1
|
Ruiyi L, Qingqing X, Zaijun L, Ruiling Z, Yongqiang Y, Xiaohao L. Synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot with excellent optical behavior and peroxidase-like activity for colorimetric and fluorescence detection of H 2O 2 in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124950. [PMID: 39133976 DOI: 10.1016/j.saa.2024.124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Low fluorescence under visible light excitation and catalytic activity limit many applications of graphene quantum dots in optical detection, biosensing, catalysis and biomedical. The paper reports design and synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot (Fe/B-GQD-HSF). The Fe/B-GQD-HSF shows excellent fluorescence behavior and peroxidase-like activity. Excitation of 330 nm ultraviolet light produces the strongest blue fluorescence and excitation of 480 nm visible light produces the strongest yellow fluorescence. The specific activity reaches 92.67 U g-1, which is higher than that of other graphene quantum dots. The Fe/B-GQD-HSF can catalyze oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to form blue compound. Based on this, it was used for colorimetric and fluorescence detection of H2O2. The absorbance at 652 nm linearly increases with the increase of H2O2 concentration between 0.5 and 100 μM with detection limit of 0.43 μM. The fluorescence signal linearly decreases with the increase of H2O2 concentration between 0.05 and 100 μM with detection limit of 0.035 μM. The analytical method has been satisfactorily applied in detection of H2O2 in food. The study also paves one way for design and synthesis of functional graphene quantum dots with ideal fluorescence behavior and catalytic activity.
Collapse
Affiliation(s)
- Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xie Qingqing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhang Ruiling
- Jiangsu Province New Type Functional Polymer Material Engineering Technology Research Center, Wuxi Acrylic Technology Co., Ltd., Wuxi 214199, China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Liu Xiaohao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhao J, Shi Z, Chen M, Xi F. Highly active nanozyme based on nitrogen-doped graphene quantum dots and iron ion nanocomposite for selective colorimetric detection of hydroquinone. Talanta 2025; 281:126817. [PMID: 39245006 DOI: 10.1016/j.talanta.2024.126817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Inspired by the iron porphyrin structure of natural horseradish peroxidase (HRP), an efficient carbon-based nanozyme was fabricated using nitrogen-doped graphene quantum dots (NGQDs) and iron ion (Fe3+) nanocomposite, enabling selective distinguishment of hydroquinone (HQ) from its isomers. NGQDs with good dispersibility and uniform size were synthesized via a one-step hydrothermal process. NGQDs lacked peroxidase-like activity but the formed nanocomposite (Fe3+-NGQDs) upon Fe3+ addition possessed high peroxidase-like activity. Fe3+-NGQDs nanocomposite exhibited shuttle-shaped structure (∼30 nm), the lattice structure of NGQDs and electron transfer between Fe3+ and NGQDs. The Fe3+-NGQDs nanocomposite can catalyze the production of superoxide radicals (•O2-) from H2O2. The Michaelis constant (Km) of Fe3+-NGQDs (0.115 mM) was lower than that of natural HRP (0.434 mM) with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate and the maximum initial reaction rate (Vmax, 16.47 × 10-8 M/s) was nearly 4 times higher than that of HRP using H2O2 substrate. HQ, unlike its isomers catechol (CC) and resorcinol (RE), could consume •O2- generated from the decomposition of H2O2 catalyzed by Fe3+-NGQDs nanocomposite, reducing the oxidation of TMB. This principle enabled selective colorimetric determination of HQ ranged from 1 μM to 70 μM and a limit of detection (LOD) of 0.2 μM. Successful determination of HQ in pond water was also realized.
Collapse
Affiliation(s)
- Jingwen Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhuxuan Shi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mixia Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Xu L, Yang B, Guo L. Oxidized 3,3',5,5'-tetramethylbenzidine nanobelts enhance colorimetric sensing of H 2O 2. Talanta 2024; 279:126584. [PMID: 39032460 DOI: 10.1016/j.talanta.2024.126584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Herein, oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) nanobelts were developed to enhance the colorimetric and paper-based sensing of H2O2. It was found that the minor component of Fe2+ in Na2SO4 reagent could catalyze the oxidization of TMB by H2O2 into positively charged oxTMB, which was further assembled into dark blue oxTMB nanobelts via electrostatic interaction with SO42-. The extinction originating from the absorption and scattering of oxTMB nanobelts was utilized to quantitatively detect H2O2 with a wide linear detection range (1.0-300 μM) and a low limit of detection (0.48 μM). In addition, no coffee-ring effect was observed in the test zone of the paper-based colorimetric array, which was beneficial to judge the color by naked eye. Finally, the colorimetric method was applied to detect H2O2 in contact lens care solution. This work not only proposed a new colorimetric sensing platform for H2O2, but also highlighted the minor component in the reagent might influence the experimental result.
Collapse
Affiliation(s)
- Lanlan Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Bingyu Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
4
|
Liu Y, Zhang L, Cai H, Qu X, Chang J, Waterhouse GIN, Lu S. Biomass-derived carbon dots with pharmacological activity for biomedicine: Recent advances and future perspectives. Sci Bull (Beijing) 2024; 69:3127-3149. [PMID: 39183109 DOI: 10.1016/j.scib.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Carbon dots (CDs), a type of nanoparticle with excellent optical properties, good biocompatibility, and small size, are finding increasing application across the fields of biology and biomedicine. In recent years, biomass-derived CDs with pharmacological activity (BP-CDs) derived from herbal medicines (HMs), HMs extracts and other natural products with demonstrated pharmaceutical activity have attracted particular attention. Herein, we review recent advances in the development of BP-CDs, covering the selection of biomass precursors, different methods used for the synthesis of BP-CDs from natural sources, and the purification of BP-CDs. Additionally, we summarize the many remarkable properties of BP-CDs including optical properties, biocompatibility and pharmaceutical efficacy. Moreover, the antibacterial, antiviral, anticancer, biosensing, bioimaging, and other applications of BP-CDs are reviewed. Thereafter, we discuss the advantages and disadvantages of BP-CDs and Western drug-derived CDs, highlighting the excellent performance of BP-CDs. Finally, based on the current state of research on BP-CDs, we suggest several aspects of BP-CDs that urgently need to be addressed and identify directions that should be pursued in the future. This comprehensive review on BP-CDs is expected to guide the precise design, preparation, and future development of BP-CDs, thereby advancing the application of BP-CDs in biomedicine.
Collapse
Affiliation(s)
- Yue Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Cai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoli Qu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | | | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Li L, Ding Y, Lei M, Xue Y, He X, Xue J, Bu H, Su Y, Ouyang X, Wan Y. DNA Framework-Templated Synthesis of Copper Cluster Nanozyme with Enhanced Activity and Specificity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54389-54400. [PMID: 39322981 DOI: 10.1021/acsami.4c09208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nanozymes have been developed to overcome the inherent limitations of natural enzymes, such as their low stability and high cost. However, their efficacy has been hindered by their relatively low specificity and activity. Here, we demonstrate the self-assembly of individual copper nanoclusters (CuNCs) via a simple yet fast (10 min) DNA nanosheet (DNS)-templated method, enhancing the peroxidase-like activity and specificity of CuNCs. Furthermore, we demonstrate the successful assembly of CuNCs on different DNA nanostructures by atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resulting micron-scale ultrathin DNA nanosheet-templated CuNCs (DNS@CuNCs) exhibit exceptional catalytic activity, with a specific activity reaching 1.79 × 103 U mg-1. Investigation into the catalytic process reveals that the enhanced activity and specificity arise from disparities in active intermediate content before and after CuNCs assembly. Significantly, the DNS@CuNCs-based biosensor demonstrates remarkable anti-interference capabilities, enabling the detection of H2O2 in undiluted human serum for the first time with a detection limit of 0.99 μM.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Mengyan Lei
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Yumiao Xue
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
| | - Xiaoqing He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jiangshan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Huaiyu Bu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
6
|
Baye AF, Abebe MW, Kim H. Boron-Nitrogen-Edged Biomass-Derived Carbon: A Multifunctional Approach for Colorimetric Detection of H 2O 2, Flame Retardancy, and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402449. [PMID: 38804870 DOI: 10.1002/smll.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the concentration and type of nitrogen (N) dopants within the Sp2-carbon domain of carbon recycled from biomass sources is an efficient approach to mimic CNT, GO, and rGO to activate oxidants such as H2O2, excluding toxic chemicals and limiting reaction steps. However, monitoring the kind and concentration of N species in the Sp2-C domain is unlikely with thermal treatments only. A high temperature for graphitization reduces N moieties, leading to low electron density. This inhibits H2O2 adsorption and activation on catalyst surfaces. In this study, coffee waste (CW) is converted into B, N-doped biochar (BXNbY) using boric acid-assisted pyrolysis (H3BO3 mass = X and carbonization temperature = Y) under N2 to overcome the challenge. The B dopant regulates the concentration and type of N, provides Lewis's acid sites, and converts graphitic-N to pyridine-N in BXNbY. The optimized B3Nb900 exhibits excellent colorimetric sensing performance toward H2O2 with a low detection limit (36.9 nM) and high selectivity in the presence of many interferences and milk samples due to high pyridinic-N and Sp2 domain sizes. Interestingly, B enhances other properties of N-containing CW-derived carbon and introduces self-extinguishing and tribopositive properties. Hence, BXNbY-coated polyurethane foam shows excellent flame retardancy and energy harvesting performance.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
7
|
Han F, Cheng C, Zhao J, Wang H, Zhao G, Zhang Y, Zhang N, Wang Y, Zhang J, Wei Q. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf B Biointerfaces 2024; 242:114093. [PMID: 39029248 DOI: 10.1016/j.colsurfb.2024.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
In recent years, the increasingly severe pollution of heavy metals has posed a significant threat to the environment and human safety. Heavy metal ions are highly non-biodegradable, with a tendency to accumulate through biomagnification. Consequently, accurate detection of heavy metal ions is of paramount importance. As a new type of synthetic nanomaterials, single-atom nanozymes (SANs) boast exceptional enzyme-like properties, setting them apart from natural enzymes. This unique feature affords SANs with a multitude of advantages such as dispersed active sites, low cost and variety of synthetic methods over natural enzymes, making them an enticing prospect for various applications in industrial, medical and biological fields. In this paper, we systematically summarize the synthetic methods and catalytic mechanisms of SANs. We also briefly review the analytical methods for heavy metal ions and present an overall overview of the research progress in recent years on the application of SANs in the detection of environmental heavy metal ions. Eventually, we propose the existing challenges and provide a vision for the future.
Collapse
Affiliation(s)
- Fangqin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Guanhui Zhao
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, People's Republic of China.
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
8
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
9
|
Tan W, Yao G, Yu H, He Y, Lu M, Zou T, Li X, Yin P, Na P, Yang W, Yang M, Wang H. Ultra-trace Ag doped carbon quantum dots with peroxidase-like activity for the colorimetric detection of glucose. Food Chem 2024; 447:139020. [PMID: 38513477 DOI: 10.1016/j.foodchem.2024.139020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Carbon quantum dots (CQDs) have significant applications in nanozymes. However, previous studies have not elucidated the structure-activity relationship and enzyme mechanism. In this study, we employed a one-step microwave method to synthesize ultra-trace Ag-doped carbon quantum dots (Ag-CQDs). In the presence of hydrogen peroxide (H2O2), we used the oxidative coupling reaction of 3,3',5,5'-tetramethylbenzidine (TMB) to evaluate the intrinsic peroxidase-like activity, kinetics, and mechanism of Ag-CQDs. The trace amount of doped Ag (1.64 %) facilitated electron transfer from the CQDs interior to the surface. The electron transfer triggered the peroxide activity of CQDs, producing hydroxyl radical (·OH), which oxidized the colorless TMB to blue-colored TMB (oxTMB). By coupling with glucose oxidase (GOx), the Ag-CQDs/H2O2/TMB system has been used for colorimetric glucose determination. The system demonstrated a low detection limit (0.17 µM), wide linear range (0.5-5.5 µM), and satisfactory results when fruit juice was analyzed. This study reports a feasible method for the colorimetric detection of glucose by synthesizing ultra-trace Ag-doped carbon quantum dots with peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Guixiang Yao
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Hang Yu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Yanzhi He
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Tianru Zou
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Xiaopei Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Pengyuan Yin
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Pei Na
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China.
| |
Collapse
|
10
|
Badshah A, Noreen S, Shah M, Asad M, Ullah R, Ali EA, Iqbal J, Sun W, Nishan U. From waste to wealth: iron oxide doped hydroxyapatite-based biosensor for the colorimetric detection of ascorbic acid. RSC Adv 2024; 14:19539-19549. [PMID: 38895531 PMCID: PMC11184655 DOI: 10.1039/d4ra02264e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ascorbic acid plays a pivotal role in the human body. It maintains the robustness, enlargement, and elasticity of the collagen triple helix. However, the abnormal concentration of ascorbic acid causes various diseases, such as scurvy, cardiovascular diseases, gingival bleeding, urinary stones, diarrhea, stomach convulsions, etc. In the present work, an iron-doped hydroxyapatite (HAp@Fe2O3)-based biosensor was developed for the colorimetric detection of ascorbic acid based on a low-cost, biocompatible, and ubiquitous material. Due to the catalytic nature of HAp owing to the acidic and basic moieties within the structure, it was used as a template for HAp@Fe2O3 synthesis. This approach provides an active as well as large surface area for the sensing of ascorbic acid. The synthesized platform was characterized by various techniques, such as UV-Vis, FTIR, SEM, XRD, TGA, EDX, etc. The HAp@Fe2O3 demonstrated inherent peroxidase-like activity in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) oxidized with the assistance of H2O2. It resulted in the color changing to blue-green, and after the addition of ascorbic acid, the color changed to colorless, resulting in the reduction of TMB. To achieve optimal sensing parameters, experimental conditions were optimized. The quantity of HAp@Fe2O3, H2O2, pH, TMB, time, and the concentration of ascorbic acid were fine-tuned. The linear range for the proposed sensor was 0.6-56 μM, along with a limit of detection of 0.16 μM and a limit of quantification of 0.53 μM. The proposed sensor detects ascorbic acid within 75 seconds at room temperature. The proposed platform was also applied to quantitatively check the concentration of ascorbic acid in a physiological solution.
Collapse
Affiliation(s)
- Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Sadaf Noreen
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan 66000 Pakistan
| | - Muhammad Asad
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University Abu Dhabi 144534 United Arab Emirates
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology Kohat 26000 KP Pakistan
| |
Collapse
|
11
|
Sil BK, Jamiruddin MR, Haq MA, Aekwattanaphol N, K PA, Salendra L, Paliwal H, Paul PK, Buatong W, Srichana T. Nanolevel of detection of ascorbic acid using horse-radish peroxidase inhibition assay. Heliyon 2024; 10:e30715. [PMID: 38774337 PMCID: PMC11107213 DOI: 10.1016/j.heliyon.2024.e30715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Ascorbic acid plays a significant role in regulation of various bodily functions with high concentrations in immune cells and being involved in connective tissue maintenance. Commonly it is detected through various colorimetric methods. In this study, we propose a one-step simple method based on the inhibitory activity of ascorbic acid on horseradish peroxidase and hydrogen peroxide. The detection is observed by colorimetric changes to TMB (3,3',5,5' tetramethylbenzidine). The enzyme inhibition unit was optimized with a high level of linearity (r2 = 0.9999) and the level of detection and level of quantification were found to be 1.35 nM and 4.08 nM, respectively with higher sensitive compared to the HPLC method (11 μM). Both intra and inter-assays showed high correlations at different AA concentrations. (r2 > 0.9999). Similar results were also observed for vitamin C tablets, ascorbate salts, fruits, and market products (r2 = 0.999). There was negligible effect of interference by citric acid, lactic acid, tartaric acids, and glucose with high recoveries (>98%) at 1 mg/mL to 0.0078 mg/mL concentration ranges. The recovery error (RE%) was found to be less than 10%. Our detection method is distinguished by its simplicity, nano-level of detection, reproducibility, and potential application and adaptability as a point-of-use test.
Collapse
Affiliation(s)
- Bijon Kumar Sil
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Mohd Raeed Jamiruddin
- School of Pharmacy, BRAC University, KHA 224 Bir Uttam Rafiqul Islam Avenue, Progati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Lab, Nutrition Research Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Prem Ananth K
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Limbadri Salendra
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Himanshu Paliwal
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Wilaiporn Buatong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
12
|
Sun Q, Xu X, Wu M, Niu N, Chen L. Rational Biomimetic Construction of Lignin-based Carbon Nanozyme for Identification of Uric Acid in Human Urine. Talanta 2024; 271:125657. [PMID: 38218056 DOI: 10.1016/j.talanta.2024.125657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Nanozymes have made remarkable progress in the field of sensing assays by replacing native enzyme functions. However, it is still a challenge to rationally design active centers from molecular structure to enhance the catalytic performance and develop low-cost nanozymes. In this work, guided by the catalytic site of horseradish peroxidase (HRP), iron source and histidine were coupled to the main chain of aminated sodium lignosulfonate (SL) through the self-assembly biomimetic strategy to construct His-SL-Fe with peroxidase activity. The inherent functional groups and basic framework of aminated SL provide a robust environment and promote the formation of active sites. His-SL-Fe shows excellent robustness over multiple test cycles and has a strong affinity for the substrate compared to HRP. His-SL-Fe had been effectively integrated in the sensing system for catalytic detection of uric acid (UA) to achieve accurate recognition of UA in the range of 0.5-100 μM with the limit of detection as low as 0.18 μM. The recovery of human urine samples is in the range of 96.8%-106.1 % and the error is within 4 %. This work not only provides a new approach for the directed design of high-performance nanozymes, but also demonstrates promising ideas for the refined application of biomass resources.
Collapse
Affiliation(s)
- Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xiaoyu Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
13
|
Gao F, Xue C, Dong J, Lu X, Yang N, Ou C, Mou X, Zhang YZ, Dong X. Tumor Microenvironment-Induced Drug Depository for Persistent Antitumor Chemotherapy and Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307736. [PMID: 38009506 DOI: 10.1002/smll.202307736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Herein, a drug-loading nanosystem that can in situ form drug depository for persistent antitumor chemotherapy and immune regulation is designed and built. The system (DOX@MIL-LOX@AL) is fabricated by packaging alginate on the surface of Doxorubicin (DOX) and lactate oxidase (LOX) loaded MIL-101(Fe)-NH2 nanoparticle, which can easily aggregate in the tumor microenvironment through the cross-linking with intratumoral Ca2+. Benefiting from the tumor retention ability, the fast-formed drug depository will continuously release DOX and Fe ions through the ATP-triggered slow degradation, thus realizing persistent antitumor chemotherapy and immune regulation. Meanwhile, LOX in the non-aggregated nanoparticles is able to convert the lactic acid to H2O2, which will be subsequently decomposed into ·OH by Fe ions to further enhance the DOX-induced immunogenic death effect of tumor cells. Together, with the effective consumption of immunosuppressive lactic acid, long-term chemotherapy, and oxidation therapy, DOX@MIL-LOX@AL can execute high-performance antitumor chemotherapy and immune activation with only one subcutaneous administration.
Collapse
Affiliation(s)
- Fan Gao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianhui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xinxin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Nan Yang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
14
|
Lin Z, Zeng Q, Yao W, Chen W, Cai C, Yang J, Lin X, Chen W. A fluorescence "turn-on" sensor for ascorbic acid in fruit juice and beverage based on ascorbate oxidase-like activity of citric acid-derived carbon dots. Food Chem 2024; 437:137928. [PMID: 37976784 DOI: 10.1016/j.foodchem.2023.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Citric acid-derived carbon dots (CA-CDs) without any modifications were found to have the ascorbate oxidase (AAO)-like activity. The CA-CDs have high affinity for ascorbic acid (AA), which is similar to natural AAO. The robustness of CA-CDs is greater than that of AAO. Based on the AAO mimetic activity of CA-CDs, a sensitive turn-on mode and natural enzyme-free fluorescence detection method has been developed for AA in some fruit juice and beverage samples with satisfied recoveries. This study provides CDs-based AAO mimetic nanozymes to replace the expensive natural enzymes or heavy metal-based nanozymes, which will show great potential in biological and food assays.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Qi Zeng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Wensong Yao
- College of Medical Sciences, Ningde Normal University, Ningde 352100, China.
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Chuangui Cai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Jialin Yang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
15
|
Dadakhani S, Dehghan G, Khataee A. A robust and facile label-free method for highly sensitive colorimetric detection of ascorbic acid in fresh fruits based on peroxidase-like activity of modified FeCo-LDH@WO 3 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123016. [PMID: 37354854 DOI: 10.1016/j.saa.2023.123016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Many compounds such as amino acids and oligonucleotides have been shown to effectively change peroxidase-like activity of nanoparticles. While a few studies have focused on mimicking the active site of natural enzymes on nanozymes and thus increasing their substrate affinity. Therefore, in this work, the surface of FeCo@WO3 nanocomposite was modified using guanosine triphosphate (GTP) to mimic the histidine of peroxidase enzyme's active site and its modification was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the peroxidase-mimicking activity of the modified nanocomposite was tested using a colorimetric method, based on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). It was found that GTP improves the activity of FeCo@WO3 as a natural peroxidase active site's distal histidine residue. Ascorbic acid (AA) is a powerful antioxidant that induces the reduction of blue color (oxidized TMB) ox-TMB to colorless TMB. The colorimetric method was applied for the sensitive detection of AA in common fruits. The linear range of AA was 10-100 μM with a limit of detection (LOD) of 0.27 μM, which provides a rapid and sensitive method for testing AA in the field of food analysis.
Collapse
Affiliation(s)
- Sonya Dadakhani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
16
|
Nishan U, Ullah I, Gul R, Badshah A, Muhammad N, Khan N, Shah M, Asad M, Afridi S, Ullah R, Ali EA, Ojha SC. Paracetamol-Mediated Synthesis of Silver Nanoparticles and Their Functionalization with Ionic Liquid for the Colorimetric Biosensing of Ascorbic Acid. ACS OMEGA 2023; 8:44931-44941. [PMID: 38046308 PMCID: PMC10688197 DOI: 10.1021/acsomega.3c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Ascorbic acid is a vital biomolecule for human beings. When the body's level of ascorbic acid is abnormal, it can lead to a number of illnesses. Its appropriate concentration is necessary for the oxidation of prostaglandins and cyclic adenosine monophosphate, the production of dopamine, norepinephrine, epinephrine, and carnitine, and the expansion and durability of the collagen triple helix in humans. In the present work, silver nanoparticle synthesis was performed through a paracetamol-mediated approach. Different characterization techniques, such as X-ray diffractometry (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), were used to confirm the prepared nanoparticles. Subsequently, the prepared Ag NPs functionalized with an ionic liquid were used as a sensing platform for ascorbic acid in blood serum samples. To achieve the best possible results, the proposed biosensor was optimized with different parameters such as TMB concentration, time, amount of capped nanoparticles (NPs), and pH. The proposed biosensor offers a sensitive and straightforward method for ascorbic acid with a linear range from 2 × 10-9 to 3.22 × 10-7 M, an LOD of 1.3 × 10-8 M, an LOQ of 4.3 × 10-8 M, and an R2 of 0.9996, Moreover, applications of the proposed biosensor were successfully used for the detection of ascorbic acid in samples of human plasma, suggesting that Ag NPs with high peroxidase-like activity, high stability, and facile synthesis exhibited promising applications in biomedical fields.
Collapse
Affiliation(s)
- Umar Nishan
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irfan Ullah
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Rukhsana Gul
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Amir Badshah
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nawshad Muhammad
- Department
of Dental Materials, Institute of Basic
Medical Sciences Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Asad
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Saifullah Afridi
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
17
|
Chen J, Zhong J, Lai J, Peng Z, Lian T, Tang X, Li P, Qiu P. Enhancing catalytic performance of Fe and Mo co-doped dual single-atom catalysts with dual-enzyme activities for sensitive detection of hydrogen peroxide and uric acid. Anal Chim Acta 2023; 1273:341543. [PMID: 37423669 DOI: 10.1016/j.aca.2023.341543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Single-atom catalysts (SACs) have attracted much attention due to their excellent catalytic activity, but the improvement of atomic loading which means that weight fraction (wt%) of metal atom was still facing great challenges. In this work, iron and molybdenum co-doped dual single-atom catalysts (Fe/Mo DSACs) was prepared for the first time by using the soft template sacrifice strategy, which improved significantly the atomic load and exhibited both the oxidase-like (OXD) activity and the dominant peroxidase-like (POD) activity. Further experiments reveal that Fe/Mo DSACs can not only catalyze O2 to generate O2•- and 1O2, but also catalyze H2O2 to generate a large number of •OH, which caused 3, 3', 5, 5'-tetramethylbenzidine (TMB) to be oxidized to oxTMB, accompanied by the color changing from colorless to blue. The steady-state kinetic test showed that Michaelis-Menten constant (Km) values and the maximum initial velocity values (Vmax) of the POD activity of Fe/Mo DSACs were 0.0018 mM and 12.6 × 10-8 M s-1, respectively. The corresponding catalytic efficiency was tens of times higher than Fe SACs and Mo SACs, which proves that the synergistic effect between Fe and Mo has significantly improved the catalytic ability. Based on the excellent POD activity of Fe/Mo DSACs, a colorimetric sensing platform combined with TMB was proposed to realize the sensitive detection of H2O2 and uric acid (UA) in a wide range, with limits of detection as low as 0.13 and 0.18 μM, respectively. Finally, accurate and reliable results were obtained in the detection of H2O2 in cells, and of UA in human serum and urine.
Collapse
Affiliation(s)
- Jin Chen
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Jiali Zhong
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Juanhua Lai
- Jiangxi Center of Medical Device Testing, Nanchang, 330047, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Tao Lian
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xiaomin Tang
- The Fourth Affiliated Hospital, Nanchang University, Nanchang, 330003, China
| | - Pengjun Li
- Jiangxi Institute of Nanotechnology, 330200, Nanchang, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
18
|
Ilhan H, Erdem B, Ozkasapoglu S, Yayla M, Bas O, Celikkan H. Fluorescent and Biocompatible Nitrogen and Sulfur Co-Doped Carbon Nanodot as an Ocular Fundus Angiography Imaging Agent. J Fluoresc 2023; 33:1917-1925. [PMID: 36905474 DOI: 10.1007/s10895-023-03200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The florescence characteristics and the toxicities of carbon nanodots (CDs) are directly related to their elemental compositions. Fluorescent and non-toxic agent for imaging of biological systems was aimed. Sulfur and nitrogen co-doped CDs (S/N-CDs) was hydrothermally produced in an average size of 8 nm. S/N-CDs showed blue fluorescence under UV-light with an excitation wavelength of 365 nm. After 24 h, S/N-CDs was non-cytotoxic in HUVEC and L929 cells. S/N-CDs have a great potential to act as an alternative material for commercial fluorescent materials with its 85.5% of quantum yield. S/N-CDs was approved in vitro as an imaging agent for an ocular fundus angiography of rats.
Collapse
Affiliation(s)
- Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, 52200, Ordu, Turkey
| | - Burak Erdem
- Department of Ophthalmology, Faculty of Medicine, Ordu University, 52200, Ordu, Turkey.
| | - Sezgin Ozkasapoglu
- Turkish Energy, Nuclear and Mineral Research Agency Boron Research Institute (TENMAK BOREN), 06530, Ankara, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Orhan Bas
- Department of Anatomy, Faculty of Medicine, Samsun University, 55080, Samsun, Turkey
| | - Huseyin Celikkan
- Department of Chemistry, Faculty of Science, Gazi University, 06560, Ankara, Turkey.
| |
Collapse
|
19
|
Wang Q, Ding Y, Dahlgren RA, Sun Y, Gu J, Li Y, Liu T, Wang X. Ultrafine V 2O 5-anchored 3D N-doped carbon nanocomposite with augmented dual-enzyme mimetic activity for evaluating total antioxidant capacity. Anal Chim Acta 2023; 1252:341072. [PMID: 36935159 DOI: 10.1016/j.aca.2023.341072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Total antioxidant capacity (TAC) can be evaluated by detecting the content of antioxidants, such as ascorbic acid, based on the enzyme-mimetic activity of nanomaterials. Herein, we fabricated a 3D-V2O5/NC nanocomposite using a self-templating strategy, which achieved ultrafine particles (∼2.5 nm), a porous carbon layer, large specific surface area (152.4 m2/g), N-doping and heterogeneous structure. The strong catalytic activity of 3D-V2O5/NC resulted from the integrated effect between the ultrafine structure of V2O5 nanoparticles and the 3D porous nitrogen-doped carbon framework, effectively increasing the number of active sites. This nanozyme presented a higher catalytic activity than its components or precursors in the nanocomposite (e.g., VN/NC, NC, V2O5, and VO2/g-C3N4). ROS scavenging experiments confirmed that the dual enzyme-like activity of 3D-V2O5/NC (catalase-like and oxidase-like) resulted from their co-participation of ‧O2-, h+ and ‧OH, among which ‧O2- played a crucial role in the catalytic color reaction. By virtue of the 3D-V2O5/NC nanoenzyme activity and TMB as a chromogenic substrate, the mixed system of 3D-V2O5/NC + TMB + H2O2 provided a low detection limit (0.03 μM) and suitable recovery (93.0-109.5%) for AA. Additionally, a smartphone-based colorimetric application was developed employing "Thing Identify" software to evaluate TAC in beverages. The colorimetric sensor and smartphone-detection platform provide a better or comparable analytical performance for TAC assessment in comparison to commercial ABTS test kits. The newly developed smartphone-based colorimetric platform presents several prominent advantageous, such as low cost, simple/rapid operation, and feasibility for outdoor use.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, UC, 95616, USA
| | - Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
20
|
Zuo Z, Shang B, Liu H, Sun J, Li W, Liu Y, Sun J. Identification and evaluation of potential probiotics against skin-ulceration disease in the Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108769. [PMID: 37100310 DOI: 10.1016/j.fsi.2023.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
In this study, three highly pathogenic bacterial strains (Vibrio harveyi TB6, Vibrio alginolyticus TN1, and Vibrio parahaemolyticus TN3) were isolated from skin ulcers and intestines of diseased Chinese tongue sole (Cynoglossus semilaevis). The bacteria were investigated using hemolytic activity tests, in vitro co-culture with intestinal epithelial cells, and artificial infection of C. semilaevis. A further 126 strains were isolated from the intestines of healthy C. semilaevis. The three pathogens were used as indicator bacteria, and the antagonistic strains were identified from the 126 strains. The activities of exocrine digestive enzymes in the strains were also tested. Four strains with antibacterial and digestive enzyme activities were obtained and the best strains, Bacillus subtilis Y2 and Bacillus amyloliquefaciens Y9, were selected according to their ability to protect epithelial cells from infection. In addition, the effects of strains Y2 and Y9 at the individual level were investigated, finding that the activities of the immune-related enzymes superoxide dismutase, catalase, acid phosphatase, and peroxidase were significantly increased in the sera of the treatment group compared with the control group (p < 0.05). The specific growth rate (SGR, %) was also increased, especially in the Y2 group, and was significantly higher compared with the controls (p < 0.05). The result of the artificial infection test showed that the cumulative mortality within 72 h in the Y2 group was the lowest (50.5%), and in the Y9 group (68.5%) it was significantly lower than that in the control group (100%) (p < 0.05). Analysis of the intestinal microbial communities indicated that Y2 and Y9 could alter the composition of the intestinal flora, increasing both species richness and evenness, and inhibiting the growth of Vibrio in the intestine. These results suggested food supplemented with Y2 and Y9 could improve both immune function and disease resistance, as well as have a positive effect on the growth performance and the intestinal morphology of C. semilaevis.
Collapse
Affiliation(s)
- Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Bijiao Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Hongrui Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jiacheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Wenyue Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China.
| |
Collapse
|
21
|
Guo Z, Zhu J, Yin J, Miao P. Zeolitic imidazolate framework-8 encapsulating carbon nanodots and silver nanoparticles for fluorescent detection of H 2O 2 and glucose. J Colloid Interface Sci 2023; 643:385-392. [PMID: 37080045 DOI: 10.1016/j.jcis.2023.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In this study, a novel fluorescent biosensor is developed for the detection of H2O2 and glucose based on Zeolitic Imidazolate Framework-8 (ZIF-8) nanocomposites. ZIF-8 encapsulating carbon nanodot (CD) exhibits bright fluorescence emission. After further loading of AgNP, the fluorescence is quenched, which is mainly based on the excited electron transfer from CD to AgNP. Besides, the excitation wavelength of CD falls within the adsorption range of AgNP, which leads to efficient inhibition of the excitation energy. The as-prepared AgNP-CD-ZIF-8 nanocomposites can be utilized as a highly sensitive platform for the analysis of H2O2 and glucose. In the presence of glucose, H2O2 can be generated by the catalysis of glucose oxidase (GOD), which induces the etching of AgNP and subsequent recovery of CD-ZIF-8 fluorescence. This "turn on" biosensor can be applied for facile and convenient quantification of H2O2. It can also be further extended to detect glucose in real samples after combining specific catalytic effect of GOD. The analytical performances are excellent, which demonstrates great potential for practical utility.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Jinwen Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jian Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
22
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Di Y, Zheng J, Zhao Y, Yang Z, Xie C, Yu J, Zheng Y, Gao L. Colorimetric/photothermal dual-mode sensing detection of ascorbic acid based on a Ag[i] ion/3,3',5,5'-tetramethylbenzidine (TMB) system. RSC Adv 2022; 12:36012-36017. [PMID: 36545108 PMCID: PMC9753968 DOI: 10.1039/d2ra06770f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a novel strategy of colorimetric and photothermal dual-mode sensing determination of ascorbic acid (AA) based on a Ag+/3,3',5,5'-tetramethylbenzidine (TMB) system was developed. In this sensing system, Ag+ could oxidize TMB with a distinct color change from colorless to blue color, strong absorbance at 652 nm and a photothermal effect under 808 nm laser irradiation due to the formation of oxidized TMB (oxTMB). When AA was present, oxTMB was reduced accompanied by a change from blue to colorless, and a decrease in absorption peak intensity and the photothermal effect. AA concentration showed a negative linear correlation with the value of both the absorbance intensity at 652 nm and temperature in the range of 0.2-10 μM (A = -0.03C + 0.343 (R 2, 0.9887; LOD, 50 nM); ΔT = -0.57C + 8.453 (R 2, 0.997; LOD, 7.8 nM)). Based on this, a sensing approach for detection of AA was proposed with dual-mode and without the complicated synthesis of nanomaterials. The photothermal effect and colorimetric signal provided a dual-mode detection strategy for AA, overcoming the limitations of any single mode. This colorimetric and photothermal dual-mode detection has great potential in the detection of AA in clinical pharmaceuticals and the construction of portable and highly sensitive sensors.
Collapse
Affiliation(s)
- Ya Di
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Jiyao Zheng
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Yunwang Zhao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Zikai Yang
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Changshun Xie
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Jiahan Yu
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Yue Zheng
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| | - Liming Gao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical UniversityQinhuangdao 066004China
| |
Collapse
|
24
|
Han B, Guan H, Peng B, Zhang Y, Liu Y. Fe 3O 4@Au-metal organic framework nanozyme with peroxidase-like activity and its application for colorimetric ascorbic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4832-4841. [PMID: 36385195 DOI: 10.1039/d2ay01460b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A free radical scavenging system based on Fe3O4@Au/MOF-ABTS˙+ has formed the basis of a novel method for the highly sensitive and specific spectrophotometric determination of ascorbic acid (AA). The Fe3O4@Au/MOF nanozyme with magnetic separation properties was effectively prepared and evaluated using an environmentally friendly technique. Nanomaterials have the advantages of superparamagnetism, biocompatibility, chemical stability, and enhanced synergistic peroxidase-like activity, which can be utilized in catalysis to oxidise the peroxidase substrate 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into a green-colored product in the presence of H2O2. AA as an antioxidant has scavenging effects on ABTS radicals and can reduce green ABTS˙+ to uncolored ABTS2-, contributing to a substantial reduction in green color. Based on such a premise, a highly selective and sensitive chromogenic sensing method depending on the peroxidase-like activity of the nanocomposites was developed in order to achieve the efficient detection of AA in real samples. Under optimum conditions, the proposed technique had a detection range of 0.001-0.1 mmol L-1, a limit of detection of 0.098 μmol L-1, and a detection time of only 30 seconds. The newly proposed colorimetric analysis method devoid of enzymes has broad application potential in the areas of quality control and quality and safety detection.
Collapse
Affiliation(s)
- Bolin Han
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Huanan Guan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Bo Peng
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Yue Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
25
|
Gan Z, Zhang T, An X, Tan Q, Zhen S, Hu Y, Hu X. Dual enzyme-mimicking fluorescent amino terephthalic acid/CuFe/adenosine triphosphate nanoparticles for determination of H2O2 and ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Preethi M, Murugan R, Viswanathan C, Ponpandian N. Potato starch derived N-doped carbon quantum dots as a fluorescent sensing tool for ascorbic acid. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Deka MJ. Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Goswami J, Saikia L, Hazarika P. Carbon Dots‐Decorated g‐C
3
N
4
as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202201963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juri Goswami
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| | - Lakshi Saikia
- Advanced Materials Group Materials Sciences and Technology Division CSIR- North-East Institute of Science and Technology Jorhat 785006 Assam India
| | - Parasa Hazarika
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| |
Collapse
|
29
|
Rasheed Q, Ajab H, Farooq M, Shahzad SA, Yaqub A. Fabrication of colorimetric sensor using Fe3O4 @ Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: an application in environmental and biological samples. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-Alhadad LA, Sharifi M. 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Shi R, Wei S, Cheng S, Zeng J, Wang Y, Shu X. Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive Detection of H2O2. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02422-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Isho RD, Sher Mohammad NM, Omer KM. Enhancing enzymatic activity of Mn@Co 3O 4 nanosheets as mimetic nanozyme for colorimetric assay of ascorbic acid. Anal Biochem 2022; 654:114818. [PMID: 35841925 DOI: 10.1016/j.ab.2022.114818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/10/2023]
Abstract
In nanozyme-based assays, increasing enzymatic activity is very desirable for enhancing sensitivity and lowering the detection limit. In this study, novel Mn doped cobalt oxide nanosheets (Mn@Co3O4 NSs) were synthesized by hydrothermal process. The obtained Mn@Co3O4 possessed enhanced dual-enzyme mimetic, oxidase and peroxidase, and can catalytically oxidize of 3, 3', 5, 5'-tetramethylbenzidine (TMB), to a blue product of oxidized TMB. The enzyme kinetics were well-described mathematically using a common Michaelis-Menten and Lineweaver Burk model. The enzyme kinetics constant (Km) was found to be 0.15 mM, which is relatively low comparing with pure Co3O4 nanosheets (0.35 mM) and natural enzyme HRP (0.434 mM). Therefore, the efficient colorimetric method was achieved for determination of H2O2 and ascorbic acid. The limit of detection (LOD) of H2O2 was 8.0 μM and the linear range was 20-200 μM based on direct turn on of the peroxidase-like activity of Mn@Co3O4. While, for ascorbic acid detection based on turn-off approach, the linearity range for the ascorbic acid was 1-8 μM with LOD of 0.4 μM. Moreover, the colorimetric system exhibited good stability and selectivity toward the detection of ascorbic acid effectively in real samples (vitamin C tablets) with satisfactorily accuracy and precision.
Collapse
Affiliation(s)
- Ramya D Isho
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq
| | - Nidhal M Sher Mohammad
- Department of Chemistry, College of Science, University of Zakho, Duhok City, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
34
|
Sustainable fabrication of N-doped carbon quantum dots and their applications in fluorescent inks, Fe (III) detection and fluorescent films. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. J Fluoresc 2022; 32:1039-1049. [PMID: 35262854 DOI: 10.1007/s10895-022-02923-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
An eco-friendly, cost-effective, and convenient approach for synthesizing biocompatible fluorescent carbon quantum dots (CQDs) from the leaf extract of the medicinal plant Calotropis gigantea, commonly known as crown flower, has been demonstrated in this work. Fluorescence quantum yields of up to 4.24 percent were observed in as-synthesized CQDs. The size distribution of the as-synthesized CQDs varied from 2.7 to 10.4 nm, with a significant proportion of sp2 and sp3 carbon groups verified by nuclear magnetic resonance analysis. The zeta potential of as-synthesized CQDs was measured to be -13.8 mV, indicating the existence of a negatively charged surface with incipient instability in aqueous suspension. Furthermore, as an alternative to organic or synthetic dyes, the development of simple, inexpensive, and non-destructive fluorescence-based staining agents are highly desired. In this regard, as-synthesized CQDs have shown remarkable fluorescent staining capabilities in this work and might be utilised as a suitable probe for optical and bio-imaging of bacteria, fungi, and plant cells.
Collapse
|
36
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
37
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
38
|
The preparation of Fe-based peroxidase mimetic nanozymes and for the electrochemical detection of histamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Zhang Z, Zhao W, Hu C, Cao Y, Liu Y, Liu Q. A Convenient and Label-Free Colorimetric Detection for L-Histidine Based on Inhibition of Oxidation of 3,3',5,5'-Tetramethylbenzidine-H 2O 2 System Triggered by Copper Ions. Front Chem 2021; 9:773519. [PMID: 34888294 PMCID: PMC8649665 DOI: 10.3389/fchem.2021.773519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023] Open
Abstract
L-Histidine (L-His) is an essential amino acid, which is used to synthesize proteins and enzymes. The concentration of L-His in the body is controlled to regulate tissue growth and repair of tissues. In this study, a rapid and sensitive method was developed for colorimetric L-his detection using Cu2+ ions to inhibit the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system. H2O2 can oxidize TMB to oxTMB in the presence of copper, and the change in color from colorless (TMB) to blue (oxTMB) is similar to that observed in the presence of peroxidase. However, because the imidazole ring and carboxyl group of L-His can coordinate with Cu2+ ions to form stable L-His-Cu2+ complexes, the color of the TMB-H2O2 solution remains unchanged after the addition of L-His. Therefore, because L-His effectively hinders the colorimetric reaction of TMB with H2O2, this assay can be used to quantitatively determine the concentration of L-His in samples. Under optimized conditions, our colorimetric sensor exhibited two linear ranges of 60 nM to 1 μM and 1 μM to 1 mM for L-His detection and a detection limit of 50 nM (S/N = 3); furthermore, the assay can be performed within 20 min. Moreover, the proposed assay was used to determine the concentration of L-His in urine samples, suggesting that this convenient and label-free colorimetric method presents promising applications in bioanalytical chemistry and clinical diagnosis.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenmeng Zhao
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Cuixia Hu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yapeng Cao
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yumin Liu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
40
|
Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X. Colorimetric and Fluorescent Dual-Modality Sensing Platform Based on Fluorescent Nanozyme. Front Chem 2021; 9:774486. [PMID: 34869222 PMCID: PMC8635524 DOI: 10.3389/fchem.2021.774486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Compared with natural enzymes, nanozymes based on carbonaceous nanomaterials are advantages due to high stability, good biocompatibility, and the possibility of multifunctionalities through materials engineering at an atomic level. Herein, we present a sensing platform using a nitrogen-doped graphene quantum dot (NGQD) as a highly efficient fluorescent peroxidase mimic, which enables a colorimetric/fluorescent dual-modality platform for detection of hydrogen peroxide (H2O2) and biomolecules (ascorbic acid-AA, acid phosphatase-ACP) with high sensitivity. NGQD is synthesized using a simple hydrothermal process, which has advantages of high production yield and potential for large-scale preparation. NGQD with uniform size (3.0 ± 0.6 nm) and a single-layer graphene structure exhibits bright and stable fluorescence. N-doping and ultrasmall size endow NGQD with high peroxidase-mimicking activity with an obviously reduced Michaelis–Menten constant (Km) in comparison with natural horseradish peroxidase. Taking advantages of both high nanozyme activity and unique fluorescence property of NGQD, a colorimetric and fluorescent dual-modality platform capable of detecting H2O2 and biomolecules (AA, ACP) with high sensitivity is developed as the proof-of-concept demonstration. Furthermore, the mechanisms underlying the nanozyme activity and biosensing are investigated.
Collapse
Affiliation(s)
- Yejian Wan
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Jingwen Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaochun Deng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Chen
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaobo Wang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Ringwal S, Bartwal AS, Sati SC. Photo-catalytic degradation of different toxic dyes using silver nanoparticles as photo-catalyst, mediated via Citrus aurantium peels extract. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Borah N, Kalita AJ, Guha AK, Das MR, Tamuly C. Dual colorimetric sensing of ascorbic acid and thyroxine using Ag-EGCG-CTAB via a DFT approach. RSC Adv 2021; 11:36698-36706. [PMID: 35494345 PMCID: PMC9043532 DOI: 10.1039/d1ra04204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
In this work, a colorimetric approach for the detection of ascorbic acid (AA) and thyroxine (TH) was developed by synthesizing cost-effective silver nanoparticles (AgNPs) decorated with epigallocatechin gallate (EGCG) and CTAB. EGCG is the major bioactive chemical constituent that played a significant role in this study. The environment around the nanoparticle (NP) was controlled by adding CTAB surfactants. The synthesized NPs were characterized by different advanced techniques including XRD, XPS, SEM, and TEM. UV-visible spectra were thoroughly analyzed for sensing of AA and TH and the colour change of the solution can be visually monitored. The change in the localized surface plasmon resonance (LSPR) properties was used as an asset for the detection of AA and TH. A good linear relationship was obtained in both the sensing schemes with a limit of detection (LoD) of 0.67 μM and 0.33 μM for AA and TH respectively. Furthermore, the nanoparticles (NP) were implemented for real-sample analysis (pharmaceutical tablets). A cost-effective filter paper strip-based method coupled with smartphone scanning sensing was developed for the detection of AA. The interaction of AA and TH with the probe was depicted by a density functional theory (DFT) analysis. The synthesized NPs show tremendous selectivity towards AA and TH and excellent potential for practical applications.
Collapse
Affiliation(s)
- Nirangkush Borah
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology, Branch Itanagar Arunachal Pradesh-791110 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | | | - Ankur Kanti Guha
- Department of Chemistry, Cotton University Guwahati Assam-781001 India
| | - Manash R Das
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Material Science & Technology Division, CSIR-North East Institute of Science & Technology Jorhat Assam-785006 India
| | - Chandan Tamuly
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology, Branch Itanagar Arunachal Pradesh-791110 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
43
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
45
|
Zhang CY, Zhang H, Yang FQ. Enhanced peroxidase-like activity of copper phosphate modified by hydrophilic phytic-acid and its application in colorimetric detection of hydrogen peroxide. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108636] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Deng J, Hu J, Zhao J, An N, Liang K, Wang Q, Zhang Z, Wu R, Zhang F. Eco friendly synthesis of fluorescent carbon dots for the sensitive detection of ferric ions and cell imaging. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
48
|
Cao X, Pan X, Couvillion SP, Zhang T, Tamez C, Bramer LM, White JC, Qian WJ, Thrall BD, Ng KW, Hu X, Demokritou P. Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NANOIMPACT 2021; 23:100349. [PMID: 34514184 PMCID: PMC8428805 DOI: 10.1016/j.impact.2021.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) are a promising material currently being explored in many industrial applications in the biomedical and agri-food areas; however, studies supporting the environmental health risk assessment of CDs are needed. This study focuses on various CD forms including iron (FeCD) and copper (CuCD) doped CDs synthesized using hydrothermal method, their fate in gastrointestinal tract, and their cytotoxicity and potential changes to cellular metabolome in a triculture small intestinal epithelial model. Physicochemical characterization revealed that 75% of Fe in FeCD and 95% of Cu in CuCD were dissolved during digestion. No significant toxic effects were observed for pristine CDs and FeCDs. However, CuCD induced significant dose-dependent toxic effects including decreases in TEER and cell viability, increases in cytotoxicity and ROS production, and alterations in important metabolites, including D-glucose, L-cysteine, uridine, citric acid and multiple fatty acids. These results support the current understanding that pristine CDs are relatively non-toxic and the cytotoxicity is dependent on the doping molecules.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Xiaoyong Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carlos Tamez
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Lisa M. Bramer
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
49
|
Madhusoodanan NA, Lalan V, Ganesanpotti S. Green Route for the Synthesis of Fluorescent Carbon Nanoparticles from Circassian Seeds for Fe(III) Ion Detection. J Fluoresc 2021; 31:1323-1332. [PMID: 34115276 DOI: 10.1007/s10895-021-02762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
A facile and green strategy was carried out for the preparation of fluorescent carbon nanoparticles (CNp) using non-toxic circassian seeds as carbon precursor (CNp, named ACNp). The surface of amorphous ACNp is latched with different surface moieties such as hydroxyl, carbonyl, ether and amino groups and it is confirmed by FTIR and XPS. These functionalities provide high solubility and stability to ACNp in aqueous medium. The surface of ACNp is highly negatively charged due to the presence of oxygen rich functional groups and it is confirmed by zeta potential. A reasonably good quantum yield (QY) of 5.1% is obtained for ACNp compared to other CNp derived from bioprecursors without any surface passivation. Circassian seeds are self sufficient for the synthesis of N doped CNp. The excitation dependent fluorescence property of ACNp is invariant under ionic and thermal environments. They exhibit good selectivity towards Fe3+ ions via static quenching mechanism with detection limit of 32.7 µM.
Collapse
Affiliation(s)
| | - Vidhya Lalan
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala, India, 695581
| | - Subodh Ganesanpotti
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala, India, 695581.
| |
Collapse
|
50
|
Yuan C, Qin X, Xu Y, Shi R, Cheng S, Wang Y. Dual-signal uric acid sensing based on carbon quantum dots and o-phenylenediamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119678. [PMID: 33743305 DOI: 10.1016/j.saa.2021.119678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 05/07/2023]
Abstract
Fluorescent carbon quantum dots (CQDs), which showed excitation-dependent emission characteristics, were prepared using a facile hydrothermal method. The structure and optical properties of CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. These CQDs also showed peroxidase-like activity and could catalyze the H2O2-mediated oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (DAP) with an absorption peak at 420 nm. DAP exhibited an obvious fluorescence emission at 550 nm under the excitation of 360 nm. On the other hand, it decreased the fluorescence of CQDs at 450 nm via inner filter effect. The experimental results indicated that the H2O2 concentration affected the color of DAP and the fluorescence intensity of CQDs and DAP. Thus, a colorimetric and ratiometric fluorescence dual-signal method was established for measuring the concentrations of H2O2 and uric acid (UA). The effects of pH, incubation temperature, incubation time, and OPD concentration on the response were investigated. Under the conditions of pH 7.5, temperature 50 °C, incubation time 30 min, and OPD 1.5 mM, the absorbance and fluorescence intensity ratio responses were linearly dependent on UA concentration ranging from 5.0 μM to 100 μM. The limits of detection were 0.7 and 0.5 μM with a colorimetric method and ratiometric fluorescence method, respectively. More importantly, this dual responsive method has been applied to the determination of UA in urine samples with satisfactory results.
Collapse
Affiliation(s)
- Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Rui Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Shiqi Cheng
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China.
| |
Collapse
|