1
|
Jung A, Lee H, Kim H, Jeon HJ, Park S, Gweon B. Impact of plasma discharge pressure on implant surface properties and osteoblast activities in vacuum-assisted plasma treatment. Sci Rep 2024; 14:31757. [PMID: 39738200 DOI: 10.1038/s41598-024-82730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes. Implant materials were treated with plasmas under varying discharge conditions, with pre-pumping times of 10 s and 20 s, thereby modulating the pressure during plasma treatments. Through optical emission spectroscopy, we demonstrated that the 5 Torr operational condition, achieved by 20-s pre-pumping, generated a greater density of excited nitrogen species and provided more stable plasma compared to the 16 Torr condition, achieved by 10-s pre-pumping. We then assessed the surface hydrophilicity, chemical composition, protein adsorption, and osteoblast activities on plasma-treated implants compared with those of untreated controls. Our results reveal that the 5 Torr condition significantly enhances removal of carbon-based impurities and increased protein adsorption, leading to improved cell adhesion, proliferation, and differentiation. In particular, implants treated under the 5 Torr condition showed significantly higher carbon-based impurity reduction and osteoblast differentiation performance compared to those treated under the 16 Torr condition. These findings suggest that optimizing gas pressure in plasma devices is critical for effectively controlling excited nitrogen radicals, which improves plasma surface modification and enhances the biocompatibility of implant surfaces.
Collapse
Affiliation(s)
- Ara Jung
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Hyungyu Lee
- Institute of Mechanical Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Heejin Kim
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Hyun Jeong Jeon
- Plasmapp Co., Ltd, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sanghoo Park
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Costa Filho PMD, Marcantonio CC, Oliveira DPD, Lopes MES, Puetate JCS, Faria LV, Carvalho LDF, Molon RSD, Garcia Junior IR, Nogueira AVB, Deschner J, Cirelli JA. Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study. J Appl Oral Sci 2024; 32:e20240144. [PMID: 39292113 PMCID: PMC11464079 DOI: 10.1590/1678-7757-2024-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the osseointegration of titanium (Ti) implants with micro-nano textured surfaces functionalized with strontium additions (Sr) in a pre-clinical rat tibia model. METHODOLOGY Ti commercially pure (cp-Ti) implants were installed bilaterally in the tibia of 64 Holtzman rats, divided into four experimental groups (n=16/group): (1) Machined surface - control (C); (2) Micro-nano textured surface treatment (MN); (3) Micro-nano textured surface with Sr2+ addition (MNSr); and (4) Micro-nano textured surface with a higher complementary addition of Sr2+ (MNSr+). In total, two experimental euthanasia periods were assessed at 15 and 45 days (n=8/period). The tibia was subjected to micro-computed tomography (μ-CT), histomorphometry with the EXAKT system, removal torque (TR) testing, and gene expression analysis by PCR-Array of 84 osteogenic markers. Gene expression and protein production of bone markers were performed in an in vitro model with MC3T3-E1 cells. The surface characteristics of the implants were evaluated by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and laser scanning confocal microscopy. RESULTS SEM, confocal, and EDS analyses demonstrated the formation of uniform micro-nano textured surfaces in the MN group and Sr addition in the MNSr and MNSr+ groups. TR test indicated greater osseointegration in the 45-day period for treated surfaces. Histological analysis highlighted the benefits of the treatments, especially in cortical bone, in which an increase in bone-implant contact was found in groups MN (15 days) and MNSr (45 days) compared to the control group. Gene expression analysis of osteogenic activity markers showed modulation of various osteogenesis-related genes. According to the in vitro model, RT-qPCR and ELISA demonstrated that the treatments favored gene expression and production of osteoblastic differentiation markers. CONCLUSIONS Micro-nano textured surface and Sr addition can effectively improve and accelerate implant osseointegration and is, therefore, an attractive approach to modifying titanium implant surfaces with significant potential in clinical practice.
Collapse
Affiliation(s)
- Pio Moerbeck da Costa Filho
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Camila Chiérici Marcantonio
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | | | - Maria Eduarda Scordamaia Lopes
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Julio Cesar Sanchez Puetate
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
- Universidad San Francisco de Quito USFQ, Escuela de Odontología, Departmento de Periodoncia, Quito, Pichincha, Ecuador
| | - Luan Viana Faria
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Letícia de Freitas Carvalho
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Rafael Scaf de Molon
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraçatuba, Departamento de Diagnóstico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Idelmo Rangel Garcia Junior
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraçatuba, Departamento de Diagnóstico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Andressa Vilas Bôas Nogueira
- University Medical Mainz, Center of the Johannes Gutenberg University, Department of Periodontology and Operative Dentistry, Germany
| | - James Deschner
- University Medical Mainz, Center of the Johannes Gutenberg University, Department of Periodontology and Operative Dentistry, Germany
| | - Joni Augusto Cirelli
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| |
Collapse
|
4
|
Yang X, Wang Q, Yan C, Huang D, Zhang Y, He H, Xiong S, Li C, Chen P, Ye T, Hu D, Wang L. A dual-functional strontium-decorated titanium implants that guides the immune response for osseointegration of osteoporotic rats. Colloids Surf B Biointerfaces 2024; 233:113643. [PMID: 37995629 DOI: 10.1016/j.colsurfb.2023.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Due to the dynamic imbalance between osteogenesis and osteoclasis and the abnormal inflammatory microenvironment in situ, osteoporosis hampers the early osseointegration between implants and bones. To improve osseointegration with the osteoporosis, we first coated the titanium implants (Ti) with polydopamine (PDA) coating (Ti-PDA), followed by modification with strontium (Sr) to prepare the Ti-PDA-Sr implants. An osteoporotic rat model with femoral bone defect was verified to estimate the osseointegration of the implants. The Ti-PDA-Sr implants exhibited good biocompatibility with continuous release of Sr ions for up to 21 days. Ti-PDA-Sr implants promoted the osteogenesis of BMSCs and the polarization of BMMs to M2 phenotype compared to that of Ti and Ti-PDA implants, revealing the double-regulated effects in bone induction and immune regulation. According to the Micro-CT and histopathology results, Ti-PDA-Sr implants exhibited the most stable osseointegration between bone tissues and implants. According to the immunohistochemistry results, the Ti-PDA-Sr implants differentiated the BMMs to M2 phenotype, alleviating the abnormal inflammation in osteoporosis and preventing the consistent bone destruction between the implants and bone tissues. This study provides a practical and effective strategy in preparing bi-functional implants that can promote osseointegration with osteoporosis.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Chaoxi Yan
- Department of Orthopedics, Renmin Hospital of Zhijiang, Yichang 443200, Hubei, China
| | - Degang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Tingjun Ye
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Dan Hu
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China.
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| |
Collapse
|
5
|
Ungureanu E, Vladescu (Dragomir) A, Parau AC, Mitran V, Cimpean A, Tarcolea M, Vranceanu DM, Cotrut CM. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5428. [PMID: 37570133 PMCID: PMC10419960 DOI: 10.3390/ma16155428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.
Collapse
Affiliation(s)
- Elena Ungureanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Mihai Tarcolea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| |
Collapse
|
6
|
da Silva KB, Carobolante JPA, Rajan SS, Júnior CB, Sabino RM, Seixas MR, Nakazato RZ, Popat KC, Claro APRA. Mechanical Properties, Corrosion Behavior, and In Vitro Cell Studies of the New Ti-25Ta-25Nb-5Sn Alloy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1970. [PMID: 36903086 PMCID: PMC10004394 DOI: 10.3390/ma16051970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study aims to characterize a new Ti-25Ta-25Nb-5Sn alloy for biomedical application. Microstructure, phase formation, mechanical and corrosion properties, along with the cell culture study of the Ti-25Ta-25Nb alloy with Sn content 5 mass% are presented in this article. The experimental alloy was processed in an arc melting furnace, cold worked, and heat treated. For characterization, optical microscopy, X-ray diffraction, microhardness, and Young's modulus measurements were employed. Corrosion behavior was also evaluated using open-circuit potential (OCP) and potentiodynamic polarization. In vitro studies with human ADSCs were performed to investigate cell viability, adhesion, proliferation, and differentiation. Comparison among the mechanical properties observed in other metal alloy systems, including CP Ti, Ti-25Ta-25Nb, and Ti-25Ta-25-Nb-3Sn showed an increase in microhardness and a decrease in the Young's modulus when compared to CP Ti. The potentiodynamic polarization tests indicated that the corrosion resistance of the Ti-25Ta-25Nb-5Sn alloy was similar to CP Ti and the experiments in vitro demonstrated great interactions between the alloy surface and cells in terms of adhesion, proliferation, and differentiation. Therefore, this alloy presents potential for biomedical applications with properties required for good performance.
Collapse
Affiliation(s)
| | - João Pedro Aquiles Carobolante
- Department of Materials and Technology, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá 12516-410, Brazil
| | - S. Sudhagara Rajan
- School of Engineering, São Paulo State University (Unesp), Ilha Solteira 15385-000, Brazil
| | - Celso Bortolini Júnior
- Department of Materials and Technology, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá 12516-410, Brazil
| | - Roberta Maia Sabino
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Maurício Rangel Seixas
- Department of Materials and Technology, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá 12516-410, Brazil
| | - Roberto Zenhei Nakazato
- Department of Chemistry and Energy, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá 12516-410, Brazil
| | - Ketul C. Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Ana Paula Rosifini Alves Claro
- Department of Materials and Technology, School of Engineering and Sciences, São Paulo State University (Unesp), Guaratinguetá 12516-410, Brazil
| |
Collapse
|
7
|
New Insights into the In Vitro Antioxidant Routes and Osteogenic Properties of Sr/Zn Phytate Compounds. Pharmaceutics 2023; 15:pharmaceutics15020339. [PMID: 36839661 PMCID: PMC9965475 DOI: 10.3390/pharmaceutics15020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sr/Zn phytate compounds have been shown interest in biomaterial science, specifically in dental implantology, due to their antimicrobial effects against Streptococcus mutans and their capacity to form bioactive coatings. Phytic acid is a natural chelating compound that shows antioxidant and osteogenic properties that can play an important role in bone remodelling processes affected by oxidative stress environments, such as those produced during infections. The application of non-protein cell-signalling molecules that regulate both bone and ROS homeostasis is a promising strategy for the regeneration of bone tissues affected by oxidative stress processes. In this context, phytic acid (PA) emerged as an excellent option since its antioxidant and osteogenic properties can play an important role in bone remodelling processes. In this study, we explored the antioxidant and osteogenic properties of two metallic PA complexes bearing bioactive cations, i.e., Sr2+ (SrPhy) and Zn2+ (ZnPhy), highlighting the effect of the divalent cations anchored to phytate moieties and their capability to modulate the PA properties. The in vitro features of the complexes were analyzed and compared with those of their precursor PA. The ferrozine/FeCl2 method indicated that SrPhy exhibited a more remarkable ferrous ion affinity than ZnPhy, while the antioxidant activity demonstrated by a DPPH assay showed that only ZnPhy reduced the content of free radicals. Likewise, the antioxidant potential was assessed with RAW264.7 cell cultures. An ROS assay indicated again that ZnPhy was the only one to reduce the ROS content (20%), whereas all phytate compounds inhibited lipid peroxidation following the decreasing order of PA > SrPhy > ZnPhy. The in vitro evaluation of the phytate's osteogenic ability was performed using hMSC cells. The results showed tailored properties related to the cation bound in each complex. ZnPhy overexpressed ALP activity at 3 and 14 days, and SrPhy significantly increased calcium deposition after 21 days. This study demonstrated that Sr/Zn phytates maintained the antioxidant and osteogenic properties of PA and can be used in bone regenerative therapies involving oxidative environments, such as infected implant coatings and periodontal tissues.
Collapse
|
8
|
Matos FG, Santana LCL, Cominotte MA, da Silva FS, Vaz LG, de Oliveira DP, Cirelli JA. Strontium-loaded titanium-15molybdenum surface improves physicochemical and biological properties in vitro. Biomed Phys Eng Express 2022; 8. [PMID: 35594845 DOI: 10.1088/2057-1976/ac71cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The x-ray dispersive energy spectroscopy (EDS) and x-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells' adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4and NaOH, and also improve the initial events related to cell-mediated bone deposition.
Collapse
Affiliation(s)
- Flávia Gomes Matos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Luís Carlos Leal Santana
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | - Luís Geraldo Vaz
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Diego Pedreira de Oliveira
- Department of Materials Engineering-DEMa, Federal University of São Carlos-UFSCar, São Carlos, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
9
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
10
|
Zhou L, You J, Wang Z, Gu Y, Chen D, Lin B, Zhao X, Lin J, Lin J, Liu W. 3D printing monetite-coated Ti-6Al-4V surface with osteoimmunomodulatory function to enhance osteogenesis. BIOMATERIALS ADVANCES 2022; 134:112562. [PMID: 35525756 DOI: 10.1016/j.msec.2021.112562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Titanium and its alloys are widely used in orthopedic implant surgery due to their good mechanical properties and biocompatibility. Recent studies have shown that the healing process of fractures involve not only the calcification of osteoblasts but also the regulation of the immune system. The functionalization of titanium surface coatings is one of the most important methods for solving implant failures. In this study, monetite (CaHPO4) was coated on the Ti-6Al-4V porous scaffold by hydrothermal method. SEM, XRD and EDS were used to characterize the morphology, phase constitutes, elemental content of the coating, respectively. The results indicated that a well bonded and uniformly distributed monetite coating obtained, and the degradation performance and Ca2+ release of the surface coating were also studied. In terms of biology, live/dead staining and CCK8 methods showed the coating had good biocompatibility and BMSCs can adhere and proliferate on the surface. Flow cytometry and ELISA indicated that the surface monetite-coating had good anti-inflammatory properties. Through RNA-seq analysis, it was shown in KEGG that the osteoclast-related pathway was inhibited. In vitro, monetite induced osteogenic gene expression in BMSCs and inhibited the activity of osteoclasts. In vivo experiments showed that the monetite-coating increased bone formation. In summary, monetite-coating can effectively promote the osteogenesis in BMSCs, which may be achieved through bone immune regulation.
Collapse
Affiliation(s)
| | - Jiacheng You
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhenyu Wang
- Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yang Gu
- Department of Trauma Orthopedics Surgery, Ningbo No.6 Hospital, Medical School of Ningbo University, 315000, China
| | - Dehui Chen
- Fujian Medical University, Fuzhou 350001, China
| | - Bin Lin
- Fujian Medical University, Fuzhou 350001, China
| | - Xin Zhao
- Fujian Medical University, Fuzhou 350001, China
| | - Jiemin Lin
- Fujian Medical University, Fuzhou 350001, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Wenge Liu
- Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
11
|
Urangoo S, Kado T, Nezu T, Nagano-Takebe F, Endo K, Furuichi Y. Surface analysis of titanium disks with strontium coating. Dent Mater J 2021; 41:273-278. [PMID: 34980765 DOI: 10.4012/dmj.2021-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peri-implantitis is one of the most common complications after dental implant placement. Researchers have demonstrated that the peri-implantitis tends to occur around dental implants with a rough surface rather than those with a smooth surface. We aimed to investigate the ability of a smooth titanium (Ti) surface containing strontium (Sr) to enhance bone formation as a result of strontium's capacity to support osteoblast proliferation and differentiation. A thin titanium oxide film was formed on an as-mirror polished Ti surface by dipping in 5% sodium hypochlorite (NaOCl) solution for 24 h, followed by thermal treatment at 350°C. The Ti surface was then treated with 1% strontium nitrate (Sr(NO3)2) solution and turned in spin coater. The surface morphology, chemical composition, and release of strontium ions (Sr2+) were evaluated. The results demonstrate that strontium in the form of Sr2+ was successfully doped into the titanium dioxide (TiO2) film by this simple chemical treatment.
Collapse
Affiliation(s)
- Sugarbaatar Urangoo
- Division of Endodontology and Periodontology, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| | - Takashi Kado
- Division of Endodontology and Periodontology, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| | - Takashi Nezu
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| | - Futami Nagano-Takebe
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| | - Kazuhiko Endo
- Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| | - Yasushi Furuichi
- Division of Endodontology and Periodontology, Department of Oral Rehabilitation, Graduate School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
12
|
Liu F, Wang X, Li S, Liao Y, Zhan X, Tao A, Zheng F, Li H, Su Y, Jiang J, Li C. Strontium-Loaded Nanotubes of Ti-24Nb-4Zr-8Sn Alloys for Biomedical Implantation. J Biomed Nanotechnol 2021; 17:1812-1823. [PMID: 34688326 DOI: 10.1166/jbn.2021.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.
Collapse
Affiliation(s)
- Fei Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinyu Wang
- Jiamusi University Affiliated Stomatological Hospital, Heilongjiang Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, 154000, China
| | - Shujun Li
- Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yiheng Liao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yucheng Su
- Dental Implant Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
13
|
Xu Y, Zhang L, Xu J, Li J, Wang H, He F. Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: A preclinical vivo experimental study. Clin Oral Implants Res 2021; 32:1366-1383. [PMID: 34416034 DOI: 10.1111/clr.13837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of the current study was to explore effects of strontium-incorporated titanium implant surfaces by hydrothermal treatment on osseointegration in diabetic rats. MATERIALS AND METHODS The surface characteristics of SLA and SLA-Sr surfaces were detected by related instruments. Thirty-six male Sprague-Dawley rats were induced into diabetes, and thirty-six rats were normal. SLA and SLA-Sr implants were, respectively, inserted into bilateral tibial metaphysis of each rat. Percentage of bone-to-implant contact (BIC%) and percentage of bone area (BA%) were analyzed at 4 and 8 weeks after implantation. Immunohistochemistry of osteoprotegerin (OPG) and Wnt5a were conducted at 1 and 4 weeks. Gene expression levels of inflammatory cytokines and related signaling molecules in peri-implant bone tissue were detected at 3 and 7 days. RESULTS Strontium was uniformly distributed on SLA-Sr surfaces, and it was released in an effective concentration range. SLA-Sr surfaces showed significantly higher BIC% in diabetic rats at 4 (p < .05) and 8 weeks (p < .05). Besides, it displayed higher BIC% at 4 weeks (p < .05) in normal rats. Also, SLA-Sr surfaces upregulated expression of OPG at 4 weeks (p < .05) in diabetic rats. What's more, SLA-Sr surfaces downregulated inflammation (TNF-α, IL-1β, and IL-6; p < .01) in diabetic rats at 3 days. In addition, expression of Wnt5a and ROR2 was upregulated (p < .05) at 7 days after implantation under diabetes. CONCLUSION It is suggested that strontium-incorporated titanium implant surfaces by hydrothermal treatment could enhance implant osseointegration as compared with SLA implant surfaces in diabetic rats.
Collapse
Affiliation(s)
- Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liefen Zhang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangang Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fuming He
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Swain S, Bowen C, Rautray T. Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite-Barium strontium titanate composites with controlled strontium substitution. J Biomed Mater Res A 2021; 109:2027-2035. [PMID: 33825314 DOI: 10.1002/jbm.a.37195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/09/2022]
Abstract
To mimic the electrical properties of natural bone, controlled strontium substitution of both hydroxyapatite and ferroelectric barium titanate were achieved by mixing in the ratio 30:70 by weight. The composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy to investigate the phase composition and microstructure of the composites. Unpolarized and polarized strontium hydroxyapatite (SrHA)-barium strontium titanate (BST) composites with controlled degree of Sr substitution were examined, including 5SrHA-5BST (5% Sr substitution in both components) and 10SrHA-10BST composites. The 10SrHA-10BST composite showed a higher osteoblast activity, as observed from the cell viability studies performed using CCK-8 assay. The polarized composites showed promise against Staphylococcus aureus bacteria by minimizing the adhesion and growth of bacteria, as compared with their unpolarized counterparts. The polarized 10SrHA-10BST was found to be superior than all other composites. As a result, the approach of polarization of SrHA-BST composites has been found to be an effective bone substitute material in controlled enhancement of osteoblast growth with simultaneous reduction of bacterial infection.
Collapse
Affiliation(s)
- Subhasmita Swain
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in TM Sciences, Siksha 'O' Anusandhan (Deemed to be University), Khandagiri Square, Bhubaneswar, India, 751030, India
| | - Chris Bowen
- Dept of Mechanical Engineering, University of Bath, Bath, UK
| | - Tapash Rautray
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in TM Sciences, Siksha 'O' Anusandhan (Deemed to be University), Khandagiri Square, Bhubaneswar, India, 751030, India
| |
Collapse
|
15
|
In Vitro Studies on Mg-Zn-Sn-Based Alloys Developed as a New Kind of Biodegradable Metal. MATERIALS 2021; 14:ma14071606. [PMID: 33806127 PMCID: PMC8036630 DOI: 10.3390/ma14071606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
Mg-Zn-Sn-based alloys are widely used in the industrial field because of their low-cost, high-strength and heat-resistant characteristics. However, their application in the biomedical field has been rarely reported. In the present study, biodegradable Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were fabricated. Their microstructure, surface characteristics, mechanical properties and bio-corrosion properties were carried out using an optical microscope (OM), X-ray diffraction (XRD), electron microscopy (SEM), mechanical testing, electrochemical and immersion test. The cell viability and morphology were studied by cell counting kit-8 (CCK-8) assay, live/dead cell assay, confocal laser scanning microscopy (CLSM) and SEM. The osteogenic activity was systematically investigated by alkaline phosphatase (ALP) assay, Alizarin Red S (ARS) staining, immunofluorescence staining and quantitative real time-polymerase chain reaction (qRT-PCR). The results showed that a small amount of strontium (Sr) (0.2 wt.%) significantly enhanced the corrosion resistance of the Mg-1Zn-1Sn alloy by grain refinement and decreasing the corrosion current density. Meanwhile, the mechanical properties were also improved via the second phase strengthening. Both Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys showed excellent biocompatibility, significantly promoted cell proliferation, adhesion and spreading. Particularly, significant increases in ALP activity, ARS staining, type I collagen (COL-I) expression as well as the expressions of three osteogenesis-related genes (runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (Bglap)) were observed for the Mg-1Zn-1Sn-0.2Sr group. In summary, this study demonstrated that Mg-Zn-Sn-based alloy has great application potential in orthopedics and Sr is an ideal alloying element of Mg-Zn-Sn-based alloy, which optimizes its corrosion resistance, mechanical properties and osteoinductive activity.
Collapse
|
16
|
Repair of segmental bone defect using tissue engineered heterogeneous deproteinized bone doped with lithium. Sci Rep 2021; 11:4819. [PMID: 33649409 PMCID: PMC7921440 DOI: 10.1038/s41598-021-84526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Lithium have been shown to play an important role in improving the osteogenic properties of biomaterials. This study aims to explore the osteogenic improvement effect of tissue engineered heterogeneous deproteinized bone (HDPB) doped with lithium, and evaluate their effectiveness in the healing of bone defects. Bone marrow mesenchymal stem cells (BMSCs) were co-cultured with different concentration of lithium chloride. Cell proliferation in each group was analyzed by 3-(4, 5-dimetyl-2-thiazoly-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. BMSCs were then co-cultured in osteogenic induction medium with different concentration of lithium chloride, and the expression of related mRNA was detected. The role of lithium in promoting BMSCs osteogenic differentiation and inhibiting BMSCs lipogenic differentiation was also investigated. Biomechanical properties of the tibia were evaluated at 8 weeks after operation. The tibial specimens of each group were collected at 4 and 8 weeks after surgery for histological examination and histological analysis. Micro-computed tomography (CT) scanning and 3D reconstruction were performed at 8 weeks. The results demonstrate that lithium can induce the osteogenic differentiation inhibit of adipogenic differentiation of BMSCs by regulating the Wnt signaling pathway. The histological evaluation further certified that average bone formation area in the group of tissue engineered HDPB doped with lithium was also significantly better than that of HDPB alone group. Based on the above evaluation, tissue engineered HDPB doped with lithium can effectively promote the regeneration of segmental bone defect, which can be used as a tissue engineering scaffold for clinical trials.
Collapse
|
17
|
Costa AI, Gemini-Piperni S, Alves AC, Costa NA, Checca NR, Leite PE, Rocha LA, Pinto AMP, Toptan F, Rossi AL, Ribeiro AR. TiO 2 bioactive implant surfaces doped with specific amount of Sr modulate mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111735. [PMID: 33545878 DOI: 10.1016/j.msec.2020.111735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
One of the main problems that remain in the implant industry is poor osseointegration due to bioinertness of implants. In order to promote bioactivity, calcium (Ca), phosphorus (P) and strontium (Sr) were incorporated into a TiO2 porous layer produced by micro-arc oxidation. Ca and P as bioactive elements are already well reported in the literature, however, the knowledge of the effect of Sr is still limited. In the present work, the effect of various amounts of Sr was evaluated and the morphology, chemical composition and crystal structure of the oxide layer were investigated. Furthermore, in vitro studies were carried out using human osteoblast-like cells. The oxide layer formed showed a triplex structure, where higher incorporation of Sr increased Ca/P ratio, amount of rutile and promoted the formation of SrTiO3 compound. Biological tests revealed that lower concentrations of Sr did not compromise initial cell adhesion neither viability and interestingly improved mineralization. However, higher concentration of Sr (and consequent higher amount of rutile) showed to induce collagen secretion but with compromised mineralization, possibly due to a delayed mineralization process or induced precipitation of deficient hydroxyapatite. Ca-P-TiO2 porous layer with less concentration of Sr seems to be an ideal candidate for bone implants.
Collapse
Affiliation(s)
- A I Costa
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEMM - Department of Metallurgical and Materials Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal.
| | - S Gemini-Piperni
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - N A Costa
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Materials Science and Technology, São Paulo State University, Bauru, São Paulo, Brazil
| | - N R Checca
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| | - L A Rocha
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Faculty of Science, Department of Physics, São Paulo State University, Bauru, São Paulo, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEM - Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A L Rossi
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Montgomerie Z, Popat KC. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111503. [PMID: 33321602 PMCID: PMC7744674 DOI: 10.1016/j.msec.2020.111503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Thrombosis formation and bacterial infection are key challenges for blood-contacting medical devices. When blood components encounter a device's surface, proteins are adsorbed, followed by the adhesion and activation of platelets as well as an immune response. This culminates in clot formation via the trapping of red blood cells in a fibrin matrix, which can block the device's function and cause severe complications for the patient. In addition, bacteria may adhere to a device's surface. This can lead to the formation of a biofilm, a protective layer for bacteria that significantly increases resistance to antibiotics. Despite years of research, no long-term solutions have been discovered to combat these issues. To impede thrombosis, patients often take antiplatelet drugs for the life of their device, which can cause excess bleeding and other complications. Patients can take antibiotics to fight bacterial infection, but these are often ineffective if biofilms are formed. Superhydrophobic surfaces show promise in reducing both thrombosis and bacterial infection on devices by impeding contact between biological components and the biomaterial. In this study, superhydrophobic titania nanoflower surfaces were successfully fabricated on a titanium alloy Ti-6Al-4V substrate with hydrothermal synthesis and vapor-phase silanization. The surface topography, surface wettability, surface chemistry, and surface crystallography of the surfaces was subsequently characterized. Surface hemocompatibility was investigated through lactate dehydrogenase (LDH) cytotoxicity analysis, blood-plasma protein adsorption, platelet and leukocyte adhesion and activation, and whole blood clotting analysis. Surface bacterial infection was characterized through Gram-positive and Gram-negative bacterial adhesion and biofilm morphology. The results indicated a reduction of protein adsorption, platelet and leukocyte adhesion and activation, bacterial adhesion, and biofilm formation as well as improved contact angle stability compared to control surfaces.
Collapse
Affiliation(s)
- Zachary Montgomerie
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
19
|
Acceleration of Bone Formation and Adhesion Ability on Dental Implant Surface via Plasma Electrolytic Oxidation in a Solution Containing Bone Ions. METALS 2021. [DOI: 10.3390/met11010106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study examined the in vitro and in vivo bone formation and adhesion ability on the surface of a titanium dental implant made by plasma electrolytic oxidation (PEO) in electrolytes containing bioactive ions. To achieve this goal, screw-shaped fabricated Ti-6Al-4V alloy implants were processed via PEO using an electrolyte solution containing calcium (Ca), phosphorous (P), magnesium (Mg), zinc (Zn), strontium (Sr), silicon (Si), and manganese (Mn) species. The screw implants doped with bioactive elements via PEO were placed in rabbit tibia, and the results were compared to the sand-blasted Ti-6Al-4V alloy implants. At eight-week post-surgery, there was no significant difference in the values of removal torque between sand-blasted and PEO-treated implants. However, it was observed that the PEO treatment of dental implants led to the formation of more periphery bone as compared to the case of sand-blasted implants. Accordingly, the PEO-treated implants have the potential to be used as promising materials for dental applications.
Collapse
|
20
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
21
|
Wang H, Xu Q, Hu H, Shi C, Lin Z, Jiang H, Dong H, Guo J. The Fabrication and Function of Strontium-modified Hierarchical Micro/Nano Titanium Implant. Int J Nanomedicine 2020; 15:8983-8998. [PMID: 33239873 PMCID: PMC7682802 DOI: 10.2147/ijn.s268657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background Relying on surface topography alone to enhance the osteointegration of implants is still inadequate. An effective way to combine long-term ion release and surface topography to enhance osteogenic property is urgently needed. Purpose The objective of this study is to fabricate a long-term strontium ion release implant system and confirm the biological function in vitro and in vivo. Methods The biomimic surface was fabricated through alkali-heat treatment and magnetron sputtering. The in vitro biological function assays were determined by MTT, fluorescence staining, alkaline phosphatase activity, extracellular mineralization, and quantitative real-time polymerase chain reaction assays. The in vivo experiments were detected by micro-CT, HE staining and Masson staining. Results The biomimic surface structure has been successfully fabricated. The in vitro cell assays determined that AH-Ti/Sr90 possessed the best biological function. The in vivo experiments demonstrated that AH-Ti/Sr90 could promote osteointegration significantly under both in normal and osteoporotic conditions. Conclusion We determined that AH-Ti/Sr90 possesses the best osteogenic property, long-term ion release capacity and osteointegration promotion ability. It has potential clinic application prospects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/-6Wh1MOigI0
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| | - Qiuping Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| | - Hui Hu
- Osaka Dental University Kusuha School, Hirakata City, Osaka 573-1121, Japan
| | - Chunling Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Ziyan Lin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Huixi Jiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Huaipu Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jing Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| |
Collapse
|
22
|
JIANG H, ZHOU W, WANG B, TANG L. The effect of strontium modified rough titanium surface on biologic response of MC3T3-E1 cells. Dent Mater J 2020; 39:808-814. [DOI: 10.4012/dmj.2019-188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Huanhuan JIANG
- Department of Dental Implantology, Wuxi Stomatological Hospital
| | - Wenjuan ZHOU
- Department of Dental Implantology, Yantai Stomatological Hospital
| | - Binchen WANG
- Department of Dental Implantology, Yantai Stomatological Hospital
| | - Liqin TANG
- Department of Dental Implantology, Wuxi Stomatological Hospital
| |
Collapse
|
23
|
Abstract
The present work focuses on the application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) in osteoporotic bone research. In order to demonstrate the benefit, the authors present concrete application examples of ToF-SIMS in three different areas of bone research. ToF-SIMS as a mass spectrometric imaging technique allows simultaneous visualization of mineralized and nonmineralized bone tissue as well as implanted biomaterials and bone implant interphases. In the first example, the authors show that it is possible to study the incorporation and distribution of different components released from bone filler materials into bone with a single mass spectrometric measurement. This not only enables imaging of nonstained bone cross sections but also provides further insights beyond histologically obtained information. Furthermore, they successfully identified several mass fragments as markers for newly formed cartilage tissue and growth joint in bone. Different modes of ToF-SIMS as well as different SIMS instruments (IONTOF's TOF.SIMS 5 and M6 Hybrid SIMS, Ionoptika's J105) were used to identify these mass signals and highlight the high versatility of this method. In the third part, bone structure of cortical rat bone was investigated from bone sections embedded in technovit (polymethyl methacrylate, PMMA) and compared to cryosections. In cortical bone, they were able to image different morphological features, e.g., concentric arrangement of collagen fibers in so-called osteons as well as Haversian canals and osteocytes. In summary, the study provides examples of application and shows the strength of ToF-SIMS as a promising analytical method in the field of osteoporotic bone research.
Collapse
|
24
|
Affiliation(s)
- Jiahui Zhang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yihua Feng
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuan Zhou
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanbin Shi
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Wang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
25
|
Alenezi A, Galli S, Atefyekta S, Andersson M, Wennerberg A. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:116. [PMID: 31606798 PMCID: PMC6790188 DOI: 10.1007/s10856-019-6314-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Numerous studies have reported the beneficial effects of strontium on bone growth, particularly by stimulating osteoblast proliferation and differentiation. Thus, strontium release around implants has been suggested as one possible strategy to enhance implant osseointegration. AIM This study aimed to evaluate whether the local release of strontium ranelate (Sr-ranelate) from implants coated with mesoporous titania could improve bone formation around implants in an animal model. MATERIALS AND METHODS Mesoporous titania (MT) thin coatings were formed utilizing the evaporation induced self-assembly (EISA) method using Pluronic (P123) with or without the addition of poly propylene glycol (PPG) to create materials with two different pore sizes. The MT was deposited on disks and mini-screws, both made of cp Ti grade IV. Scanning electron microscopy (SEM) was performed to characterize the MT using a Leo Ultra55 FEG instrument (Zeiss, Oberkochen, Germany). The MT was loaded with Sr-ranelate using soaking and the drug uptake and release kinetics to and from the surfaces were evaluated using quartz crystal microbalance with dissipation monitoring (QCM-D) utilizing a Q-sense E4 instrument. For the in vivo experiment, 24 adult rats were analyzed at two time points of implant healing (2 and 6 weeks). Titanium implants shaped as mini screws were coated with MT films and divided into two groups; supplied with Sr-ranelate (test group) and without Sr-ranelate (control group). Four implants (both test and control) were inserted in the tibia of each rat. The in vivo study was evaluated using histomorphometric analyses of the implant/bone interphase using optical microscopy. RESULTS SEM images showed the successful formation of evenly distributed MT films covering the entire surface with pore sizes of 6 and 7.2 nm, respectively. The QCM-D analysis revealed an absorption of 3300 ng/cm2 of Sr-ranelate on the 7.2 nm MT, which was about 3 times more than the observed amount on the 6 nm MT (1200 ng/cm2). Both groups showed sustained release of Sr-ranelate from MT coated disks. The histomorphometric analysis revealed no significant differences in bone implant contact (BIC) and bone area (BA) between the implants with Sr-ranelate and implants in the control groups after 2 and 6 weeks of healing (BIC with a p-value of 0.43 after 2 weeks and 0.172 after 6 weeks; BA with a p-value of 0.503 after 2 weeks, and 0.088 after 6 weeks). The mean BIC and BA values within the same group showed significant increase among all groups between 2 and 6 weeks. CONCLUSION This study could not confirm any positive effects of Sr-ranelate on implant osseointegration.
Collapse
Affiliation(s)
- Ali Alenezi
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
- Department of Prosthodontics, College of Dentistry, Qassim University, Buraidah, Saudi Arabia.
| | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Saba Atefyekta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Ann Wennerberg
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
26
|
George A, Ellis M, Gill HS. Hypoxia-inducible factor (HIF): how to improve osseointegration in hip arthroplasty secondary to avascular necrosis in sickle cell disease. EFORT Open Rev 2019; 4:567-575. [PMID: 31598335 PMCID: PMC6771077 DOI: 10.1302/2058-5241.4.180030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many studies in the literature have been carried out to evaluate the various cellular and molecular processes involved in osteogenesis. Angiogenesis and bone formation work closely together in this group of disorders. Hypoxia-inducible factor (HIF) which is stimulated in tissue hypoxia triggers a cascade of molecular processes that helps manage this physiological deficiency. However, there still remains a paucity of knowledge with regard to how sickle cell bone pathology, in particular avascular necrosis, could be altered when it comes to osseointegration at the molecular level. Hypoxia-inducible factor has been identified as key in mediating how cells adapt to molecular oxygen levels. The aim of this review is to further elucidate the physiology of hypoxia-inducible factor with its various pathways and to establish what role this factor could play in altering the disease pathophysiology of avascular necrosis caused by sickle cell disease and in improving osseointegration. This review article also seeks to propose certain research methodology frameworks in exploring how osseointegration could be improved in sickle cell disease patients with total hip replacements and how it could eventually reduce their already increased risk of undergoing revision surgery.
Cite this article: EFORT Open Rev 2019;4:567-575. DOI: 10.1302/2058-5241.4.180030
Collapse
Affiliation(s)
- Akintunde George
- Centre for Integrated Bioprocessing Research, Department of Chemical Engineering, University of Bath, Bath, UK
| | - Marianne Ellis
- Centre for Integrated Bioprocessing Research, Department of Chemical Engineering, University of Bath, Bath, UK
| | | |
Collapse
|
27
|
Nguyen TDT, Jang YS, Lee MH, Bae TS. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Funct Mater 2019; 17:2280800019826517. [PMID: 30803306 DOI: 10.1177/2280800019826517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Titanium biomedical devices coated with strontium-doped calcium phosphate ceramics can support desirable bone regeneration through anabolic and anti-catabolic effects of strontium and the compositions close to that of natural mineral tissue. METHODS: Strontium was doped into the calcium phosphate coating using the cyclic pre-calcification method on the anodized titanium plate. The effects of the different concentration of strontium in treatment solution and cycle numbers of the pre-calcification treatment on the biocompatibility were investigated in terms of the changes in morphology and chemical composition of coating, ion release pattern and cytocompatibility in vitro. RESULTS: At a high substitution ratio of strontium in the calcium phosphate coating, the size of precipitated particles was decreased and the solubility of the coating was increased. ASH55 group, which was coated by pre-calcification treatment of 20 cycles in coating solution with Sr:Ca molar ratio of 5:5, exhibited superior cellular attachment at 1 day and proliferation after 7 days of culturing in comparison with the non-doped surface and other doped surfaces. CONCLUSION: Sufficient strontium doping concentrations in calcium phosphate coating can enhance cell adhesion and proliferation on the titanium biomedical devices for bone regeneration.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- 1 Odonto-stomatology Faculty, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Yong-Seok Jang
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Min-Ho Lee
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Tae-Sung Bae
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
28
|
Li D, Li Y, Shrestha A, Wang S, Wu Q, Li L, Guan C, Wang C, Fu T, Liu W, Huang Y, Ji P, Chen T. Effects of Programmed Local Delivery from a Micro/Nano-Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv Healthc Mater 2019; 8:e1900002. [PMID: 30985090 DOI: 10.1002/adhm.201900002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/24/2019] [Indexed: 02/05/2023]
Abstract
The two major causes for implant failure are postoperative infection and poor osteogenesis. Initial period of osteointegration is regulated by immunocytes and osteogenic-related cells resulting in inflammatory response and tissue healing. The healing phase can be influenced by various environmental factors and biological cascade effect. To synthetically orchestrate bone-promoting factors on biomaterial surface, built is a dual delivery system coated on a titanium surface (abbreviated as AH-Sr-AgNPs). The results show that this programmed delivery system can release Ag+ and Sr2+ in a temporal-spatial manner to clear pathogens and activate preosteoblast differentiation partially through manipulating the polarization of macrophages. Both in vitro and in vivo assays show that AH-Sr-AgNPs-modified surface renders a microenvironment adverse for bacterial survival and favorable for macrophage polarization (M2), which further promotes the differentiation of preosteoblasts. Infected New Zealand rabbit femoral metaphysis defect model is used to confirm the osteogenic property of AH-Sr-AgNPs implants through micro-CT, histological, and histomorphometric analyses. These findings demonstrate that the programmed surface with dual delivery of Sr2+ and Ag+ has the potential of achieving an enhanced osteogenic outcome through favorable immunoregulation.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Yihan Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Annie Shrestha
- Faculty of DentistryUniversity of Toronto Toronto ON M5G 1G6 Canada
| | - Si Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Qingqing Wu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Chao Guan
- Jiaxing Hospital of Traditional Chinese Medicine Jiaxing 314001 P. R. China
| | - Chao Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Wenzhao Liu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| |
Collapse
|
29
|
Cruz M, Zanatta M, da Veiga M, Ciancaglini P, Ramos A. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:762-769. [DOI: 10.1016/j.msec.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
|
30
|
Research on in vitro and in vivo biocompatibility of the low-friction Ti+C/amorphous carbon gradient multilayer films for hard tissue engineering. Colloids Surf B Biointerfaces 2019; 180:344-352. [PMID: 31075688 DOI: 10.1016/j.colsurfb.2019.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
Abstract
Ti+C/amorphous carbon (a-C) gradient multilayer (GM) films are prepared on the Ti-alloy substrates via physical vapor deposition. Transmission electron microscopy revealed that the Ti atoms combine with the a-C film to form a TiC phase in the inner layer and the sputtering current significantly influences the amount of the TiC phase. Further, the mechanical properties of the Ti+C/a-C GM films were obtained using nanoindentation, and the results denoted the significant improvement in the mechanical properties of the a-C film after adding the Ti+C transition layers. The hardness and elastic modulus of the a-C GM films became approximately 31 and 265 GPa, respectively, which were obviously greater than those of the a-C films. The biotribological properties of the a-C GM films in fetal bovine serum (FBS) were verified. The coefficient of friction (COF) and wear rate of the obtained Ti+C/a-C GM film were 0.057 and (1.06-1.24) × 10-6 mm3/(N m), respectively, which were lower than those of pure a-C and the bare Ti alloy. The excellent mechanical properties of the Ti+C gradient transition layer and the lubricating effect of the FBS medium caused the low COF of the a-C GM films, indicating the potential biotribology applications of the a-C films. The cell apoptosis tests suggested that the a-C GM films promoted cell proliferation and viability. Meanwhile, the a-C-GM-coated implants and muscle tissue combined, and hyperergic and inflammatory reactions were not observed six weeks after implantation. These data indicate that the Ti+C/a-C GM film exhibits good biocompatibility and is an ideal mounting material for bone tissue engineering.
Collapse
|
31
|
Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O'Donnell MD, Lange C, Seidt BM, Kim TB, Solanki AK, Tallia F, Young G, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MM. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials 2019; 209:152-162. [PMID: 31048149 PMCID: PMC6527862 DOI: 10.1016/j.biomaterials.2019.03.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce because conventional compositions crystallize during processing. Here, we rationally designed a porous, strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beam-scanning electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone, and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in large animal models.
Collapse
Affiliation(s)
- H Autefage
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Allen
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - H M Tang
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Kallepitis
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - E Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, United Kingdom
| | - N Reznikov
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Nitiputri
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A Nommeots-Nomm
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - M D O'Donnell
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Lange
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - B M Seidt
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - T B Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A K Solanki
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Tallia
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Young
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - P D Lee
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - B F Pierce
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - A Goodship
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - J R Jones
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT Portsmouth, United Kingdom.
| | - M M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
32
|
Chen X, Chen Y, Shen J, Xu J, Zhu L, Gu X, He F, Wang H. Positive modulation of osteogenesis on a titanium oxide surface incorporating strontium oxide: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:710-718. [PMID: 30889744 DOI: 10.1016/j.msec.2019.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Surface chemistry and topography can determinatively affect the osseointegration of dental implants. Strontium (Sr) has a significant effect on the promotion of bone formation and inhibitation of bone resorption. The emphasis of this study lies on the evaluation of a new surface treatment that aims to improve the early osseointegration of dental implantation both in vitro and in vivo. A hydrothermal method was used to prepare an SrTiO3 incorporation on sandblasted large-grit double acid-etched (SLA) titanium surfaces in SrCl2 solution. The composition and morphology of the SrTiO3 doped surface were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy,and scanning electron microscopy. In addition, the external release figure of Sr was examined by inductively coupled plasma mass spectrometry. The proliferation, adhesion and differentiation of MC3T3-E1 cells on this surface were evaluated in vitro and presented a significant increase in SLA-Sr group compared with that in SLA group. An in vivo study in 24 New Zealand rabbits indicated a remarkable growth in the volume of direct bone-to-implant contact and peri-implant bone in SLA-Sr group, which were compared with SLA group after 3 and 6 weeks, and removal torque tests exhibited a higher torque removal value of SLA-Sr implants. The study gave the result that the biological effect of SLA-Sr implants was significantly superior to that of the SLA implants at the early stage of osseointegration.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yun Chen
- Department of oral Implantology, Xiamen Stomatology Hospital, Xiamen 361003, China
| | - Jianwei Shen
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Junhua Xu
- Oral Medical Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Liqin Zhu
- Oral Medical Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xinhua Gu
- Oral Medical Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fuming He
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Huiming Wang
- Department of Oral Implantology, The Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
33
|
Nanostructured titanium surfaces fabricated by hydrothermal method: Influence of alkali conditions on the osteogenic performance of implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1-10. [DOI: 10.1016/j.msec.2018.08.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022]
|
34
|
Kunrath MF, Hübler R. A bone preservation protocol that enables evaluation of osseointegration of implants with micro- and nanotextured surfaces. Biotech Histochem 2018; 94:261-270. [PMID: 30556450 DOI: 10.1080/10520295.2018.1552017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of surface treatments has enabled secure attachment of dental implants in less than 1 month. Consequently, it is necessary to characterize accurately the osseointegration of the implant surface in the region of the bone-implant contact (BIC). We developed a method for sample preparation that preserves both bone and BIC to permit analysis of the contact interface. We prepared eight nanotextured implants and implanted them in rabbit tibias. After healing for 30 days, outcomes were analyzed using both our bone preservation protocol and routine decalcification followed by preparation of histological sections stained by hematoxylin and eosin (H & E). Pull-out tests for implant osseointegration were performed after healing. Non-implanted samples of rabbit mandible were used as a control for assessing organic and mineralized bone characteristics and bone structure. Our bone preservation protocol enabled evaluation of many of the same bone characteristics as histological sections stained with H & E. Our protocol enables analysis of implant samples, implant surfaces and osseointegration without risk of BIC damage.
Collapse
Affiliation(s)
- M F Kunrath
- a Dentistry University , School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre , Brazil
| | - R Hübler
- b Materials and Nanoscience Laboratory , Physics University, Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
35
|
Kwon YS, Park JW. Osteogenic differentiation of mesenchymal stem cells modulated by a chemically modified super-hydrophilic titanium implant surface. J Biomater Appl 2018; 33:205-215. [DOI: 10.1177/0885328218786873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the osteogenic functionality of multipotent mesenchymal stem cells (MSCs) modulated by a chemically modified super-hydrophilic titanium (Ti) bone implant surface to elucidate the biological mechanism underlying the bone healing capacity of this modified Ti surface. A microstructured Ti surface incorporating bioactive ions (in this study, phosphate (P) ions) was prepared by wet chemical treatment. The results showed that the hydrothermally obtained crystalline P-incorporated Ti surface (P surface) displayed long-term super-hydrophilicity (water contact angles <5°) during a 36-week observation period. The hydrophilic P surface enhanced early cellular functions and osteogenic differentiation of multipotent MSCs derived from mouse bone marrow and human adipose tissue. The expression of critical integrins affecting subsequent osteoblast function and osteoblast phenotype genes was notably upregulated in multipotent MSCs grown on the P surface compared with the commercially available grit-blasted microrough clinical oral implant surface. The P surface supported better cell spreading, focal adhesion and ALP activity of MSCs. These results indicate that a super-hydrophilic P-incorporated Ti surface accelerates implant bone healing by enhancing the early osteogenesis functions of multipotent MSCs.
Collapse
Affiliation(s)
- Yong-Su Kwon
- School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Woo Park
- School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
36
|
Li Y, Wang W, Liu H, Lei J, Zhang J, Zhou H, Qi M. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO 2 coatings on titanium by micro-arc oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:90-103. [DOI: 10.1016/j.msec.2018.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 02/24/2018] [Indexed: 12/20/2022]
|
37
|
Effect of a biomimetic titania mesoporous coating doped with Sr on the osteogenic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:153-162. [PMID: 30033242 DOI: 10.1016/j.msec.2018.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/20/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
Abstract
Fabrication of titanium (Ti)-based biomedical implants with appropriate topography as well as capacity for drug delivery is highly pursued in the field of orthopedic and dental implants. In this study, a biomimetic mesoporous coating imbedded with strontium (MPs-Sr) is prepared by the high current anodization (HCA) and hydrothermal treatment (HT). This coating provides a more stable mechanical performance than the conventional nanotube arrays. The Sr loading is regulated by the HT reaction time and the Sr is released in a controllable manner from the MPs-Sr surface. The hydrophilic performance of MPs-Sr are significantly improved. Furthermore, it is showed that the attachment and spreading of preosteoblast MC3T3-E1 cells are significantly up-regulated by the nanoscale topology of MPs and the doped Sr. The improved collagen secretion and matrix mineralization levels of cells are closely related with the Sr release. The excellent osteogenic properties of MPs-Sr samples highlight their promising potential for use in clinical application.
Collapse
|
38
|
Guo H, Wang C, Wang J, He Y. Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair. J Biomater Appl 2018; 32:1421-1434. [PMID: 29703129 DOI: 10.1177/0885328218768185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups. The goats were treated with autogenous cancellous bone, lithium-incorporated deproteinized bovine bone, and deproteinized bovine bone. Animals were evaluated using radiological analysis including X-ray, computed tomography, and Micro-CT; histological methods involving hematoxylin-eosin dyeing, Masson dyeing, and immunofluorescence detection at 4 and 12 weeks after surgery were carried out. According to the results, lithium-incorporated deproteinized bovine bone produced nano-structured surface layer. The lithium-incorporated deproteinized bovine bone could promote the osteoblast proliferation and increase the calcium deposition. In vivo studies, radiographic results revealed that lithium-incorporated deproteinized bovine bone scaffolds provided better performance in terms of mean gray values of X films, mean pixel values of computed tomography films, and bone volume and trabecular thickness of micro-computed tomography pictures when compared with the deproteinized bovine bone group. In addition, histological analysis showed that the lithium-incorporated deproteinized bovine bone group also significantly achieved larger new bone formation area. At the same time, when the expression of osteogenic factors in vivo was evaluated, runt-related transcription factor 2 (Runx2) and collagen type one (Col-1) were expressed more in lithium-incorporated deproteinized bovine bone group than those in deproteinized bovine bone group. However, the bone defect repair effect using autograft is still a little better than that of lithium-incorporated deproteinized bovine bone substitute based on our results. In conclusion, surface lithium-incorporated deproteinized bovine bone achieved improvement of osteogenesis effect and could enhance the new bone formation in critical-sized bone defects.
Collapse
Affiliation(s)
- Hongzhang Guo
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Changde Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Jixiang Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Yufang He
- 2 The Third Hospital of Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
39
|
Zhou C, Xu AT, Wang DD, Lin GF, Liu T, He FM. The effects of Sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci 2018; 6:1946-1961. [DOI: 10.1039/c8bm00473k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MNT-Sr can promote rBMSC osteogenic differentiation and significantly enhance rBMSC migration and homing via activation of SDF-1α/CXCR4 signaling.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - An-tian Xu
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Dan-dan Wang
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Guo-fen Lin
- Department of General Dentistry
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Tie Liu
- Department of Oral Implantology
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Fu-ming He
- Department of Oral Implantology and Prothodontics
- The Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| |
Collapse
|
40
|
Xu Z, Lu H, Lu J, Lv C, Zhao X, Wang G. Enhanced osteogenic activity of Ti alloy implants by modulating strontium configuration in their surface oxide layers. RSC Adv 2018; 8:3051-3060. [PMID: 35541194 PMCID: PMC9077531 DOI: 10.1039/c7ra10807a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
Strontium configurations can modulate its release in the SrO–TiO2coating system, thus being able to control the interfacial osteogenesis.
Collapse
Affiliation(s)
- Zhengjiang Xu
- Research Center for Human Tissues and Organs Degeneration
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- Shenzhen
- China
| | - Huaifeng Lu
- Research Center for Human Tissues and Organs Degeneration
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- Shenzhen
- China
| | - Jian Lu
- School of Materials Science and Engineering
- Changzhou University
- China
| | - Chen Lv
- School of Materials Science and Engineering
- Changzhou University
- China
| | - Xiaobing Zhao
- School of Materials Science and Engineering
- Changzhou University
- China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- Shenzhen
- China
| |
Collapse
|
41
|
Effect of titanium implants with strontium incorporation on bone apposition in animal models: A systematic review and meta-analysis. Sci Rep 2017; 7:15563. [PMID: 29138499 PMCID: PMC5686172 DOI: 10.1038/s41598-017-15488-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
This systematic review aims to assess the efficacy of titanium (Ti) implant surfaces with or without strontium (Sr) incorporation on osseointegration in animal experimental studies. An electronic search was conducted using databases of PubMed and EMBASE up to November 2016 to identify studies focusing on osseointegration of strontium-modified titanium implants following PRISMA criteria. The primary outcome was the percentage of bone-to-implant contact (BIC) around the implants with or without strontium-modified surface. Of the 1320 studies, 17 studies fulfilling the inclusion criteria were finally included. A random effect meta-analysis was conducted based on BIC in 17 studies, and the results demonstrated considerable heterogeneity (I² = 79%). A sensitivity analysis found that three studies using the same surface modification method were the major source of the heterogeneity. Therefore, exploratory subgroup analysis was performed. Subgroup one including 14 studies showed a standard mean differences (SMD) of 1.42 (95% CI, 1.13-1.71) with no heterogeneity (I² = 0.0%), while subgroup two including the other three studies showed a SMD of 9.49.95% CI, 7.51-11.47) with low heterogeneity (I² = 0.1%). Sr-modified implants in both subgroups showed significantly higher BIC than unmodified implants (P < 0.01). The results showed a statistically significant effect of Sr-modified titanium implant surfaces on osseointegration and bone apposition in animal models.
Collapse
|
42
|
Huanhuan J, Pengjie H, Sheng X, Binchen W, Li S. The effect of strontium-loaded rough titanium surface on early osseointegration. J Biomater Appl 2017; 32:561-569. [PMID: 29022842 DOI: 10.1177/0885328217735953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not clear whether surface bioactive chemistry plays an important role in the early osseointegration of micro-structured titanium implants that have the same surface topography at the micrometer and submicrometer scales. In this study, magnetron sputtering methodology was employed for the preparation of Sr coating on sandblasted and acid-etched (SLA) titanium implant without changing the surface characteristics. The study of the surface morphology of the coating was carried out with the use of scanning electron microscopy, and the chemical composition of the surface was examined by X-ray energy-dispersive spectrometry. Twenty SLA implants together with 20 Sr-SLA implants were randomly inserted into the proximal tibia of 20 rats. The early osseointegration of the Sr-SLA implant was compared with SLA implant by removal torque test and histological analysis following two and eight weeks of implantation, correspondingly. As revealed by the surface characteristics, both Sr-SLA and SLA surfaces exhibited similar typical isotropic irregular indentations. The strontium ions were effectively incorporated into the SLA surface (the atomic ratio is 2%). Following two and eight weeks of healing, significant increases in removal torque values ( p < 0.05) were taken into observation in respect of Sr-SLA implant. Histologically, the Sr-SLA implants displayed significantly higher bone-to-implant contact percentages and bone area ratio in comparison with the SLA implant at eight weeks ( p < 0.05). At two weeks, the bone-implant contact percentages, together with bone area ratio of Sr-SLA surface appeared to be a little bit slightly greater than that of SLA surface. But the statistical difference was not significant. These results indicated that the chemical modification with Sr incorporated by magnetron sputtering treatment in moderately rough surfaced implants remarkably increases early bone apposition.
Collapse
Affiliation(s)
- Jiang Huanhuan
- 1 Department of Periodontology, School of Stomatology, Shandong University, Jinan, P.R. China
| | - Hao Pengjie
- 1 Department of Periodontology, School of Stomatology, Shandong University, Jinan, P.R. China
| | - Xu Sheng
- 1 Department of Periodontology, School of Stomatology, Shandong University, Jinan, P.R. China
| | - Wang Binchen
- 1 Department of Periodontology, School of Stomatology, Shandong University, Jinan, P.R. China
| | - Shu Li
- 2 Department of Dental Implantology, Yantai Stomatological Hospital, Yantai, P.R. China
| |
Collapse
|
43
|
Göttlicher M, Rohnke M, Moryson Y, Thomas J, Sann J, Lode A, Schumacher M, Schmidt R, Pilz S, Gebert A, Gemming T, Janek J. Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomater Res 2017; 21:18. [PMID: 29046823 PMCID: PMC5634847 DOI: 10.1186/s40824-017-0104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Surface functionalization of orthopedic implants with pharmaceutically active agents is a modern approach to enhance osseointegration in systemically altered bone. A local release of strontium, a verified bone building therapeutic agent, at the fracture site would diminish side effects, which could occur otherwise by oral administration. Strontium surface functionalization of specially designed titanium-niobium (Ti-40Nb) implant alloy would provide an advanced implant system that is mechanically adapted to altered bone with the ability to stimulate bone formation. METHODS Strontium-containing coatings were prepared by reactive sputtering of strontium chloride (SrCl2) in a self-constructed capacitively coupled radio frequency (RF) plasma reactor. Film morphology, structure and composition were investigated by scanning electron microscopy (SEM), time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HR-TEM) was used for the investigation of thickness and growth direction of the product layer. TEM lamellae were prepared using the focused ion beam (FIB) technique. Bioactivity of the surface coatings was tested by cultivation of primary human osteoblasts and subsequent analysis of cell morphology, viability, proliferation and differentiation. The results are correlated with the amount of strontium that is released from the coating in biomedical buffer solution, quantified by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Dense coatings, consisting of SrOxCly, of more than 100 nm thickness and columnar structure, were prepared. TEM images of cross sections clearly show an incoherent but well-structured interface between coating and substrate without any cracks. Sr2+ is released from the SrOxCly coating into physiological solution as proven by ICP-MS analysis. Cell culture studies showed excellent biocompatibility of the functionalized alloy. CONCLUSIONS Ti-40Nb alloy, a potential orthopedic implant material for osteoporosis patients, could be successfully plasma coated with a dense SrOxCly film. The material performed well in in vitro tests. Nevertheless, the Sr2+ release must be optimized in future work to meet the requirements of an effective drug delivery system.
Collapse
Affiliation(s)
- Markus Göttlicher
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Yannik Moryson
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jürgen Thomas
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Joachim Sann
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Romy Schmidt
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefan Pilz
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Annett Gebert
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Thomas Gemming
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry and Center of Materials Research, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
44
|
The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9867819. [PMID: 29109961 PMCID: PMC5646307 DOI: 10.1155/2017/9867819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 11/18/2022]
Abstract
Orthopedic implant failure is mainly attributed to the poor bonding of the implant to bone tissue. An effective approach to minimize the implant failure would be modifying the surface of the implant. Strontium (Sr) can stimulate the proliferation and differentiation of osteoblasts and reduce the activity of osteoclasts. In this study, a titanium (Ti) surface was successively functionalized by covalently grafting dopamine, sodium alginate (SA), and Sr2+ via the electrostatic immobilization method. The as-prepared coatings on the Ti surface were characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and contact angle. The results indicated that the Sr-incorporated coatings were successfully prepared and that Sr distributed uniformly on the surface. A long-lasting and sustained Sr release had been observed in Sr2+ release studies. The Ti/DOPA/SA/Sr exhibited little cytotoxicity and a robust effect of Sr incorporation on the adhesion and spreading of MG63 cells. The proliferation and alkaline phosphatase (ALP) activity of MG63 cells were enhanced by immobilizing Sr2+ on the SA-grafted Ti. The Sr-containing coatings, which displayed excellent biocompatibility and osteogenic activity, may provide a promising solution for promoting the tissue integration of implants.
Collapse
|
45
|
Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:1081-1088. [PMID: 27772708 DOI: 10.1016/j.msec.2016.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/21/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
Abstract
In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg17Sr2 phases, and the content of Mg17Sr2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application.
Collapse
|
46
|
Dang Y, Zhang L, Song W, Chang B, Han T, Zhang Y, Zhao L. In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating. Int J Nanomedicine 2016; 11:1003-11. [PMID: 27042055 PMCID: PMC4798202 DOI: 10.2147/ijn.s102552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel biomedical titanium (Ti) implants with high osteogenic ability for fast and good osseointegration under normal as well as osteoporotic conditions are urgently needed. Expanding on our previous in vitro results, we hypothesized that nanotubular, strontium-loaded (NT-Sr) structures on Ti implants would have favorable osteogenic effects and evaluated the in vivo osseointegration of these implants in rats. The structures with nanotubes of different diameters were fabricated by electrochemical anodization at 10 and 40 V, and the amounts of Sr loaded were adjusted by using two hydrothermal treatment times of 1 and 3 hours. Qualitative microcomputed tomography in two and three dimensions showed that the NT-Sr formed with an anodization voltage of 10 V and hydrothermal treatment time of 3 hours best supported bone growth in vivo. Histomorphometric examination of osseointegration also showed that more newly formed bone was found at its surface. The bone–implant contact percentage was highest (92.48%±0.76%) at 12 weeks. In conclusion, the NT-Sr formed with an anodization voltage of 10 V and hydrothermal treatment time of 3 hours showed excellent osteogenic properties, making it an attractive option for Ti surface modification with considerable clinical potential.
Collapse
Affiliation(s)
- Yonggang Dang
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Li Zhang
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wen Song
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei Chang
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Tianxiao Han
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yumei Zhang
- Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lingzhou Zhao
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
47
|
Kim HS, Kim YJ, Jang JH, Park JW. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions. J Dent Res 2016; 95:558-65. [DOI: 10.1177/0022034516638026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.
Collapse
Affiliation(s)
- H.-S. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Y.-J. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - J.-H. Jang
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - J.-W. Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
48
|
Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. NANOTECHNOLOGY 2016; 27:085101. [PMID: 26807875 DOI: 10.1088/0957-4484/27/8/085101] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Collapse
Affiliation(s)
- Chung-Ho Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412, Korea
| | | | | | | |
Collapse
|
49
|
Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez MM, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 2016; 31:388-400. [PMID: 26612413 DOI: 10.1016/j.actbio.2015.11.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023]
Abstract
Two frequent problems are associated with the titanium surfaces of bone/dental implants: lack of native tissue integration and associated infection. These problems have prompted a significant body of research regarding the modification of these surfaces. The present study describes a hydrothermal treatment for the fabrication of strontium (Sr) and silver (Ag) loaded nanotubular structures with different tube diameters on titanium surfaces. The Sr loading from a Sr(OH)2 solution was regulated by the size of the inner diameter of the titanium nanotubes (NT) (30nm or 80nm, formed at 10V or 40V, respectively). The quantity of Ag was adjusted by immersing the samples in 1.5 or 2.0M AgNO3 solutions. Sr and Ag were released in a controllable and prolonged matter from the NT-Ag.Sr samples, with negligible cytotoxicity. Prominent antibacterial activity was observed due to the release of Ag. Sr incorporation enhanced the initial cell adhesion, migration, and proliferation of preosteoblast MC3T3-E1 cells. Sr release also up-regulated the expression of osteogenic genes and induced mineralization, as suggested by the presence of more mineralized calcium nodules in cells cultured on NT-Ag.Sr surfaces. In vivo experiments showed that the Sr-loaded samples accelerated the formation of new bone in both osteoporosis and bone defect models, as confirmed by X-ray, Micro-CT evaluation, and histomorphometric analysis of rats implanted with NT-Ag.Sr samples. The antibacterial activity and outstanding osteogenic properties of NT-Ag.Sr samples highlight their excellent potential for use in clinical applications. STATEMENT OF SIGNIFICANCE Two frequent problems associated with Ti surfaces, widely used in orthopedic and dental arenas, are their lack of native tissue integration and risk of infection. We describe a novel approach for the fabrication of strontium (Sr) and silver (Ag) loaded nanotubular structures on titanium surfaces. A relevant aspect of this work is the demonstration of long-lasting and controllable Ag release, leading to excellent antibacterial and anti-adherent properties against methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative bacteria such as Escherichia coli. The extended release of Sr accelerates the filling of bone defects by improving the repair of damaged cortical bone and increasing trabecular bone microarchitecture. Our results highlight the potential of Sr and Ag loaded nanotubular structures for use in clinical applications.
Collapse
|
50
|
Han TX, Chang B, Ding X, Yue GN, Song W, Tang HP, Jia L, Zhao LZ, Zhang YM. Improved bone formation and ingrowth for additively manufactured porous Ti6Al4V bone implants with strontium laden nanotube array coating. RSC Adv 2016. [DOI: 10.1039/c5ra20370h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The porous Ti6Al4V scaffolds with strontium laded nanotube arrays exhibited enhanced bone formation and ingrowth abilities.
Collapse
Affiliation(s)
- Tian-Xiao Han
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Bei Chang
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Xin Ding
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Guang-Na Yue
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Wen Song
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Hui-Ping Tang
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- Xi’an 710016
- China
| | - Liang Jia
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- Xi’an 710016
- China
| | - Ling-Zhou Zhao
- State Key Laboratory of Military Stomatology
- Department of Periodontology
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| | - Yu-Mei Zhang
- State Key Laboratory of Military Stomatology
- Department of Prosthetic Dentistry
- School of Stomatology
- The Fourth Military Medical University
- Xi’an 710032
| |
Collapse
|