1
|
Jermsutjarit P, Venkateswaran D, Indrawattana N, Na Plord J, Tantituvanont A, Nilubol D. The development of a lateral flow immunochromatographic test strip for measurement of specific IgA and IgG antibodies level against porcine epidemic diarrhea virus in pig milk. Vet Q 2024; 44:1-15. [PMID: 39568374 PMCID: PMC11583322 DOI: 10.1080/01652176.2024.2429472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe enteric disease and high mortality in neonatal piglets, leading to significant economic losses in the swine industry. Considering that passive lactogenic immunity is crucial for preventing infection in piglets, necessitating a rapid and accurate tool to measure immunity levels. This study aims to develop a lateral flow immunochromatographic strip (LFICS) to assess IgA and IgG antibodies in colostrum and milk, using PEDV S protein. The performance of LFICS was compared to viral neutralization (VN) and enzyme-linked immunosorbent assay (ELISA) as reference methods, with a visual scoring system applied for field monitoring. Colostrum (n = 82) and milk (n = 106) samples were analyzed, showing strong correlation with reference methods and no cross-reactivity with other pig pathogens. The LFICS exhibited high relative sensitivity (Se) and specificity (Sp), with colostrum showing 98.73% Se and 66.67% Sp for IgA, and 96.15% Se and 75.00% Sp for IgG. Milk demonstrated 95.60% Se and 80.00% Sp for IgA, and 84.88% Se and 85.00% Sp for IgG. These findings indicate that the LFICS is a reliable, simple, and rapid method for measuring PEDV-specific IgA and IgG levels, offering valuable support for monitoring herd immunity and evaluating vaccination programs.
Collapse
Affiliation(s)
- Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Zucchini L, Coda Zabetta CD, Ajčević M, Accardo A. A Method for Compensating Hemoglobin Interference in Total Serum Bilirubin Measurement Using a Simple Two-Wavelength Reflectance Photometer. SENSORS (BASEL, SWITZERLAND) 2024; 24:6749. [PMID: 39460229 PMCID: PMC11511363 DOI: 10.3390/s24206749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Neonatal hyperbilirubinemia (NH) is a common condition in newborns, with elevated bilirubin levels potentially causing neurological damage or death. Accurate and timely measurements of total serum bilirubin are essential to prevent these outcomes. Direct spectrophotometry, a reliable method for measuring bilirubin, is particularly useful in constrained settings due to its potential for portable low-cost instrumentation. However, this method is susceptible to interference from hemoglobin, often present due to hemolysis. Typically, this interference is reduced using complex optical filters, reagents, multiple wavelengths, or combinations thereof, which increase costs and complexity while reducing usability. This study presents a hemoglobin compensation algorithm applied to a simple, portable, two-wavelength (465 and 590 nm) reflectance photometer designed to receive 30 µL of plasma or whole blood samples and perform the measurement without any reagents. Testing across five bilirubin and hemoglobin levels (4.96 to 28 mg/dL and 0.06 to 0.99 g/dL, respectively) demonstrated that the algorithm effectively reduces hemoglobin interference and overestimation errors. The overall root mean square error was reduced from 4.86 to 1.45 mg/dL, while the measurement bias decreased from -4.46 to -0.10 mg/dL. This substantial reduction in overestimation errors supports future clinical trials with neonatal blood samples.
Collapse
Affiliation(s)
- Lorenzo Zucchini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (M.A.); (A.A.)
| | | | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (M.A.); (A.A.)
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; (M.A.); (A.A.)
| |
Collapse
|
3
|
Mora AC, Vara M, Reust P, Code A, Oliver P, Mace CR. Colorimetric Detection of Fentanyl Powder on Surfaces Using a Supramolecular Displacement Assay. ACS Sens 2024; 9:3198-3204. [PMID: 38775258 DOI: 10.1021/acssensors.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Fentanyl is a potent synthetic opioid with an alarmingly low lethal dosage of 2 mg. The equipment necessary to detect fentanyl in field settings (e.g., hand-held spectrometers) is restricted to highly trained, well-funded, and specialized personnel. Established point-of-need technologies, such as lateral flow immunochromatographic strips, are available; however, they often involve multiple contact-based steps (e.g., collection, mixing) that pose a higher risk to users handling unknown substances. Herein, we developed a colorimetric displacement assay capable of contactless detection of fentanyl in liquid or solid samples. The basis of our assay relies on the presence of fentanyl to displace a redox mediator, ferrocene carboxylic acid, inclusively bound in the cavity of a supramolecular host, CB[7]. The displacement is only possible in the presence of high affinity binding guests, like fentanyl (KA ∼ 106 M-1). The liberated redox guest can then react with indicator reagents that are free in solution, producing either: (i) a distinct blue color to indicate the presence of fentanyl or (ii) a pale blue tint in the absence of fentanyl. We demonstrate rapid and specific detection of fentanyl free base and fentanyl derivatives (e.g., acetyl fentanyl and furanyl fentanyl) against a panel of 9 other common drugs of abuse (e.g., morphine, cocaine, and heroin). Furthermore, we highlight the intended use of this assay by testing grains of fentanyl derivatives on a surface with a drop (i.e., 25 μL) of the assay reagent. We anticipate that this approach can be applied broadly to identify the presence of fentanyl at the point of need.
Collapse
Affiliation(s)
- Andrea C Mora
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Madeline Vara
- Clear Scientific Inc, Cambridge, Massachusetts 02138, United States
| | - Patrick Reust
- Clear Scientific Inc, Cambridge, Massachusetts 02138, United States
| | - Amanda Code
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Piercen Oliver
- Clear Scientific Inc, Cambridge, Massachusetts 02138, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Merkl P, Sotiriou GA. Paper-based colorimetric hyperammonemia sensing by controlled oxidation of plasmonic silver nanoparticles. NANOSCALE ADVANCES 2024; 6:2586-2593. [PMID: 38752137 PMCID: PMC11093257 DOI: 10.1039/d4na00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
High concentrations of ammonia in the human body can occur due to a wide variety of underlying causes such as liver cirrhosis and the symptoms of high ammonia concentrations are diffuse and hard to diagnose. The measurement of blood ammonia levels is an important diagnostic tool but is challenging to perform at the patient's bedside. Here, we present a plasmonic Ag nanoparticle-based ammonia sensor which provides a colorimetric optical readout and does not require specialised equipment. This is achieved using plasmonic Ag/SiO2 nanoparticles with the sensing mechanism that in the presence of OCl- they rapidly degrade reducing their plasmonic extinction and losing their characteristic colour. However, if ammonia is also present in the system, it neutralises the OCl- and thus the silver nanoparticles retain their plasmonic colour as can be measured by the naked eye or using a spectrometer. This sensing was further developed to enable measurements with animal serum as well as a implementing a facile "dip-stick" style paper-based sensor.
Collapse
Affiliation(s)
- Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet SE-17177 Stockholm Sweden
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet SE-17177 Stockholm Sweden
| |
Collapse
|
5
|
Abdullah IH, Wilson DJ, Mora AC, Parker RW, Mace CR. Generating signals at converging liquid fronts to create line-format readouts of soluble assay products in three-dimensional paper-based devices. LAB ON A CHIP 2023; 23:4010-4018. [PMID: 37581363 DOI: 10.1039/d3lc00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The correct interpretation of the result from a point-of-care device is crucial for an accurate and rapid diagnosis to guide subsequent treatment. Lateral flow tests (LFTs) use a well-established format that was designed to simplify the user experience. However, the LFT device architecture is inherently limited to detecting analytes that can be captured by molecular recognition. Microfluidic paper-based analytical devices (μPADs), like LFTs, have the potential to be used in diagnostic applications at the point of care. However, μPADs have not gained significant traction outside of academic laboratories, in part, because they have often demonstrated a lack of homogeneous shape or color in signal outputs, which consequently can lead to inaccurate interpretation of results by users. Here, we demonstrate a new class of μPADs that form colorimetric signals at the interfaces of converging liquid fronts (i.e., lines) to control where colorimetric signals are formed without relying on capture techniques. We demonstrate our approach by developing assays for three classes of analytes-an ion, an enzyme, and a small molecule-to measure using iron(III), acetylcholinesterase, and lactate, respectively. Additionally, we show these devices have the potential to support multiplexed assays by generating multiple lines in a common readout zone. These results highlight the ability of this new paper-based device architecture to aid the interpretation of assays that create soluble products by using flow to constrain those colorimetric products in a familiar, line-format output.
Collapse
Affiliation(s)
| | - Daniel J Wilson
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Andrea C Mora
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | | | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
6
|
Liu Y, Liu X, Chen J, Zhang Z, Feng L. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices. Sci Rep 2023; 13:12592. [PMID: 37537193 PMCID: PMC10400629 DOI: 10.1038/s41598-023-39729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Laserjet printing is a kind of facile and digital do-it-yourself strategies, which is of importance to fabricate inexpensive paper-based microfluidic devices. However, the printed hydrophobic barrier is not hydrophobic enough due to the weak hydrophobicity and requires subsequent heating, which can lead to the pyrolysis of cellulose in the paper and influence the detection results. Here, for the first time, we report a kind of functional toner including toner and polydopamine (PDA) nanocapsules which contains oleic acid modified ferric tetroxide (OA-Fe3O4) and octadecylamine (ODA), which is suitable for printing with desired shapes and sizes to lead to formation of superhydrophobic barriers. Moreover, patterns printed with functional toner have good stability, including resistance to moisture, ultraviolet (UV) and bending. Finally, a proof-of-concept of metal and nitrite ions testing is demonstrated using colorimetric analysis, and the results show that the printed devices successfully perform instant detection of ions. The developed functional toner offers easy fabrication, cost-effectiveness and mass production of paper-based devices. In general, this strategy provides a new idea and technical support for the rapid prototyping of microfluidic paper-based analytical devices (μPADs) using laserjet printing.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Xingfei Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Juanning Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhuanli Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Libang Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Verma NV, Tiwari BS, Pandya A. Paper disc interfaced Prussian blue nanocube modified immunodevice for electrochemical detection of diverse biomarker at point of care. Bioelectrochemistry 2023; 150:108346. [PMID: 36493675 DOI: 10.1016/j.bioelechem.2022.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The detection of specific biomarkers is used in various phases of the diagnosis of plant and human diseases, from prognosis to monitoring. Herein, we report a Prussian blue nanocube-modified immunodevice interfaced with a paper disc for the detection of plant biomarkers via streptavidin-biotin recognition. The detection ability of the immunodevice was assessed using Potato virus X as a model biomarker and analyzed using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The immunodevice displayed excellent performance for Potato virus X detection with a detection limit of 0.92 nM (3S/N). The selectivity of the fabricated Potato virus X immunodevice was investigated using closely associated antigens, such as potato aucuba mosaic virus, Potato virus Y, and Potato virus A. The Potato virus X immunodevice exhibited ∼ 90 % recovery in spiked complex plant samples with a relative error of ∼ 9 %. Furthermore, the immunodevice was used to screen for Potato virus X in 10 samples from potato tubers and leaves. The paper-disc-interfaced immunodevice was also evaluated by detecting other biomarkers, such as potato aucuba mosaic virus in plant diseases and C-reactive protein in human ones. This immunodevice may allow the on-site monitoring of diverse biomarkers by simplifying the current point of care diagnostic tools.
Collapse
Affiliation(s)
- Nidhi Vijay Verma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Budhi Sagar Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
8
|
Zucchini L, Ajčević M, Coda Zabetta CD, Greco C, Fernetti C, Moretto C, Pennini S, Accardo A. Characterization of a Novel Approach for Neonatal Hematocrit Screening Based on Penetration Velocity in Lateral Flow Test Strip. SENSORS (BASEL, SWITZERLAND) 2023; 23:2813. [PMID: 36905017 PMCID: PMC10006883 DOI: 10.3390/s23052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Hematocrit (HCT) is a crucial parameter for both adult and pediatric patients, indicating potentially severe pathological conditions. Most common methods for HCT assessment are microhematocrit and automated analyzers; however, developing countries present specific needs often not addressed by these technologies. Paper-based devices can be suitable for those environments being inexpensive, rapid, easy to use, and portable. The aim of this study is to describe and validate against a reference method, a novel HCT estimation method based on penetration velocity in lateral flow test strips complying with the requirements in low- or middle-income country (LMIC) scenarios. To calibrate and test the proposed method, 145 blood samples of 105 healthy neonates with gestational age greater than 37 weeks were collected (29 calibration set, 116 test set) in the range of HCT values (31.6-72.5%). The time difference (Δt) from the whole blood sample loading into the test strip instant till the nitrocellulose membrane saturation instant was measured by a reflectance meter. A nonlinear relation was observed between HCT and Δt and was estimated by a third-degree polynomial equation (R2 = 0.91) valid in 30% to 70% HCT interval. The proposed model was subsequently used to estimate HCT values on the test set showing a good agreement between the estimated HCT and the HCT measured by the reference method (r = 0.87, p < 0.001), with a low mean difference of 0.53 ± 5.04% and a slight trend of overestimation for higher hematocrit values. The mean absolute error was 4.29%, while the maximum absolute error was 10.69%. Although the proposed method did not present a sufficient accuracy to be used for diagnostic purposes, it could be suitable as a fast, low-cost, easy-to-use screening tool especially in LMIC scenarios.
Collapse
Affiliation(s)
- Lorenzo Zucchini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Sritong N, Sala de Medeiros M, Basing LA, Linnes JC. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. LAB ON A CHIP 2023; 23:888-912. [PMID: 36688463 PMCID: PMC10028599 DOI: 10.1039/d2lc00554a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
From HIV and influenza to emerging pathogens like COVID-19, each new infectious disease outbreak has highlighted the need for massively-scalable testing that can be performed outside centralized laboratory settings at the point-of-care (POC) in order to prevent, track, and monitor endemic and pandemic threats. Nucleic acid amplification tests (NAATs) are highly sensitive and can be developed and scaled within weeks while protein-based rapid tests require months for production. Combining NAATs with paper-based detection platforms are promising due to the manufacturability, scalability, and simplicity of each of these components. Typically, paper-based NAATs consist of three sequential steps: sample collection and preparation, amplification of DNA or RNA from pathogens of interest, and detection. However, these exist within a larger ecosystem of sample collection and interpretation workflow, usability, and manufacturability which can be vastly perturbed during a pandemic emergence. This review aims to explore the challenges of paper-based NAATs covering sample-to-answer procedures along with three main types of clinical samples; blood, urine, and saliva, as well as broader operational, scale up, and regulatory aspects of device development and implementation. To fill the technological gaps in paper-based NAATs, a sample-in-result-out system that incorporates the integrated sample collection, sample preparation, and integrated internal amplification control while also balancing needs of users and manufacturability upfront in the early design process is required.
Collapse
Affiliation(s)
- Navaporn Sritong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Gildner TE, Eick GN, Schneider AL, Madimenos FC, Snodgrass JJ. After Theranos: Using point-of-care testing to advance measures of health biomarkers in human biology research. Am J Hum Biol 2022; 34:e23689. [PMID: 34669210 DOI: 10.1002/ajhb.23689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The rise and fall of the health technology startup Theranos is emblematic of the promise and peril of point-of-care testing (POCT). Instruments that deliver immediate results from minimally invasive samples at the location of collection can provide powerful tools to deliver health data in clinical and public health contexts. Yet, POCT availability is driven largely by market interests, which limits the development of inexpensive tests for diverse health conditions that can be used in resource-limited settings. These constraints, combined with complex regulatory hurdles and substantial ethical challenges, have contributed to the underutilization of POCT in human biology research. METHODS We evaluate current POCT capabilities and limitations, discuss promising applications for POCT devices in resource-limited settings, and discuss the future of POCT. RESULTS As evidenced by publication trends, POCT platforms have rapidly advanced in recent years, gaining traction among clinicians and health researchers. We highlight POCT devices of potential interest to population-based researchers and present specific examples of POCT applications in human biology research. CONCLUSIONS Several barriers can limit POCT applications, including cost, lack of regulatory approval for non-clinical use, requirements for expensive equipment, and the dearth of validation in remote field conditions. Despite these issues, we see immense potential for emerging POCT technology capable of analyzing new sample types and used in conjunction with increasingly common technology (e.g., smart phones). We argue that the fallout from Theranos may ultimately provide an opportunity to advance POCT, leading to more ethical data collection and novel opportunities in human biology research.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Geeta N Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Alaina L Schneider
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA.,Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
11
|
Ji X, Rao Z, Zhang W, Liu C, Wang Z, Zhang S, Zhang B, Hu M, Servati P, Xiao X. Airline Point-of-Care System on Seat Belt for Hybrid Physiological Signal Monitoring. MICROMACHINES 2022; 13:mi13111880. [PMID: 36363901 PMCID: PMC9694689 DOI: 10.3390/mi13111880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 05/31/2023]
Abstract
With a focus on disease prevention and health promotion, a reactive and disease-centric healthcare system is revolutionized to a point-of-care model by the application of wearable devices. The convenience and low cost made it possible for long-term monitoring of health problems in long-distance traveling such as flights. While most of the existing health monitoring systems on aircrafts are limited for pilots, point-of-care systems provide choices for passengers to enjoy healthcare at the same level. Here in this paper, an airline point-of-care system containing hybrid electrocardiogram (ECG), breathing, and motion signals detection is proposed. At the same time, we propose the diagnosis of sleep apnea-hypopnea syndrome (SAHS) on flights as an application of this system to satisfy the inevitable demands for sleeping on long-haul flights. The hardware design includes ECG electrodes, flexible piezoelectric belts, and a control box, which enables the system to detect the original data of ECG, breathing, and motion signals. By processing these data with interval extraction-based feature selection method, the signals would be characterized and then provided for the long short-term memory recurrent neural network (LSTM-RNN) to classify the SAHS. Compared with other machine learning methods, our model shows high accuracy up to 84-85% with the lowest overfit problem, which proves its potential application in other related fields.
Collapse
Affiliation(s)
- Xiaoqiang Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhi Rao
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Wei Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chang Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zimo Wang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Shuo Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Butian Zhang
- Department of Imaging, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Menglei Hu
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
12
|
Electrochemical microfluidic paper-based analytical devices for tumor marker detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Connelly GG, Kirkland OO, Bohannon S, Lim DC, Wilson RM, Richards EJ, Tay DM, Jee H, Hellinger RD, Hoang NK, Hao L, Chhabra A, Martin-Alonso C, Tan EK, Koehler AN, Yaffe MB, London WB, Lee PY, Krammer F, Bohannon RC, Bhatia SN, Sikes HD, Li H. Direct capture of neutralized RBD enables rapid point-of-care assessment of SARS-CoV-2 neutralizing antibody titer. CELL REPORTS METHODS 2022; 2:100273. [PMID: 35942328 PMCID: PMC9350670 DOI: 10.1016/j.crmeth.2022.100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Neutralizing antibody (NAb) titer is a key biomarker of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but point-of-care methods for assessing NAb titer are not widely available. Here, we present a lateral flow assay that captures SARS-CoV-2 receptor-binding domain (RBD) that has been neutralized from binding angiotensin-converting enzyme 2 (ACE2). Quantification of neutralized RBD in this assay correlates with NAb titer from vaccinated and convalescent patients. This methodology demonstrated superior performance in assessing NAb titer compared with either measurement of total anti-spike immunoglobulin G titer or quantification of the absolute reduction in binding between ACE2 and RBD. Our testing platform has the potential for mass deployment to aid in determining at population scale the degree of protective immunity individuals may have following SARS-CoV-2 vaccination or infection and can enable simple at-home assessment of NAb titer.
Collapse
Affiliation(s)
- Guinevere G. Connelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Orville O. Kirkland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Daniel C. Lim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert M. Wilson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward J. Richards
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dragonfly Therapeutics, Waltham, MA 02451, USA
| | - Dousabel M. Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyuk Jee
- Division of Rheumatology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Riley D. Hellinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ngoc K. Hoang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnav Chhabra
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Satellite Bio, Cambridge, MA 02139, USA
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward K.W. Tan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angela N. Koehler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wendy B. London
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pui Y. Lee
- Division of Rheumatology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Florian Krammer
- Department of Microbiology, and Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Wyss Institute at Harvard, Boston, MA 02115, USA
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Ruiz RA, Gonzalez JL, Vazquez-Alvarado M, Martinez NW, Martinez AW. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Anal Chem 2022; 94:8833-8837. [PMID: 35694851 DOI: 10.1021/acs.analchem.2c01534] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paper-based microfluidic devices, also known as microPADs, are an emerging analytical platform with the potential to improve point-of-care diagnostics. MicroPADs are fabricated by patterning hydrophobic inks onto sheets of paper to create hydrophilic channels and test zones. One of the main advantages of microPADs is that they are inexpensive and simple to fabricate, making them accessible even to researchers with limited budgets or no prior fabrication expertise. Wax printing, where a solid ink printer is used to pattern wax on paper, has been the most convenient and popular method for fabricating paper-based microfluidic devices. Unfortunately, solid ink printers were discontinued in 2016 and are no longer available commercially. Here we introduce a method for fabricating microPADs using a portable thermal transfer printer that retains the convenience of wax printing. Devices fabricated by thermal transfer printing were comparable to devices fabricated via wax printing and laser printing. The low cost, convenience, and portability of the thermal transfer printer make this approach an exciting prospect for replacing wax printing and facilitating the continued development of paper-based microfluidics.
Collapse
Affiliation(s)
- Ryan A Ruiz
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jorge L Gonzalez
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Miguel Vazquez-Alvarado
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Nathaniel W Martinez
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andres W Martinez
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
15
|
Murray LP, Mace CR. Paper-Based Cytometer for the Detection and Enumeration of White Blood Cells According to Their Immunophenotype. Anal Chem 2022; 94:10443-10450. [PMID: 35696545 DOI: 10.1021/acs.analchem.2c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Total and differential white blood cell (WBC) counts are vital metrics used routinely by clinicians to aid in the identification of diseases. However, the equipment necessary to perform WBC counts restricts their operation to centralized laboratories, greatly limiting their accessibility. Established solutions for the development of point-of-care assays, namely lateral flow tests and paper-based microfluidic devices, are inherently limited in their ability to support the detection of WBCs─the pore sizes of materials used to fabricate these devices (e.g., membranes or chromatography papers) do not permit passive WBC transport via wicking. Herein, we identify a material capable of the unimpeded transport of WBCs in both lateral and vertical directions: a coffee filter. Through in situ labeling with an enzyme-labeled affinity reagent, our paper-based cytometer detects WBCs according to their immunophenotype. Using two cultured leukocyte lines (Jurkat D1.1 T cells and MAVER-1 B cells), we demonstrate the specific, colorimetric enumeration of each target cell population across the expected physiological range for total lymphocytes, 1000-4000 cells μL-1. Additionally, we highlight a potential application of this type of device as a screening tool for detecting abnormal cell counts outside the normal physiological range and in subclasses of cell types, which could aid in the identification of certain diseases (e.g., CD4+ T lymphocytes, an important biomarker for HIV disease/AIDS). These results pave the way for a new class of paper-based devices─those capable of controlled white blood cell transport, labeling, capture, and detection─thus expanding the opportunities for low-cost, point-of-care cytometers.
Collapse
Affiliation(s)
- Lara P Murray
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles R Mace
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
16
|
Simultaneous phenotyping of five Rh red blood cell antigens on a paper-based analytical device combined with deep learning for rapid and accurate interpretation. Anal Chim Acta 2022; 1207:339807. [DOI: 10.1016/j.aca.2022.339807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
17
|
Carneiro MCCG, Rodrigues LR, Moreira FTC, Sales MGF. Colorimetric Paper-Based Sensors against Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093221. [PMID: 35590912 PMCID: PMC9102172 DOI: 10.3390/s22093221] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 05/14/2023]
Abstract
Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (μPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls.
Collapse
Affiliation(s)
- Mariana C. C. G. Carneiro
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R. Rodrigues
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Maria Goreti F. Sales
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- BioMark@UC, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| |
Collapse
|
18
|
A Three-Reagent “Green” Paper-Based Analytical Device for Solid-Phase Spectrometric and Colorimetric Determination of Dihydroquercetin. SENSORS 2022; 22:s22082893. [PMID: 35458878 PMCID: PMC9030608 DOI: 10.3390/s22082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
Microfluidic paper-based analytical devices (µPADs) represent one of the promising green analytical strategies for low-cost and simple determination of various analytes. The actual task is the development of such devices for quantitation of antioxidants, e.g., flavonoids. In this paper, possibilities of a novel three-reagent µPAD including silver nitrate, 4-nitrophenyldiazonium tetrafluoroborate, and iron(III) chloride as reagents are assessed with respect to the determination of dihydroquercetin. It is shown that all the three reagents produce different colorimetric responses that can be detected by a mini-spectrophotometer–monitor calibrator or by a smartphone. The method is applicable to direct measuring high contents of dihydroquercetin (the linearity range is 0.026–1 mg mL−1, and the limit of detection is 7.7 µg mL−1), which is favorable for many dietary supplements. The analysis of a food supplement was possible with the relative standard deviations of 9–26%, which is satisfactory for quantitative and semiquantitative determinations. It was found that plotting a calibration graph in 3D space of the three reagents’ responses allows us to distinguish dihydroquercetin from its close structural analogue, quercetin.
Collapse
|
19
|
Microfluidic aptasensor POC device for determination of whole blood potassium. Anal Chim Acta 2022; 1203:339722. [DOI: 10.1016/j.aca.2022.339722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
|
20
|
Gutiérrez-Serpa A, Kundu T, Pasán J, Jiménez-Abizanda AI, Kaskel S, Senkovska I, Pino V. Zirconium-Based Metal-Organic Framework Mixed-Matrix Membranes as Analytical Devices for the Trace Analysis of Complex Cosmetic Samples in the Assessment of Their Personal Care Product Content. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4510-4521. [PMID: 35006682 PMCID: PMC8796172 DOI: 10.1021/acsami.1c21284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
A device comprising a zirconium-based metal-organic framework (MOF) mixed-matrix membrane (MMM) framed in a plastic holder has been used to monitor the content of personal care products (PCPs) in cosmetic samples. Seven different devices containing the porous frameworks UiO-66, UiO-66-COOH, UiO-67, DUT-52, DUT-67, MOF-801, and MOF-808 in polyvinylidene fluoride (PVDF) membranes were studied. Optimized membranes reach high adsorption capacities of PCPs, up to 12.5 mg·g-1 benzophenone in a 3.0 mg·L-1 sample. The MMM adsorption kinetics, uptake measurements, and isotherm studies were carried out with aqueous standard solutions of PCPs to ensure complete characterization of the performance. The studies demonstrate the high applicability and selectivity of the composites prepared, highlighting the performance of PVDF/DUT-52 MMM that poses uptakes up to 78% for those PCPs with higher affinity while observing detection limits for the entire method down to 0.03 μg·L-1. The PVDF/DUT-52 device allowed the detection of parabens and benzophenones in the samples, with PCPs found at concentrations of 1.9-24 mg·L-1.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
- Unidad
de Investigación de Bioanalítica y Medioambiente, Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Tanay Kundu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India
| | - Jorge Pasán
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Stefan Kaskel
- Technische
Universität Dresden (TUD), Bergstrasse 66, 01069 Dresden, Germany
| | - Irena Senkovska
- Technische
Universität Dresden (TUD), Bergstrasse 66, 01069 Dresden, Germany
| | - Verónica Pino
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
- Unidad
de Investigación de Bioanalítica y Medioambiente, Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
21
|
Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 2022; 414:167-180. [PMID: 34345949 PMCID: PMC8331214 DOI: 10.1007/s00216-021-03553-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Microfluidic devices can provide a versatile, cost-effective platform for disease diagnostics and risk assessment by quantifying biomarkers. In particular, simultaneous testing of several biomarkers can be powerful. Here, we critically review work from the previous 4 years up to February 2021 on developing microfluidic devices for multiplexed detection of biomarkers from samples. We focus on two principal approaches: electrical and optical detection methods that can distinguish and quantify biomarkers. Both electrical and spectroscopic multiplexed detection strategies are being employed to reach limits of detection below clinical sample levels. Some of the most promising strategies for point-of-care assays involve inexpensive materials such as paper-based microfluidic devices, or portable and accessible detectors such as smartphones. This review does not comprehensively cover all multiplexed microfluidic biomarker studies, but rather provides a critical evaluation of key work and suggests promising prospects for future advancement in this field. Electrical and optical multiplexing are powerful approaches for microfluidic biomarker analysis.
Collapse
Affiliation(s)
- Kaitlynn R Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
22
|
Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021; 194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted much attention over the past decade. They embody many advantages, such as abundance, portability, cost-effectiveness, and ease of fabrication, making them superior for clinical diagnostics, environmental monitoring, and food safety assurance. Despite these advantages, μPADs lack the high sensitivity to detect many analytes at trace levels than other commercial analytical instruments such as mass spectrometry. Therefore, a preconcentration step is required to enhance their sensitivity. This review focuses on the techniques used to separate and preconcentrate the analytes onto the μPADs, such as ion concentration polarization, isotachophoresis, and field amplification sample stacking. Other separations and preconcentration techniques, including liquid-solid and liquid-liquid extractions coupled with μPADs, are also reviewed and discussed. In addition, the fabrication methods, advantages, disadvantages, and the performance evaluation of the μPADs concerning their precision and accuracy were highlighted and critically assessed. Finally, the challenges and future perspectives have been discussed.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
23
|
Ortiz-Martínez M, Flores-DelaToba R, González-González M, Rito-Palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. BIOSENSORS 2021; 11:482. [PMID: 34940239 PMCID: PMC8699572 DOI: 10.3390/bios11120482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
A point-of-care (POC) can be defined as an in vitro diagnostic test that can provide results within minutes. It has gained enormous attention as a promising tool for biomarkers detection and diagnosis, as well as for screening of chronic noncommunicable diseases such as diabetes mellitus. Diabetes mellitus type 2 is one of the metabolic disorders that has grown exponentially in recent years, becoming one of the greatest challenges to health systems. Early detection and accurate diagnosis of this disorder are essential to provide adequate treatments. However, efforts to reduce incidence should remain not only in these stages but in developing continuous monitoring strategies. Diabetes-monitoring tools must be accessible and affordable; thus, POC platforms are attractive, especially paper-based ones. Paper-based POCs are simple and portable, can use different matrixes, do not require highly trained staff, and are less expensive than other platforms. These advantages enhance the viability of its application in low-income countries and hard-to-reach zones. This review aims to present a critical summary of the main components required to create a sensitive and affordable enzymatic paper-based POC, as well as an oriented analysis to highlight the main limitations and challenges of current POC devices for diabetes type 2 monitoring and future research opportunities in the field.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| |
Collapse
|
24
|
Pahal S, Boranna R, Prashanth GR, Varma MM. Simplifying Molecular Transport in Polyelectrolyte Multilayer Thin Films. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem) Bengaluru Karnataka 560065 India
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| | - Rakshith Boranna
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Gurusiddappa R. Prashanth
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Manoj M. Varma
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| |
Collapse
|
25
|
Ozer T, Henry CS. Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt Chem 2021; 144:116424. [PMID: 34462612 PMCID: PMC8387141 DOI: 10.1016/j.trac.2021.116424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of user-friendly, inexpensive, sensitive, and selective detection of viruses has been highlighted again due to the recent Coronavirus disease 2019 (COVID-19) pandemic. Among the analytical tools, paper-based devices (PADs) have become a leading alternative for point-of-care (POC) testing. In this review, we discuss the recent development strategies and applications in nucleic acid-based, antibody/antigen-based and other affinity-based PADs using optical and electrochemical detection methods for sensing viruses. In addition, advantages and drawbacks of presented PADs are identified. Current state and insights towards future perspectives are presented regarding developing POC diagnosis platform for COVID-19. This review considers state-of-the-art technologies for further development and improvement in PADs performance for virus detection.
Collapse
Affiliation(s)
- Tugba Ozer
- Yildiz Technical University, Faculty of Chemical-Metallurgical Engineering, Department of Bioengineering, 34220, Istanbul, Turkey
| | - Charles S Henry
- Colorado State University, Department of Chemistry, Fort Collins, CO, 80523, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
27
|
Chauhan N, Soni S, Jain U. Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Rev Mol Diagn 2021; 21:999-1016. [PMID: 34324823 PMCID: PMC8425447 DOI: 10.1080/14737159.2021.1962708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is a major pandemic and continuously emerging due to unclear prognosis and unavailability of reliable detection tools. Older adults are more susceptible to COVID-19 than children showing mature Angiotensin-Converting Enzyme 2 (ACE2), low concentration of immune targets, and comorbid conditions. Several detection platforms have been commercialized to date and more are in pipeline, however, the rate of false-positive results and rapid mutation of SARS-CoV-2 is increasing. Additionally, physiological, and geographical variations of affected individuals are also calling for diagnostic methods optimization.Areas Covered: Extensive information related to the optimization and usefulness of SARS-CoV-2 diagnostic methods based on sensitivity and specificity as definitive and feasible investigative tools is discussed. Moreover, an option of combining laboratory diagnostic methods to improve diagnostic strategies is also proposed and discussed in the comparative section of optimization studies.Expert Opinion: The review article explains the importance of optimization strategies for SARS-CoV-2 detection in children and older adults. There are advancements in COVID-19 detection including CRISPR-based, electrochemical, and optical-based sensing systems. However, the lack of sufficient studies on a comparative evaluation of standardized SARS-CoV-2 diagnostic methods among children and older adults, limit the authentication of commercialized kits.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
28
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
29
|
Ngoc Nghia N, The Huy B, Thanh Phong P, Han JS, Kwon DH, Lee YI. Simple fluorescence optosensing probe for spermine based on ciprofloxacin-Tb3+ complexation. PLoS One 2021; 16:e0251306. [PMID: 33970959 PMCID: PMC8109780 DOI: 10.1371/journal.pone.0251306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
We developed a facile detection method of spermine based on the fluorescence (FL) quenching of the ciprofloxacin-Tb3+ complex, which shows astrong green emission. Ciprofloxacin (CP) makes efficient bondings to Tb3+ ion as a linker molecule through carboxylic and ketone groups to form a kind of lanthanide coordination polymer. The addition of spermine that competes with Tb3+ ions for the interaction with CP due to its positive charge brings about weakened coordination linkage of CP and Tb3+. The probe exhibited high sensitivity, selectivity, and good linearity in the range of 2-180 μM with a low limit of detection of 0.17 μM. Moreover, we applied this method on the paper strip test (PST), along with the integration of a smartphone and Arduino-based device. The practical reliability of the developed probe was evaluated on human serum samples with acceptable analytical results.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon, Republic of Korea
| | - Bui The Huy
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon, Republic of Korea
| | - Pham Thanh Phong
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Jin Sol Han
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon, Republic of Korea
| | - Dae Hyun Kwon
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon, Republic of Korea
| | - Yong-Ill Lee
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
30
|
Murray LP, Govindan R, Mora AC, Munro JB, Mace CR. Antibody affinity as a driver of signal generation in a paper-based immunoassay for Ebola virus surveillance. Anal Bioanal Chem 2021; 413:3695-3706. [PMID: 33852053 PMCID: PMC8044655 DOI: 10.1007/s00216-021-03317-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
During epidemics, such as the frequent and devastating Ebola virus outbreaks that have historically plagued regions of Africa, serological surveillance efforts are critical for viral containment and the development of effective antiviral therapeutics. Antibody serology can also be used retrospectively for population-level surveillance to provide a more complete estimate of total infections. Ebola surveillance efforts rely on enzyme-linked immunosorbent assays (ELISAs), which restrict testing to laboratories and are not adaptable for use in resource-limited settings. In this manuscript, we describe a paper-based immunoassay capable of detecting anti-Ebola IgG using Ebola virus envelope glycoprotein ectodomain (GP) as the affinity reagent. We evaluated seven monoclonal antibodies (mAbs) against GP—KZ52, 13C6, 4G7, 2G4, c6D8, 13F6, and 4F3—to elucidate the impact of binding affinity and binding epitope on assay performance and, ultimately, result interpretation. We used biolayer interferometry to characterize the binding of each antibody to GP before assessing their performance in our paper-based device. Binding affinity (KD) and on rate (kon) were major factors influencing the sensitivity of the paper-based immunoassay. mAbs with the best KD (3–25 nM) exhibited the lowest limits of detection (ca. μg mL−1), while mAbs with KD > 25 nM were undetectable in our device. Additionally, and most surprisingly, we determined that observed signals in paper devices were directly proportional to kon. These results highlight the importance of ensuring that the quality of recognition reagents is sufficient to support desired assay performance and suggest that the strength of an individual’s immune response can impact the interpretation of assay results.
Collapse
Affiliation(s)
- Lara P Murray
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Andrea C Mora
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
31
|
A Smartphone Camera Colorimetric Assay of Acetylcholinesterase and Butyrylcholinesterase Activity. SENSORS 2021; 21:s21051796. [PMID: 33807562 PMCID: PMC7961819 DOI: 10.3390/s21051796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can serve as biochemical markers of various pathologies like liver disfunction and poisonings by nerve agents. Ellman’s assay is the standard spectrophotometric method to measure cholinesterase activity in clinical laboratories. The authors present a new colorimetric test to assess AChE and BChE activity in biological samples using chromogenic reagents, treated 3D-printed measuring pads and a smartphone camera as a signal detector. Multiwell pads treated with reagent substrates 2,6-dichlorophenolindophenyl acetate, indoxylacetate, ethoxyresorufin and methoxyresorufin were prepared and tested for AChE and BChE. In the experiments, 3D-printed pads containing indoxylacetate as a chromogenic substrate were optimal for analytical purposes. The best results were achieved using the red (R) channel, where the limit of detection was 4.05 µkat/mL for BChE and 4.38 µkat/mL for AChE using a 40 µL sample and a 60 min assay. The major advantage of this method is its overall simplicity, as samples are applied directly without any specific treatment or added reagents. The assay was also validated to the standard Ellman’s assay using human plasma samples. In conclusion, this smartphone camera-based colorimetric assay appears to have practical applicability and to be a suitable method for point-of-care testing because it does not require specific manipulation, additional education of staff or use of sophisticated analytical instruments.
Collapse
|