium (2.19-2.56 mmol/L), a 14% higher risk of COPD was observed in hypercalcemic participants (≥2.56 mmol/L, HR = 1.14; 95% CI: 1.02-1.27). No significant effect modifications were observed in stratified variables. In survival analysis, 215 COPD-specific deaths were documented after a median survival time of 3.8 years. Compared to participants with normal serum calcium, hypercalcemic participants had a 109% (HR = 2.09, 95% CI: 1.15-3.81) increased risk for COPD-specific mortality. CONCLUSION Our study indicated that hypercalcemia was associated with an elevated risk of COPD incidence and mortality in the European population, and suggested that serum calcium may have a potential impact on the progression of COPD.
Collapse
Affiliation(s)
- Xinglin Wan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (D.H.); (R.T.)
| | - Lulu Chen
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Zheng Zhu
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Pengfei Luo
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Dong Hang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (D.H.); (R.T.)
| | - Jian Su
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Ran Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (D.H.); (R.T.)
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Jinyi Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.W.); (D.H.); (R.T.)
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| | - Xikang Fan
- Department of Non-Communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; (L.C.); (Z.Z.); (P.L.); (J.S.)
| |
Collapse
|
10
|
Mahadev Bhat S, Yap JQ, Ramirez-Ramirez OA, Delmotte P, Sieck GC. Cell-Based Measurement of Mitochondrial Function in Human Airway Smooth Muscle Cells. Int J Mol Sci 2023; 24:11506. [PMID: 37511264 PMCID: PMC10380259 DOI: 10.3390/ijms241411506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular mitochondrial function can be assessed using high-resolution respirometry that measures the O2 consumption rate (OCR) across a number of cells. However, a direct measurement of cellular mitochondrial function provides valuable information and physiological insight. In the present study, we used a quantitative histochemical technique to measure the activity of succinate dehydrogenase (SDH), a key enzyme located in the inner mitochondrial membrane, which participates in both the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) as Complex II. In this study, we determine the maximum velocity of the SDH reaction (SDHmax) in individual human airway smooth muscle (hASM) cells. To measure SDHmax, hASM cells were exposed to a solution containing 80 mM succinate and 1.5 mM nitroblue tetrazolium (NBT, reaction indicator). As the reaction proceeded, the change in optical density (OD) due to the reduction of NBT to its diformazan (peak absorbance wavelength of 570 nm) was measured using a confocal microscope with the pathlength for light absorbance tightly controlled. SDHmax was determined during the linear period of the SDH reaction and expressed as mmol fumarate/liter of cell/min. We determine that this technique is rigorous and reproducible, and reliable for the measurement of mitochondrial function in individual cells.
Collapse
Affiliation(s)
| | | | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (S.M.B.); (J.Q.Y.); (O.A.R.-R.); (P.D.)
| |
Collapse
|
11
|
Huang J, Chen Y, Peng X, Gong Z, Wang Y, Li Y, Xu M, Ma Y, Yu C, Cai S, Zhao W, Zhao H. Mitoquinone ameliorated airway inflammation by stabilizing β-catenin destruction complex in a steroid-insensitive asthma model. Biomed Pharmacother 2023; 162:114680. [PMID: 37060658 DOI: 10.1016/j.biopha.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial β-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of β-catenin in TDI-induced asthma. METHOD Mice were sensitized and challenged with TDI to generate a steroid-insensitive asthma model. Human bronchial epithelial cells (16HBE) were exposed to TDI-human serum albumin (HSA) and ethidium bromide(EB) to simulate the TDI-induced asthma model and mitochondrial dysfunction. RESULTS MitoQ dramatically attenuated TDI-induced AHR, airway inflammation, airway goblet cell metaplasia, and collagen deposition and markedly protected epithelial mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species (ROS). MitoQ administration stabilized β-catenin destruction complex from disintegration and inhibited the activation of β-catenin. Similarly, YAP1, an important constituent of β-catenin destruction complex, was inhibited by Dasatinib, which alleviated airway inflammation and the activation of β-catenin, and restored mitochondrial mass. In vitro, treating 16HBE cells with EB led to the activation of YAP1 and β-catenin signaling, decreased the expression of glucocorticoid receptors and up-regulated interleukin (IL)-1β, IL6 and IL-8 expression. CONCLUSION Our results indicated that mitochondria mediates airway inflammation by regulating the stability of the β-catenin destruction complex and MitoQ might be a promising therapeutic approach to improve airway inflammation and severe asthma. AVAILABILITY OF DATA AND MATERIALS The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.
Collapse
Affiliation(s)
- Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Karaman Y, Kaya-Yasar Y, Eylem CC, Onder SC, Nemutlu E, Bozkurt TE, Sahin-Erdemli I. The effect of mitochondria-targeted slow hydrogen sulfide releasing donor AP39-treatment on airway inflammation. Eur J Pharmacol 2023; 946:175619. [PMID: 36828102 DOI: 10.1016/j.ejphar.2023.175619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H2S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1β and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2S to the mitochondria may be a new therapeutic approach in airway inflammation.
Collapse
Affiliation(s)
- Yasemin Karaman
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Yesim Kaya-Yasar
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Turkey
| | - Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Sevgen Celik Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Bioanalytic and Omics Laboratory, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
13
|
Long COVID and Mitochondrial Dysfunction. Holist Nurs Pract 2023; 37:51-53. [PMID: 36378091 DOI: 10.1097/hnp.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Fang L, Wang X, Zhang M, Khan P, Tamm M, Roth M. MicroRNA-101-3p Suppresses mTOR and Causes Mitochondrial Fragmentation and Cell Degeneration in COPD. Can Respir J 2022; 2022:5933324. [PMID: 36518817 PMCID: PMC9744603 DOI: 10.1155/2022/5933324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Cigarette smoke is assumed to cause the loss of airway wall structure in chronic obstructive pulmonary disease (COPD) by reducing airway smooth muscle cell (ASMC) function. It also modifies mTOR activity, microRNA (miR)-101-3p expression, and mitochondria function. Here, the link between miR-101-3p and mTOR-regulated mitochondria integrity and ASMC deterioration was assessed. METHODS Disease-specific miR-101-3p expression was determined by RT-PCR in primary ASMC (non-COPD smokers: n = 6; COPD: n = 8; healthy: n = 6). The regulatory effect of miR-101-3p modification on mTOR expression, mitochondrial fragmentation, and remodeling properties (α-SMA, fibronectin, MTCO2, and p70S6 kinase) was assessed in ASMC (healthy nonsmokers: n = 3; COPD: n = 3) by Western blotting and immunofluorescence microscopy. MiR-101-3p was modified by specific mimics or inhibitors, in ASMC stimulated with TNF-α (10 ng/ml) or cigarette smoke extract (CSE). RESULTS MiR-101-3p expression was significantly higher in ASMC of COPD patients, compared to ASMC of healthy or active smokers. MiR-101-3p expression was increased by TNF-α or CSE. TNF-α or miR-101-3p deteriorated ASMC and mitochondria, while decreasing mTOR signaling, α-SMA, fibronectin, and MTCO2. MiR-101-3p inhibition reduced ASMC deterioration and mitochondrial fragmentation. CONCLUSION Constitutive high miR-101-3p expression characterizes COPD-ASMC, causing increased mitochondrial fragmentation and ASMC deterioration. Thus, reactivation mTOR or blocking miR-101-3p presents a potential new strategy for COPD therapy.
Collapse
Affiliation(s)
- Lei Fang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Xinggang Wang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
- Reproductive Medicine Centre, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ming Zhang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Petra Khan
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Michael Tamm
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Michael Roth
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
16
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL, van Schooten FJ, Opperhuizen A, Hiemstra PS, Remels AHV. Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech 2022; 15:dmm049247. [PMID: 35344036 PMCID: PMC8990921 DOI: 10.1242/dmm.049247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/29/2021] [Indexed: 01/13/2023] Open
Abstract
Exposure to cigarette smoke (CS) is the primary risk factor for developing chronic obstructive pulmonary disease. The impact of CS exposure on the molecular mechanisms involved in mitochondrial quality control in airway epithelial cells is incompletely understood. Undifferentiated or differentiated primary bronchial epithelial cells were acutely/chronically exposed to whole CS (WCS) or CS extract (CSE) in submerged or air-liquid interface conditions. Abundance of key regulators controlling mitochondrial biogenesis, mitophagy and mitochondrial dynamics was assessed. Acute exposure to WCS or CSE increased the abundance of components of autophagy and receptor-mediated mitophagy in all models. Although mitochondrial content and dynamics appeared to be unaltered in response to CS, changes in both the molecular control of mitochondrial biogenesis and a shift toward an increased glycolytic metabolism were observed in particular in differentiated cultures. These alterations persisted, at least in part, after chronic exposure to WCS during differentiation and upon subsequent discontinuation of WCS exposure. In conclusion, smoke exposure alters the regulation of mitochondrial metabolism in airway epithelial cells, but observed alterations may differ between various culture models used. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ying Wang
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Daan Beentjes
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Phyllis J. J. Jessen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dennis K. Ninaber
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Niki L. Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Primary Lung Culture Facility, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, PO Box 8433, 3503 RK Utrecht, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Alexander H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Gao M, Liang C, Hong W, Yu X, Zhou Y, Sun R, Li H, Huang H, Gan X, Yuan Z, Zhang J, Chen J, Mo Q, Wang L, Lin B, Li B, Ran P. Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118464. [PMID: 34763019 DOI: 10.1016/j.envpol.2021.118464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The use of biomass for cooking and heating is considered an important factor associated with chronic obstructive pulmonary disease (COPD), but few studies have previously addressed its underlying mechanisms. Therefore, this research aimed to evaluate the effects of biomass-related PM2.5 (BRPM2.5) exposure on 16HBE human airway epithelial cells and in mice with regard to mitochondrial dysfunction. Our study indicated that BRPM2.5 exposure of 16HBE cells resulted in mitochondrial dysfunction, including decreased mitochondrial membrane potential, increased expression of fission proteins-phospho-DRP1, increased mitochondrial ROS (mtROS), and decreased levels of ATP. BRPM2.5 altered the mitochondrial metabolism of 16HBE cells by decreasing mitochondrial oxygen consumption and glycolysis. However, Mitochondria targeted peptide SS-31 eliminated mitochondrial ROS and alleviated the ATP deficiency and proinflammatory cytokines release. BRPM2.5 exposure resulted in abnormal mitochondrial morphological alterations both in 16HBE and in lung tissue. Taken together, these results suggest that BRPM2.5 has detrimental effects on human airway epithelial cells, leading to mitochondrial dysfunction, abnormal mitochondrial metabolism and altered mitochondrial dynamics. The present study provides the first evidence that disruption of mitochondrial structure and mitochondrial metabolism may be one of the mechanisms of BRPM2.5-induced respiratory dysfunction.
Collapse
Affiliation(s)
- Mi Gao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyuan Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haichao Huang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuhong Gan
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ze Yuan
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiudi Mo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luyao Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021; 13:pharmaceutics13081314. [PMID: 34452275 PMCID: PMC8402194 DOI: 10.3390/pharmaceutics13081314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.
Collapse
|
20
|
Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2021; 85:100990. [PMID: 34281719 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
|
21
|
Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021; 58:184-199. [PMID: 33766748 DOI: 10.1016/j.mito.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021; 11:life11030232. [PMID: 33799853 PMCID: PMC7998235 DOI: 10.3390/life11030232] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, Ann Arbor, MI 48109, USA
- Correspondence:
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|
23
|
Ogger PP, Silva JD, Aghapour M, Mahmutovic Persson I, Tulen C, Jurkowska R, Ubags ND. Early Career Members at the ERS Lung Science Conference 2020: metabolic alterations in lung ageing and disease. Breathe (Sheff) 2021; 16:200063. [PMID: 33447269 PMCID: PMC7792764 DOI: 10.1183/20734735.0063-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Every year, the European Respiratory Society (ERS) organises the Lung Science Conference (LSC) in Estoril, Portugal, to discuss basic and translational science. The topic of the LSC 2020 was “Metabolic alterations in lung ageing and disease”. In addition to an outstanding scientific programme, the LSC provides excellent opportunities for career development and inclusion of Early Career Members (ECMs). All scientific and poster sessions are chaired by an ECM who is paired with a senior faculty member to allow ECMs to become acquainted with session chairing. In addition, 40 travel bursaries are made available to abstract authors and all bursary recipients are invited to take part in a mentorship lunch. Moreover, there is a session organised by the Early Career Members Committee (ECMC) dedicated to career development. Here, we describe the scientific highlights of LSC 2020 for those who could not attend. The Lung Science Conference 2020 brought together leading experts in the field to discuss the latest cutting-edge science, as well as various career development opportunities for early career membershttps://bit.ly/2XZ5YGQ
Collapse
Affiliation(s)
- Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Johnatas Dutra Silva
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Irma Mahmutovic Persson
- Institution of Medical Radiation Physics, Dept of Translational Medicine, Lund University, Malmö, Sweden
| | - Christy Tulen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Dept of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| |
Collapse
|
24
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Receptors for pro-resolving mediators as a therapeutic tool for smooth muscle remodeling-associated disorders. Pharmacol Res 2020; 164:105340. [PMID: 33276103 DOI: 10.1016/j.phrs.2020.105340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Respiratory airway, blood vessel and intestinal wall remodeling, in which smooth muscle remodeling plays a major role, is a key pathological event underlying the development of several associated diseases, including asthma, cardiovascular disorders (e.g., atherosclerosis, hypertension, and aneurism formation), and inflammatory bowel disease. However, the mechanisms underlying these remodeling processes remain poorly understood. We hypothesize that the creation of chronic inflammation-mediated networks that support and exacerbate the airway, as well as vascular and intestinal wall remodeling, is a crucial pathogenic mechanism governing the development of the associated diseases. The failed inflammation resolution might be one of the causal pathogenic mechanisms. Hence, it is reasonable to assume that applying specialized, pro-resolving mediators (SPMs), acting via cognate G-protein coupled receptors (GPCRs), could potentially be an effective pathway for treating these disorders. However, several obstacles, such as poor understanding of the SPM/receptor signaling pathways, SMP rapid inactivation as well as their complex and costly synthesis, limit their translational potential. In this connection, stable, small-molecule SPM mimetics and receptor agonists have emerged as new, potentially suitable drugs. It has been recently shown in preclinical studies that they can effectively attenuate the manifestations of asthma, atherosclerosis and Crohn's disease. Remarkably, some biased SPM receptor agonists, which cause a signaling response in the desired inflammation pro-resolving direction, revealed similar beneficial effects. These encouraging observations suggest that SPM mimetics and receptor agonists can be applied as a novel approach for the treatment of various chronic inflammation conditions, including airway, vascular and intestinal wall remodeling-associated disorders.
Collapse
|
26
|
Regulatory Effects of Nur77 on Airway Remodeling and ASMC Proliferation in House Dust Mite-Induced Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4565246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Airway remodeling played a vital role in the development of asthma, and airway smooth muscle (ASM) mass was its hallmark. However, few strategies targeting ASM remodeling were developed in treating asthma. Nur77 was the transcription factor nuclear receptor involved in the pathogenesis of several lung diseases. Nur77 distribution and expression were determined in an HDM-mediated allergic asthma model. Its effect on airway hyperresponsiveness (AHR), chronic inflammation, and ASM remodeling in asthmatic mice was evaluated using a lentivirus-mediated shRNA. Possible mechanisms were explored by examining Nur77 actions and its underlying pathways in primary human AMC cells (ASMCs). In this study, we reported that Nur77 expression was mainly distributed along ASM and increased in lungs of HDM-challenged mice. Nur77 depletion by lentivirus-mediated shRNA ameliorated AHR, chronic inflammation, goblet cell hyperplasia, and airway remodeling in the asthmatic mouse model. By means of primary human ASMC, we discovered that Nur77 upregulation by HDM stimulation promoted cell proliferation and ROS production, as well as reduced antioxidant gene expression. These alterations might associate with MFN2/MAPK/AKT pathways. These findings broadened our understanding of airway remodeling and ASMC proliferation, which might provide a novel therapeutic target for asthma patients.
Collapse
|
27
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
28
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
29
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
30
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
31
|
Pan S, Shah SD, Panettieri RA, Deshpande DA. Bnip3 regulates airway smooth muscle cell focal adhesion and proliferation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L758-L767. [PMID: 31509440 DOI: 10.1152/ajplung.00224.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Increased airway smooth muscle (ASM) mass is a key contributor to airway narrowing and airway hyperresponsiveness in asthma. Besides conventional pathways and regulators of ASM proliferation, recent studies suggest that changes in mitochondrial morphology and function play a role in airway remodeling in asthma. In this study, we aimed at determining the role of mitochondrial Bcl-2 adenovirus E1B 19 kDa-interacting protein, Bnip3, in the regulation of ASM proliferation. Bnip3 is a member of the Bcl-2 family of proteins critical for mitochondrial health, mitophagy, and cell survival/death. We found that Bnip3 expression is upregulated in ASM cells from asthmatic donors compared with that in ASM cells from healthy donors and transient downregulation of Bnip3 expression in primary human ASM cells using an siRNA approach decreased cell adhesion, migration, and proliferation. Furthermore, Bnip3 downregulation altered the structure (electron density) and function (cellular ATP levels, membrane potential, and reacitve oxygen species generation) of mitochondria and decreased expression of cytoskeleton proteins vinculin, paxillin, and actinin. These findings suggest that Bnip3 via regulation of mitochondria functions and expression of adhesion proteins regulates ASM adhesion, migration, and proliferation. This study reveals a novel role for Bnip3 in ASM functions and establishes Bnip3 as a potential target in mitigating ASM remodeling in asthma.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|