1
|
Chen Y, Luo Z, Meng W, Liu K, Chen Q, Cai Y, Ding Z, Huang C, Zhou Z, Jiang M, Zhou L. Decoding the "Fingerprint" of Implant Materials: Insights into the Foreign Body Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310325. [PMID: 38191783 DOI: 10.1002/smll.202310325] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Foreign body reaction (FBR) is a prevalent yet often overlooked pathological phenomenon, particularly within the field of biomedical implantation. The presence of FBR poses a heavy burden on both the medical and socioeconomic systems. This review seeks to elucidate the protein "fingerprint" of implant materials, which is generated by the physiochemical properties of the implant materials themselves. In this review, the activity of macrophages, the formation of foreign body giant cells (FBGCs), and the development of fibrosis capsules in the context of FBR are introduced. Additionally, the relationship between various implant materials and FBR is elucidated in detail, as is an overview of the existing approaches and technologies employed to alleviate FBR. Finally, the significance of implant components (metallic materials and non-metallic materials), surface CHEMISTRY (charge and wettability), and physical characteristics (topography, roughness, and stiffness) in establishing the protein "fingerprint" of implant materials is also well documented. In conclusion, this review aims to emphasize the importance of FBR on implant materials and provides the current perspectives and approaches in developing implant materials with anti-FBR properties.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Luo
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weikun Meng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Yongrui Cai
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zichuan Ding
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liqiang Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
3
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Chang YT, Kazui H, Ikeda M, Huang CW, Huang SH, Hsu SW, Chang WN, Chang CC. Genetic Interaction of APOE and FGF1 is Associated with Memory Impairment and Hippocampal Atrophy in Alzheimer's Disease. Aging Dis 2019; 10:510-519. [PMID: 31164996 PMCID: PMC6538224 DOI: 10.14336/ad.2018.0606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
The APOE and fibroblast growth factor 1 (FGF1) have both been associated with amyloid β accumulation and neurodegeneration. Investigation the effect of APOE-FGF1 interactions on episodic memory (EM) deficits and hippocampus atrophy (HA) might elucidate the complex clinical-pathological relationship in Alzheimer’s disease (AD). EM performance and hippocampal volume (HV) were characterized in patients with mild AD based on APOE-ε4 carrier status (APOE-ε4 carriers versus non-carriers) and FGF1 single nucleotide polymorphism (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers). The clinical-pathological relationships within each genotypic group (ε4+/GG-carrier, ε4+/A-allele-carrier, ε4-/GG-carrier and ε4-/A-allele-carrier) were analyzed. There were no significant differences between the FGF1-rs34011-GG and FGF1-rs34011-A-allele carriers for the level of EM performance or HV (p> 0.05). The bilateral HV was significantly smaller and EM impairment was significantly worse in ε4+/GG-carrier than in ε4-/A-allele-carrier, and an interaction effect of APOE (APOE-ε4 carriers versus non-carriers) with FGF1 (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers) predicted EM impairment (F4,92= 3.516, p= 0.018) and structural changes in voxel-based morphometry. Our data shows that concurrent consideration of APOE and FGF1 polymorphisms might be required to understand the clinical-pathological relationship in AD.
Collapse
Affiliation(s)
- Ya-Ting Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hiroaki Kazui
- 2Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- 2Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Chi-Wei Huang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shu-Hua Huang
- 3Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Wei Hsu
- 4Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Neng Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chiung-Chih Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
5
|
Lim HJ, Khan Z, Lu X, Perera TH, Wilems TS, Ravivarapu KT, Smith Callahan LA. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomater 2018. [PMID: 29526829 DOI: 10.1016/j.actbio.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. STATEMENT OF SIGNIFICANCE Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple bioactive signaling elements. However, peptide signaling in polyethylene glycol matrices and amino acids interactions between peptides can affect hydrogel material and mechanical properties, but are rarely studied. The current study identifies such an interaction between laminin derived peptide, IKVAV, and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ. Previous studies using these peptides did not identify their interactions' ability to mechanically stabilize the hydrogel during degradation. This work underscores the need for greater matrix characterization and consideration of bioactive signaling element effects temporally on the matrix's material and mechanical properties, as they can contribute to cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - T Hiran Perera
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Krishna T Ravivarapu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
6
|
Abstract
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types.
Collapse
|
7
|
Structural and mechanical characterization of bacterial cellulose-polyethylene glycol diacrylate composite gels. Carbohydr Polym 2017; 173:67-76. [PMID: 28732912 DOI: 10.1016/j.carbpol.2017.05.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/24/2017] [Indexed: 11/22/2022]
Abstract
This study explores the structural and mechanical properties of bacterial cellulose-polyethylene glycol diacrylate (BC-PEGDA) composite gels. The molecular dynamics results obtained by solid-state 13C nuclear magnetic resonance analyses suggested that BC and PEGDA molecules were incompatible as composite gels, though BC fibers and PEGDA interact with each other. The mechanical strength of the gels depended on the amount of PEGDA, becoming softer and more stretchable when a tensile force was applied, but for a large amount of PEGDA, they became brittle. The BC-3% and 5% PEGDA gels had similar viscoelastic behaviors as a BC gel, and these composite gels could stick to human skin. Since BC-PEGDA composite gels are composed of BC and PEGDA-both of which are biocompatible, it is thought that these composite gels also have excellent biocompatibility. Taken together, we concluded that the BC-3% and 5% PEGDA gels have great potential for use in medical and cosmetic fields.
Collapse
|
8
|
Cruz-Acuña R, García AJ. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol 2016; 57-58:324-333. [PMID: 27283894 DOI: 10.1016/j.matbio.2016.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 01/05/2023]
Abstract
Naturally-derived materials have been extensively used as 3D cellular matrices as their inherent bioactivity makes them suitable for the study of many cellular processes. Nevertheless, lot-to-lot variability, inability to decouple biochemical and biophysical properties and, in some types, their tumor-derived nature limits their translational potential and reliability. One innovative approach to overcome these limitations has focused on incorporating bioactivity into cytocompatible, synthetic hydrogels that present tunable physicochemical properties. This review provides an overview of successful approaches to convey basement membrane-like bioactivity into 3D artificial hydrogel matrices in order to recapitulate cellular responses to native matrices. Recent advances involving biofunctionalization of synthetic hydrogels via incorporation of bioactive motifs that promote cell-matrix interactions and cell-directed matrix degradation will be discussed. This review highlights how the tunable physicochemical properties of biofunctionalized synthetic hydrogel matrices can be exploited to study the separate contributions of biochemical and biophysical matrix properties to different cellular processes.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
9
|
Lee HJ, Sen A, Bae S, Lee JS, Webb K. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration. Acta Biomater 2015; 14:43-52. [PMID: 25523876 DOI: 10.1016/j.actbio.2014.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/14/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023]
Abstract
To serve as artificial matrices for therapeutic cell transplantation, synthetic hydrogels must incorporate mechanisms enabling localized, cell-mediated degradation that allows cell spreading and migration. Previously, we have shown that hybrid semi-interpenetrating polymer networks (semi-IPNs) composed of hydrolytically degradable poly(ethylene glycol) diacrylates (PEGdA), acrylate-PEG-GRGDS and native hyaluronic acid (HA) support increased cell spreading relative to fully synthetic networks that is dependent on cellular hyaluronidase activity. This study systematically investigated the effects of PEGdA/HA semi-IPN network composition on 3-D spreading of encapsulated fibroblasts, the underlying changes in gel structure responsible for this activity, and the ability of optimized gel formulations to support long-term cell survival and migration. Fibroblast spreading exhibited a biphasic response to HA concentration, required a minimum HA molecular weight, decreased with increasing PEGdA concentration and was independent of hydrolytic degradation at early time points. Increased gel turbidity was observed in semi-IPNs, but not in copolymerized hydrogels containing methacrylated HA, which did not support cell spreading. This suggests that there is an underlying mechanism of polymerization-induced phase separation that results in HA-enriched defects within the network structure. PEGdA/HA semi-IPNs were also able to support cell spreading at relatively high levels of mechanical properties (∼10kPa elastic modulus) compared to alternative hybrid hydrogels. In order to support long-term cellular remodeling, the degradation rate of the PEGdA component was optimized by preparing blends of three different PEGdA macromers with varying susceptibility to hydrolytic degradation. Optimized semi-IPN formulations supported long-term survival of encapsulated fibroblasts and sustained migration in a gel-within-gel encapsulation model. These results demonstrate that PEGdA/HA semi-IPNs provide dynamic microenvironments that can support 3-D cell survival, spreading and migration for a variety of cell therapy applications.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Atanu Sen
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Sooneon Bae
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Ken Webb
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA.
| |
Collapse
|
10
|
Vigen M, Ceccarelli J, Putnam AJ. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci 2014; 14:1368-79. [PMID: 24943402 PMCID: PMC4198447 DOI: 10.1002/mabi.201400161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Indexed: 01/20/2023]
Abstract
Forming functional blood vessel networks in engineered or ischemic tissues is a significant scientific and clinical hurdle. Poly(ethylene glycol) (PEG)-based hydrogels are adapted to investigate the role of mechanical properties and proteolytic susceptibility on vascularization. Four arm PEG vinyl sulfone is polymerized by Michael-type addition with cysteine groups on a slowly degraded matrix metalloprotease (MMP) susceptible peptide, GPQG↓IWGQ, or a more rapidly cleaved peptide, VPMS↓MRGG. Co-encapsulation of endothelial cells and supportive fibroblasts within the gels lead to vascular morphogenesis in vitro that is robust to changes in crosslinking peptide identity, but is significantly attenuated by increased crosslinking and MMP inhibition. Perfused vasculature forms from transplanted cells in vivo in all gel types; however, in contrast to the in vitro results, vascularization in vivo is not decreased in the more crosslinked gels. Collectively, these findings demonstrate the utility of this platform to support vascularization both in vitro and in vivo.
Collapse
Affiliation(s)
- Marina Vigen
- Department of Biomedical Engineering, University of Michigan; Ann Arbor, MI 48109
| | - Jacob Ceccarelli
- Department of Biomedical Engineering, University of Michigan; Ann Arbor, MI 48109
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan; Ann Arbor, MI 48109
| |
Collapse
|
11
|
Sokic S, Christenson MC, Larson JC, Appel AA, Brey EM, Papavasiliou G. Evaluation of MMP substrate concentration and specificity for neovascularization of hydrogel scaffolds. Biomater Sci 2014; 2:1343-1354. [PMID: 28553543 DOI: 10.1039/c4bm00088a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Controlled vascular response in scaffolds following implantation remains a significant clinical challenge. A critical biomaterial design criterion is the synchronization of the rates of scaffold degradation and vascularized tissue formation. Matrix metalloproteinases (MMPs) are key enzymes that regulate neovascularization and extracellular matrix remodelling. Synthetic protease-sensitive hydrogels offer controllable environments for investigating the role of matrix degradation on neovascularization. In this study, PEG hydrogels containing MMP-sensitive peptides with increased catalytic activity for MMPs expressed during neovascularization were investigated. Scaffolds were functionalized with MMP-2-, MMP-14- or general collagenase-sensitive peptides and with varying peptide concentration using crosslinkers containing one (SSite) or multiple (TSite) repeats of each protease-sensitive sequence. Increasing peptide concentration enhanced the degradation kinetics of scaffolds functionalized with MMP-specific sequences while 80% of the collagenase-sensitive scaffolds remained upon exposure to MMP-2 and MMP-14. In vitro neovascularization was consistent with in vivo tissue invasion with significantly increased invasion occurring within SSite MMP-specific as compared to collagenase-sensitive hydrogels and with further invasion in TSite as compared to SSite hydrogels regardless of peptide specificity. All scaffolds supported in vivo neovascularization; however, this was not dependent on peptide specificity. These findings demonstrate that peptide concentration and specificity regulate in vivo scaffold degradation, neovascularization and matrix remodelling.
Collapse
Affiliation(s)
- S Sokic
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770
| | - M C Christenson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770
| | - J C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770
| | - A A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770.,Research Service, Hines Veterans Administration Hospital, Hines, IL
| | - E M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770.,Research Service, Hines Veterans Administration Hospital, Hines, IL
| | - G Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Wishnick Hall Room 314, Chicago, IL, 60616-3793, USA. Tel: (312) 567-5959; Fax (312) 567-5770
| |
Collapse
|
12
|
Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014; 2:634-650. [PMID: 25379176 PMCID: PMC4217222 DOI: 10.1039/c3bm60319a] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment.
Collapse
Affiliation(s)
- Megan E. Smithmyer
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Lisa A. Sawicki
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
- Materials Science & Engineering , University of Delaware , Newark , DE 19716 , USA .
| |
Collapse
|
13
|
Sokic S, Larson JC, Larkin SM, Papavasiliou G, Holmes TJ, Brey EM. Label-free nondestructive imaging of vascular network structure in 3D culture. Microvasc Res 2014; 92:72-8. [PMID: 24423617 DOI: 10.1016/j.mvr.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/25/2013] [Accepted: 01/03/2014] [Indexed: 11/24/2022]
Abstract
Three-dimensional (3D) cell culture assays are important tools in the study of vessel assembly. Current techniques for quantitative analysis of vascular network structure have provided important insight into 3D vessel assembly. However, these methods typically require immunohistochemical staining, which requires sample destruction, or fluorescent cell labeling, which may alter cell behavior. The methods also may require sophisticated and expensive microscopy. More robust, easily quantifiable techniques are needed for imaging vascular networks non-invasively. We present an imaging method based on widefield optical sectioning and digital deconvolution (WOSD) that enables imaging of vascular networks in 3D culture without the use of cell labeling, staining, or sample destruction. WOSD can be performed using a standard optical microscope and allows non-invasive 3D monitoring of vascular network formation. This method is illustrated by imaging vascular networks in a 3D hydrogel system. WOSD enabled production of quantifiable 3D images of the network structure. Accuracy of the technique was evaluated by comparing data from WOSD with confocal images of fixed and fluorescently stained samples. Data for vessel length, diameter, and density are consistent between the two methods. The WOSD approach can be applied using standard laboratory equipment and shows great promise for use in analysis of 3D vascular network formation.
Collapse
Affiliation(s)
- Sonja Sokic
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Jeffery C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Hines Veterans Administration Hospital, Hines, IL, USA.
| |
Collapse
|
14
|
Sokic S, Christenson M, Larson J, Papavasiliou G. In Situ Generation of Cell-Laden Porous MMP-Sensitive PEGDA Hydrogels by Gelatin Leaching. Macromol Biosci 2014; 14:731-9. [DOI: 10.1002/mabi.201300406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Sonja Sokic
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn Street Wishnick Hall Room 223 Chicago, IL 60616 USA
| | - Megan Christenson
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn Street Wishnick Hall Room 223 Chicago, IL 60616 USA
| | - Jeffery Larson
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn Street Wishnick Hall Room 223 Chicago, IL 60616 USA
| | - Georgia Papavasiliou
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn Street Wishnick Hall Room 223 Chicago, IL 60616 USA
| |
Collapse
|
15
|
Lee CY, Teymour F, Camastral H, Tirelli N, Hubbell JA, Elbert DL, Papavasiliou G. Characterization of the Network Structure of PEG Diacrylate Hydrogels Formed in the Presence of N-Vinyl Pyrrolidone. MACROMOL REACT ENG 2013. [DOI: 10.1002/mren.201300166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chu-Yi Lee
- Department of Chemical and Biological Engineering; Illinois Institute of Technology; 10 West 33rd Street Perlstein Hall 127 Chicago IL 60616 USA
| | - Fouad Teymour
- Department of Chemical and Biological Engineering; Illinois Institute of Technology; 10 West 33rd Street Perlstein Hall 127 Chicago IL 60616 USA
| | - Heinz Camastral
- Department of Materials and Institute for Biomedical Engineering; ETH-Zurich and University of Zurich; Moussonstrasse 18 CH-8044 Zurich Switzerland
| | - Nicola Tirelli
- Department of Materials and Institute for Biomedical Engineering; ETH-Zurich and University of Zurich; Moussonstrasse 18 CH-8044 Zurich Switzerland
| | - Jeffrey A. Hubbell
- Department of Materials and Institute for Biomedical Engineering; ETH-Zurich and University of Zurich; Moussonstrasse 18 CH-8044 Zurich Switzerland
| | - Donald L. Elbert
- Department of Materials and Institute for Biomedical Engineering; ETH-Zurich and University of Zurich; Moussonstrasse 18 CH-8044 Zurich Switzerland
| | - Georgia Papavasiliou
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn Street Wishnick Hall 314 Chicago IL 60616 USA
| |
Collapse
|
16
|
Evaluation of physical and mechanical properties of porous poly (ethylene glycol)-co-(L-lactic acid) hydrogels during degradation. PLoS One 2013; 8:e60728. [PMID: 23593296 PMCID: PMC3621899 DOI: 10.1371/journal.pone.0060728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/01/2013] [Indexed: 11/25/2022] Open
Abstract
Porous hydrogels of poly(ethylene glycol) (PEG) have been shown to facilitate vascularized tissue formation. However, PEG hydrogels exhibit limited degradation under physiological conditions which hinders their ultimate applicability for tissue engineering therapies. Introduction of poly(L-lactic acid) (PLLA) chains into the PEG backbone results in copolymers that exhibit degradation via hydrolysis that can be controlled, in part, by the copolymer conditions. In this study, porous, PEG-PLLA hydrogels were generated by solvent casting/particulate leaching and photopolymerization. The influence of polymer conditions on hydrogel architecture, degradation and mechanical properties was investigated. Autofluorescence exhibited by the hydrogels allowed for three-dimensional, non-destructive monitoring of hydrogel structure under fully swelled conditions. The initial pore size depended on particulate size but not polymer concentration, while degradation time was dependent on polymer concentration. Compressive modulus was a function of polymer concentration and decreased as the hydrogels degraded. Interestingly, pore size did not vary during degradation contrary to what has been observed in other polymer systems. These results provide a technique for generating porous, degradable PEG-PLLA hydrogels and insight into how the degradation, structure, and mechanical properties depend on synthesis conditions.
Collapse
|
17
|
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond) 2013; 8:1587-99. [PMID: 23394133 DOI: 10.2217/nnm.12.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial inclusion bodies (IBs) are protein-based, amyloidal nanomaterials that mechanically stimulate mammalian cell proliferation upon surface decoration. However, their biological performance as potentially functional scaffolds in mammalian cell culture still needs to be explored. MATERIALS & METHODS Using fluorescent proteins, we demonstrate significant membrane penetration of surface-attached IBs and a corresponding intracellular bioavailability of the protein material. RESULTS When IBs are formed by protein drugs, such as the intracellular acting human chaperone Hsp70 or the extracellular/intracellular acting human FGF-2, IB components intervene on top-growing cells, namely by rescuing them from chemically induced apoptosis or by stimulating cell division under serum starvation, respectively. Protein release from IBs seems to mechanistically mimic the sustained secretion of protein hormones from amyloid-like secretory granules in higher organisms. CONCLUSION We propose bacterial IBs as biomimetic nanostructured scaffolds (bioscaffolds) suitable for tissue engineering that, while acting as adhesive materials, partially disintegrate for the slow release of their biologically active building blocks. The bottom-up delivery of protein drugs mediated by bioscaffolds offers a highly promising platform for emerging applications in regenerative medicine.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and Department de Genètica i de MicroBiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Turturro MV, Sokic S, Larson JC, Papavasiliou G. Effective tuning of ligand incorporation and mechanical properties in visible light photopolymerized poly(ethylene glycol) diacrylate hydrogels dictates cell adhesion and proliferation. Biomed Mater 2013; 8:025001. [PMID: 23343533 DOI: 10.1088/1748-6041/8/2/025001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell behavior is guided by the complex interplay of matrix mechanical properties as well as soluble and immobilized biochemical signals. The development of synthetic scaffolds that incorporate key functionalities of the native extracellular matrix (ECM) for support of cell proliferation and tissue regeneration requires that stiffness and immobilized concentrations of ECM signals within these biomaterials be tuned and optimized prior to in vitro and in vivo studies. A detailed experimental sensitivity analysis was conducted to identify the key polymerization conditions that result in significant changes in both elastic modulus and immobilized YRGDS within visible light photopolymerized poly(ethylene glycol) diacrylate hydrogels. Among the polymerization conditions investigated, single as well as simultaneous variations in N-vinylpyrrolidinone and precursor concentrations of acryl-PEG3400-YRGDS resulted in a broad range of the hydrogel elastic modulus (81-1178 kPa) and YRGDS surface concentration (0.04-1.72 pmol cm(-2)). Increasing the YRGDS surface concentration enhanced fibroblast cell adhesion and proliferation for a given stiffness, while increases in the hydrogel elastic modulus caused decreases in cell adhesion and increases in proliferation. The identification of key polymerization conditions is critical for the tuning and optimization of biomaterial properties and the controlled study of cell-substrate interactions.
Collapse
Affiliation(s)
- Michael V Turturro
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall 314, 3255 S Dearborn St., Chicago, Illinois, 60616, USA.
| | | | | | | |
Collapse
|
19
|
Turturro MV, Rendón DMV, Teymour F, Papavasiliou G. Kinetic Investigation of Poly(ethylene glycol) Hydrogel Formation via Perfusion-Based Frontal Photopolymerization: Influence of Free-Radical Polymerization Conditions on Frontal Velocity and Swelling Gradients. MACROMOL REACT ENG 2013. [DOI: 10.1002/mren.201200063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Sokic S, Papavasiliou G. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Eng Part A 2012; 18:2477-86. [PMID: 22725267 PMCID: PMC3501121 DOI: 10.1089/ten.tea.2012.0173] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/22/2012] [Indexed: 01/01/2023] Open
Abstract
The volume of tissue that can be engineered is limited by the extent to which vascularization can be stimulated within the scaffold. The ability of a scaffold to induce vascularization is highly dependent on its rate of degradation. We present a novel approach for engineering poly (ethylene glycol) diacrylate (PEGDA) hydrogels with controlled protease-mediated degradation independent of alterations in hydrogel mechanical and physical properties. Matrix metalloproteinase (MMP)-sensitive peptides containing one (SSite) or three (TriSite) proteolytic cleavage sites were engineered and conjugated to PEGDA macromers followed by photopolymerization to form PEGDA hydrogels with tethered cell adhesion ligands of YRGDS and with either single or multiple MMP-sensitive peptide domains between cross links. These hydrogels were investigated as provisional matrices for inducing neovascularization, while maintaining the structural integrity of the hydrogel network. We show that hydrogels made from SSite and TriSite peptide-containing PEGDA macromers polymerized under the same conditions do not result in alterations in hydrogel swelling, mesh size, or compressive modulus, but result in statistically different hydrogel degradation times with TriSite gels degrading in 1-3 h compared to 2-4 days in SSite gels. In both polymer types, increases in the PEGDA concentration result in decreases in hydrogel swelling and mesh size, and increases in the compressive modulus and degradation time. Furthermore, TriSite gels support vessel invasion over a 0.3-3.6 kPa range of compressive modulus, while SSite gels do not support invasion in hydrogels above compressive modulus values of 0.4 kPa. In vitro data demonstrate that TriSite gels result in enhanced vessel invasion areas by sevenfold and depth of invasion by twofold compared to SSite gels by 3 weeks. This approach allows for controlled, localized, and cell-mediated matrix remodeling and can be tailored to tissues that may require more rapid regeneration and neovascularization.
Collapse
Affiliation(s)
- Sonja Sokic
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | |
Collapse
|
21
|
Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 2012; 42:225-62. [PMID: 22990473 DOI: 10.1039/c2cs35065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Collapse
Affiliation(s)
- Gloria A A Saracino
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Cà Granda, Milan, 20162, Italy
| | | | | | | | | |
Collapse
|