1
|
Carrera LC, Piedra L, Torres-Cosme R, Castillo AM, Bruno A, Ramírez JL, Martínez D, Rodríguez MM, Bisset JA. Insecticide resistance status and mechanisms in Aedes aegypti and Aedes albopictus from different dengue endemic regions of Panama. Trop Med Health 2024; 52:69. [PMID: 39385264 PMCID: PMC11462824 DOI: 10.1186/s41182-024-00637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Dengue is a serious public health problem worldwide, including Panama. During the last years, the number of dengue cases has increased. This may be due to the presence of mosquito populations resistant to insecticides. The aim of this study was to characterize the resistance status, its enzymatic mechanisms and Kdr mutations in wild populations of Aedes aegypti and Aedes albopictus. METHODS Standard WHO bioassays were performed using insecticide-treated filter papers to determine resistance in populations Ae. aegypti and Ae. albopictus to pyrethroids insecticides, organophosphates, to the carbamate propoxur and to the organochlorine DDT. Biochemical assays were conducted to detect metabolic resistance mechanisms and real-time PCR was performed to determine the frequencies of the Kdr mutations Val1016IIe and F1534C. RESULTS The strains Ae. aegypti El Coco showed confirmed resistance to deltamethrin (78.5% mortality) and lambda-cyhalothrin (81%), Aguadulce to deltamethrin (79.3%), David to deltamethrin (74.8%) and lambda-cyhalothrin (87.5%) and Puerto Armuelles to permethrin (83%). Aedes aegypti El Empalme showed confirmed resistance to pirimiphos-methyl (62.3% mortality), chlorpyrifos-methyl (55.5%) and propoxur (85.3%). All strains of Ae. albopictus showed possible resistance to PYs and five strains to DDT. Only Ae. albopictus Canto del Llano showed confirmed resistance to pirimiphos-methyl (70% mortality) and malathion (62%). Esterase activity was variable across sites with the most frequent expression of α-EST compared to β-EST in Ae. aegypti populations. In Ae. Albopictus, the expressed enzymes were β-EST and MFOs. Through ANOVA, significant differences were established in the levels of enzymatic activity of α- and β-EST, MFOs and GST, with p < 0.001 in the Ae. aegypti and Ae. albopictus. The Kdr Val1016IIe mutation was detected in Ae. aegypti Aguadulce, El Coco and David. The odds ratio for the Val1016Ile mutation ranged from 0.8 to 20.8 in resistant mosquitoes, indicating the association between pyrethroid phenotypic resistance and the kdr mutation. CONCLUSION The presence of a varied and generalized resistance, enzymatic mechanisms and the Val1016IIe mutation may be associated with the intensive use and possibly misuse of the different insecticides applied to control Aedes populations. These results highlight the need to develop a program for resistance management. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.
Collapse
Affiliation(s)
- Lorenzo Cáceres Carrera
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá.
| | - Luis Piedra
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Rolando Torres-Cosme
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - Anakena M Castillo
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - Antonio Bruno
- Departamento de Química de Alimentos y Aguas del Laboratorio Central de Referencia en Salud Pública del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - José Luis Ramírez
- Agricultural Research Service, United States Department of Agriculture. Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Dan Martínez
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - María Magdalena Rodríguez
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Juan A Bisset
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| |
Collapse
|
2
|
Atencia–Pineda MC, Diaz-Ortiz D, Pareja–Loaiza P, García–Leal J, Hoyos–López R, Calderón–Rangel A, Fragozo-Castilla P, Pacheco-Lugo L, Flores AE, Maestre–Serrano R. Assessing pyrethroid resistance in Aedes aegypti from Cordoba Colombia: Implications of kdr mutations. PLoS One 2024; 19:e0309201. [PMID: 39172980 PMCID: PMC11340990 DOI: 10.1371/journal.pone.0309201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Resistance to insecticides is one of the great challenges that vector control programs must face. The constant use of pyrethroid-type insecticides worldwide has caused selection pressure in populations of the Aedes aegypti vector, which has promoted the emergence of resistant populations. The resistance mechanism to pyrethroid insecticides most studied to date is target-site mutations that desensitize the voltage-gated sodium channel (VGSC) of the insect to the action of pyrethroids. In the present study, susceptibility to the pyrethroid insecticides permethrin, lambda-cyhalothrin, and deltamethrin was evaluated in fourteen populations from the department of Córdoba, Colombia. The CDC bottle bioassay and WHO tube methods were used. Additionally, the frequencies of the F1534C, V1016I, and V410L mutations were determined, and the association of resistance with the tri-locus haplotypes was examined. The results varied between the two techniques used, with resistance to permethrin observed in thirteen of the fourteen populations, resistance to lambda-cyhalothrin in two populations, and susceptibility to deltamethrin in all the populations under study with the CDC method. In contrast, the WHO method showed resistance to the three insecticides evaluated in all populations. The frequencies of the mutated alleles ranged from 0.05-0.43 for 1016I, 0.94-1.0 for 1534C, and 0.01-0.59 for 410L. The triple homozygous mutant CIL haplotype was associated with resistance to all three pyrethroids evaluated with the WHO bioassay, while with the CDC bioassay, it was only associated with resistance to permethrin. This study highlights the importance of implementing systematic monitoring of kdr mutations, allowing resistance management strategies to be dynamically adjusted to achieve effective control of Aedes aegypti.
Collapse
Affiliation(s)
- María Claudia Atencia–Pineda
- Doctorado en Microbiología y Salud Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Diana Diaz-Ortiz
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Paula Pareja–Loaiza
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Javier García–Leal
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Richard Hoyos–López
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Universidad de Córdoba, Montería, Colombia
| | - Alfonso Calderón–Rangel
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Universidad de Córdoba, Montería, Colombia
| | - Pedro Fragozo-Castilla
- Grupo de Investigación Parasitología Agroecología Milenio, Universidad Popular del Cesar, Valledupar, Colombia
| | - Lisandro Pacheco-Lugo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| | - Adriana E. Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garzas, México
| | - Ronald Maestre–Serrano
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia
| |
Collapse
|
3
|
Khurshid A, Inayat R, Basit A, Mobarak SH, Gui SH, Liu TX. Effects of thiamethoxam on physiological and molecular responses to potato plant (Solanum tuberosum), green peach aphid (Myzus persicae), and parasitoid (Aphidius gifuensis). PEST MANAGEMENT SCIENCE 2024; 80:3000-3009. [PMID: 38312101 DOI: 10.1002/ps.8006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 μm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 μm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rehan Inayat
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Noaman K, Abuelmaali SA, Elnour MAB, Korti M, Ageep T, Baleela RMH. First detection of F1534C kdr insecticide resistance mutation in Aedes aegypti in Sudan. Parasitol Res 2024; 123:178. [PMID: 38578300 DOI: 10.1007/s00436-024-08194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Kheder Noaman
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Sara A Abuelmaali
- National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan.
| | - Mohamed-Ahmed B Elnour
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Mohammed Korti
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Tellal Ageep
- Tropical Medicine Research Institute, National Center for Research, P.O. Box 1304, Khartoum, 11111, Sudan
| | - Rania M H Baleela
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
5
|
Jaramillo-Ramirez GI, Tacugue MC, Power GM, Qureshi R, Seelig F, Quintero J, Logan JG, Jones RT. A Qualitative Analysis of the Perceptions of Stakeholders Involved in Vector Control and Vector-Borne Disease Research and Surveillance in Orinoquia, Colombia. Trop Med Infect Dis 2024; 9:43. [PMID: 38393132 PMCID: PMC10892243 DOI: 10.3390/tropicalmed9020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
Colombia has a tropical climate and environmental conditions that favour the circulation of most of the known vector-borne diseases (VBDs). Protocols have been established and implemented to address the threats of these diseases, but they are for country-wide use and do not take into consideration the nuances of the different environments of the country. Almost the entire population is vulnerable to infection with one or more VBD. This study aims to characterise the perceptions and experiences of stakeholders involved in vector control and VBDs in the Orinoquia region in Colombia. Two panel discussions, and 12 semi-structured interviews, were conducted. Experts from the Colombian National Health Institute (INS), health secretaries from Meta, Guaviare and Vichada Departments, academic researchers, and individuals from private vector control companies participated. All sessions were recorded, transcribed, and translated, and then subject to thematic analysis. Three major themes emerged: involvement, limitations, and recommendations. Results showed that participants are engaged in vector surveillance activities, education, and vector control research. Participants focused on problems of disjointed efforts towards VBD control between health secretaries and the health ministry, as well as societal issues, such as socioeconomic, cultural, and political issues, which became the rationale for the lack of vector control resources. Responses in the panel discussions and interviews overlapped in opinions, and suggested that vector control could be improved through better communication between vector control bodies, strengthened engagement with vulnerable communities, more collaborative actions, and a more balanced distribution of resources.
Collapse
Affiliation(s)
| | - Maria Claudelle Tacugue
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Grace M Power
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Rimsha Qureshi
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Frederik Seelig
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Global Vector Hub, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Juliana Quintero
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Division of Population Health and Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá 110011, Colombia
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Global Vector Hub, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
6
|
Velez ID, Uribe A, Barajas J, Uribe S, Ángel S, Suaza-Vasco JD, Mejia Torres MC, Arbeláez MP, Santacruz-Sanmartin E, Duque L, Martínez L, Posada T, Patiño AC, Gonzalez SM, Velez AL, Ramírez J, Salazar M, Gómez S, Osorio JE, Iturbe-Ormaetxe I, Dong Y, Muzzi FC, Rances E, Johnson PH, Smithyman R, Col B, Green BR, Frossard T, Brown-Kenyon J, Joubert DA, Grisales N, Ritchie SA, Denton JA, Gilles JRL, Anders KL, Kutcher SC, Ryan PA, O’Neill SL. Large-scale releases and establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello, Medellín and Itagüí, Colombia. PLoS Negl Trop Dis 2023; 17:e0011642. [PMID: 38032856 PMCID: PMC10688688 DOI: 10.1371/journal.pntd.0011642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS Local wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas. CONCLUSION These results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas.
Collapse
Affiliation(s)
- Iván Darío Velez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Alexander Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jovany Barajas
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Ángel
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | - Lorena Duque
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Luis Martínez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Tania Posada
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Ana Lucía Velez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jennifer Ramírez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Salazar
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Gómez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Jorge E. Osorio
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Yi Dong
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Edwige Rances
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Ruth Smithyman
- World Mosquito Program, Monash University, Clayton, Australia
| | - Bruno Col
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Tibor Frossard
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | - Nelson Grisales
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Jai A. Denton
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | | | - Peter A. Ryan
- World Mosquito Program, Monash University, Clayton, Australia
| | | |
Collapse
|
7
|
Derilus D, Impoinvil LM, Muturi EJ, McAllister J, Kenney J, Massey SE, Hemme R, Kothera L, Lenhart A. Comparative Transcriptomic Analysis of Insecticide-Resistant Aedes aegypti from Puerto Rico Reveals Insecticide-Specific Patterns of Gene Expression. Genes (Basel) 2023; 14:1626. [PMID: 37628677 PMCID: PMC10454789 DOI: 10.3390/genes14081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.
Collapse
Affiliation(s)
- Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Ephantus J. Muturi
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Janet McAllister
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Joan Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Steven E. Massey
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA;
| | - Ryan Hemme
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR 00920, USA;
| | - Linda Kothera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| |
Collapse
|
8
|
Hutton SM, Miarinjara A, Stone NE, Raharimalala FN, Raveloson AO, Rakotobe Harimanana R, Harimalala M, Rahelinirina S, McDonough RF, Ames AD, Hepp C, Rajerison M, Busch JD, Wagner DM, Girod R. Knockdown resistance mutations are common and widely distributed in Xenopsylla cheopis fleas that transmit plague in Madagascar. PLoS Negl Trop Dis 2023; 17:e0011401. [PMID: 37607174 PMCID: PMC10443838 DOI: 10.1371/journal.pntd.0011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/22/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Plague, caused by the bacterium Yersinia pestis, remains an important disease in Madagascar, where the oriental rat flea, Xenopsylla cheopis, is a primary vector. To control fleas, synthetic pyrethroids (SPs) have been used for >20 years, resulting in resistance in many X. cheopis populations. The most common mechanisms of SP resistance are target site mutations in the voltage-gated sodium channel (VGSC) gene. METHODOLOGY/PRINCIPAL FINDINGS We obtained 25 collections of X. cheopis from 22 locations across Madagascar and performed phenotypic tests to determine resistance to deltamethrin, permethrin, and/or dichlorodiphenyltrichloroethane (DDT). Most populations were resistant to all these insecticides. We sequenced a 535 bp segment of the VGSC gene and identified two different mutations encoding distinct substitutions at amino acid position 1014, which is associated with knockdown resistance (kdr) to SPs in insects. Kdr mutation L1014F occurred in all 25 collections; a rarer mutation, L1014H, was found in 12 collections. There was a significant positive relationship between the frequency of kdr alleles and the proportion of individuals surviving exposure to deltamethrin. Phylogenetic comparisons of 12 VGSC alleles in Madagascar suggested resistant alleles arose from susceptible lineages at least three times. Because genotype can reasonably predict resistance phenotype, we developed a TaqMan PCR assay for the rapid detection of kdr resistance alleles. CONCLUSIONS/SIGNIFICANCE Our study provides new insights into VGSC mutations in Malagasy populations of X. cheopis and is the first to report a positive correlation between VGSC genotypes and SP resistance phenotypes in fleas. Widespread occurrence of these two SP resistance mutations in X. cheopis populations in Madagascar reduces the viability of these insecticides for flea control. However, the TaqMan assay described here facilitates rapid detection of kdr mutations to inform when use of these insecticides is still warranted to reduce transmission of plague.
Collapse
Affiliation(s)
- Shelby M. Hutton
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Adelaide Miarinjara
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fara N. Raharimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Annick O. Raveloson
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Mireille Harimalala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Abbe D. Ames
- Office of Field Operations, Food Safety Inspection Service, Department of Agriculture, Souderton, Pennsylvania, United States of America
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | | | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
9
|
Asgarian TS, Vatandoost H, Hanafi-Bojd AA, Nikpoor F. Worldwide Status of Insecticide Resistance of Aedes aegypti and Ae. albopictus, Vectors of Arboviruses of Chikungunya, Dengue, Zika and Yellow Fever. J Arthropod Borne Dis 2023; 17:1-27. [PMID: 37609563 PMCID: PMC10440498 DOI: 10.18502/jad.v17i1.13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/24/2022] [Indexed: 08/24/2023] Open
Abstract
Background Controlling of Aedes aegypti and Ae. albopictus, vectors of five important mosquito-borne diseases, is known as the most effective method to prevent the transmission of arboviruses to humans, but the emergence of insecticide resistance is threat for control and prevention of vector borne diseases. A better understanding of mosquito resistance to insecticides will help to develop more effective methods to control insecticide resistance in mosquito vectors. Methods Worldwide geographical distribution of insecticide resistance in Ae. aegypti and Ae. albopictus by the available papers and map of the data for carbamates, organochlorines, organophosphates, pyrethroids, microbial and insect growth regulator insecticides were reviewed. Article data published up to December 2022 were investigated by searching the following databases: "Google Scholar", "PubMed", "Scopus", "SID" and "Web of Knowledge". Results The results showed that the susceptibility and resistance status of Ae. aegypti and Ae. albopictus to insecticides in the world is very diverse. Conclusion Due to the importance of Ae. aegypti and Ae. albopictus in the transmission of mosquito-borne arboviruses, resistance management should be given more attention worldwide to prevent insecticide resistance in the arbovirus vector and replace the new approach for vector control.
Collapse
Affiliation(s)
- Tahereh Sadat Asgarian
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpoor
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kinareikina A, Silivanova E. Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. TOXICS 2023; 11:47. [PMID: 36668773 PMCID: PMC9862462 DOI: 10.3390/toxics11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the use of pesticides is, as before, the most common way to control arthropod plant pests and the ectoparasites of animals. The sublethal effects of pesticides on insects can appear at different levels, from genetics to populations, and the study of these effects is important for a better understanding of the environmental and evolutionary patterns of pesticidal resistance. The current study aimed to assess the sublethal effects of chlorfenapyr and fipronil on the activities of detoxifying enzymes (carboxylesterase-CarE, acetylcholinesterase-AChE, glutathione-S-transferase-GST, and cytochrome P450 monooxygenase-P450) in adults Musca domestica L. The insects were exposure to insecticides by a no-choice feeding test and the enzyme activities and the AChE kinetic parameters were examined in female and male specimens at 24 h after their exposure. According to Tukey's test, the CarE activity was statistically significantly decreased by 29.63% in the females of M. domestica after an exposure to chlorfenapyr at a concentration of 0.015% when compared to the controls (p ≤ 0.05). An exposure to the sublethal concentration of fipronil (0.001%) was followed by a slightly decrease in the specific activity (33.20%, p ≤ 0.05) and the main kinetic parameters (Vmax, Km) of AChE in females in comparison with the control values. The GST and P450 activities had not significantly changed in M. domestica males and females 24 h after their exposure to chlorfenapyr and fipronil at sublethal concentrations. The results suggest that the males and females of M. domestica displayed biochemically different responses to fipronil, that is a neurotoxin, and chlorfenapyr, that is a decoupler of oxidative phosphorylation. Further research needs to be addressed to the molecular mechanisms underlying the peculiarities of the insect enzyme responses to different insecticides.
Collapse
|
11
|
Maestre-Serrano R, Flórez-Rivadeneira Z, Castro-Camacho JM, Soto-Arenilla E, Gómez-Camargo D, Pareja-Loaiza P, Ponce-Garcia G, Juache-Villagrana AE, Flores AE. Spatial Distribution of Pyrethroid Resistance and kdr Mutations in Aedes aegypti from La Guajira, Colombia. INSECTS 2022; 14:insects14010031. [PMID: 36661959 PMCID: PMC9866231 DOI: 10.3390/insects14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 05/12/2023]
Abstract
Dengue, chikungunya, and Zika are of great concern to the public health of Colombia. One of the main control strategies for these diseases is the application of insecticides directed at the Aedes aegypti vector. However, insecticide resistance has been increasingly recorded in the country, making control measures difficult. Here, we evaluated the resistance profiles for pyrethroids in populations of Ae. aegypti from La Guajira, Colombia. The frequency (diagnostic dose, DD) and intensity (2×, 5×, and 10× DD) of resistance to permethrin, deltamethrin, and lambda-cyhalothrin were determined in 15 populations of Ae. aegypti from La Guajira, Colombia, using the bottle bioassay. The kdr mutations V1016I, F1534C, and V410L, were identified, and their allele and genotype frequencies were calculated. Finally, the mortality values for the analyzed pyrethroids were interpolated following the IDW method for predicting pyrethroid resistance. The populations of Ae. aegypti showed a high frequency of resistance to permethrin with a low to moderate intensity, which was associated with the triple-resistant haplotype LL410/II1016/CC1534. They remain susceptible to deltamethrin and, in some populations, expressed the risk of developing resistance to lambda-cyhalothrin.
Collapse
Affiliation(s)
- Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Km 7 Antigua Via Puerto Colombia, Barranquilla 080001, Colombia
| | - Zulibeth Flórez-Rivadeneira
- Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Km 7 Antigua Via Puerto Colombia, Barranquilla 080001, Colombia
- Secretaria de Salud Departamental, Gobernacion de La Guajira, Calle 12 # 8-19, Riohacha 440001, Colombia
| | - Juan M. Castro-Camacho
- Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Km 7 Antigua Via Puerto Colombia, Barranquilla 080001, Colombia
| | - Eva Soto-Arenilla
- Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Km 7 Antigua Via Puerto Colombia, Barranquilla 080001, Colombia
| | - Doris Gómez-Camargo
- Facultad de Medicina—Sede Zaragocilla, Universidad de Cartagena, Calle 30 N° 48-152, Cartagena de Indias 130001, Colombia
| | - Paula Pareja-Loaiza
- Facultad de Ciencias de la Salud, Universidad Simon Bolivar, Carrera 59 No. 59-92, Barranquilla 080002, Colombia
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, NL 66455, Mexico
| | - Alan E. Juache-Villagrana
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, NL 66455, Mexico
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, NL 66455, Mexico
- Correspondence:
| |
Collapse
|
12
|
Serrato IM, Moreno-Aguilera D, Caicedo PA, Orobio Y, Ocampo CB, Maestre-Serrano R, Peláez-Carvajal D, Ahumada ML. Vector competence of lambda-cyhalothrin resistant Aedes aegypti strains for dengue-2, Zika and chikungunya viruses in Colombia. PLoS One 2022; 17:e0276493. [PMID: 36282839 PMCID: PMC9595557 DOI: 10.1371/journal.pone.0276493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue, Zika, and chikungunya viruses. Studies have shown that insecticide resistance affects vector competence (VC) of some mosquito species. This study evaluates the effect of resistance to lambda-cyhalothrin and kdr V1016I mutation genotypes on the VC of Ae. aegypti strains for DENV-2, ZIKV, and CHIKV. Three Ae. aegypti strains with gradual lambda-cyhalothrin resistance (susceptible, resistant, and highly resistant) were infected with DENV-2, ZIKV, and CHIKV. Individual mosquitoes were tested to detect virus infection in the abdomen and head-salivary glands, using RT-PCR, and genotypes for V1016I mutations using allele-specific PCR. Recorded VC variables were midgut infection rate (MIR), dissemination rate (DIR), and dissemination efficiency (DIE). Lambda-cyhalothrin resistance affects differentially VC variables for ZIKV, DENV-2, and CHIKV. For ZIKV, an apparent gradual increase in DIR and DIE with the increase in insecticide resistance was observed. For DENV-2 the MIR and DIE were higher in insecticide resistant strains. For CHIKV, only MIR could be evaluated, this variable was higher in insecticide resistance strains. The presence of kdr V1016I mutation on mosquito resistant strains did not affect VC variables for three study viruses.
Collapse
Affiliation(s)
- Idalba M. Serrato
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Diana Moreno-Aguilera
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Paola A. Caicedo
- Natural Science Faculty, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yenifer Orobio
- Epidemiology and Biostatistics Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Clara B. Ocampo
- Vector, Biology and Control Unit. Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Dirección de Vocaciones y Formación, Ministerio de Ciencia y Tecnología e Innovación, Minciencias, Bogotá, D.C., Colombia
| | - Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia
| | | | - Martha L. Ahumada
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- * E-mail:
| |
Collapse
|
13
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
14
|
Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations. INSECTS 2022; 13:insects13060536. [PMID: 35735873 PMCID: PMC9224916 DOI: 10.3390/insects13060536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Aedes aegypti is a mosquito that transmits viruses responsible for several diseases in humans, such as dengue, Zika, and chikungunya. It is crucial to study mosquito populations from different countries and regions because control of disease transmission with insecticides can be more effective if adjusted to each population’s characteristics. For this reason, we determined several features of mosquitoes captured in different cities of Colombia: Neiva, Bello, Itagüí, and Riohacha. These included the length of their lifespan, the number of eggs they lay, and the stages in which they die. We found specific patterns for each population. This knowledge will help control programs determine the optimal times to apply insecticides and make surveillance, as well as the type of insecticide used. Abstract Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello, Itagüí, and Riohacha. When reared at 28 °C, Bello had the shortest development time, and Riohacha had the longest. Each mosquito population had its own characteristic fecundity pattern during four gonotrophic cycles. The survival curves of each population were significantly different, with Riohacha having the longest survival in both males and females and Bello the shortest. High mortality was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally, when mosquitoes from Neiva and Bello were reared at 35 °C, development times and mortality were severely affected. In conclusion, each population has a unique development pattern with an innate trace in their biological characteristics that confers vulnerability in specific stages of development.
Collapse
|
15
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
16
|
Granada Y, Mejía-Jaramillo AM, Zuluaga S, Triana-Chávez O. Molecular surveillance of resistance to pyrethroids insecticides in Colombian Aedes aegypti populations. PLoS Negl Trop Dis 2021; 15:e0010001. [PMID: 34905537 PMCID: PMC8735628 DOI: 10.1371/journal.pntd.0010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels. Materials and methods In this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes. Results Mosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression. Conclusions In this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures. The main method of preventing Aedes-borne diseases such as dengue, Zika, and chikungunya is by targeting the primary mosquito vector, Aedes aegypti, with insecticides. However, the success of these vector control strategies is jeopardized by the widespread development of insecticide resistance in mosquito populations. Furthermore, the molecular mechanisms of insecticide resistance in Ae. aegypti are still not well understood, resulting in limited resistance mitigation and management strategies. In this paper, we found that resistance to some pyrethroid insecticides in different Colombian cities is associated with three allelic substitutions V419L, V1016I, and F1534C, on the voltage-gated sodium channel gene, known as kdr (‘knock-down resistance’) mutations, with all three mutations present in mosquitoes resistant to pyrethroids. The data also showed that kdr mutations are important in conferring low resistance levels, but after around 10-fold intensity, the allele frequencies don’t change, indicating that other mechanisms contribute to the resistance. Thus, we found that mosquitoes under selective pressure with insecticides present also altered enzymatic activities such as esterases and mixed-function oxidases, indicating that kdr mutations and metabolic enzymes are involved in the resistance expression. The findings on the extent of insecticide resistance and the molecular mechanisms underpinning the problem will impact the surveillance, selection, and rational use of insecticides by local health authorities.
Collapse
Affiliation(s)
- Yurany Granada
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
- * E-mail:
| |
Collapse
|
17
|
Azratul-Hizayu T, Chen CD, Lau KW, Azrizal-Wahid N, Tan TK, Lim YAL, Sofian-Azirun M, Low VL. Phenotypic profile of Aedes albopictus (Skuse) exposed to pyrethroid-based mat vaporizers and underlying detoxification mechanisms: A statewide report in Selangor, Malaysia. Parasitol Int 2021; 86:102483. [PMID: 34678492 DOI: 10.1016/j.parint.2021.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/04/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Abstract
This study examines the biological efficacy of four mosquito mat vaporizers each containing different active ingredients: prallethrin with PBO, dimefluthrin, prallethrin, and d-allethrin. The glass chamber assay was used to evaluate their efficacy on Aedes albopictus (Skuse) (Diptera: Culicidae) from nine districts in Selangor, Malaysia. Aedes albopictus exhibited different knockdown rates, with 50% knockdown times, KT50, varying from 1.19 to 2.00 min, 1.22 to 2.20 min, 1.39 to 5.85 min, and 1.39 to 1.92 min for prallethrin with PBO, dimefluthrin, prallethrin and d-allethrin, respectively. In general, all populations of Ae. albopictus were completely knocked down after exposure to all active ingredients except Hulu Selangor population, which showed 96.00% knockdown against d-allethrin. On the contrary, mortality rates were observed from 84.00-100.00%, 84.00-100.00%, 90.67-100.00% and 90.67-100.00% in populations tested with prallethrin with PBO, dimefluthrin, prallethrin and d-allethrin, respectively. Moreover, significant correlations between mortality rates of prallethrin with PBO vs dimefluthrin (r = 0.836, P = 0.003), prallethrin with PBO vs prallethrin (r = 0.760, P = 0.011), and prallethrin vs d-allethrin (r = 0.694, P = 0.026) were also observed, suggesting cross-resistance among pyrethroids. d-allethrin was found to be high in insecticidal activity, followed by prallethrin, prallethrin with PBO, and dimefluthrin. In consistent with mortality due to insecticide exposure, elevated levels of enzyme activities were also demonstrated in Sabak Bernam, Hulu Selangor, Gombak, Petaling, Hulu Langat and Klang populations.
Collapse
Affiliation(s)
- Taib Azratul-Hizayu
- Institute for Advanced Studies (IAS), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Dhang Chen
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Rimba Ilmu Botanical Garden, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Koon Weng Lau
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Azrizal-Wahid
- Institute for Advanced Studies (IAS), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Sofian-Azirun
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Van Lun Low
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Konan LY, Oumbouke WA, Silué UG, Coulibaly IZ, Ziogba JCT, N'Guessan RK, Coulibaly D, Bénié JBV, Lenhart A. Insecticide Resistance Patterns and Mechanisms in Aedes aegypti (Diptera: Culicidae) Populations Across Abidjan, Côte d'Ivoire Reveal Emergent Pyrethroid Resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1808-1816. [PMID: 33876233 DOI: 10.1093/jme/tjab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 05/02/2023]
Abstract
From 2008 to 2017, the city of Abidjan, Côte d'Ivoire experienced several Aedes-borne disease epidemics which required control of the vector mosquito population based on the reduction of larval habitats and insecticidal sprays for adult mosquitoes. This study was undertaken to assess the insecticide susceptibility status of Aedes aegypti (Linnaeus) in the city of Abidjan. Immature Ae. aegypti were sampled from several larval habitats within seven communes of Abidjan and reared to adults. Three to five days old F1 emerged adults were tested for susceptibility using insecticide-impregnated papers and the synergist piperonyl butoxide (PBO) following WHO bioassay guidelines. The results showed that Ae. aegypti populations from Abidjan were resistant to 0.1% propoxur, and 1% fenitrothion, with mortality rates ranging from 0% to 54.2%. Reduced susceptibility (93.4-97.5% mortality) was observed to 0.05% deltamethrin, 0.75% permethrin, 0.05% lambda-cyhalothrin, 5% malathion, and 0.8% chlorpyrifos-methyl. This reduced susceptibility varied depending on the insecticide and the collection site. The restoration of mortality when the mosquitoes were pre-exposed to the synergist PBO suggests that increased activity of oxidases could be contributing to resistance. Three kdr mutations (V410L, V1016I, and F1534C) were present in populations tested, with low frequencies for the Leu410 (0.28) and Ile1016 (0.32) alleles and high frequencies for the Cys1534 allele (0.96). These findings will be used to inform future arbovirus vector control activities in Abidjan.
Collapse
Affiliation(s)
| | | | - Urbain Garhapié Silué
- National Institute of Public Hygiene, Abidjan, Côte d'Ivoire
- Laboratory of Zoology and Animal Biology, UFR Biosciences, Felix Houphouet-Boigny University, Abidjan, Côte d'Ivoire
| | | | | | | | | | | | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
19
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
20
|
Bobadilla Alvarez MC, Palomino Cadenas EJ. CONTROL DE Aedes aegypti (DIPTERA: CULICIDAE) MEDIANTE ACTINOBACTERIAS FORMADORAS DE BIOPELÍCULAS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.86966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El phylum Actinobacteria incluye miembros productores de compuestos bioinsecticidas. No obstante, la sobreexplotacion de metabolitos derivados de Streptomyces ha conllevado a explorar nuevas moléculas provenientes de bacterias no estreptomicetos para contrarrestar la resistencia a insecticidas químicos en Aedes aegypti. Concordantes con el uso de bioagentes ecológicos, esta investigación caracterizó actinobacterias formadoras de biopelículas con el fin de evaluar su dinámica de crecimiento, actividad larvicida y efectos subletales. La identificación, crecimiento de biopelículas y bioactividades se realizaron por cultivos, análisis de imágenes por fotomicrografía y bioensayos. Los resultados mostraron que las biopelículas pertenecen a Pseudonocardiaceae (PsA1TA) y Corynebacteriaceae (CoA2CA) característicamente dependientes del revestimiento cuticular. PsA1TA coloniza estructuras membranosas de tórax y abdomen con microcolonias aleatoriamente distribuidas que desarrollan a extensas biopelículas mono y biestratificadas, al cubrir cuatro veces la amplitud toracoabdominal (envergadura infectiva entre 1010 µm a 1036 µm). En contraste, CoA2CA envuelve radialmente estructuras esclerotizadas cefálica y anal al triplicar la amplitud de tales órganos (1820 a 2030 µm y 1650 a 1860 µm, respectivamente). Las biopelículas ejercieron mortalidad diferenciada a todos los estadios larvales, no obstante, PsA1TA resultó más mortal y virulento en el segundo estadio larval (58 %-96 horas, TL50: 3,4 días), mientras que CoA2CA lo fue en el cuarto estadio larval (85 %-96 horas, TL50: 2,5 días). CoA2CA indujo emergencia incompleta de adultos farados y despliegue de tarsos curvos en emergentes, además de revestir con robustas biopelículas cadáveres larvarios. Las biopelículas actinobacterianas revelaron ejercer función larvicida y respuestas subletales en A. aegypti.
Collapse
|
21
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
22
|
Guidez A, Pocquet N, Restrepo J, Mathieu L, Gaborit P, Issaly J, Carinci R, Chandre F, Epelboin Y, Romain G, Dusfour I. Spatiotemporal multiple insecticide resistance in Aedes aegypti populations in French Guiana: need for alternative vector control. Mem Inst Oswaldo Cruz 2021; 115:e200313. [PMID: 33533870 PMCID: PMC7849183 DOI: 10.1590/0074-02760200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/16/2020] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.
Collapse
Affiliation(s)
| | - Nicolas Pocquet
- Université de Montpellier, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France.,Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | | | - Luana Mathieu
- Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Jean Issaly
- Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Fabrice Chandre
- Université de Montpellier, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France
| | | | - Girod Romain
- Institut Pasteur de la Guyane, Cayenne, French Guiana.,Institut Pasteur de Madagascar, Antananarive, Madagascar
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Cayenne, French Guiana.,Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Insecticide resistance status of Aedes aegypti in Bangladesh. Parasit Vectors 2020; 13:622. [PMID: 33317603 PMCID: PMC7734861 DOI: 10.1186/s13071-020-04503-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background Arboviral diseases, including dengue and chikungunya, are major public health concerns in Bangladesh where there have been unprecedented levels of transmission reported in recent years. The primary approach to control these diseases is to control the vector Aedes aegypti using pyrethroid insecticides. Although chemical control has long been practiced, no comprehensive analysis of Ae. aegypti susceptibility to insecticides has been conducted to date. The aim of this study was to determine the insecticide resistance status of Ae. aegypti in Bangladesh and investigate the role of detoxification enzymes and altered target site sensitivity as resistance mechanisms. Methods Eggs of Aedes mosquitoes were collected using ovitraps from five districts across Bangladesh and in eight neighborhoods of the capital city Dhaka, from August to November 2017. CDC bottle bioassays were conducted for permethrin, deltamethrin, malathion, and bendiocarb using 3- to 5-day-old F0–F2 non-blood-fed female mosquitoes. Biochemical assays were conducted to detect metabolic resistance mechanisms, and real-time PCR was performed to determine the frequencies of the knockdown resistance (kdr) mutations Gly1016, Cys1534, and Leu410. Results High levels of resistance to permethrin were detected in all Ae. aegypti populations, with mortality ranging from 0 to 14.8% at the diagnostic dose. Substantial resistance continued to be detected against higher (2×) doses of permethrin (5.1–44.4% mortality). Susceptibility to deltamethrin and malathion varied between populations while complete susceptibility to bendiocarb was observed in all populations. Significantly higher levels of esterase and oxidase activity were detected in most of the test populations as compared to the susceptible reference Rockefeller strain. A significant association was detected between permethrin resistance and the presence of Gly1016 and Cys1534 homozygotes. The frequency of kdr (knockdown resistance) alleles varied across the Dhaka Aedes populations. Leu410 was not detected in any of the tested populations. Conclusions The detection of widespread pyrethroid resistance and multiple resistance mechanisms highlights the urgency for implementing alternate Ae. aegypti control strategies. In addition, implementing routine monitoring of insecticide resistance in Ae. aegypti in Bangladesh will lead to a greater understanding of susceptibility trends over space and time, thereby enabling the development of improved control strategies.![]()
Collapse
|
24
|
Rodríguez M, Ruiz A, Piedra L, Gutierrez G, Rey J, Cruz M, Bisset J. Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Boyeros municipality, Cuba and associated mechanisms. Acta Trop 2020; 212:105680. [PMID: 32866457 DOI: 10.1016/j.actatropica.2020.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
In this study, insecticide resistance and the mechanisms responsible were characterized in Ae. aegypti of Boyeros municipality from Havana, Cuba. Boyeros represents a high epidemiological risk because it is located near the Havana International Airport, it is highly urbanized, and it has a large influx of people from endemic countries so that it qualifies as a sentinel site for surveillance. The larvae collected from five areas of this municipality showed resistance to temephos associated with metabolic enzymes. The adult mosquitoes displayed a deltamethrin resistance and less distinctly to other pyrethroids associated with a high frequency of sodium channel gene mutations (F1534C and V1016I), detected for the first time in a field population from Cuba. The presence in the field populations of two insecticide resistance mechanisms represents a limiting factor in the success of the control operations of this vector, so other strategies should be considered to preserve the effectiveness of the insecticides available in public health for vector control in Cuba.
Collapse
|
25
|
Maestre-Serrano R, Lara-Cobos J, Gomez-Camargo D, Ponce-Garcia G, Pareja-Loaiza P, Flores AE. Susceptibility to Pyrethroids and the First Report of L1014F kdr Mutation in Culex quinquefasciatus (Diptera: Culicidae) in Colombia. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1830-1834. [PMID: 32516378 DOI: 10.1093/jme/tjaa098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The use of insecticides for the control of Aedes aegypti (L.) (Diptera: Culicidae) in Colombia has indirectly influenced the susceptibility status of Culex quinquefasciatus Say populations. We evaluated pyrethroid susceptibility in two populations of Cx. quinquefasciatus in the Atlantico Department of Colombia and its possible resistance mechanism (kdr mutation). Bottle bioassays were performed for permethrin, deltamethrin, and λ-cyhalothrin in female mosquitoes of Cx. quinquefasciatus. The resistance ratios (RRs) for KC50 and LC50 for each insecticide in the field populations examined were determined, using the Cartagena strain as the susceptible control. The L1014F kdr mutation was identified in the para gene of the voltage-gated sodium channel (vgsc), along with its allelic and genotypic frequency. Low knockdown resistance (RRKC50) to deltamethrin was found in Puerto Colombia and Soledad populations as well as low resistance to λ-cyalothrin in this latter population. Moderate knockdown resistance to permethrin was found in both populations. At 24 h post-exposure on the other hand, there was low resistance (RRLC50) to permethrin in Puerto Colombia and moderate resistance in Soledad. Moderate resistance to deltamethrin was found in Puerto Colombia and low resistance in Soledad. Low resistance to λ-cyhalothrin was seen in Puerto Colombia and moderate resistance in Soledad. Variability was found in the susceptibility to the pyrethroids in the populations of Cx. quinquefasciatus evaluated, and the L1014F kdr mutation is reported for the first time as a possible pyrethroid resistance mechanism in this species in Colombia.
Collapse
Affiliation(s)
- Ronald Maestre-Serrano
- Universidad Libre Seccional Barranquilla, Facultad de Ciencias de la Salud, Antigua via Puerto Colombia, Barranquilla, Colombia
| | - Juan Lara-Cobos
- Universidad Libre Seccional Barranquilla, Facultad de Ciencias de la Salud, Antigua via Puerto Colombia, Barranquilla, Colombia
| | - Doris Gomez-Camargo
- Universidad de Cartagena, Facultad de Medicina - Sede Zaragocilla, Calle, Cartagena de Indias (Bolivar), Colombia
| | - Gustavo Ponce-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, NL, Mexico
| | - Paula Pareja-Loaiza
- Universidad de Cartagena, Facultad de Medicina - Sede Zaragocilla, Calle, Cartagena de Indias (Bolivar), Colombia
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Carrera, Barranquilla, Colombia
| | - Adriana E Flores
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza, NL, Mexico
| |
Collapse
|
26
|
Pareja-Loaiza PX, Santacoloma Varon L, Rey Vega G, Gómez-Camargo D, Maestre-Serrano R, Lenhart A. Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia. PLoS One 2020; 15:e0228695. [PMID: 33022007 PMCID: PMC7537870 DOI: 10.1371/journal.pone.0228695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the main vector of dengue, chikungunya, and Zika viruses, which are of great public health importance in Colombia. Aedes control strategies in Colombia rely heavily on the use of organophosphate and pyrethroid insecticides, providing constant selection pressure and the emergence of resistant populations. In recent years, insecticide use has increased due to the increased incidence of dengue and recent introductions of chikungunya and Zika. In the present study, pyrethroid resistance was studied across six populations of Ae. aegypti from the Caribbean coast of Colombia. Susceptibility to λ-cyhalothrin, deltamethrin, and permethrin was assessed, and resistance intensity was determined. Activity levels of enzymes associated with resistance were measured, and the frequencies of three kdr alleles (V1016I, F1534C, V410L) were calculated. Results showed variations in pyrethroid susceptibility across Ae. aegypti populations and altered enzyme activity levels were detected. The kdr alleles were detected in all populations, with high variations in frequencies: V1016I (frequency ranging from 0.15-0.70), F1534C (range 0.94-1.00), and V410L (range 0.05-0.72). In assays of phenotyped individuals, associations were observed between the presence of V1016I, F1534C, and V410L alleles and resistance to the evaluated pyrethroids, as well as between the VI1016/CC1534/VL410 tri-locus genotype and λ-cyhalothrin and permethrin resistance. The results of the present study contribute to the knowledge of the mechanisms underlying the resistance to key pyrethroids used to control Ae. aegypti along the Caribbean coast of Colombia.
Collapse
Affiliation(s)
- Paula X. Pareja-Loaiza
- Estudiante, Doctorados Nacionales Colciencias, Grupo UNIMOL, Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Liliana Santacoloma Varon
- Laboratorio de Entomologia, Subdireccion Laboratorio Nacional de Referencia, Direccion Redes en Salud Publica, Instituto Nacional de Salud, Bogotá, Colombia
| | - Gabriela Rey Vega
- Laboratorio de Entomologia, Subdireccion Laboratorio Nacional de Referencia, Direccion Redes en Salud Publica, Instituto Nacional de Salud, Bogotá, Colombia
| | - Doris Gómez-Camargo
- Grupo UNIMOL, Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Audrey Lenhart
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
27
|
Arévalo-Cortés A, Mejia-Jaramillo AM, Granada Y, Coatsworth H, Lowenberger C, Triana-Chavez O. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin. INSECTS 2020; 11:insects11090584. [PMID: 32882829 PMCID: PMC7565445 DOI: 10.3390/insects11090584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Insecticide resistance in Aedes aegypti populations is a problem that hinders vector control and dengue prevention programs. In this study, we determined the susceptibility of Ae. aegypti populations from six Colombian regions to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene, which has been broadly involved in the resistance to this insecticide. The diversity of the gut microbiota of these mosquito populations was also analyzed. Only mosquitoes from Bello were susceptible to lambda-cyhalothrin and presented a lower allelic frequency of the V1016I mutation. Remarkably, there was not an important change in allelic frequencies among populations with different resistance ratios, indicating that other factors or mechanisms contributed to the resistant phenotype. Treatment of mosquitoes with antibiotics led us to hypothesize that the intestinal microbiota could contribute to the resistance to lambda-cyhalothrin. Beta diversity analysis showed significant differences in the species of bacteria present between susceptible and resistant populations. We identified 14 OTUs of bacteria that were unique in resistant mosquitoes. We propose that kdr mutations are important in the development of resistance to lambda-cyhalothrin at low insecticide concentrations but insect symbionts could play an essential role in the metabolization of pyrethroid insecticides at higher concentrations, contributing to the resistant phenotype in Ae. aegypti.
Collapse
Affiliation(s)
- Andrea Arévalo-Cortés
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Ana M. Mejia-Jaramillo
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Yurany Granada
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Heather Coatsworth
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (H.C.); (C.L.)
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (H.C.); (C.L.)
| | - Omar Triana-Chavez
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
- Correspondence: ; Tel.: +57-4-219-6520
| |
Collapse
|
28
|
Chen M, Du Y, Nomura Y, Zhorov BS, Dong K. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21686. [PMID: 32378259 PMCID: PMC8060125 DOI: 10.1002/arch.21686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou, China
| | - Yuzhe Du
- USDA-ARS, Biological Control of Pest Research Unit, 59 Lee Road, Stoneville, MS 38776, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Fan Y, O'Grady P, Yoshimizu M, Ponlawat A, Kaufman PE, Scott JG. Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008154. [PMID: 32302303 PMCID: PMC7164583 DOI: 10.1371/journal.pntd.0008154] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background. CONCLUSIONS/SIGNIFICANCE Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.
Collapse
Affiliation(s)
- Yinjun Fan
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Patrick O'Grady
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Melissa Yoshimizu
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Sacramento, California, United States of America
| | | | - Phillip E. Kaufman
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Viana JL, Soares-da-Silva J, Vieira-Neta MRA, Tadei WP, Oliveira CD, Abdalla FC, Peixoto CA, Pinheiro VCS. Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). BRAZ J BIOL 2020; 81:114-124. [PMID: 32130286 DOI: 10.1590/1519-6984.223389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Entomopathogenic agents are viable and effective options due to their selective action against insects but benign effects on humans and the environment. The most promising entomopathogens include subspecies of Bacillus thuringiensis (Bt), which are widely used for the biological control of insects, including mosquito vectors of human pathogens. The efficacy of B. thuringiensis toxicity has led to the search for new potentially toxic isolates in different regions of the world. Therefore, soil samples from the Amazon, Cerrado and Caatinga biomes of the state of Maranhão were evaluated for their potential larvicidal action against Aedes aegypti. The isolates with high toxicity to mosquito larvae, as detected by bioassays, were subjected to histological evaluation under a light microscope to identify the genes potentially responsible for the toxicity. Additionally, the toxic effects of these isolates on the intestinal epithelium were assessed. In the new B. thuringiensis isolates toxic to A. aegypti larvae, cry and cyt genes were amplified at different frequencies, with cry4, cyt1, cry32, cry10 and cry11 being the most frequent (33-55%) among those investigated. These genes encode specific proteins toxic to dipterans and may explain the severe morphological changes in the intestine of A. aegypti larvae caused by the toxins of the isolates.
Collapse
Affiliation(s)
- J L Viana
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Universidade do Estado do Amazonas - UEA, Av. Carvalho Leal, 1777, Ed. Anexo, 4º andar, Cachoeirinha, CEP 69065-00, Manaus, AM, Brasil.,Laboratório de Entomologia Médica, Programa de Pós-graduação em Biodiversidade, Ambiente e Saúde, Centro de Estudos Superiores de Caxias - CESC, Universidade Estadual do Maranhão - UEMA, Praça Duque de Caxias, Morro do Alecrim, s/n, CEP 65604-380, Caxias, MA, Brasil
| | - J Soares-da-Silva
- Coordenação de Ciências Naturais/Biologia, Universidade Federal do Maranhão - UFMA, Campus VII, Av. Dr. José Anselmo, 2008, São Sebastião, CEP 65400-000, Codó, MA, Brasil
| | - M R A Vieira-Neta
- Universidade Federal de São Carlos - UFSCar, Campus Sorocaba, Rodovia João Leme dos Santos, SP-264, Km 110, Itinga, CEP 18052-780, Sorocaba, SP, Brasil
| | - W P Tadei
- Programa de Pós-graduação em Entomologia, Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, 2936, Petrópolis, CEP 69067-375, Manaus, AM, Brasil
| | - C D Oliveira
- Grupo Mosquitos Vetores: Endosimbionte e Interação Patógeno Vetor, Centro de Pesquisa René Rachou, Av. Augusto de Lima, 1715, Barro Preto, CEP 30190-002, Belo Horizonte, MG, Brasil
| | - F C Abdalla
- Laboratório de Biologia Estrutural e Funcional - LABEF, Universidade Federal de São Carlos - UFSCar, Campus Sorocaba, Rodovia João Leme dos Santos, SP-264, Itinga, CEP 18052-780, Sorocaba, SP, Brasil
| | - C A Peixoto
- Laboratório de Ultraestrutura, Instituto de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz - FIOCRUZ, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, CEP 50740-465, Recife, PE, Brasil
| | - V C S Pinheiro
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias - CESC, Universidade Estadual do Maranhão - UEMA, Praça Duque de Caxias, s/n, Morro do Alecrim, CEP 65604-380, Caxias, MA, Brasil
| |
Collapse
|
31
|
Bernal L, Dussán J. Synergistic effect of Lysinibacillus sphaericus and glyphosate on temephos-resistant larvae of Aedes aegypti. Parasit Vectors 2020; 13:68. [PMID: 32051012 PMCID: PMC7017551 DOI: 10.1186/s13071-020-3928-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glyphosate-based herbicides are one of the most commonly used compounds to control perennial weeds around the world. This compound is very persistent in the environment and tends to filter into aquatic ecosystems, affecting non-target species such as mosquito larvae. Aedes aegypti mosquitoes are vectors of multiple arboviruses such as dengue and Zika. Glyphosate can be degraded into non-harmful environmental compounds by Lysinibacillus sphaericus, a spore forming bacterium which can also kill Ae. aegypti larvae. In this study, we assessed the effect of glyphosate concentrations, typically used in Colombia, on the entomopathogenic activity of L. sphaericus against Ae. aegypti larvae. METHODS Bioassays and toxicity curves were performed to compare the larval mortality between different treatments with and without bacteria and glyphosate (Roundup 747®). Larvae were exposed to both bacteria and glyphosate by adding the compound on chloride-free water. Comparisons were made using both probit regression and ANOVA analysis. RESULTS ANOVA showed a significant difference in larval mortality when adding glyphosate and L. sphaericus at the same time. Thus, a positive synergic effect on larval mortality was found when L. sphaericus and glyphosate were mixed. According to probit analysis, median lethal dose (LD50) for bacterial mixture was of 106.23 UFC/ml and for glyphosate was 2.34 g/l. CONCLUSIONS A positive synergic effect on the mortality of larval Ae. aegypti when exposed to L. sphaericus mixture and glyphosate was found. Molecular studies focusing on the toxin production of L. sphaericus are required to understand more about this synergistic effect.
Collapse
Affiliation(s)
- Laura Bernal
- Microbiological Research Center (CIMIC), Department of Biological Sciences, Universidad de Los Andes, Carrera 1 No. 18 A-12, Bogotá, 111711 Colombia
| | - Jenny Dussán
- Microbiological Research Center (CIMIC), Department of Biological Sciences, Universidad de Los Andes, Carrera 1 No. 18 A-12, Bogotá, 111711 Colombia
| |
Collapse
|