1
|
dos Santos F, Xu M, Bravo de Guenni L, Lourenço-de-Oliveira R, Rubio-Palis Y. Characterization of larval habitats of Anopheles (Nyssorhynchus) darlingi and associated species in malaria areas in western Brazilian Amazon. Mem Inst Oswaldo Cruz 2024; 119:e240116. [PMID: 39383404 PMCID: PMC11458182 DOI: 10.1590/0074-02760240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Anopheles darlingi is the most efficient vector of malaria parasites in the Neotropics. Nevertheless, the specificities of its larval habitats are still poorly known. OBJECTIVES Characterize permanent larval habitats, and population dynamics of An. darlingi and other potential vectors in relation to climate, physicochemical variables, insect fauna and malaria cases. METHODS A 14-month longitudinal study was conducted in Porto Velho, Rondônia, western Brazilian Amazon. Monthly, 21 permanent water bodies were sampled. Immature anophelines and associated fauna were collected, physicochemical characteristics, and climate variables were recorded and analyzed. FINDINGS Five types of habitats were identified: lagoon, stream, stream combined with lagoon, stream combined with dam, and fishpond. A total of 60,927 anophelines were collected. The most abundant species in all habitats were Anopheles braziliensis and An. darlingi. The highest density was found in the lagoon, while streams had the highest species richness. Abundance was higher during the transition period wet-dry season. There was a lag of respectively four and five months between the peak of rainfall and the Madeira River level and the highest abundance of An. darlingi larvae, which were positively correlated with habitats partially shaded, pH close to neutrality, increase dissolved oxygen and sulphates. MAIN CONCLUSIONS The present study provides data on key factors defining permanent larval habitats for the surveillance of An. darlingi and other potential vectors as well as a log-linear Negative Binomial model based on immature mosquito abundance and climate variables to predict the increase in the number of malaria cases.
Collapse
|
2
|
Fonseca F, Martinez JM, Balieiro A, Orellana J, Santos JD, Filizola N. Relationship between the colours of the rivers in the Amazon and the incidence of malaria. Malar J 2023; 22:358. [PMID: 37996920 PMCID: PMC10668518 DOI: 10.1186/s12936-023-04789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Malaria is transmitted by different Anopheles species. In Brazil, the disease is concentrated in the Amazon region. Rivers play an important role in the life cycle of malaria since the vector reproduces in aquatic environments. The waters of the rivers in the Amazon have distinct chemical characteristics, which affect the colour of the water and therefore, the study analysed whether the colour of the waters of the rivers have an on influence the distribution of malaria. The goal of the study was to correlate the different colourations of the water (black, white and mixed water) and the malaria incidence in 50 municipalities of the Amazonas state, Brazil, and then test hypotheses about the characteristics of the colour of the rivers and disease incidence. METHODS This study was conducted for a period of seventeen years (2003-2019) in 50 municipalities in the state of Amazonas, Brazil. A conditionally Gaussian dynamic linear model was developed to analyse the association of malaria incidence and three types of river colour: white, black and mixed. RESULTS The analyses indicate that the distribution of malaria is related to the colouration of the rivers. The results showed that places located near black-water rivers have a higher malaria incidence when compared to places on the banks of white-water rivers. CONCLUSIONS Historically, the hydrological regime has played an important role in the dynamics of malaria in the Amazon, but little is known about the relationship between river colours and the incidence of the disease. This research was carried out in a region with hydrographic characteristics that were heterogeneous enough to allow an analysis that contrasted different colours of the rivers and covered almost the whole of the state of Amazonas. The results help to identify the places with the highest risk of malaria transmission and it is believed that they will be able to contribute to more precise planning of actions aimed at controlling the disease in the region.
Collapse
Affiliation(s)
- Fernanda Fonseca
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil.
- Pós-Graduação em Clima e Ambiente-CLIAMB (INPA/UEA), Manaus, Amazonas, Brasil.
| | | | - Antônio Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Jesem Orellana
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - James D Santos
- Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Naziano Filizola
- Pós-Graduação em Clima e Ambiente-CLIAMB (INPA/UEA), Manaus, Amazonas, Brasil
- Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| |
Collapse
|
3
|
de Almeida NCV, Louzada J, Neves MSAS, Carvalho TM, Castro-Alves J, Silva-do-Nascimento TF, Escalante AA, Oliveira-Ferreira J. Larval habitats, species composition and distribution of malaria vectors in regions with autochthonous and imported malaria in Roraima state, Brazil. Malar J 2022; 21:13. [PMID: 35027049 PMCID: PMC8759267 DOI: 10.1186/s12936-021-04033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. Methods A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. Results A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. Conclusion This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04033-1.
Collapse
Affiliation(s)
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brasil
| | | | - Thiago M Carvalho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Júlio Castro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | - Ananias A Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
| |
Collapse
|
4
|
Oliveira TMP, Laporta GZ, Bergo ES, Chaves LSM, Antunes JLF, Bickersmith SA, Conn JE, Massad E, Sallum MAM. Vector role and human biting activity of Anophelinae mosquitoes in different landscapes in the Brazilian Amazon. Parasit Vectors 2021; 14:236. [PMID: 33957959 PMCID: PMC8101188 DOI: 10.1186/s13071-021-04725-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Environmental disturbance, deforestation and socioeconomic factors all affect malaria incidence in tropical and subtropical endemic areas. Deforestation is the major driver of habitat loss and fragmentation, which frequently leads to shifts in the composition, abundance and spatial distribution of vector species. The goals of the present study were to: (i) identify anophelines found naturally infected with Plasmodium; (ii) measure the effects of landscape on the number of Nyssorhynchus darlingi, presence of Plasmodium-infected Anophelinae, human biting rate (HBR) and malaria cases; and (iii) determine the frequency and peak biting time of Plasmodium-infected mosquitoes and Ny. darlingi. METHODS Anopheline mosquitoes were collected in peridomestic and forest edge habitats in seven municipalities in four Amazon Brazilian states. Females were identified to species and tested for Plasmodium by real-time PCR. Negative binomial regression was used to measure any association between deforestation and number of Ny. darlingi, number of Plasmodium-infected Anophelinae, HBR and malaria. Peak biting time of Ny. darlingi and Plasmodium-infected Anophelinae were determined in the 12-h collections. Binomial logistic regression measured the association between presence of Plasmodium-infected Anophelinae and landscape metrics and malaria cases. RESULTS Ninety-one females of Ny. darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B were found to be infected with Plasmodium. Analysis showed that the number of malaria cases and the number of Plasmodium-infected Anophelinae were more prevalent in sites with higher edge density and intermediate forest cover (30-70%). The distance of the drainage network to a dwelling was inversely correlated to malaria risk. The peak biting time of Plasmodium-infected Anophelinae was 00:00-03:00 h. The presence of Plasmodium-infected mosquitoes was higher in landscapes with > 13 malaria cases. CONCLUSIONS Nyssorhynchus darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B can be involved in malaria transmission in rural settlements. The highest fraction of Plasmodium-infected Anophelinae was caught from midnight to 03:00 h. In some Amazonian localities, the highest exposure to infectious bites occurs when residents are sleeping, but transmission can occur throughout the night. Forest fragmentation favors increases in both malaria and the occurrence of Plasmodium-infected mosquitoes in peridomestic habitat. The use of insecticide-impregnated mosquito nets can decrease human exposure to infectious Anophelinae and malaria transmission.
Collapse
Affiliation(s)
- Tatiane M P Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil.
| | - Gabriel Z Laporta
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil
| | - Eduardo S Bergo
- Superintendencia de Controle de Endemias, Secretaria de Estado da Saúde, Araraquara, SP, Brazil
| | - Leonardo Suveges Moreira Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | - José Leopoldo F Antunes
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | | | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| |
Collapse
|
5
|
Rufalco-Moutinho P, Moura Kadri S, Peres Alonso D, Moreno M, Carrasco-Escobar G, Prussing C, Gamboa D, Vinetz JM, Mureb Sallum MA, Conn JE, Martins Ribolla PE. Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PLoS One 2021; 16:e0246215. [PMID: 33831004 PMCID: PMC8031405 DOI: 10.1371/journal.pone.0246215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.
Collapse
Affiliation(s)
- Paulo Rufalco-Moutinho
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Samir Moura Kadri
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Peres Alonso
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Dionicia Gamboa
- Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Anice Mureb Sallum
- Faculdade de Saúde Pública, Departamento de Epidemiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Paulo Eduardo Martins Ribolla
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
6
|
Laporta GZ, Ilacqua RC, Bergo ES, Chaves LSM, Rodovalho SR, Moresco GG, Figueira EAG, Massad E, de Oliveira TMP, Bickersmith SA, Conn JE, Sallum MAM. Malaria transmission in landscapes with varying deforestation levels and timelines in the Amazon: a longitudinal spatiotemporal study. Sci Rep 2021; 11:6477. [PMID: 33742028 PMCID: PMC7979798 DOI: 10.1038/s41598-021-85890-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The relationship between deforestation and malaria is a spatiotemporal process of variation in Plasmodium incidence in human-dominated Amazonian rural environments. The present study aimed to assess the underlying mechanisms of malarial exposure risk at a fine scale in 5-km2 sites across the Brazilian Amazon, using field-collected data with a longitudinal spatiotemporally structured approach. Anopheline mosquitoes were sampled from 80 sites to investigate the Plasmodium infection rate in mosquito communities and to estimate the malaria exposure risk in rural landscapes. The remaining amount of forest cover (accumulated deforestation) and the deforestation timeline were estimated in each site to represent the main parameters of both the frontier malaria hypothesis and an alternate scenario, the deforestation-malaria hypothesis, proposed herein. The maximum frequency of pathogenic sites occurred at the intermediate forest cover level (50% of accumulated deforestation) at two temporal deforestation peaks, e.g., 10 and 35 years after the beginning of the organization of a settlement. The incidence density of infected anophelines in sites where the original forest cover decreased by more than 50% in the first 25 years of settlement development was at least twice as high as the incidence density calculated for the other sites studied (adjusted incidence density ratio = 2.25; 95% CI, 1.38-3.68; p = 0.001). The results of this study support the frontier malaria as a unifying hypothesis for explaining malaria emergence and for designing specific control interventions in the Brazilian Amazon.
Collapse
Affiliation(s)
- Gabriel Z Laporta
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil.
| | - Roberto C Ilacqua
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias (SUCEN), Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Leonardo S M Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil
| | - Sheila R Rodovalho
- Unidade Técnica de Doenças Transmissíveis e Análise de Situação em Saúde, Pan American Health Organization (PAHO/WHO), Brasília, DF, Brazil
| | - Gilberto G Moresco
- Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Secretaria de Vigilância em Saúde, Ministério da Saúde (MS), Brasília, DF, Brazil
| | | | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| | - Tatiane M P de Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil
| | - Sara A Bickersmith
- New York State Department of Health, The Wadsworth Center, Slingerlands, NY, USA
| | - Jan E Conn
- New York State Department of Health, The Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Chaves LSM, Bergo ES, Conn JE, Laporta GZ, Prist PR, Sallum MAM. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS One 2021; 16:e0245087. [PMID: 33444320 PMCID: PMC7808592 DOI: 10.1371/journal.pone.0245087] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Inter-relationships among mosquito vectors, Plasmodium parasites, human ecology, and biotic and abiotic factors, drive malaria risk. Specifically, rural landscapes shaped by human activities have a great potential to increase the abundance of malaria vectors, putting many vulnerable people at risk. Understanding at which point the abundance of vectors increases in the landscape can help to design policies and interventions for effective and sustainable control. Using a dataset of adult female mosquitoes collected at 79 sites in malaria endemic areas in the Brazilian Amazon, this study aimed to (1) verify the association among forest cover percentage (PLAND), forest edge density (ED), and variation in mosquito diversity; and to (2) test the hypothesis of an association between landscape structure (i.e., PLAND and ED) and Nyssorhynchus darlingi (Root) dominance. Mosquito collections were performed employing human landing catch (HLC) (peridomestic habitat) and Shannon trap combined with HLC (forest fringe habitat). Nyssorhynchus darlingi abundance was used as the response variable in a generalized linear mixed model, and the Shannon diversity index (H') of the Culicidae community, PLAND, and the distance house-water drainage were used as predictors. Three ED categories were also used as random effects. A path analysis was used to understand comparative strengths of direct and indirect relationships among Amazon vegetation classes, Culicidae community, and Ny. darlingi abundance. Our results demonstrate that Ny. darlingi is negatively affected by H´ and PLAND of peridomestic habitat, and that increasing these variables (one-unit value at β0 = 768) leads to a decrease of 226 (P < 0.001) and 533 (P = 0.003) individuals, respectively. At the forest fringe, a similar result was found for H' (β1 = -218; P < 0.001) and PLAND (β1 = -337; P = 0.04). Anthropogenic changes in the Amazon vegetation classes decreased mosquito biodiversity, leading to increased Ny. darlingi abundance. Changes in landscape structure, specifically decreases in PLAND and increases in ED, led to Ny. darlingi becoming the dominant species, increasing malaria risk. Ecological mechanisms involving changes in landscape and mosquito species composition can help to understand changes in the epidemiology of malaria.
Collapse
Affiliation(s)
| | - Eduardo Sterlino Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, United States of America
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação ABC, Santo André, SP, Brazil
| | - Paula Ribeiro Prist
- Department of Ecology, Institute of Bioscience, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Dias ACA, Rodrigues MMS, Silva AA. Effect of acute and chronic exposure to ammonia on different larval instars of Anopheles darlingi (Diptera: Culicidae). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:112-118. [PMID: 31124231 DOI: 10.1111/jvec.12335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Anopheles darlingi (Diptera: Culicidae) is the most important vector of malaria in South America and has already been found in peri-urban areas that commonly contain toxic nitrogenous compounds, such as ammonia. The adaptation of mosquitoes to polluted breeding sites can increase their distribution and affect the dynamics of vector-borne diseases such as malaria. Therefore, the present study investigated the tolerance of larval instars of An. darlingi to ammonia under acute and chronic exposure conditions. Anopheles darlingi larval mortality, development time, and pupal and adult production using larvae of the 1st (L1) and 3rd (L3) instar were assessed as both acute and chronic effects of exposure to different concentrations of ammonia. Lethal concentrations (LCs) for L1 larvae were lower than LCs for L3 larvae. In general, higher ammonia concentrations caused an increase in larval mortality, especially in chronically exposed L1 larvae. The larval development time in L1 and L3 was longer with chronic treatment and decreased with increasing concentrations of ammonia. The number of pupae was very low for acutely exposed L1 and L3 larvae. Likewise, the probability of adult production decreased with increasing ammonia concentrations. This is the first report on the tolerance of An. darlingi to pollutants.
Collapse
Affiliation(s)
- Alyne C A Dias
- Programa de Pós-Graduação em Biologia Experimental.Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| | | | - Alexandre A Silva
- Universidade Federal de Rondônia, Laboratório de Bioecologia de Insetos (LaBEIn) L, 76801-059 Porto Velho, RO, Brasil
| |
Collapse
|
9
|
Prussing C, Saavedra MP, Bickersmith SA, Alava F, Guzmán M, Manrique E, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE. Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Negl Trop Dis 2019; 13:e0007412. [PMID: 31091236 PMCID: PMC6538195 DOI: 10.1371/journal.pntd.0007412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential. We conducted a multi-level study of the larval ecology of Anophelinae mosquitoes in the peri-Iquitos region of Amazonian Peru, examining the environmental characteristics of the larval habitats of four species, comparing the larval microbiota among species and habitats, and placing Ny. darlingi larval habitats in the context of spatial heterogeneity in human malaria transmission. We collected Ny. darlingi, Nyssorhynchus rangeli (formerly Anopheles rangeli), Nyssorhynchus triannulatus s.l. (formerly Anopheles triannulatus s.l.), and Nyssorhynchus sp. nr. konderi (formerly Anopheles sp. nr. konderi) from natural and artificial water bodies throughout the rainy and dry seasons. We found that, consistent with previous studies in this region and in Brazil, the presence of Ny. darlingi was significantly associated with water bodies in landscapes with more recent deforestation and lower light intensity. Nyssorhynchus darlingi presence was also significantly associated with a lower vegetation index, other Anophelinae species, and emergent vegetation. Though they were collected in the same water bodies, the microbial communities of Ny. darlingi larvae were distinct from those of Ny. rangeli and Ny. triannulatus s.l., providing evidence either for a species-specific larval microbiome or for segregation of these species in distinct microhabitats within each water body. We demonstrated that houses with more reported malaria cases were located closer to Ny. darlingi larval habitats; thus, targeted control of these sites could help ameliorate malaria risk. The co-occurrence of Ny. darlingi larvae in water bodies with other putative malaria vectors increases the potential impact of larval source management in this region.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | | | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|
10
|
Sallum MAM, Conn JE, Bergo ES, Laporta GZ, Chaves LSM, Bickersmith SA, de Oliveira TMP, Figueira EAG, Moresco G, Olívêr L, Struchiner CJ, Yakob L, Massad E. Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian Region of Brazil. Malar J 2019; 18:117. [PMID: 30947726 PMCID: PMC6449965 DOI: 10.1186/s12936-019-2753-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background Brazilian malaria control programmes successfully reduced the incidence and mortality rates from 2005 to 2016. Since 2017, increased malaria has been reported across the Amazon. Few field studies focus on the primary malaria vector in high to moderate endemic areas, Nyssorhynchus darlingi, as the key entomological component of malaria risk, and on the metrics of Plasmodium vivax propagation in Amazonian rural communities. Methods Human landing catch collections were carried out in 36 houses of 26 communities in five municipalities in the Brazilian states of Acre, Amazonas and Rondônia states, with API (> 30). In addition, data on the number of locally acquired symptomatic infections were employed in mathematical modelling analyses carried out to determine Ny. darlingi vector competence and vectorial capacity to P. vivax; and to calculate the basic reproduction number for P. vivax. Results Entomological indices and malaria metrics ranged among localities: prevalence of P. vivax infection in Ny. darlingi, from 0.243% in Mâncio Lima, Acre to 3.96% in Machadinho D’Oeste, Rondônia; daily human-biting rate per person from 23 ± 1.18 in Cruzeiro do Sul, Acre, to 66 ± 2.41 in Lábrea, Amazonas; vector competence from 0.00456 in São Gabriel da Cachoeira, Amazonas to 0.04764 in Mâncio Lima, Acre; vectorial capacity from 0.0836 in Mâncio Lima, to 1.5 in Machadinho D’Oeste. The estimated R0 for P. vivax (PvR0) was 3.3 in Mâncio Lima, 7.0 in Lábrea, 16.8 in Cruzeiro do Sul, 55.5 in São Gabriel da Cachoeira, and 58.7 in Machadinho D’Oeste. Correlation between P. vivax prevalence in Ny. darlingi and vector competence was non-linear whereas association between prevalence of P. vivax in mosquitoes, vectorial capacity and R0 was linear and positive. Conclusions In spite of low vector competence of Ny. darlingi to P. vivax, parasite propagation in the human population is enhanced by the high human-biting rate, and relatively high vectorial capacity. The high PvR0 values suggest hyperendemicity in Machadinho D’Oeste and São Gabriel da Cachoeira at levels similar to those found for P. falciparum in sub-Saharan Africa regions. Mass screening for parasite reservoirs, effective anti-malarial drugs and vector control interventions will be necessary to shrinking transmission in Amazonian rural communities, Brazil. Electronic supplementary material The online version of this article (10.1186/s12936-019-2753-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Gabriel Z Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Leonardo S M Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Tatiane M P de Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Gilberto Moresco
- Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis, Ministério da Saúde, Brasília, DF, Brazil
| | - Lêuda Olívêr
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Claudio J Struchiner
- Departamento de Doenças Endêmicas Samuel Pessoa, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eduardo Massad
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.,Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
12
|
Hutchings RSG, Hutchings RW, Menezes IS, Motta MDA, Sallum MAM. Mosquitoes (Diptera: Culicidae) From the Northwestern Brazilian Amazon: Araçá River. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1188-1209. [PMID: 29767750 DOI: 10.1093/jme/tjy065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Indexed: 06/08/2023]
Abstract
The mosquito fauna (Diptera: Culicidae) from two remote localities along the Araçá River, within the Municipality of Barcelos, towards the northern border of the Brazilian State of Amazonas, were sampled using CDC, Shannon, Malaise, and Suspended traps, along with net sweeping and immature collections. During June 2010, 111 collections yielded more than 23,500 mosquitoes distributed in 15 genera, representing 119 different species, together with eight morphospecies, which may represent undescribed new taxa. Among the species collected, there is one new distributional record for Brazil and nine new distributional records for the State of Amazonas. With the highest number of species, the genus Culex Linnaeus also had the largest number of individuals followed by Aedes Meigen with the second highest number of species. The most abundant species was Culex (Melanoconion) gnomatos Sallum, Hutchings & Ferreira followed by Culex (Melanoconion) portesi Senevet & Abonnenc, Culex (Culex) mollis Dyar & Knab, Aedes (Ochlerotatus) fulvus (Wiedemann), Culex (Melanoconion) pedroi Sirivanakarn & Belkin, Culex (Melanoconion) crybda Dyar, Aedes (Ochlerotatus) nubilus (Theobald), and Anopheles (Anopheles) peryassui Dyar & Knab. The epidemiological implications of mosquito species found are discussed and are compared with other mosquito inventories from the Amazon region. As the first standardized mosquito inventory of the Araçá River, with the identification of 127 species level taxa, the number of mosquito species which have been collected along the northern tributaries of the middle Rio Negro Basin (i.e., Padauari and Araçá Rivers) increased significantly.
Collapse
Affiliation(s)
- Rosa Sá Gomes Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Roger William Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Isis Sá Menezes
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Monique de Albuquerque Motta
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Doutor Arnaldo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Micro-Study of the Evolution of Rural Settlement Patterns and Their Spatial Association with Water and Land Resources: A Case Study of Shandan County, China. SUSTAINABILITY 2017. [DOI: 10.3390/su9122277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Sánchez-Ribas J, Oliveira-Ferreira J, Gimnig JE, Pereira-Ribeiro C, Santos-Neves MSA, Silva-do-Nascimento TF. Environmental variables associated with anopheline larvae distribution and abundance in Yanomami villages within unaltered areas of the Brazilian Amazon. Parasit Vectors 2017; 10:571. [PMID: 29145867 PMCID: PMC5691859 DOI: 10.1186/s13071-017-2517-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/01/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Many indigenous villages in the Amazon basin still suffer from a high malaria burden. Despite this health situation, there are few studies on the bionomics of anopheline larvae in such areas. This publication aims to identify the main larval habitats of the most abundant anopheline species and to assess their associations with some environmental factors. METHODS We conducted a 19-month longitudinal study from January 2013 to July 2014, sampling anopheline larvae in two indigenous Yanomami communities, comprised of four villages each. All natural larval habitats were surveyed every two months with a 350 ml manual dipper, following a standardized larval sampling methodology. In a third study area, we conducted two field expeditions in 2013 followed by four systematic collections during the long dry season of 2014-2015. RESULTS We identified 177 larval habitats in the three study areas, from which 9122 larvae belonging to 13 species were collected. Although species abundance differed between villages, An. oswaldoi (s.l.) was overall the most abundant species. Anopheles darlingi, An. oswaldoi (s.l.), An. triannulatus (s.s.) and An. mattogrossensis were primarily found in larval habitats that were partially or mostly sun-exposed. In contrast, An. costai-like and An. guarao-like mosquitoes were found in more shaded aquatic habitats. Anopheles darlingi was significantly associated with proximity to human habitations and larval habitats associated with river flood pulses and clear water. CONCLUSIONS This study of anopheline larvae in the Brazilian Yanomami area detected high heterogeneities at micro-scale levels regarding species occurrence and densities. Sun exposure was a major modulator of anopheline occurrence, particularly for An. darlingi. Lakes associated with the rivers, and particularly oxbow lakes, were the main larval habitats for An. darlingi and other secondary malaria vectors. The results of this study will serve as a basis to plan larval source management activities in remote indigenous communities of the Amazon, particularly for those located within low-order river-floodplain systems.
Collapse
Affiliation(s)
- Jordi Sánchez-Ribas
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | | | - John E. Gimnig
- Center for Disease Control and Prevention, CDC, Atlanta, USA
| | | | | | | |
Collapse
|