1
|
Honarpisheh M, Lei Y, Zhang Y, Pehl M, Kemter E, Kraetzl M, Lange A, Wolf E, Wolf-van Buerck L, Seissler J. Formation of Re-Aggregated Neonatal Porcine Islet Clusters Improves In Vitro Function and Transplantation Outcome. Transpl Int 2022; 35:10697. [PMID: 36685665 PMCID: PMC9846776 DOI: 10.3389/ti.2022.10697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Neonatal porcine islet-like cell clusters (NPICCs) are a promising source for islet cell transplantation. Excellent islet quality is important to achieve a cure for type 1 diabetes. We investigated formation of cell clusters from dispersed NPICCs on microwell cell culture plates, evaluated the composition of re-aggregated porcine islets (REPIs) and compared in vivo function by transplantation into diabetic NOD-SCID IL2rγ-/- (NSG) mice with native NPICCs. Dissociation of NPICCs into single cells and re-aggregation resulted in the formation of uniform REPI clusters. A higher prevalence of normoglycemia was observed in diabetic NSG mice after transplantation with a limited number (n = 1500) of REPIs (85.7%) versus NPICCs (n = 1500) (33.3%) (p < 0.05). Transplanted REPIs and NPICCs displayed a similar architecture of endocrine and endothelial cells. Intraperitoneal glucose tolerance tests revealed an improved beta cell function after transplantation of 1500 REPIs (AUC glucose 0-120 min 6260 ± 305.3) as compared to transplantation of 3000 native NPICCs (AUC glucose 0-120 min 8073 ± 536.2) (p < 0.01). Re-aggregation of single cells from dissociated NPICCs generates cell clusters with excellent functionality and improved in vivo function as compared to native NPICCs.
Collapse
Affiliation(s)
- M. Honarpisheh
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Y. Lei
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Y. Zhang
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - M. Pehl
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M. Kraetzl
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - A. Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - L. Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - J. Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Zhang M, Yan S, Xu X, Yu T, Guo Z, Ma M, Zhang Y, Gu Z, Feng Y, Du C, Wan M, Hu K, Han X, Gu N. Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials 2021; 270:120687. [PMID: 33540170 DOI: 10.1016/j.biomaterials.2021.120687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Pancreatic β-cells have been reported to be mechanosensitive to cellular microenvironments, and subjecting the cells to more physiologically relevant microenvironments can produce better results than when subjecting them to the conventional two-dimensional (2D) cell-culture conditions. In this work, we propose a novel three-dimensional (3D) strategy for inducing multicellular spheroid formation based on hydrogels with tunable mechanical and interfacial properties. The results indicate that MIN6 cells can sense the substrates and form tightly clustered monolayers or multicellular spheroids on hydrogels with tunable physical properties. Compared to the conventional 2D cell-culture system, the glucose sensitivities of the MIN6 cells cultured in the 3D culture model is enhanced greatly and their insulin content (relative to the amount of protein) is increased 7.3-7.9 folds. Moreover, the relative gene and protein expression levels of some key factors such as Pdx1, NeuroD1, Piezo1, and Rac1 in the MIN6 cells are significantly higher on the 3D platform, compared to the 2D control group. We believe that this 3D cell-culture system developed for the generation of multicellular spheroids will be a promising platform for diabetes treatment in clinical islet transplantation.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sen Yan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueqin Xu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuxiao Gu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yiwei Feng
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chunyue Du
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mengqi Wan
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Berent ZT, Wagoner Johnson AJ. Cell seeding simulation on micropatterned islands shows cell density depends on area to perimeter ratio, not on island size or shape. Acta Biomater 2020; 107:152-163. [PMID: 32112979 DOI: 10.1016/j.actbio.2020.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Protein micropatterned substrates have been used to control cell size, shape, and cell-cell contacts, characteristics that influence a range of cell behaviors from early cell differentiation to late stages of maturation. Knowing the initial island cell seeding density is important to interpreting results and understanding downstream cell behavior. While studies routinely report the intended or target cell seeding density, they do not report the actual cell seeding density on the islands. As cells proliferate, differences in initial cell seeding density could compound and may lead to misinterpretation of results. In this work, we present a cell seeding simulation and apply it to 100s of islands with a range of geometries (sizes and shapes) to explore how island cell seeding density relates to the target or unpatterned cell seeding density. We first experimentally validate the simulation and then show that normalized island cell seeding density depends on island size, shape, and spacing, but can be predicted solely from island area to perimeter ratio, A2P, via a power law relationship for a wide range of island geometries. Interestingly, normalized island cell seeding density is the same as the normalized unpatterned cell seeding density for A2P ≥ 17 µm. This simulation will help to design micropatterned substrates and to have more accurate representation of the island cell seeding density at the start of experiments. By knowing the island cell seeding density, we can more easily reproduce results across research groups to understand the roles of cell-cell contact and cell size and shape on cell behavior. STATEMENT OF SIGNIFICANCE: We present a cell seeding simulation on protein-micropatterned substrates and use it to simulate seeding across 100s of island geometries (size, shape, and spacing) covering two orders of magnitude in size. The simulation shows that island cell density varies significantly with island geometry compared to the target seeding density. However, island cell density can be predicted from one geometric parameter - the island's area to perimeter ratio. Results will help direct researchers on how to achieve uniform cell density across all island geometries. Since cell density and island shape both influence cell behaviors, such as differentiation, this simulation may help to isolate these factors, facilitate micropatterned substrate design, and provide a mechanism for more reproduceable results across studies.
Collapse
|
4
|
Chen Y, Nguyen DT, Kokil GR, Wong YX, Dang TT. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability. Acta Biomater 2019; 97:260-271. [PMID: 31404714 DOI: 10.1016/j.actbio.2019.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Abstract
Transplantation of immuno-isolated islets is a promising strategy to restore insulin-secreting function in patients with Type 1 diabetes. However, the clinical translation of this treatment approach remains elusive due to the loss of islet viability resulting from hypoxia at the avascular transplantation site. To address this challenge, we designed non-spherical islet-like microtissues and investigated the effect of their geometries on cellular viability. Insulin-secreting microtissues with different shapes were fabricated by assembly of monodispersed rat insulinoma beta cells on micromolded nonadhesive hydrogels. Our study quantitatively demonstrated that toroid microtissues exhibited enhanced cellular viability and metabolic activity compared to rod and spheroid microtissues with the same volume. At a similar level of cellular viability, toroid geometry facilitated efficient packing of more cells into each microtissue than rod and spheroid geometries. In addition, toroid microtissues maintained the characteristic glucose-responsive insulin secretion of rat insulinoma beta cells. Furthermore, toroid microtissues preserved their geometry and structural integrity following their microencapsulation in immuno-isolatory alginate hydrogel. Our study suggests that adopting toroid geometry in designing therapeutic microtissues potentially reduces mass loss of cellular grafts and thereby may improve the performance of transplanted islets towards a clinically viable cure for Type 1 diabetes. STATEMENT OF SIGNIFICANCE: Transplantation of therapeutic cells is a promising strategy for the treatment of a wide range of hormone or protein-deficiency diseases. However, the clinical application of this approach is hindered by the loss of cell viability and function at the avascular transplantation site. To address this challenge, we fabricated hydrogel-encapsulated islet-like microtissues with non-spheroidal geometry and optimal surface-to-volume ratio. This study demonstrated that the viability of therapeutic cells can be significantly increased solely by redesigning the microtissue configuration without requiring any additional biochemical or operational accessories. This study suggests that the adoption of toroid geometry provides a possible avenue to improve the long-term survival of transplanted therapeutic cells and expedite the translation of cell-based therapy towards clinical application.
Collapse
Affiliation(s)
- Yang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Dang T Nguyen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ganesh R Kokil
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yun Xuan Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Tram T Dang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
5
|
Youngblood RL, Sampson JP, Lebioda KR, Shea LD. Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters. Acta Biomater 2019; 96:111-122. [PMID: 31247380 PMCID: PMC6717676 DOI: 10.1016/j.actbio.2019.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSCs) represent a promising cell source for the development of β-cells for use in therapies for type 1 diabetes. Current culture approaches provide signals to mimic a temporal control of organogenesis to drive the differentiation towards β-cells. However, spatial control may represent an opportunity to improve the efficiency and manufacturing of β-cells. Herein, we adapted the current culture systems to microporous biomaterials with the hypothesis that the pores can guide the assembly of pancreatic progenitors into clusters of defined size that can influence maturation. The scaffold culture allowed hPSC-derived pancreatic progenitors to form clusters at a consistent size as cells differentiated. By modulating the scaffold pore sizes, we observed 250-425 µm pore size scaffold cultures augmented insulin expression and key β-cell maturation markers compared to cells cultured in suspension. Furthermore, when compared to suspension cultures, the scaffold culture showed increased insulin secretion in response to glucose stimulus indicating the development of functional β-cells. In addition, scaffolds facilitated cell-cell interactions enabled by the scaffold design and supported cell-mediated matrix deposition of extracellular matrix (ECM) proteins associated with the basement membrane of islet cells. We further investigated the influence of ECM on cell development by incorporating an ECM matrix on the scaffold prior to cell seeding; however, their presence did not further enhance maturation. These results suggest the microporous scaffold culture provides a conducive environment that drives in vitro differentiation of hPSC-derived insulin-producing glucose-responsive β-cells and demonstrates the feasibility of these scaffolds as a biomanufacturing platform. STATEMENT OF SIGNIFICANCE: Cell therapy for diabetes is a promising strategy, yet generating limitless insulin-producing mature β-cells from human pluripotent stem cells (hPSCs) remains a challenge. Current hPSC differentiation methods involve media containing signals to drive maturation toward β-cells and spontaneous cluster formation. Herein, we sought to provide spatial cues to guide assembly of cells into 3D structures by culture within the pores of a microporous scaffold. The scaffolds direct cell-cell interactions within the pores and provide a support for cell-mediated matrix deposition that collectively creates a niche to promote functional hPSC-derived β-cell clusters. These scaffolds for 3D culture may contribute to hPSC differentiation methods for the generation of β-cells that can treat patients with diabetes.
Collapse
Affiliation(s)
- Richard L Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua P Sampson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kimberly R Lebioda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Defining Cell Cluster Size by Dielectrophoretic Capture at an Array of Wireless Electrodes of Several Distinct Lengths. MICROMACHINES 2019; 10:mi10040271. [PMID: 31018537 PMCID: PMC6523886 DOI: 10.3390/mi10040271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Clusters of biological cells play an important role in normal and disease states, such as in the release of insulin from pancreatic islets and in the enhanced spread of cancer by clusters of circulating tumor cells. We report a method to pattern cells into clusters having sizes correlated to the dimensions of each electrode in an array of wireless bipolar electrodes (BPEs). The cells are captured by dielectrophoresis (DEP), which confers selectivity, and patterns cells without the need for physical barriers or adhesive interactions that can alter cell function. Our findings demonstrate that this approach readily achieves fine control of cell cluster size over a broader range set by other experimental parameters. These parameters include the magnitude of the voltage applied externally to drive capture at the BPE array, the rate of fluid flow, and the time allowed for DEP-based cell capture. Therefore, the reported method is anticipated to allow the influence of cluster size on cell function to be more fully investigated.
Collapse
|
7
|
Yu Y, Gamble A, Pawlick R, Pepper AR, Salama B, Toms D, Razian G, Ellis C, Bruni A, Gala-Lopez B, Lu JL, Vovko H, Chiu C, Abdo S, Kin T, Korbutt G, Shapiro AMJ, Ungrin M. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 2018; 61:2016-2029. [PMID: 29971529 PMCID: PMC6096633 DOI: 10.1007/s00125-018-4672-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Islet transplantation is a treatment option that can help individuals with type 1 diabetes become insulin independent, but inefficient oxygen and nutrient delivery can hamper islet survival and engraftment due to the size of the islets and loss of the native microvasculature. We hypothesised that size-controlled pseudoislets engineered via centrifugal-forced-aggregation (CFA-PI) in a platform we previously developed would compare favourably with native islets, even after taking into account cell loss during the process. METHODS Human islets were dissociated and reaggregated into uniform, size-controlled CFA-PI in our microwell system. Their performance was assessed in vitro and in vivo over a range of sizes, and compared with that of unmodified native islets, as well as islet cell clusters formed by a conventional spontaneous aggregation approach (in which dissociated islet cells are cultured on ultra-low-attachment plates). In vitro studies included assays for membrane integrity, apoptosis, glucose-stimulated insulin secretion assay and total DNA content. In vivo efficacy was determined by transplantation under the kidney capsule of streptozotocin-treated Rag1-/- mice, with non-fasting blood glucose monitoring three times per week and IPGTT at day 60 for glucose response. A recovery nephrectomy, removing the graft, was conducted to confirm efficacy after completing the IPGTT. Architecture and composition were analysed by histological assessment via insulin, glucagon, pancreatic polypeptide, somatostatin, CD31 and von Willebrand factor staining. RESULTS CFA-PI exhibit markedly increased uniformity over native islets, as well as substantially improved glucose-stimulated insulin secretion (8.8-fold to 11.1-fold, even after taking cell loss into account) and hypoxia tolerance. In vivo, CFA-PI function similarly to (and potentially better than) native islets in reversing hyperglycaemia (55.6% for CFA-PI vs 20.0% for native islets at 500 islet equivalents [IEQ], and 77.8% for CFA-PI vs 55.6% for native islets at 1000 IEQ), and significantly better than spontaneously aggregated control cells (55.6% for CFA-PI vs 0% for spontaneous aggregation at 500 IEQ, and 77.8% CFA-PI vs 33.4% for spontaneous aggregation at 1000 IEQ; p < 0.05). Glucose clearance in the CFA-PI groups was improved over that in the native islet groups (CFA-PI 18.1 mmol/l vs native islets 29.7 mmol/l at 60 min; p < 0.05) to the point where they were comparable with the non-transplanted naive normoglycaemic control mice at a low IEQ of 500 IEQ (17.2 mmol/l at 60 min). CONCLUSIONS/INTERPRETATION The ability to efficiently reformat dissociated islet cells into engineered pseudoislets with improved properties has high potential for both research and therapeutic applications.
Collapse
Affiliation(s)
- Yang Yu
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Bassem Salama
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Derek Toms
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Golsa Razian
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Cara Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Jia Lulu Lu
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Heather Vovko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Cecilia Chiu
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Shaaban Abdo
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Greg Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Mark Ungrin
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building Room 412, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Yang J, Zhou F, Xing R, Lin Y, Han Y, Teng C, Wang Q. Development of large-scale size-controlled adult pancreatic progenitor cell clusters by an inkjet-printing technique. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11624-11630. [PMID: 25961432 DOI: 10.1021/acsami.5b02676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The generation of transplantable β-cells from pancreatic progenitor cells (PPCs) could serve as an ideal cell-based therapy for diabetes. Because the transplant efficiency depends on the size of islet-like clusters, it becomes one of the key research topics to produce PPCs with controlled cluster sizes in a scalable manner. In this study, we used inkjet printing to pattern biogenic nanoparticles, i.e., mutant tobacco mosaic virus (TMV), with different spot sizes to support the formation of multicellular clusters by PPCs. We successfully achieved TMV particle patterns with variable features and sizes by adjusting the surface wettability and printing speed. The spot sizes of cell-adhesive TMV mutant arrays were in the range of 50-150 μm diameter. Mouse PPCs were seeded on the TMV-RGD (arginine-glycine-aspartate)-patterned polystyrene (PS) substrate, which consists of areas that either favor (TMV-RGD) or prohibit (bare PS) cell adhesion. The PPCs stably attached, proliferated on top of the TMV-RGD support, thus resulting in the formation of uniform and confluent PPC clusters. Furthermore, the aggregated PPCs also maintained their multipotency and were positive for E-cadherin, indicating that the formation of cell-cell junctions is critical for enhanced cell-cell contact.
Collapse
Affiliation(s)
- Jia Yang
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fang Zhou
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Rubo Xing
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yuan Lin
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanchun Han
- †State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunbo Teng
- §College of Life Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qian Wang
- ∥Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Hilderink J, Spijker S, Carlotti F, Lange L, Engelse M, van Blitterswijk C, de Koning E, Karperien M, van Apeldoorn A. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J Cell Mol Med 2015; 19:1836-46. [PMID: 25782016 PMCID: PMC4549034 DOI: 10.1111/jcmm.12555] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three-dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100-150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose-responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re-associated human islet cells showed an a-typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C-peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell-cell interactions between insuloma and/or primary islet cells.
Collapse
Affiliation(s)
- Janneke Hilderink
- Department of Developmental Bioengineering, University of Twente, Enschede, The Netherlands
| | - Siebe Spijker
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lydia Lange
- Department of Developmental Bioengineering, University of Twente, Enschede, The Netherlands
| | - Marten Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eelco de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Hubrecht Institute, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering, University of Twente, Enschede, The Netherlands
| | - Aart van Apeldoorn
- Department of Developmental Bioengineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
10
|
Blackstone BN, Palmer AF, Rilo HR, Powell HM. Scaffold architecture controls insulinoma clustering, viability, and insulin production. Tissue Eng Part A 2014; 20:1784-93. [PMID: 24410263 DOI: 10.1089/ten.tea.2013.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development.
Collapse
Affiliation(s)
- Britani N Blackstone
- 1 Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
11
|
Nyitray CE, Chavez MG, Desai TA. Compliant 3D microenvironment improves β-cell cluster insulin expression through mechanosensing and β-catenin signaling. Tissue Eng Part A 2014; 20:1888-95. [PMID: 24433489 DOI: 10.1089/ten.tea.2013.0692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes is chronic disease with numerous complications and currently no cure. Tissue engineering strategies have shown promise in providing a therapeutic solution, but maintenance of islet function and survival within these therapies represents a formidable challenge. The islet microenvironment may hold the key for proper islet maintenance. To elucidate the microenvironmental conditions necessary for improved islet function and survival, three-dimensional (3D) polyacrylamide cell scaffolds were fabricated with stiffnesses of 0.1 and 10 kPa to regulate the spatial and mechanical control of biosignals. Specifically, we show a significant increase in insulin mRNA expression of 3D primary mouse islet-derived and Min6-derived β-cell clusters grown on compliant 0.1 kPa scaffolds. Moreover, these compliant 0.1 kPa scaffolds also increase glucose sensitivity in Min6-derived β-cell clusters as demonstrated by the increased glucose stimulation index. Our data suggest that stiffness-specific insulin processing is regulated through the myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK) mechanosensing pathways. Additionally, β-catenin is required for regulation of stiffness-dependent insulin expression. Through activation or inhibition of β-catenin signaling, reversible control of insulin expression is achieved on the compliant 0.1 kPa and overly stiff 10 kPa substrates. Understanding the role of the microenvironment on islet function can enhance the therapeutic approaches necessary to treat diabetes for improving insulin sensitivity and response.
Collapse
Affiliation(s)
- Crystal E Nyitray
- 1 Program in Chemistry & Chemical Biology, University of California , San Francisco, San Francisco, California
| | | | | |
Collapse
|
12
|
Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. FRONT BIOSCI-LANDMRK 2014; 19:49-76. [PMID: 24389172 PMCID: PMC4230297 DOI: 10.2741/4195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications.
Collapse
Affiliation(s)
- Julien Schweicher
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Crystal Nyitray
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Tejal A. Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| |
Collapse
|