1
|
Xu H, Tian F, Liu Y, Liu R, Li H, Gao X, Ju C, Lu B, Wu W, Wang Z, Zhu L, Hao D, Jia S. Magnesium malate-modified calcium phosphate bone cement promotes the repair of vertebral bone defects in minipigs via regulating CGRP. J Nanobiotechnology 2024; 22:368. [PMID: 38918787 PMCID: PMC11197294 DOI: 10.1186/s12951-024-02595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.
Collapse
Affiliation(s)
- Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Fang Tian
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
2
|
Tian Q, Tian C, Lu Y, Yan B, Zhang K, Wu C. Poly (lactic-co-glycolic acid)-encapsulated Endostar-loaded calcium phosphate cement as anti-tumor bone cement for the treatment of bone metastasis in lung cancer. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38400521 DOI: 10.1002/tox.24166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Lung cancer is one of the most common malignant tumors in the world. In approximately 30%-40% of lung cancer patients, bone metastases ensues with osteolytic destruction. Worse still, intractable pain, pathological fracture, and nerve compression caused by bone metastases are currently the bottleneck of research, diagnosis, and treatment of lung cancer. Therefore, the present study aims at investigating the effectiveness of a new composite material made of calcium phosphate cement (CPC) and Endostar on repairing bone defects in vitro and in vivo. As indicated in results, the mechanical properties of CPC+Endostar and CPC+PLGA+Endostar do not differ from those of pure CPC. The PLGA-embedded Endostar slow-release microspheres were designed and prepared, and were combined with CPC. Poly (lactic-co-glycolic acid (PLGA) is a biodegradable polymer material in vivo, so the effect on its mechanical properties is negligible. CPC+Endostar and CPC+PLGA+Endostar have been proved to inhibit cell proliferation, promote apoptosis and block cell cycle in G2 phase; the expression levels of osteoclast-related genes CXCL2, TGF-β1, IGF-1, IL-6, and RANKL were significantly decreased while osteogenic ability and alkaline phosphatase activity observably enhanced. In vivo studies have revealed that the expression levels of TRAP, RANKL, and Caspase3 in CPC+PLGA+ENDO-treated tumor tissues after 3 weeks were higher than those in other groups with the prolongation of animal treatment time, while the expression levels of OPN and BCL2 were lower than those in other groups. In hematoxylin and eosin and TUNEL staining, 3 weeks of CPC+PLGA+ENDO-treatment yielded higher tissue necrosis and apoptosis than other groups; computed tomography and magnetic resonance imaging results showed the posterior edge bone damage reduced as a result of the CPC+PLGA+ENDO grafting in vertebral pedicle. Overall, the feasibility and reliability of CPC-loaded Endostar in the treatment of bone metastasis in lung cancer were investigated in this study, so as to promote the basic research and treatment of bone metastasis in lung cancer and other malignant tumors.
Collapse
Affiliation(s)
- QingHua Tian
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Tian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YingYing Lu
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - BiCong Yan
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaixian Zhang
- Department of Oncology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, China
| | - ChunGen Wu
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wan Y, Ma H, Ma Z, Tan L, Miao L. Enhanced Degradability of the Apatite-Based Calcium Phosphate Cement Incorporated with Amorphous MgZnCa Alloy. ACS Biomater Sci Eng 2023; 9:6084-6093. [PMID: 37909852 DOI: 10.1021/acsbiomaterials.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Degradability is vital for bone filling and plays an important role in bone regeneration. Evidence indicates that apatite-based calcium phosphate cement (ACPC) is a prospective biomaterial for bone repair with enhanced osteogenesis. However, poor degradability restricts their clinical application. In this study, MgZnCa-doped ACPC (MgZnCa/ACPC) composites were fabricated by adding 3 (wt) % amorphous MgZnCa powder in the solid phase of ACPC to enhance the biodegradation and bioactivity of the apatite ACPC. The chemical and the physical properties of the MgZnCa/ACPC composite were investigated and compared with the ACPC composite. The results showed that the incorporation of MgZnCa improved both the degradability and the compressive strength of the ACPC composite. X-ray diffraction and Fourier transform infrared spectrometry analysis suggested significant changes in the microstructures of the composites due to the incorporation and the anodic dissolution of MgZnCa alloy. These findings indicate that the MgZnCa/ACPC composite is capable of facilitating bone repair and regeneration by endowing favorable degradation property.
Collapse
Affiliation(s)
- Ye Wan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
| | - Haoxiang Ma
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Ma
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Miao
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Liaoning 110002, China
| |
Collapse
|
4
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
5
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
6
|
Mikhailov OV. Gelatin Matrix as Functional Biomaterial for Immobilization of Nanoparticles of Metal-Containing Compounds. J Funct Biomater 2023; 14:92. [PMID: 36826891 PMCID: PMC9958939 DOI: 10.3390/jfb14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of specific functional biomaterials-biopolymer-immobilized matrix systems based on gelatin as an array and chemical compounds, which include atoms of various metal elements-are systematized and discussed. The features of this biopolymer which determine the specific properties of the immobilized matrix systems formed by it and their reactivity, are noted. Data on gelatin-immobilized systems in which immobilized substances are elemental metals and coordination compounds formed as a result of redox processes, nucleophilic/electrophilic substitution reactions, and self-assembly (template synthesis), are presented. The possibilities of the practical use of metal-containing gelatin-immobilized systems are promising for the future; in particular, their potential in medicine and pharmacology as a vehicle for "targeted" drug delivery to various internal organs/tissues of the body, and, also, as potential biosensors is noted.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
7
|
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater 2023; 19:217-236. [PMID: 35510175 PMCID: PMC9048153 DOI: 10.1016/j.bioactmat.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo. Properties of injectable calcium phosphate bone cements and bioactive glasses are discussed. Benefits that BG addition to CPC could bring are highlighted. Desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The presence of BG in CPC advances in vitro and in vivo response of the composites. Future research direction of BG containing injectable CPC composites are provided.
Collapse
|
8
|
In Vitro and In Vivo Evaluation of Injectable Strontium-Modified Calcium Phosphate Cement for Bone Defect Repair in Rats. Int J Mol Sci 2022; 24:ijms24010568. [PMID: 36614010 PMCID: PMC9820753 DOI: 10.3390/ijms24010568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium phosphate cement (CPC) has been widely studied, but its lack of osteoinductivity and inadequate mechanical properties limit its application, while strontium is able to promote bone formation and inhibit bone resorption. In this study, different proportions of tristrontium silicate were introduced to create a novel strontium-modified calcium phosphate cement (SMPC). The physicochemical properties of SMPC and CPC were compared, and the microstructures of the bone cements were characterized with scanning electron microscopy assays. Then, the effect of SMPC on cell proliferation and differentiation was examined. Furthermore, local inflammatory response and osteogenesis after SMPC implantation were also confirmed in the study. Finally, a rat model of isolated vertebral defects was used to test the biomechanical properties of the cements. The results showed that SMPC has better injectability and a shorter setting time than CPC. Meanwhile, the addition of tristrontium silicate promoted the mechanical strength of calcium phosphate cement, and the compressive strength of 5% SMPC increased to 6.00 ± 0.74 MPa. However, this promotion effect gradually diminished with an increase in tristrontium silicate, which was also found in the rat model of isolated vertebral defects. Furthermore, SMPC showed a more preferential role in promoting cell proliferation and differentiation compared to CPC. Neither SMPC nor CPC showed significant inflammatory responses in vivo. Histological staining suggested that SMPCs were significantly better than CPC in promoting new bone regeneration. Importantly, this osteogenesis effect of SMPC was positively correlated with the ratio of tristrontium silicate. In conclusion, 5% SMPC is a promising substitute material for bone repair with excellent physicochemical properties and biological activity.
Collapse
|
9
|
Sartoretto SC, Gens NDF, de Brito Resende RF, Alves ATNN, Cecato RC, Uzeda MJ, Granjeiro JM, Calasans-Maia MD, Calasans-Maia JA. In Vivo Evaluation of Permeable and Impermeable Membranes for Guided Bone Regeneration. MEMBRANES 2022; 12:membranes12070711. [PMID: 35877914 PMCID: PMC9324035 DOI: 10.3390/membranes12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
Background: The degree of biodegradation and the inflammatory response of membranes employed for guided bone regeneration directly impact the outcome of this technique. This study aimed to evaluate four different experimental versions of Poly (L-lactate-co-Trimethylene Carbonate) (PTMC) + Poly (L-lactate-co-glycolate) (PLGA) membranes, implanted in mouse subcutaneous tissue, compared to a commercially available membrane and a Sham group. Methods: Sixty Balb-C mice were randomly divided into six experimental groups and subdivided into 1, 3, 6 and 12 weeks (n = 5 groups/period). The membranes (1 cm2) were implanted in the subcutaneous back tissue of the animals. The samples were obtained for descriptive and semiquantitative histological evaluation (ISO 10993-6). Results: G1 and G4 allowed tissue adhesion and the permeation of inflammatory cells over time and showed greater phagocytic activity and permeability. G2 and G3 detached from the tissue in one and three weeks; however, in the more extended periods, they presented a rectilinear and homogeneous aspect and were not absorbed. G2 had a major inflammatory reaction. G5 was almost completely absorbed after 12 weeks. Conclusions: The membranes are considered biocompatible. G5 showed a higher degree of biosorption, followed by G1 and G4. G2 and G3 are considered non-absorbable in the studied periods.
Collapse
Affiliation(s)
- Suelen Cristina Sartoretto
- Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (S.C.S.); (R.F.d.B.R.); (M.J.U.)
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
| | - Natalia de Freitas Gens
- Graduate Program, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil;
| | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (S.C.S.); (R.F.d.B.R.); (M.J.U.)
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
- Oral Surgery Department, Dentistry School, Iguaçu University, Nova Iguaçu 26275-580, Rio de Janeiro, Brazil
| | - Adriana Terezinha Neves Novellino Alves
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
- Oral Diagnosis Department, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil
| | - Rafael Cury Cecato
- Implant Dentistry Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis 88000-000, Santa Catarina, Brazil;
| | - Marcelo José Uzeda
- Oral Surgery Department, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (S.C.S.); (R.F.d.B.R.); (M.J.U.)
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
- Oral Surgery Department, Dentistry School, Iguaçu University, Nova Iguaçu 26275-580, Rio de Janeiro, Brazil
| | - Jose Mauro Granjeiro
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
- National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias 25000-000, Rio de Janeiro, Brazil
| | - Monica Diuana Calasans-Maia
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
| | - Jose Albuquerque Calasans-Maia
- Laboratory for Clinical Research in Dentistry, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil; (A.T.N.N.A.); (J.M.G.); (M.D.C.-M.)
- Orthodontic Department, Dentistry School, Fluminense Federal University, Niteroi 24020-140, Rio de Janeiro, Brazil
- Correspondence: ; Tel.: +55-21-981535874
| |
Collapse
|
10
|
Jacquart S, Girod-Fullana S, Brouillet F, Pigasse C, Siadous R, Fatnassi M, Grimoud J, Rey C, Roques C, Combes C. Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk. Acta Biomater 2022; 145:342-357. [PMID: 35429671 DOI: 10.1016/j.actbio.2022.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.
Collapse
Affiliation(s)
- Sylvaine Jacquart
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Sophie Girod-Fullana
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christel Pigasse
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Robin Siadous
- Université de Bordeaux, Inserm U1026 Bioingénierie Tissulaire (BioTis), Bordeaux, France
| | - Mohamed Fatnassi
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Julien Grimoud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France.
| |
Collapse
|
11
|
Belaid H, Barou C, Collart-Dutilleul PY, Desoutter A, Kajdan M, Bernex F, Tétreau R, Cuisinier F, Barés J, Huon V, Teyssier C, Cornu D, Cavaillès V, Bechelany M. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement. ACS APPLIED BIO MATERIALS 2022; 5:3075-3085. [PMID: 35584545 DOI: 10.1021/acsabm.2c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 μm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.
Collapse
Affiliation(s)
- Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Carole Barou
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,Biologics 4 Life, 84120 Pertuis, France
| | | | - Alban Desoutter
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS UAR3426, INSERM, F-34298 Montpellier, France
| | - Raphaël Tétreau
- Service d'Imagerie, Institut Régional du Cancer Montpellier, Montpellier F-34298, France
| | - Frédéric Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Vincent Huon
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
12
|
Ando A, Kamikura M, Takeoka Y, Rikukawa M, Nakano K, Nagaya M, Nagashima H, Aizawa M. Bioresorbable porous β-tricalcium phosphate chelate-setting cements with poly(lactic-co-glycolic acid) particles as pore-forming agent: fabrication, material properties, cytotoxicity, and in vivo evaluation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:511-521. [PMID: 34220339 PMCID: PMC8231386 DOI: 10.1080/14686996.2021.1936628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Calcium-phosphate cements (CPCs) have been used as bone filling materials in orthopaedic surgery. However, CPCs are set using an acid-base reaction, and then change into stable hydroxyapatite (HAp) in a living body. Therefore, we developed bioresorbable chelate-setting β-tricalcium phosphate (β-TCP) cements based on surface modifications of inositol phosphate (IP6). In order to improve the bioresorbability, we fabricated IP6/β-TCP cements hybridized with poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent. The compressive strengths of the cements with the amounts of 5 and 10 mass% PLGA particles were 23.2 and 22.8 MPa, respectively. There was no significant difference from cements without PLGA (23.4 MPa). The setting times of the cement specimens with PLGA particles (30 min) were a little longer than those without PLGA particles (26.3 min). The lack of cytotoxicity of the cement specimens was confirmed using osteoblast-like cells (MC3T3-E1). Cylindrical defects were made by drilling into the tibia of mini-pigs and injecting the prepared cement pastes into the defects. Twelve weeks after implantation the specimens were stained with toluidine blue and histologically evaluated. Histological evaluation of cement specimens with PLGA particles showed enhanced bioresorbability. Newly-formed bone was also observed inside cement specimens with PLGA particles. The IP6/β-TCP cement specimens with PLGA particles had excellent material properties, such as injectability, compressive strength, high porosity, no cytotoxicity in vitro, bioresorption and bone formation abilities in vivo. Organic-inorganic hybridized CPCs are expected to be valuable as novel biodegradable paste-like artificial bone fillers.
Collapse
Affiliation(s)
- Akihiro Ando
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Maho Kamikura
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yuko Takeoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kanagawa, Japan
| |
Collapse
|
13
|
Lodoso-Torrecilla I, van den Beucken J, Jansen J. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater 2021; 119:1-12. [PMID: 33065287 DOI: 10.1016/j.actbio.2020.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.
Collapse
|
14
|
Qayoom I, Teotia AK, Meena M, Singh P, Mishra A, Singh S, Kumar A. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts. Biomed Mater 2020; 15:055015. [DOI: 10.1088/1748-605x/ab8835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Dewhurst RM, Scalzone A, Buckley J, Mattu C, Rankin KS, Gentile P, Ferreira AM. Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Front Bioeng Biotechnol 2020; 8:754. [PMID: 32733869 PMCID: PMC7363953 DOI: 10.3389/fbioe.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.
Collapse
Affiliation(s)
- Rebecca Marie Dewhurst
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Buckley
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara Mattu
- Department of Mechanical and Aerospace, Politecnico di Torino, Turin, Italy
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Grosfeld EC, Smith BT, Santoro M, Lodoso-Torrecilla I, Jansen JA, Ulrich DJ, Melchiorri AJ, Scott DW, Mikos AG, van den Beucken JJJP. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration. ACTA ACUST UNITED AC 2020; 15:025002. [PMID: 31810074 DOI: 10.1088/1748-605x/ab5f9c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here, we demonstrate the in vivo efficacy of glucose microparticles (GMPs) to serve as porogens within calcium phosphate cements (CPCs) to obtain a fast-degrading bone substitute material. Composites were fabricated incorporating 20 wt% GMPs at two different GMP size ranges (100-150 μm (GMP-S) and 150-300 μm (GMP-L)), while CPC containing 20 wt% poly(lactic-co-glycolic acid) microparticles (PLGA) and plain CPC served as controls. After 2 and 8 weeks implantation in a rat femoral condyle defect model, specimens were retrieved and analyzed for material degradation and bone formation. Histologically, no adverse tissue response to any of the CPC-formulations was observed. All CPC-porogen formulations showed faster degradation compared to plain CPC control, but only GMP-containing formulations showed higher amounts of new bone formation compared to plain CPC controls. After 8 weeks, only CPC-porogen formulations with GMP-S or PLGA porogens showed higher degradation compared to plain CPC controls. Overall, the inclusion of GMPs into CPCs resulted in a macroporous structure that initially accelerated the generation of new bone. These findings highlight the efficacy of a novel approach that leverages simple porogen properties to generate porous CPCs with distinct degradation and bone regeneration profiles.
Collapse
Affiliation(s)
- Eline-Claire Grosfeld
- Radboudumc, Dentistry-Biomaterials, Philips van Leijdenlaan 25, 6525EX Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qi J, Zhang T, Xiao J, Zhang Q, Xiong C. The effect of ethenyltrimethoxysilane modification of nano bioactive glass on the physiochemical and mechanical properties and in vitro bioactivity of poly(lactide- co-glycolide)/poly(trimethylene carbonate) composite. NEW J CHEM 2020. [DOI: 10.1039/d0nj03859h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new biodegradable PLGA/PTMC/YDH-NBG composite with excellent mechanical properties and good in vitro bioactivity.
Collapse
Affiliation(s)
- Jin Qi
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- University of the Chinese Academy of Sciences
| | - Tianyao Zhang
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Jianping Xiao
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Qianmao Zhang
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Chengdong Xiong
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| |
Collapse
|
18
|
Liu J, Liao J, Li Y, Yang Z, Ying Q, Xie Y, Zhou A. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair. J Biomater Appl 2019; 34:239-249. [PMID: 31042122 DOI: 10.1177/0885328219845597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jingxian Liu
- 1 School Hospital, Henan Polytechnic University, Jiaozuo, China
| | - Jianguo Liao
- 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yanqun Li
- 3 Henan TUORen Medical Group Co. LTD, Xinxiang, China
| | - Zhengpeng Yang
- 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Qiwei Ying
- 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yufen Xie
- 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Aiguo Zhou
- 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
19
|
Qian G, Fan P, He F, Ye J. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite. Adv Healthc Mater 2019; 8:e1801325. [PMID: 30901163 DOI: 10.1002/adhm.201801325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/26/2019] [Indexed: 11/08/2022]
Abstract
Inefficient bone regeneration of self-hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis-stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic-co-glycolic acid) (PLGA) network to fabricate plastic CPC-based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon its degradation. The addition of WS is helpful to improve the attachment, proliferation, and osteogenic differentiation of mouse bone marrow stromal cells in vitro. The in vivo experimental results indicate that PLGA/WS/CPC promotes rapid angiogenesis and bone formation. Therefore, the plastic CPC-based composite cement with a 3D PLGA network and wollastonite shows an obviously improved efficiency for repairing bone defects and is expected to facilitate the wider application of CPC in the clinic.
Collapse
Affiliation(s)
- Guowen Qian
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Peirong Fan
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Fupo He
- School of Electromechanical EngineeringGuangdong University of Technology Guangzhou 510006 China
| | - Jiandong Ye
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| |
Collapse
|
20
|
Lodoso-Torrecilla I, Grosfeld EC, Marra A, Smith BT, Mikos AG, Ulrich DJ, Jansen JA, van den Beucken JJ. Multimodal porogen platforms for calcium phosphate cement degradation. J Biomed Mater Res A 2019; 107:1713-1722. [PMID: 30920119 PMCID: PMC6618311 DOI: 10.1002/jbm.a.36686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 11/10/2022]
Abstract
Calcium phosphate cements (CPCs) represent excellent bone substitute materials due to their biocompatibility and injectability. However, their poor degradability and lack of macroporosity limits bone regeneration. The addition of poly(d,l-lactic-co-glycolic acid) (PLGA) particles improves macroporosity and therefore late stage material degradation. CPC degradation and hence, bone formation at an early stage remains challenging, due to the delayed onset of PLGA degradation (i.e., after 2-3 weeks). Consequently, we here explored multimodal porogen platforms based on sucrose porogens (for early pore formation) and PLGA porogens (for late pore formation) to enhance CPC degradation and analyzed mechanical properties, dynamic in vitro degradation and in vivo performance in a rat femoral bone defect model. Porogen addition to CPC showed to decrease compressive strength of all CPC formulations; transition of the crystal phase upon in vitro incubation increased compressive strength. Although dynamic in vitro degradation showed rapid sucrose dissolution within 1 week, no additional effects on CPC degradation or bone formation were observed upon in vivo implantation. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1713-1722, 2019.
Collapse
Affiliation(s)
- Irene Lodoso-Torrecilla
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Eline-Claire Grosfeld
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Abe Marra
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas 77030
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas 77030.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005
| | - Dietmar Jo Ulrich
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - John A Jansen
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jeroen Jjp van den Beucken
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
Kucko NW, Li W, García Martinez MA, Rehman IU, Ulset AST, Christensen BE, Leeuwenburgh SCG, Herber RP. Sterilization effects on the handling and degradation properties of calcium phosphate cements containing poly (D,L
-lactic-co-glycolic acid) porogens and carboxymethyl cellulose. J Biomed Mater Res B Appl Biomater 2019; 107:2216-2228. [DOI: 10.1002/jbm.b.34306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Nathan W. Kucko
- Department of Regenerative Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25, 6525 EX, Nijmegen The Netherlands
- CAM Bioceramics B.V.; Zernikedreef 6, 2333 CL, Leiden The Netherlands
| | - Wenliang Li
- Department of Regenerative Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25, 6525 EX, Nijmegen The Netherlands
| | - Marcela A. García Martinez
- Department of Materials Science and Engineering; The Kroto Research Institute, The University of Sheffield; North Campus, Broad Lane, S3 7HQ, Sheffield UK
| | - Ihtesham ur Rehman
- Department of Materials Science and Engineering; The Kroto Research Institute, The University of Sheffield; North Campus, Broad Lane, S3 7HQ, Sheffield UK
| | - Ann-Sissel Teialeret Ulset
- NOBIPOL, Department of Biotechnology and Food Science; Norwegian University of Science and Technology; Sem Saeland veg 6/8, NO-7491, Trondheim Norway
| | - Bjørn E. Christensen
- NOBIPOL, Department of Biotechnology and Food Science; Norwegian University of Science and Technology; Sem Saeland veg 6/8, NO-7491, Trondheim Norway
| | - Sander C. G. Leeuwenburgh
- Department of Regenerative Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25, 6525 EX, Nijmegen The Netherlands
| | - Ralf-Peter Herber
- CAM Bioceramics B.V.; Zernikedreef 6, 2333 CL, Leiden The Netherlands
| |
Collapse
|
22
|
Jackson N, Assad M, Vollmer D, Stanley J, Chagnon M. Histopathological Evaluation of Orthopedic Medical Devices: The State-of-the-art in Animal Models, Imaging, and Histomorphometry Techniques. Toxicol Pathol 2019; 47:280-296. [DOI: 10.1177/0192623318821083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Orthopedic medical devices are continuously evolving for the latest clinical indications in craniomaxillofacial, spine, trauma, joint arthroplasty, sports medicine, and soft tissue regeneration fields, with a variety of materials from new metallic alloys and ceramics to composite polymers, bioresorbables, or surface-treated implants. There is great need for qualified medical device pathologists to evaluate these next generation biomaterials, with improved biocompatibility and bioactivity for orthopedic applications, and a broad range of knowledge is required to stay abreast of this ever-changing field. Orthopedic implants require specialized imaging and processing techniques to fully evaluate the bone-implant interface, and the pathologist plays an important role in determining the proper combination of histologic processing and staining for quality slide production based on research and development trials and validation. Additionally, histomorphometry is an essential part of the analysis to quantify tissue integration and residual biomaterials. In this article, an overview of orthopedic implants and animal models, as well as pertinent insights for tissue collection, imaging, processing, and slide generation will be provided with a special focus on histopathology and histomorphometry evaluation.
Collapse
Affiliation(s)
| | - Michel Assad
- AccelLAB Inc., A Citoxlab Company, Boisbriand, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Nouri-Felekori M, Khakbiz M, Nezafati N, Mohammadi J, Eslaminejad MB. Comparative analysis and properties evaluation of gelatin microspheres crosslinked with glutaraldehyde and 3-glycidoxypropyltrimethoxysilane as drug delivery systems for the antibiotic vancomycin. Int J Pharm 2018; 557:208-220. [PMID: 30597262 DOI: 10.1016/j.ijpharm.2018.12.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
In the present comparative study, gelatin microspheres (GMs) were prepared by emulsification-solvent-extraction method using well-known crosslinker: glutaraldehyde (GA) and biocompatible silane-coupling agent: glycidoxypropyltrimethoxysilane (GPTMS). Crosslinking with GA was done by a definite and common procedure, while GPTMS crosslinking potency was investigated after 5, 10, 24, and 48 h synthesis periods and the fabrication method was adjusted in order for preparation of GMs with optimized morphological and compositional characteristics. The prepared GMs were then evaluated and compared as drug delivery systems for the antibiotic vancomycin (Vm). Morphological observations, FTIR, ninhydrin assay, swelling behavior evaluation and Hydrolytic degradation analysis proved successful modification of GMs and revealed that increasing synthesis time from 5 h to 24 h and 48 h, when using GPTMS as crosslinker, led to formation of morphologically-optimized GMs with highest crosslinking degree (∼50%) and the slowest hydrolytic degradation rate. Such GMs also exhibited most sustained release period of Vm. The antibacterial test results against gram-positive bacterium Staphylococcus aureus, were in accordance with the release profiles of Vm, as well. Together, GPTMS-crosslinked GMs with their preferable characteristics and known as biocompatible gelatin-siloxane hybrids, could act as proper drug delivery systems for the sustained release of the antibiotic vancomycin.
Collapse
Affiliation(s)
- Mohammad Nouri-Felekori
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran.
| | - Nader Nezafati
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
24
|
Du J, Zuo Y, Lin L, Huang D, Niu L, Wei Y, Wang K, Lin Q, Zou Q, Li Y. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds. J Mech Behav Biomed Mater 2018; 88:150-159. [PMID: 30172080 DOI: 10.1016/j.jmbbm.2018.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
A newly designed hydroxyapatite-polyurethane (HA-PU) composite scaffold was prepared by polymerizing glyceride of castor oil (GCO) with isophorone diisocyanate (IPDI) and HA as fillers. The aim of this study was to determine the effect of HA fillers on the mechanical properties and osteogenesis capacity of the composite scaffolds. The physical and biological properties of the scaffold were evaluated by SEM observation, mechanical testing, cell culture and animal experiments. The results showed that HA fillers enhanced the mechanical properties of PU composite scaffolds such as compressive strength and elastic modulus. The mechanical properties of the scaffolds were seen to increase with increase in HA loading. The compressive strength of composite scaffold with 0 wt%, 20 wt%, 40 wt% of HA was 0.6 ± 0.1 MPa, 2.1 ± 0.1 MPa, and 4.6 ± 0.3 MPa, respectively. In vitro biodegradation studies of scaffolds were carried out. The results showed that all of the scaffolds were susceptible to cholesterol esterase (CE) -catalyzed degradation. HA-PU composite scaffolds exhibited a high affinity to osteoblastic cells and were good template for cell growth and proliferation. When implanted in bone defects of rats, PU scaffolds incorporated HA were biocompatible with the tissue host and had no immune rejection. Moreover, the higher the loading of HA in the composite scaffold, the better chances of osteogenesis. It confirmed that the prepared HA-PU composite scaffolds can be promising candidate for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Jingjing Du
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Lili Lin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Lulu Niu
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Kaiqun Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qiaoxia Lin
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
25
|
Duan X, Liao HX, Zou HZ, Zhang ZJ, Ye JD, Liao WM. An injectable, biodegradable calcium phosphate cement containing poly lactic-co-glycolic acid as a bone substitute in ex vivo human vertebral compression fracture and rabbit bone defect models. Connect Tissue Res 2018; 59:55-65. [PMID: 28267379 DOI: 10.1080/03008207.2017.1301932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim of the study: To evaluate the biomechanical characteristics and biocompatibility of an injectable, biodegradable calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA). MATERIALS AND METHODS A vertebral compression fracture model was established using 20 human cadaveric vertebrae (T11-L3) divided into CPC/PLGA composite versus PMMA groups for biomechanical testing. In addition, 35 New Zealand rabbits were used to evaluate biodegradability and osteoconductive properties of CPC/PLGA using a bone defect model. In vitro cytotoxicity was evaluated by culturing with L929 cells. RESULTS The CPC/PLGA composite effectively restored vertebral biomechanical properties. Compared with controls, the maximum load and compression strength of the CPC/PLGA group were lower, and stiffness was lower after kyphoplasty (all p <.05). Degradation was much slower in the control CPC compared with CPC/PLGA group. The bone tissue percentage in the CPC/PLGA group (44.9 ± 23.7%) was significantly higher compared with control CPC group (25.7 ± 10.9%) (p <.05). The viability of cells cultured on CPC/PLGA was greater than 70% compared with the blanks. CONCLUSIONS Our biodegradable CPC/PLGA composite showed good biomechanical properties, cytocompatibility, and osteoconductivity and may represent an ideal bone substitute for future applications.
Collapse
Affiliation(s)
- Xin Duan
- a Department of Orthopedics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China.,b Guangzhou First Municipal People's Hospital , Guangzhou , China
| | - Hong-Xing Liao
- c Division of Joint Surgery, Orthopedics Department , The Meizhou People's Hospital , Meizhou , China
| | - Hua-Zhang Zou
- d Gangwang Hospital , Guangzhou Medical College , Guangzhou , China
| | - Zi-Ji Zhang
- a Department of Orthopedics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-Dong Ye
- e Department of Materials Science and Engineering, South China University of Technology , Guangzhou , China
| | - Wei-Ming Liao
- a Department of Orthopedics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
26
|
Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5:17056. [PMID: 29354304 PMCID: PMC5764120 DOI: 10.1038/boneres.2017.56] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hockin HK Xu
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Center for Stem Cell Biology and Regenerative
Medicine, University of Maryland School of Medicine, Baltimore,
MD
21201, USA
- University of Maryland Marlene and Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine,
Baltimore, MD
21201, USA
- Mechanical Engineering Department, University
of Maryland Baltimore County, Baltimore, MD
21250, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Lin Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- VIP Integrated Department, Stomatological
Hospital of Jilin University, Changchun, Jilin
130011, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental
Association Foundation, National Institute of Standards & Technology,
Gaithersburg, MD
20899, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Department of Orthopaedic Surgery, Nanfang
Hospital, Southern Medical University, Guangzhou,
Guangdong
510515, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| |
Collapse
|
27
|
|
28
|
Ma Z, Wu Y, Wang J, Liu C. In vitro and in vivo degradation behavior of poly(trimethylene carbonate-co-d,l-lactic acid) copolymer. Regen Biomater 2017; 4:207-213. [PMID: 28798866 PMCID: PMC5544909 DOI: 10.1093/rb/rbx003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/06/2017] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
We present P(TMC-co-DLLA) copolymer with the molar ratio of TMC: DLLA = 15: 85 was used to systematic study of in vivo and in vitro degradation behaviors. Dense homogeneous copolymer specimens were prepared by compression molding method. The in vitro and in vivo degradation were, respectively, performed at simulative body condition and implanted into rat’s subcutaneous condition. Investigations were followed via physicochemical and histological analysis such as SEM, GPC, DSC, FTIR and H&E stain. The results demonstrate that copolymeric material can degrade in phosphate buffer solution (PBS) and in rat’s body, and the in vivo degradation rate is faster. Obvious decline of molecule weight and mass loss has been observed, which led to the attenuation of mechanical strength. Furthermore, apart from the hydrolysis, macrophagocytes took part in the phagocytosis in vivo, indicating that degradation rate could be regulated by the combinational mechanism. It is concluded that P(TMC-co-DLLA) copolymer is a promising candidate for tissue repair.
Collapse
Affiliation(s)
- Zhengyu Ma
- Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineeering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yi Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineeering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineeering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineeering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,The State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
29
|
Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, Xu HHK. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med 2017; 12:191-203. [PMID: 28098961 DOI: 10.1002/term.2395] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/03/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023]
Abstract
Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p < 0.05). Osteogenic and angiogenic gene expressions were highly elevated and mineralization by co-cultured cells increased with time (p < 0.05). New bone amount and blood vessel density of co-cultured groups were much greater than controls (p < 0.05) in an animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Qianmin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, University of Maryland at Baltimore County, Baltimore County, MD, USA
| |
Collapse
|
30
|
Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. Spine J 2017; 17:709-719. [PMID: 27871820 DOI: 10.1016/j.spinee.2016.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model. PURPOSE The study aimed to test the in vivo biocompatibility and osteogenic potential of a PLGA fiber-reinforced, brushite-forming CPC in a sheep large animal model. STUDY DESIGN/SETTING This is a prospective experimental animal study. METHODS Bone defects (diameter: 5 mm) were placed in aged, osteopenic female sheep, and left empty (L2) or injected with pure CPC (L3) or PLGA fiber-reinforced CPC (L4; fiber diameter: 25 µm; length: 1 mm; 10% [wt/wt]). Three and 9 months postoperation (n=20 each), the structural and functional CPC effects on bone regeneration were documented ex vivo by osteodensitometry, histomorphometry, micro-computed tomography (micro-CT), and biomechanical testing. RESULTS Addition of PLGA fibers enhanced CPC osteoconductivity and augmented bone formation. This was demonstrated by (1) significantly enhanced structural (bone volume/total volume, shown by micro-CT and histomorphometry; 3 or 9 months) and bone formation parameters (osteoid volume and osteoid surface; 9 months); (2) numerically enhanced bone mineral density (3 and 9 months) and biomechanical compression strength (9 months); and (3) numerically decreased bone erosion (eroded surface; 3 and 9 months). CONCLUSIONS The PLGA fiber-reinforced CPC is highly biocompatible and its PLGA fiber component enhanced bone formation. Also, PLGA fibers improve the mechanical properties of brittle CPC, with potential applicability in load-bearing areas.
Collapse
|
31
|
Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang YS, Annabi N, Khademhosseini A. Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11428-11439. [PMID: 28140564 PMCID: PMC5844698 DOI: 10.1021/acsami.6b16779] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Prevention of postsurgery infection and promotion of biointegration are the key factors to achieve long-term success in orthopedic implants. Localized delivery of antibiotics and bioactive molecules by the implant surface serves as a promising approach toward these goals. However, previously reported methods for surface functionalization of the titanium alloy implants to load bioactive ingredients suffer from time-consuming complex processes and lack of long-term stability. Here, we present the design and characterization of an adhesive, osteoconductive, and antimicrobial hydrogel coating for Ti implants. To form this multifunctional hydrogel, a photo-cross-linkable gelatin-based hydrogel was modified with catechol motifs to enhance adhesion to Ti surfaces and thus promote coating stability. To induce antimicrobial and osteoconductive properties, a short cationic antimicrobial peptide (AMP) and synthetic silicate nanoparticles (SNs) were introduced into the hydrogel formulation. The controlled release of AMP loaded in the hydrogel demonstrated excellent antimicrobial activity to prevent biofilm formation. Moreover, the addition of SNs to the hydrogel formulation enhanced osteogenesis when cultured with human mesenchymal stem cells, suggesting the potential to promote new bone formation in the surrounding tissues. Considering the unique features of our implant hydrogel coating, including high adhesion, antimicrobial capability, and the ability to induce osteogenesis, it is believed that our design provides a useful alternative method for bone implant surface modification and functionalization.
Collapse
Affiliation(s)
- Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Othopeadic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanhui Liu
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Akbar Khalilpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, the Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
32
|
Yamamoto S, Matsushima Y, Kanayama Y, Seki A, Honda H, Unuma H, Sakai Y. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:48. [PMID: 28176192 DOI: 10.1007/s10856-017-5861-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Calcium phosphate cements (CPCs), consisting of a mixture of calcium phosphate powders and setting liquid, have been widely used in orthopedic applications. One of the drawbacks of CPCs is their poor resorbability in the living body, which hinders substitution with natural bones. One of the strategies to facilitate the resorption of CPCs is the incorporation of bioresorbable or water-soluble pore-generating particles (porogens), such as gelatin, in the CPC matrices. In spite of numerous reports, however, little is known about the effect of the dissolution/resorption rate of the porogens on concomitant bone regeneration. In the present study, we prepared preset CPCs dispersed with 10 mass% of low-endotoxin gelatin particles 200-500 μm in diameter having different heat-treatment histories, therefore exhibiting different dissolution rate, and then the obtained CPC/gelatin composites were evaluated for in vivo resorption and concomitant in vivo bone formation behaviors. As the results, the dispersion of gelatin particles markedly promoted in vivo resorption of CPC, and enhanced concomitant bone formation, connective tissue formation, osteoblast proliferation, and vascularization. The dissolution/resorption rate was able to be controlled by changing the up-front heat-treatment temperature. In particular, when CPC/gelatin composites were implanted in distal metaphysis of rabbits, the optimum dissolution/resorption was attained by heat-treating gelatin particles at 383 K for 24 h before dispersing in CPC. Quick resorption of calcium phosphate cement and concomitant bone formation by dispersing properly heat-treated with gelatin particles.
Collapse
Affiliation(s)
- Shoko Yamamoto
- Central Research Laboratory, Jellice Co., Ltd., 4-4-1 Sakae, Tagajo, 985-0833, Japan
| | - Yuta Matsushima
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Yoshitaka Kanayama
- Central Research Laboratory, Jellice Co., Ltd., 4-4-1 Sakae, Tagajo, 985-0833, Japan
| | - Azusa Seki
- Tsukuba Research Center, Hamri Co., Ltd., 2638-2 Ozaki, Koga, 306-0101, Japan
| | - Haruya Honda
- Tsukuba Research Center, Hamri Co., Ltd., 2638-2 Ozaki, Koga, 306-0101, Japan
| | - Hidero Unuma
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan.
| | - Yasuo Sakai
- Central Research Laboratory, Jellice Co., Ltd., 4-4-1 Sakae, Tagajo, 985-0833, Japan
| |
Collapse
|
33
|
Smith BT, Santoro M, Grosfeld EC, Shah SR, van den Beucken JJ, Jansen JA, Mikos. AG. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomater 2017; 50:68-77. [PMID: 27956363 DOI: 10.1016/j.actbio.2016.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Calcium phosphate cements (CPCs) have been extensively investigated as scaffolds in bone tissue engineering in light of their chemical composition closely resembling the mineral component of bone extracellular matrix. Yet, the degradation kinetics of many CPCs is slow compared to de novo bone formation. In order to overcome this shortcoming, the use of porogens within CPCs has been suggested as a potential strategy to increase scaffold porosity and promote surface degradation. This study explored the usage of glucose microparticles (GMPs) as porogens for the introduction of macroporosity within CPCs, and characterized the handling properties and physicochemical characteristics of CPCs containing GMPs. Samples were fabricated with four different weight fractions of GMPs (10, 20, 30, and 40%) and two different size ranges (100-150μm and 150-300μm), and were assayed for porosity, pore size distribution, morphology, and compressive mechanical properties. Samples were further tested for their handling properties - specifically, setting time and cohesiveness. Additionally, these same analyses were conducted on samples exposed to a physiological solution in order to estimate the dissolution kinetics of GMPs and its effect on the properties of the composite. GMPs were efficiently encapsulated and homogeneously dispersed in the resulting composite. Although setting times increased for GMP/CPC formulations compared to control CPC material, increasing the Na2HPO4 concentration in the liquid phase decreased the initial setting time to clinically acceptable values (i.e. <15min). Incorporation of GMPs led to the formation of instant macroporosity upon cement setting, and encapsulated GMPs completely dissolved in three days, resulting in a further increase in scaffold porosity. However, the dissolution of GMPs decreased scaffold compressive strength. Overall, the introduction of GMPs into CPC resulted in macroporous scaffolds with good handling properties, as well as designer porosity and pore size distribution via selection of the appropriate size/weight fraction of GMPs. The data demonstrate that GMPs are promising porogens for the production of highly tunable porous CPC scaffolds. STATEMENT OF SIGNIFICANCE Calcium phosphate cements have shown great promise for the regeneration of bone. However, macropores (>100μm) are required for promoting bone ingrowth. Several studies have investigated methods to generate macroporosity within calcium phosphate cements but many of these methods either affect the cement setting or take weeks or months to generate the maximum porosity. This work offers a new method for generating macroporosity within calcium phosphate cements by utilizing glucose microparticles. The microparticles dissolve in less then 72h, thereby generating scaffolds with maximum porosity in short period of time. The results will offer a new method for generating macroporosity within calcium phosphate cements.
Collapse
|
34
|
Grosfeld EC, Hoekstra JWM, Herber RP, Ulrich DJO, Jansen JA, van den Beucken JJJP. Long-term biological performance of injectable and degradable calcium phosphate cement. ACTA ACUST UNITED AC 2016; 12:015009. [PMID: 27934787 DOI: 10.1088/1748-605x/12/1/015009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancing degradation of poorly degrading injectable calcium phosphate (CaP) cements (CPCs) can be achieved by adding poly(lactic-co-glycolic acid) (PLGA) microparticles, generating porosity after polymer degradation. CPC-PLGA has proven to be biodegradable, although its long-term biological performance is still unknown. Optimization of injectability could be achieved via addition of carboxymethyl cellulose (CMC). Here, we evaluated the long-term in vivo performance of CPC-PLGA with or without the lubricant CMC in comparison to the devitalized bovine bone mineral (DBBM) predicate device Bio-Oss®. Rabbit femoral bone defects were injected with a CPC-formulation or filled with Bio-Oss® granules. Samples were retrieved at 6 and 26 weeks. Material degradation for Bio-Oss® was marginal, starting with 57% material remnants at implantation, 49% at 6 weeks, and 35% at 26 weeks, respectively. In contrast, CPC-PLGA and CPC-PLGA-CMC showed significant material degradation, starting with 100% material remnants at implantation, 56 and 78% at 6 weeks, and 8 and 21% at 26 weeks. Bone formation showed to be rapid for Bio-Oss®, with 24% at 6 weeks, and a similar value (27%) at 26 weeks. Both CPC-PLGA and CPC-PLGA-CMC showed a continuous temporal increase in bone formation, with 13 and 6% at 6 weeks, and 44 and 32% at 26 weeks. This study showed that CPC-PLGA induces favorable bone responses with >90% degradation and >40% new bone formation after an implantation period of 26 weeks.
Collapse
|
35
|
Zhang Z. Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin Biol Ther 2016; 17:49-62. [DOI: 10.1080/14712598.2017.1256389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016; 5:2575-2594. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Lida Zhu
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Kaitlin M. Bratlie
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
- Department of Materials Science & Engineering; Iowa State University; 2220 Hoover Hall Ames IA 50011 USA
- Division of Materials Science & Engineering; Ames National Laboratory; 126 Metals Development Ames IA 50011 USA
| |
Collapse
|
37
|
Oliveira MB, Custódio CA, Gasperini L, Reis RL, Mano JF. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater 2016; 41:119-32. [PMID: 27233132 DOI: 10.1016/j.actbio.2016.05.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Methacrylated gellan-gum (GG-MA) alone and combined with collagen type I (Coll) is suggested here for the first time as a cell-laden injectable biomaterial for bone regeneration. On-chip high-throughput studies allowed rapidly assessing the suitability of 15 biomaterials/media combinations for the osteodifferentiation of human adipose stem cells (hASCs). Hydrogels composed solely of GG-MA (GG100:0Coll) led hASCs from three different donors into the osteogenic lineage after 21days of cell culture, in the absence of any osteogenic or osteoconductive factors. Hydrogels containing more than 30% of Coll promoted increased cellular proliferation and led hASCs into osteogenic differentiation under basal conditions. Studies using isolated individual hydrogels - excluding eventual on-chip crosstalk - and standard biochemical assays corroborated such findings. The formation of focal adhesions of hASCs on GG100:0Coll hydrogels was verified. We hypothesize that the hydrogels osteogenic effect could be guided by mechanotransduction phenomena. Indeed, the hydrogels showed elastic modulus in ranges previously reported as osteoinductive and the inhibition of the actin-myosin contractility pathway impaired hASCs' osteodifferentiation. GG-MA hydrogels also did not promote hASCs' adipogenesis while used in basal conditions. Overall, GG-MA showed promising properties as an innovative and off-the shelf self-inducing osteogenic injectable biomaterial. STATEMENT OF SIGNIFICANCE Methacrylated gellan gum (GG-MA) is here suggested for the first time as a widely available polysaccharide to easily prepare hydrogels with cell adhesion properties and capability of inducing the autonomous osteogenic differentiation of human adipose-derived stem cells (hASCs). GG-MA was processed as stand-alone hydrogels or in different combinations with collage type I. All hydrogel formulations elicited the osteogenic differentiation of hASCs, independently of the addition of any osteoconductive or osteogenic stimuli, i.e. in basal/growth medium. Effective cellular adhesion to methacrylated gellan gum hydrogels in the absence of any cell-ligand peptide/protein was here proved for the first time. Moreover, we showed that the encapsulated hASCs underwent osteogenic differentiation due to a mechanotransduction phenomenon dependent on the actin-myosin contractility pathway.
Collapse
Affiliation(s)
- Mariana B Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Custódio
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
38
|
Borhan S, Hesaraki S, Behnamghader AA, Ghasemi E. Rheological evaluations and in vitro studies of injectable bioactive glass-polycaprolactone-sodium alginate composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:137. [PMID: 27432416 DOI: 10.1007/s10856-016-5745-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Composite pastes composed of various amounts of melt-derived bioactive glass 52S4 (MG5) and polycaprolactone (PCL) microspheres in sodium alginate solution were prepared. Rheological properties in both rotatory and oscillatory modes were evaluated. Injectability was measured as injection force versus piston displacement. In vitro calcium phosphate precipitation was also studied in simulated body fluid (SBF) and tracked using scanning electron microscopy, X-ray diffraction and FTIR analyses. All composite pastes were thixotropic in nature and exhibited shear thinning behavior. The magnitude of thixotropy decreased by adding 10-30 wt% PCL, while further amounts of PCL increased it again. Moreover, the composites were viscoelastic materials in which the elastic modulus was higher than viscous term. The pastes which were just made of MG5 or PCL had poor injectability, whereas the composites containing both of these constituents exhibited reasonable injectability. All pastes revealed adequate structural stability in contact with SBF solution. In vitro calcium phosphate precipitation was well observed on the paste made of MG5 and somewhat on the pastes with 10-40 wt% PCL, however the precipitated layer was amorphous in nature. Overall, the produced composites may be appropriate as injectable biomaterials for non-invasive surgeries but more biological evaluations are essential.
Collapse
Affiliation(s)
- Shokoufeh Borhan
- Nanotechnology and Advanced Materials, Materials & Energy Research Center, Karaj, Alborz, Iran
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials, Materials & Energy Research Center, Karaj, Alborz, Iran.
| | - Ali-Asghar Behnamghader
- Nanotechnology and Advanced Materials, Materials & Energy Research Center, Karaj, Alborz, Iran
| | | |
Collapse
|
39
|
Ostrowski N, Roy A, Kumta PN. Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomater Sci Eng 2016; 2:1067-1083. [PMID: 33445235 DOI: 10.1021/acsbiomaterials.6b00056] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the search for more ideal bone graft materials for clinical application, the investigation into ceramic bone cements or bone void filler is ongoing. Calcium phosphate-based materials have been widely explored and implemented for medical use in bone defect repair. Such materials are an excellent choice because the implant mimics the natural chemistry of mineralized bone matrix and in injectable cement form, can be implemented with relative ease. However, of the available calcium phosphate cements, none fully meet the ideal standard, displaying low strengths and acidic setting reactions or slow setting times, and are often very slow to resorb in vivo. The study of magnesium phosphates for bone cements is a relatively new field compared to traditional calcium phosphate bone cements. Although reports are more limited, preliminary studies have shown that magnesium phosphate cements (MPC) may be a strong alternative to calcium phosphates for certain applications. The goal of the present publication is to review the history and achievements of magnesium phosphate-based cements or bone void fillers to date, assess how these cements compare with calcium phosphate competitors and to analyze the future directions and outlook for the research, development, and clinical implementation of these cements.
Collapse
Affiliation(s)
- Nicole Ostrowski
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Abhijit Roy
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Prashant N Kumta
- Swanson School of Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
40
|
An J, Liao H, Kucko NW, Herber RP, Wolke JGC, van den Beucken JJJP, Jansen JA, Leeuwenburgh SCG. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements. J Biomed Mater Res A 2016; 104:1072-81. [DOI: 10.1002/jbm.a.35641] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jie An
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
| | - Hongbing Liao
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
- Department of Prosthodontics, College of Stomatology; Guangxi Medical University; Nanning China
| | - Nathan W. Kucko
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
- CAM Bioceramics BV; Leiden The Netherlands
| | | | - Joop G. C. Wolke
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
| | | | - John A. Jansen
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
| | | |
Collapse
|
41
|
Yang B, Zuo Y, Zou Q, Li L, Li J, Man Y, Li Y. Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration. Int J Nanomedicine 2016; 11:163-77. [PMID: 26792992 PMCID: PMC4708242 DOI: 10.2147/ijn.s91596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC) to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone) fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7) were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone) fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D) reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0). In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely.
Collapse
Affiliation(s)
- Boyuan Yang
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Limei Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Man
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
42
|
Liu X, Ma C, Jing Y, Sun H. Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration. Adv Healthc Mater 2015; 4:2699-708. [PMID: 26462137 PMCID: PMC4715540 DOI: 10.1002/adhm.201500531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/19/2015] [Indexed: 01/19/2023]
Abstract
The integration of controlled growth factor delivery and biomimetic architecture into a microsphere is a challenging but attractive strategy for developing new injectable biomaterials. In this work, a unique hierarchical nanosphere-encapsulated-in-microsphere scaffolding system is developed. First, heparin-conjugated gelatin (HG) is synthesized, which provides binding domains for bone morphogenetic protein 2 (BMP2) to stabilize this growth factor, protect it from denaturation and proteolytic degradation, and subsequently prolong its sustained release. Next, a unique approach is developed which includes a water-in-oil-in-oil double emulsion process and a thermally induced phase separation to encapsulate BMP2-binding HG nanospheres into nanofibrous microspheres. The nanofibrous microsphere is self-assembled from synthetic nanofibers, and has superior surface area, high porosity, low density, and is an excellent carrier to support cell adhesion and tissue in-growth. BMP2 in the hierarchical microsphere is released in a multiple-controlled manner by the binding with heparin and encapsulation of the nanosphere and microsphere. An in vivo calvarial defect model confirms that this microsphere is an excellent osteoinductive scaffold for enhanced bone regeneration. By choosing different growth factors, this hierarchical microsphere system can easily be applied to other types of tissue regeneration. The work expands the ability to develop new injectable biomaterials for advanced regenerative therapies.
Collapse
Affiliation(s)
- X. Liu
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - C. Ma
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Y. Jing
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - H. Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
43
|
Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 2015; 27:264-274. [PMID: 26318366 DOI: 10.1016/j.actbio.2015.08.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
Additive manufacturing allows to widely control the geometrical features of implants. Recently, we described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of a storable CPC paste based on water-immiscible carrier liquid. Plotting and hardening is conducted under mild conditions allowing the (precise and local) integration of biological components. In this study, we have developed a procedure for efficient loading of growth factors in the CPC scaffolds during plotting and demonstrated the feasibility of this approach. Bovine serum albumin (BSA) or vascular endothelial growth factor (VEGF), used as model proteins, were encapsulated in chitosan/dextran sulphate microparticles which could be easily mixed into the CPC paste in freeze-dried state. In order to prevent leaching of the proteins during cement setting, usually carried out by immersion in aqueous solutions, the plotted scaffolds were aged in water-saturated atmosphere (humidity). Setting in humidity avoided early loss of loaded proteins but provided sufficient amount of water to allow cement setting, as indicated by XRD analysis and mechanical testing in comparison to scaffolds set in water. Moreover, humidity-set scaffolds were characterised by altered, even improved properties: no swelling or crack formation was observed and accordingly, surface topography, total porosity and compressive modulus of the humidity-set scaffolds differed from those of the water-set counterparts. Direct cultivation of mesenchymal stem cells on the humidity-set scaffolds over 21days revealed their cytocompatibility. Maintenance of the bioactivity of VEGF during the fabrication procedure was proven in indirect and direct culture experiments with endothelial cells. STATEMENT OF SIGNIFICANCE Additive manufacturing techniques allow the fabrication of implants with defined architecture (inner pore structure and outer shape). Especially printing technologies conducted under mild conditions allow additionally the (spatially controlled) integration of biological components such as drugs or growth factors. That enables the generation of individualized implants which can better meet the requirements of a patient and of tissue engineering constructs. To our knowledge, simultaneous printing of biological components was up to now only described for hydrogel/biopolymer-based materials which suffer from poor mechanical properties. In contrast, we have developed a procedure (based on 3D plotting of a calcium phosphate cement paste) for the fabrication of designed and growth factor loaded calcium-phosphate-based scaffolds applicable for bone regeneration.
Collapse
|
44
|
Kido HW, Brassolatti P, Tim CR, Gabbai‐Armelin PR, Magri AM, Fernandes KR, Bossini PS, Parizotto NA, Crovace MC, Malavazi I, da Cunha AF, Plepis AM, Anibal FF, Rennó AC. Porous poly (
D,L
‐lactide‐
co
‐glycolide) acid/biosilicate
®
composite scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 105:63-71. [DOI: 10.1002/jbm.b.33536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hueliton W. Kido
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Patricia Brassolatti
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Carla R. Tim
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | | | - Angela M.P. Magri
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Kelly R. Fernandes
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Paulo S. Bossini
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Nivaldo A. Parizotto
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Murilo C. Crovace
- Department of Materials EngineeringVitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Iran Malavazi
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Anderson F. da Cunha
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana M.G. Plepis
- Institute of Chemistry of Sao Carlos, University of São Paulo (USP)São Carlos Sao Paulo Brazil
| | - Fernanda F. Anibal
- Department of Morphology and PathologyFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana C.M. Rennó
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| |
Collapse
|
45
|
Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219:129-140. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.
Collapse
Affiliation(s)
- E A Bayer
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - R Gottardi
- The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Orthopedic Surgery, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA; RiMED Foundation, Palermo, Italy
| | - M V Fedorchak
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Ophthalmology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - S R Little
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Immunology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA.
| |
Collapse
|
46
|
Preethanath RS, Rajesh P, Varma H, Anil S, Jansen JA, van den Beucken JJ. Combined Treatment Effects Using Bioactive-Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model. Clin Implant Dent Relat Res 2015; 18:666-77. [DOI: 10.1111/cid.12358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Reghunathan S. Preethanath
- Department of Periodontics and Community Dentistry; College of Dentistry; King Saud University; Riyadh Saudi Arabia
| | - Palangadan Rajesh
- Bioceramic Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Harikrishna Varma
- Bioceramic Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Sukumaran Anil
- Department of Periodontics and Community Dentistry; College of Dentistry; King Saud University; Riyadh Saudi Arabia
| | - John A. Jansen
- Department of Biomaterials; Radboudumc; Nijmegen The Netherlands
| | | |
Collapse
|
47
|
Eglin D, Alini M, de Bruijn J, Gautrot J, Grijpma DW, Kamer L, Lai Y, Lu S, Peijs T, Peng J, Tang TT, Wang X, Wang X, Richards RG, Qin L. The RAPIDOS project-European and Chinese collaborative research on biomaterials. J Orthop Translat 2015; 3:78-84. [PMID: 30035043 PMCID: PMC5982356 DOI: 10.1016/j.jot.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/28/2015] [Accepted: 02/10/2015] [Indexed: 11/15/2022] Open
Abstract
The research project entitled “rapid prototyping of custom-made bone-forming tissue engineering constructs” (RAPIDOS) is one of the three unique projects that are the result of the first coordinated call for research proposals in biomaterials launched by the European Union Commission and the National Natural Science Foundation of China in 2013 for facilitating bilateral translational research. We formed the RAPIDOS European and Chinese consortium with the aim of applying technologies creating custom-made tissue engineered constructs made of resorbable polymer and calcium phosphate ceramic composites specifically designed by integrating the following: (1) imaging and information technologies, (2) biomaterials and process engineering, and (3) biological and biomedical engineering for novel and truly translational bone repair solutions. Advanced solid free form fabrication technologies, precise stereolithography, and low-temperature rapid prototyping provide the necessary control to create innovative high-resolution medical implants. The use of Chinese medicine extracts, such as the bone anabolic factor icaritin, which has been shown to promote osteogenic differentiation of stem cells and enhance bone healing in vivo, is a safe and technologically relevant alternative to the intensely debated growth factors delivery strategies. This unique initiative driven by a global consortium is expected to accelerate scientific progress in the important field of biomaterials and to foster strong scientific cooperation between China and Europe.
Collapse
Affiliation(s)
- David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Joost de Bruijn
- Xpand Biotechnology B.V., Professor Bronkhorstlaan 10, Building 48, 3723 MB Bilthoven, The Netherlands
| | - Julien Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, W.J. Kolff Institute, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Lukas Kamer
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Yuxiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China
| | - Shibi Lu
- Institute of Orthopaedics of the General Hospital of the People's Liberation Army, 28 Fuxing Road, Beijing, China
| | - Ton Peijs
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaojiu Road, Shanghai 20001, China
| | - Jian Peng
- Institute of Orthopaedics of the General Hospital of the People's Liberation Army, 28 Fuxing Road, Beijing, China
| | - Ting Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaojiu Road, Shanghai 20001, China
| | - Xianluan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China
| | - Xinjiang Wang
- Institute of Orthopaedics of the General Hospital of the People's Liberation Army, 28 Fuxing Road, Beijing, China
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Ling Qin
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
48
|
Iwasaki Y, Takahata Y, Fujii S. Self-setting particle-stabilized emulsion for hard-tissue engineering. Colloids Surf B Biointerfaces 2015; 126:394-400. [DOI: 10.1016/j.colsurfb.2014.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022]
|
49
|
Kovtun A, Goeckelmann MJ, Niclas AA, Montufar EB, Ginebra MP, Planell JA, Santin M, Ignatius A. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomater 2015; 12:242-249. [PMID: 25448348 PMCID: PMC4298359 DOI: 10.1016/j.actbio.2014.10.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/26/2022]
Abstract
Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.
Collapse
Affiliation(s)
- Anna Kovtun
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Melanie J Goeckelmann
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Antje A Niclas
- Military Hospital Ulm, Oberer Eselsberg 40, D-89081 Ulm, Germany
| | - Edgar B Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, E08028 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, E08028 Barcelona, Spain
| | - Josep A Planell
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, E08028 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081 Ulm, Germany.
| |
Collapse
|
50
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|