1
|
Pelclova D, Bradna P, Lischkova L, Zdimal V, Maskova L, Klusackova P, Kolesnikova V, Ondracek J, Schwarz J, Pohanka M, Navratil T, Vlckova S, Fenclova Z, Duskova J, Rossnerova A, Roubickova A. Are there Risks from Nanocomposite Restoration Grinding for Dentists? Int Dent J 2025; 75:305-313. [PMID: 39060197 PMCID: PMC11806335 DOI: 10.1016/j.identj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES To evaluate the effect of short-term inhalational exposure to nanoparticles released during dental composite grinding on oxidative stress and antioxidant capacity markers. MATERIALS AND METHODS Twenty-four healthy volunteers were examined before and after exposure in dental workshop. They spent 76.8 ± 0.7 min in the testing room during grinding of dental nanocomposites. The individual exposure to aerosol particles in each participant´s breathing zones was monitored using a personal nanoparticle sampler (PENS). Exhaled breath condensate (EBC), blood, and urine samples were collected pre- and post-exposure to measure one oxidative stress marker, i.e., thiobarbituric acid reactive substances (TBARS), and two biomarkers of antioxidant capacity, i.e., ferric-reducing antioxidant power (FRAP) and reduced glutathione (GSH) by spectrophotometry. Spirometry and fractional exhaled nitric oxide (FeNO) were used to evaluate the effect of acute inhalational exposure. RESULTS Mean mass of dental nanocomposite ground away was 0.88 ± 0.32 g. Average individual doses of respirable particles and nanoparticles measured by PENS were 380 ± 150 and 3.3 ± 1.3 μg, respectively. No significant increase of the post-exposure oxidative stress marker TBARS in EBC and plasma was seen. No decrease in antioxidant capacity biomarkers FRAP and GSH in EBC post-exposure was seen, either. Post-exposure, conjunctival hyperemia was seen in 62.5% volunteers; however, no impairment in spirometry or FeNO results was observed. No correlation of any biomarker measured with individual exposure was found, however, several correlations with interfering factors (age, body mass index, hypertension, dyslipidemia, and environmental pollution parameters) were seen. CONCLUSIONS This study, using oxidative stress biomarker and antioxidant capacity biomarkers in biological fluids of volunteers during the grinding of dental nanocomposites did not prove a negative effect of this intense short-term exposure. However, further studies are needed to evaluate oxidative stress in long-term exposure of both stomatologists and patients and diverse populations with varying health statuses.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ludmila Maskova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Schwarz
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Tomas Navratil
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Duskova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Nanotoxicology and Molecular Epidemiology, Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2025; 45:4-22. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
3
|
Simova Z, Sima M, Pelclova D, Klusackova P, Zdimal V, Schwarz J, Maskova L, Bradna P, Roubickova A, Krejcik Z, Klema J, Rossner P, Rossnerova A. Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites. Nanomedicine (Lond) 2024; 19:1511-1523. [PMID: 38953869 PMCID: PMC11321414 DOI: 10.1080/17435889.2024.2362611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.
Collapse
Affiliation(s)
- Zuzana Simova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
- Department of Genetics & Microbiology, Faculty of Science, Charles University, Vinicna 5, Prague 2128 44, Czech Republic
| | - Michal Sima
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Daniela Pelclova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Pavlina Klusackova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Ludmila Maskova
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Zdenek Krejcik
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo Namesti 13, Prague 2121 35, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| |
Collapse
|
4
|
Rossnerova A, Chvojkova I, Elzeinova F, Pelclova D, Klusackova P, Zdimal V, Ondrackova L, Bradna P, Roubickova A, Simova Z, Rossner P. Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104462. [PMID: 38710242 DOI: 10.1016/j.etap.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic.
| | - Irena Chvojkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Lucie Ondrackova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| |
Collapse
|
5
|
D’Avenio G, Daniele C, Grigioni M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1787. [PMID: 38673144 PMCID: PMC11051465 DOI: 10.3390/ma17081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Nanomaterials (NMs) are having a huge impact in several domains, including the fabrication of medical devices (MDs). Hence, nanostructured MDs are becoming quite common; nevertheless, the associated risks must be carefully considered in order to demonstrate safety prior to their immission on the market. The biological effect of NMs requires the consideration of methodological issues since already established methods for, e.g., cytotoxicity can be subject to a loss of accuracy in the presence of certain NMs. The need for oversight of MDs containing NMs is reflected by the European Regulation 2017/745 on MDs, which states that MDs incorporating or consisting of NMs are in class III, at highest risk, unless the NM is encapsulated or bound in such a manner that the potential for its internal exposure is low or negligible (Rule 19). This study addresses the role of NMs in medical devices, highlighting the current applications and considering the regulatory requirements of such products.
Collapse
Affiliation(s)
- Giuseppe D’Avenio
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy; (C.D.); (M.G.)
| | | | | |
Collapse
|
6
|
Karunakaran H, Krithikadatta J, Doble M. Local and systemic adverse effects of nanoparticles incorporated in dental materials- a critical review. Saudi Dent J 2024; 36:158-167. [PMID: 38375379 PMCID: PMC10874805 DOI: 10.1016/j.sdentj.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Nanotechnology is the science and engineering of nanoparticles whose dimensions range from 1 to 100 nm. Nanoparticles have special characteristics like increased surface area, high reactivity, and enhanced mechanical, thermal, and optical properties that make them attractive for use in dental applications. However, the use of nanoparticles in dental materials can have toxic effects on the human body. The objective of this paper is to discuss the toxic effects of various nanoparticles in dental materials, their adverse effect on human health, and measures to overcome such effects. Objectives Nanoparticles are used in the diagnosis, prevention, and treatment of oral diseases like dental caries, pulpo periodontal lesions, oral cancer, denture stomatitis, and candidiasis. Exposure to nanoparticles may occur to the dental professional, and the patient during procedures like restoration, finishing, and polishing. Such exposure to nanoparticles through inhalation, and ingestion causes toxic effects in the lungs, skin, brain, liver, and kidney. Proper risk assessment methods and preventive measures may help reduce these toxic effects to some extent. Significance Toxic effects of nanoparticles that are released during dental procedures, their route of exposure, and the concentration at which nanoparticles can induce toxic effects on the human body are discussed in detail in this review. The paper also aims to create awareness among dental professionals, students, and patients regarding nanoparticle exposure and its adverse effects, and methods to prevent and overcome these effects. Currently, it is ignored or taken lightly by the stakeholders and this review may throw light.
Collapse
Affiliation(s)
- Harini Karunakaran
- Department of Conservative Dentistry and Endodontics, SIMATS University, Chennai, India
| | | | - Mukesh Doble
- Department of Cariology, SIMATS University, Chennai, India
| |
Collapse
|
7
|
Himmelsbach S, Steinberg T, Tomakidi P, Garcia-Käufer M, Hellwig E, Polydorou O. Effect of dental composite dust on human gingival keratinocytes. Dent Mater 2023; 39:994-1003. [PMID: 37730495 DOI: 10.1016/j.dental.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The aim was to investigate the effect of particles released during grinding of dental composites on human gingival keratinocytes (HGK). METHODS Specimens from Filtek™ Supreme XTE and ceram.x® universal were prepared and ground to dust. The dust was filtered (≤ 5 µm) and the particle size distribution was examined using NANO-flex®-180° dynamic light scattering (DLS). Suspensions at five concentrations (3, 10, 30, 100 and 300 µg/mL) were prepared using keratinocyte growth medium (KGM). These suspensions, as well as a positive (CuO) and a negative control (KGM) were added to HGK. The cells treated with Filtek™ Supreme XTE suspensions were analyzed by real-time monitoring using RTCA iCELLigence™. In addition, light and scanning electron microscopic images of the exposed cells were taken. Indirect immunofluorescence staining was performed to detect the extracellular matrix protein fibronectin. RESULTS In distilled water, DLS showed similar particles' range (171.9 nm- 2.7 µm) for both composites. In saliva, larger particles were detected (Filtek™ Supreme XTE: 243 nm-6,5 µm; ceram.x® universal: 204 nm- 4,6 µm). iCELLigence™ revealed similar results of cell growth parameters for HGK incubated with composite dust (≤ 5 µm) at different concentrations. The microscopic images indicated unaltered cell structures and formation of large agglomerates with high particle concentration (> 100 µg/mL). Exposure to composite dust resulted in upregulation of fibronectin expression. SIGNIFICANCE Grinding of dental composite materials generates dust particles of different sizes. The particle size distribution seems to be more influenced by the suspending medium than the material itself. While cell growth of HGK seem not to be affected by the particles, an upregulation of fibronectin in the intercellular space concomitant by increasing particle concentration may indicate an increase of cell migration/mobility.
Collapse
Affiliation(s)
- Sabrina Himmelsbach
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Manuel Garcia-Käufer
- Department of Environmental Health Sciences and Hygiene, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115B, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Olga Polydorou
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
8
|
Tafti F, Savant S, Saraf T, Pinge S, Thorat R, Sharma V. Hazards Associated With Nanotechnology in Clinical Dentistry. Cureus 2023; 15:e46978. [PMID: 38021801 PMCID: PMC10640876 DOI: 10.7759/cureus.46978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Nanotechnology has transformed the field of dentistry with immense potential to provide comprehensive oral health care using nanomaterials, advanced clinical tools, and devices. New materials with superior properties can be developed using nanotechnology by making use of their atomic or molecular properties. Although there are numerous ways in which nanomaterials impact our health, the primary cause is that they comprise chemicals that may have an inadvertent reaction in the body. Moreover, they are used on a daily basis, increasing human contact with them. It is observed to be smaller in size than the physiological barrier in our bodies, making it much simpler for them to pass through and enter the body and they are being used more frequently. It is observed to be smaller in size than the physiological barrier in our bodies, making it much simpler for them to pass through and enter the body and being used more frequently. Although there are numerous ways in which nanomaterials impact our health, the primary cause is they comprise chemicals that may have an inadvertent reaction in the body. The review discusses various types of toxicity, including the cytotoxicity of composites, carbon nanoparticles, silver nanoparticles (SNPs), and quantum dots. It also covers genotoxicity, the effect of nanoparticles on salivary secretion, oral and gastrointestinal mucosa passage of nanoparticles, the tooth surface microenvironment, and interactions with engineered nanomaterials (ENMs). It is concluded that there is scarce information regarding the presence of chemicals that are released from nanoparticles used in dental materials. Nanotechnology is at an infant stage, although it has progressed by leaps and bounds, hailing a new age that provides better treatment modalities in various branches of dentistry. Although the development and application of nanodentistry are of considerable interest, knowledge regarding the possible toxicity of such materials must be meticulously evaluated, and potential benefits must be weighed against the risks to identify potential gaps in the safety assessment. Further research is needed on workplace exposure to nanoparticles in dentistry.
Collapse
Affiliation(s)
- Farheen Tafti
- Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Suyog Savant
- Public Health Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Tanvi Saraf
- Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sujata Pinge
- Public Health Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Rohit Thorat
- Prosthodontics, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Pune, IND
| | - Vivek Sharma
- Periodontics, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
9
|
Rathi S, Reche A, Dhamdhere N, Bolenwar A. Perspectives on the Application of Nanomaterials in Medical and Dental Practices. Cureus 2023; 15:e43565. [PMID: 37719580 PMCID: PMC10503254 DOI: 10.7759/cureus.43565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
A new field of study called nanotechnology concentrates on manipulating matter at atomic and molecular levels. Modern medicine may benefit tremendously from developments in the field of nanotechnology, and as a result, nanomedicine has emerged as a key location of education in the specific area of nanotechnology. This article aims to describe nanotechnology's possible applications in therapeutics. Nanotechnology and nanomedicine have allowed for the development of new dental materials that are stronger, more resistant to microbial seeding, etc. Other examples include high-strength denture bases, antimicrobial dental glue, aesthetic restorative materials comprised of small particles, and interface adorning for dental posts. Nanotechnology has been perfectly utilized in the medical industry for tissue engineering, biosensors, nanoscale diagnostic tools, and medication delivery using nanoparticles.
Collapse
Affiliation(s)
- Samruddhi Rathi
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nutan Dhamdhere
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akarsh Bolenwar
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Ding J, Li J, Qi J, Fu L. Characterization of dental dust particles and their pathogenicity to respiratory system: a narrative review. Clin Oral Investig 2023; 27:1815-1829. [PMID: 36773127 PMCID: PMC9918839 DOI: 10.1007/s00784-023-04910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVES Dental professionals are exposed to large amounts of dust particles during routine treatment and denture processing. This article provides a narrative review to investigate the most prevalent dust-related respiratory diseases among dental professionals and to discuss the effects of dental dust on human respiratory health. MATERIALS AND METHODS A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1990 and 2022. Any articles on the occupational respiratory health effects of dental dust were included. RESULTS The characterization and toxicity evaluation of dental dust show a correlation between dust exposure and respiratory system injury, and the possible pathogenic mechanism of dust is to cause lung injury and abnormal repair processes. The combination use of personal protective equipment and particle removal devices can effectively reduce the adverse health effects of dust exposure. CONCLUSIONS Dental dust should be considered an additional occupational hazard in dental practice. However, clinical data and scientific evidence on this topic are still scarce. Further research is required to quantify dust in the dental work environment and clarify its pathogenicity and potential toxicological pathways. Nonetheless, the prevention of dust exposure should become a consensus among dental practitioners. CLINICAL RELEVANCE This review provides dental practitioners with a comprehensive understanding and preventive advice on respiratory health problems associated with dust exposure.
Collapse
Affiliation(s)
- Jiaxin Ding
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Junxuan Li
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Junnan Qi
- grid.64924.3d0000 0004 1760 5735Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Fu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Chaoyang District, Changchun, 130021, China.
| |
Collapse
|
11
|
Tang F, Wen X, Zhang X, Qi S, Tang X, Huang J, Zhu C, Shang G, Xu Y, Cai J, Wang R. Ultrafine particles exposure is associated with specific operative procedures in a multi-chair dental clinic. Heliyon 2022; 8:e11127. [PMID: 36276750 PMCID: PMC9574865 DOI: 10.1016/j.heliyon.2022.e11127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Air quality in dental clinics is critical, especially in light of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, given that dental professionals and patients are at risk of regular exposure to aerosols and bioaerosols in dental clinics. High levels of ultrafine particles (UFP) may be produced by dental procedures. This study aimed to quantify ultrafine particles (UFP) concentrations in a real multi-chair dental clinic and compare the levels of UFP produced by different dental procedures. The efficiency of a high-volume evacuator (HVE) in reducing the UFP concentrations during dental procedures was also assessed. UFP concentrations were measured both inside and outside of a dental clinic in Shanghai, China during a 12-day period from July to September 2020. Dental activities were recorded during working hours. The mean (±standard deviation) concentrations of indoor and outdoor UFP during the sampling period were 8,209 (±4,407) counts/cm3 and 15,984 (±7,977) counts/cm3, respectively. The indoor UFP concentration was much higher during working hours (10,057 ± 5,725 counts/cm3) than during non-working hours (7,163 ± 2,972 counts/cm3). The UFP concentrations increased significantly during laser periodontal treatment, root canal filling, tooth drilling, and grinding, and were slightly elevated during ultrasonic scaling or tooth extraction by piezo-surgery. The highest UFP concentration (241,136 counts/cm3) was observed during laser periodontal treatment, followed by root canal filling (75,034 counts/cm3), which showed the second highest level. The use of an HVE resulted in lower number concentration of UFP when drilling and grinding teeth with high-speed handpieces, but did not significantly reduce UFP measured during laser periodontal therapy. we found that many dental procedures can generate high concentration of UFP in dental clinics, which may have a great health impact on the dental workers. The use of an HVE may help reduce the exposure to UFP during the use of high-speed handpieces.
Collapse
Affiliation(s)
- Fengqin Tang
- Department of Stomatology, Clinical Medical College of Shanghai Tenth Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xueyun Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Shengcai Qi
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, PR China,Department of Prosthodontics, Shanghai Stomatology Hospital, Fudan University, Shanghai, PR China
| | - Xiaoshan Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jieying Huang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Chenjie Zhu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China,Corresponding author.
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, PR China,Corresponding author.
| | - Raorao Wang
- Department of Stomatology, Clinical Medical College of Shanghai Tenth Hospital of Nanjing Medical University, Nanjing, PR China,Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China,Corresponding author.
| |
Collapse
|
12
|
Mulligan S, Hatton PV, Martin N. Resin-based composite materials: elution and pollution. Br Dent J 2022; 232:644-652. [PMID: 35562466 PMCID: PMC9106581 DOI: 10.1038/s41415-022-4241-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 11/14/2022]
Abstract
Pollution arises from all human activity and the provision of oral healthcare using resin-based composite restorative materials (RBCs) should be considered. This paper aims to provide a comprehensive review of the potential pollutant risk to the environment from the chemical compounds found in resin-based restorative materials, by including: 1) the principal pollutant compounds present in the resin matrix; 2) the degradation process of RBCs and its consequences; 3) the methods used for the detection and quantification of monomer elution and RBC microparticles; and 4) a review of the release mechanisms of eluates and RBC microparticles into the environment.RBCs are pollutants by virtue of the compounds created during the degradation processes. These are in the form of the constituent eluted monomers and microparticles. Their impact on the environment and biodiversity is unknown. These materials are currently one of the main direct-placement restorative materials and their success is unquestionable when used and maintained correctly. Mitigation strategies for reducing the impact of pollution on the environment should be considered and implemented by all stakeholders and processes in the supply chain, from manufacturing, clinical use and waste management.
Collapse
Affiliation(s)
- Steven Mulligan
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK
| | - Paul V Hatton
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK
| | - Nicolas Martin
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
13
|
Blackley BH, Anderson KR, Panagakos F, Chipps T, Virji MA. Efficacy of dental evacuation systems for aerosol exposure mitigation in dental clinic settings. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:281-294. [PMID: 35289720 PMCID: PMC9365099 DOI: 10.1080/15459624.2022.2053140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dental personnel are ranked among the highest risk occupations for exposure to SARS-CoV-2 due to their close proximity to the patient's mouth and many aerosol generating procedures encountered in dental practice. One method to reduce aerosols in dental settings is the use of intraoral evacuation systems. Intraoral evacuation systems are placed directly into a patient's mouth and maintain a dry field during procedures by capturing liquid and aerosols. Although multiple intraoral dental evacuation systems are commercially available, the efficacy of these systems is not well understood. The objectives of this study were to evaluate the efficacy of four dental evacuation systems at mitigating aerosol exposures during simulated ultrasonic scaling and crown preparation procedures. We conducted real-time respirable (PM4) and thoracic (PM10) aerosol sampling during ultrasonic scaling and crown preparation procedures while using four commercially available evacuation systems: a high-volume evacuator (HVE) and three alternative intraoral systems (A, B, C). Four trials were conducted for each system. Respirable and thoracic mass concentrations were measured during procedures at three locations including (1) near the breathing zone (BZ) of the dentist, (2) edge of the dental operatory room approximately 0.9 m away from the mannequin mouth, and (3) hallway supply cabinet located approximately 1.5 m away from the mannequin mouth. Respirable and thoracic mass concentrations measured during each procedure were compared with background concentrations measured in each respective location. Use of System A or HVE reduced thoracic (System A) and respirable (HVE) mass concentrations near the dentist's BZ to median background concentrations most often during the ultrasonic scaling procedure. During the crown preparation, use of System B or HVE reduced thoracic (System B) and respirable (HVE or System B) near the dentist's BZ to median background concentrations most often. Although some differences in efficacy were noted during each procedure and aerosol size fraction, the difference in median mass concentrations among evacuation systems was minimal, ranging from 0.01 to 1.48 µg/m3 across both procedures and aerosol size fractions.
Collapse
Affiliation(s)
- Brie Hawley Blackley
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Kimberly R. Anderson
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Fotinos Panagakos
- School of Dentistry, West Virginia University, Morgantown, West Virginia
| | - Tammy Chipps
- School of Dentistry, West Virginia University, Morgantown, West Virginia
| | - M. Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
14
|
Wang Q, Zhang Y, Li Q, Chen L, Liu H, Ding M, Dong H, Mou Y. Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry. Int J Nanomedicine 2022; 17:443-462. [PMID: 35115777 PMCID: PMC8805846 DOI: 10.2147/ijn.s349238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Microbial infection accounts for many dental diseases and treatment failure. Therefore, the antibacterial properties of dental biomaterials are of great importance to the long-term results of treatment. Silver-based biomaterials (AgBMs) have been widely researched as antimicrobial materials with high efficiency and relatively low toxicity. AgBMs have a broad spectrum of antimicrobial properties, including penetration of microbial cell membranes, damage to genetic material, contact killing, and dysfunction of bacterial proteins and enzymes. In particular, advances in nanotechnology have improved the application value of AgBMs. Hence, in many subspecialties of dentistry, AgBMs have been researched and employed, such as caries arresting or prevention, root canal sterilization, periodontal plaque inhibition, additives in dentures, coating of implants and anti-inflammatory material in oral and maxillofacial surgery. This paper aims to provide an overview of the application approaches of AgBMs in dentistry and present better guidance for oral antimicrobial therapy via the development of AgBMs.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yu Zhang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Li Chen
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Hui Liu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
15
|
Cazzagon V, Giubilato E, Pizzol L, Ravagli C, Doumett S, Baldi G, Blosi M, Brunelli A, Fito C, Huertas F, Marcomini A, Semenzin E, Zabeo A, Zanoni I, Hristozov D. Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System. NANOIMPACT 2022; 25:100373. [PMID: 35559879 DOI: 10.1016/j.impact.2021.100373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties.
Collapse
Affiliation(s)
- V Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy; GreenDecision S.r.l., 30170 Venice Mestre, Italy.
| | - L Pizzol
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - C Ravagli
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - S Doumett
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - G Baldi
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - M Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - A Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - C Fito
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - F Huertas
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - A Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - A Zabeo
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - I Zanoni
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - D Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy.
| |
Collapse
|
16
|
In Situ Measurement of Airborne Particle Concentration in a Real Dental Office: Implications for Disease Transmission. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178955. [PMID: 34501544 PMCID: PMC8431666 DOI: 10.3390/ijerph18178955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023]
Abstract
Aerosols generated during dental procedures are one of the most significant routes for infection transmission and are particularly relevant now in the context of COVID-19 pandemic. This study aimed to assess the effectiveness of an indoor air purifier on dental aerosol dispersion in dental offices. The spread and removal of aerosol particles generated from a specific dental operation in a dental office are quantified for a single dental activity in the area near the generation and corner of the office. The effects of the air purifier, door condition, and particle sizes on the spread and removal of particles were investigated. The results show that, in the worst-case scenario, it takes 95 min for 0.5-μm particles to settle and that it takes a shorter time for the larger particles. The air purifier expedited the removal time at least 6.3 times faster than the case with no air purifier in the generation zone. Our results also indicate that particles may be transported from the source to the rest of the room even when the particle concentrations in the generation zone dropped back to the background. Therefore, it is inaccurate to conclude that indoor purifiers help reduce the transmission of COVID-19. Dental offices still need other methods to reduce the transmission of viruses.
Collapse
|
17
|
Mulligan S, Ojeda JJ, Kakonyi G, Thornton SF, Moharamzadeh K, Martin N. Characterisation of Microparticle Waste from Dental Resin-Based Composites. MATERIALS 2021; 14:ma14164440. [PMID: 34442963 PMCID: PMC8402022 DOI: 10.3390/ma14164440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Clinical applications of resin-based composite (RBC) generate environmental pollution in the form of microparticulate waste. Methods: SEM, particle size and specific surface area analysis, FT-IR and potentiometric titrations were used to characterise microparticles arising from grinding commercial and control RBCs as a function of time, at time of generation and after 12 months ageing in water. The RBCs were tested in two states: (i) direct-placement materials polymerised to simulate routine clinical use and (ii) pre-polymerised CAD/CAM ingots milled using CAD/CAM technology. Results: The maximum specific surface area of the direct-placement commercial RBC was seen after 360 s of agitation and was 1290 m2/kg compared with 1017 m2/kg for the control material. The median diameter of the direct-placement commercial RBC was 6.39 μm at 360 s agitation and 9.55 μm for the control material. FTIR analysis confirmed that microparticles were sufficiently unique to be identified after 12 months ageing and consistent alteration of the outermost surfaces of particles was observed. Protonation-deprotonation behaviour and the pH of zero proton charge (pHzpc) ≈ 5–6 indicated that the particles are negatively charged at neutral pH7. Conclusion: The large surface area of RBC microparticles allows elution of constituent monomers with potential environmental impacts. Characterisation of this waste is key to understanding potential mitigation strategies.
Collapse
Affiliation(s)
- Steven Mulligan
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, Claremont Crescent, The University of Sheffield, Sheffield S10 2TA, UK;
- Correspondence:
| | - Jesús J. Ojeda
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK;
| | - Gabriella Kakonyi
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, The University of Sheffield, Sheffield S1 3JD, UK; (G.K.); (S.F.T.)
| | - Steven F. Thornton
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, The University of Sheffield, Sheffield S1 3JD, UK; (G.K.); (S.F.T.)
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates;
| | - Nicolas Martin
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, Claremont Crescent, The University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
18
|
Reidelbach C, Garcia-Käufer M, Wingert N, Arif A, Vach K, Hellwig E, Gminski R, Polydorou O. Cytotoxicity and estrogenicity in simulated dental wastewater after grinding of resin-based materials. Dent Mater 2021; 37:1486-1497. [PMID: 34376295 DOI: 10.1016/j.dental.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study evaluated the cytotoxic and estrogenic effects of dust and eluates released into simulated wastewater after grinding of dental resin-based materials. METHODS Four materials were used: ceram.x® universal, Filtek™ Supreme XTE, Lava™ Ultimate and Core-X™ flow. From each composite material, samples (5 × 2 mm, n = 50) were prepared according to the manufacturers' instructions. Lava™ Ultimate was used as blocks. All samples were ground to dust with a diamond bur (106 μm) and suspended in distilled water at 60 mg/mL. After storage for 72 h, the suspensions were separated into a soluble (eluate) and a particulate (dust) fraction. Eluates and dusts were evaluated for inhibition of Vibrio fischeri bioluminescence and cytotoxicity on human A549 lung cells (WST-1-Assay). The estrogenic activity was assessed by YES-Assay using Saccharomyces cerevisiae. Additionally, dental monomers (BisGMA, BisEMA, UDMA, TEGDMA, HEMA) and Bisphenol A were investigated. RESULTS All eluates showed inhibition of V. fischeri bioluminescence at concentrations above 1.1 mg/mL (p < 0.05). The activity of the eluates of ceram.x® universal and Filtek™ Supreme XTE was significantly higher than Lava™ Ultimate and Core-X™ flow (p < 0.05). In the WST-1-Assay, all materials induced cytotoxic effects at concentrations of 0.1 mg/mL (p < 0.05), while no significant differences were detected among them. The tested materials revealed no estrogenic activity. All dental monomers and Bisphenol A showed concentration dependent cytotoxic effects (p < 0.05), whereas only Bisphenol A induced an estrogenic effect (p < 0.01). SIGNIFICANCE Dust and eluates of resin-based dental materials released into wastewater exert bactericidal and cytotoxic effects in vitro. However, they reveal no estrogenic effect.
Collapse
Affiliation(s)
- C Reidelbach
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - M Garcia-Käufer
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - N Wingert
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - A Arif
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - K Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Stefan-Meier-Straße 26, 79104 Freiburg, Germany
| | - E Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - R Gminski
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115b, 79106 Freiburg, Germany
| | - O Polydorou
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
19
|
Chatoutsidou SE, Saridaki A, Raisi L, Katsivela E, Tsiamis G, Zografakis M, Lazaridis M. Airborne particles and microorganisms in a dental clinic: Variability of indoor concentrations, impact of dental procedures, and personal exposure during everyday practice. INDOOR AIR 2021; 31:1164-1177. [PMID: 34080742 DOI: 10.1111/ina.12820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
This study presents for the first time comprehensive measurements of the particle number size distribution (10 nm to 10 μm) together with next-generation sequencing analysis of airborne bacteria inside a dental clinic. A substantial enrichment of the indoor environment with new particles in all size classes was identified by both activities to background and indoor/outdoor (I/O) ratios. Grinding and drilling were the principal dental activities to produce new particles in the air, closely followed by polishing. Illumina MiSeq sequencing of 16S rRNA of bioaerosol collected indoors revealed the presence of 86 bacterial genera, 26 of them previously characterized as potential human pathogens. Bacterial species richness and concentration determined both by qPCR, and culture-dependent analysis were significantly higher in the treatment room. Bacterial load of the treatment room impacted in the nearby waiting room where no dental procedures took place. I/O ratio of bacterial concentration in the treatment room followed the fluctuation of I/O ratio of airborne particles in the biology-relevant size classes of 1-2.5, 2.5-5, and 5-10 μm. Exposure analysis revealed increased inhaled number of particles and microorganisms during dental procedures. These findings provide a detailed insight on airborne particles of both biotic and abiotic origin in a dental clinic.
Collapse
Affiliation(s)
| | - Aggeliki Saridaki
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Louiza Raisi
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - Eleftheria Katsivela
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
20
|
Pop D, Buzatu R, Moacă EA, Watz CG, Cîntă Pînzaru S, Barbu Tudoran L, Nekvapil F, Avram Ș, Dehelean CA, Crețu MO, Nicolov M, Szuhanek C, Jivănescu A. Development and Characterization of Fe 3O 4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3556. [PMID: 34202095 PMCID: PMC8269588 DOI: 10.3390/ma14133556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)-relevant cell lines of buccal oral mucosa. In this regard, the objectives of this study were as follows: (i) development via combustion method and characterization of nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in terms of phase composition, chemical structure, and polymorphic and molecular interactions of the chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed. Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited area on the chorioallantoic membrane of the chick embryo.
Collapse
Affiliation(s)
- Daniel Pop
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Marius Octavian Crețu
- Department of Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Revolutiei Ave. 1989, No. 9, RO-300041 Timisoara, Romania;
| | - Anca Jivănescu
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| |
Collapse
|
21
|
Camassa LMA, Ervik TK, Zegeye FD, Mdala I, Valen H, Ansteinsson V, Zienolddiny S. Characterization and toxicity evaluation of air-borne particles released by grinding from two dental resin composites in vitro. Dent Mater 2021; 37:1121-1133. [PMID: 33846018 DOI: 10.1016/j.dental.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The project aims to evaluate whether inhalation of particles released upon grinding of dental composites may pose a health hazard to dentists. The main objective of the study was to characterize the dust from polymer-based dental composites ground with different grain sized burs and investigate particle uptake and the potential cytotoxic effects in human bronchial cells. METHODS Polymerized blocks of two dental composites, Filtek™ Z250 and Filtek™ Z500 from 3M™ ESPE, were ground with super coarse (black) and fine (red) burs inside a glass chamber. Ultrafine airborne dust concentration and particle size distribution was measured real-time during grinding with a scanning mobility particle sizer (SMPS). Filter-collected airborne particles were characterized with dynamic light scattering (DLS) and scanning electron microscopy (SEM). Human bronchial epithelial cells (HBEC-3KT) were exposed to the dusts in dose-effect experiments. Toxicity was measured with lactate dehydrogenase (LDH) assay and cell counting kit-8 (CCK8). Cellular uptake was observed with transmission electron microscopy (TEM). RESULTS Airborne ultrafine particles showed that most particles were in the size range 15-35 nm (SMPS). SEM analysis proved that more than 80% of the particles have a minimum Feret diameter less than 1 μm. In solution (DLS), the particles have larger diameters and tend to agglomerate. Cell toxicity (LDH, CCK8) is shown after 48 h and 72 h exposure times and at the highest doses. TEM showed presence of the particles within the cell cytoplasm. SIGNIFICANCE Prolonged and frequent exposure through inhalation may have negative health implications for dentists.
Collapse
Affiliation(s)
- L M A Camassa
- National Institute of Occupational Health, Oslo, Norway
| | - T K Ervik
- National Institute of Occupational Health, Oslo, Norway
| | - F D Zegeye
- National Institute of Occupational Health, Oslo, Norway
| | - I Mdala
- Institute of Health and Society, University of Oslo, Oslo, Norway; Oral Health Centres of Expertise in Eastern Norway, Oslo, Norway
| | - H Valen
- Nordic Institute of Dental Materials, Oslo, Norway
| | - V Ansteinsson
- Oral Health Centres of Expertise in Eastern Norway, Oslo, Norway
| | - S Zienolddiny
- National Institute of Occupational Health, Oslo, Norway.
| |
Collapse
|
22
|
Din AR, Hindocha A, Patel T, Sudarshan S, Cagney N, Koched A, Mueller JD, Seoudi N, Morgan C, Shahdad S, Fleming PS. Quantitative analysis of particulate matter release during orthodontic procedures: a pilot study. Br Dent J 2020:10.1038/s41415-020-2280-5. [PMID: 33184480 PMCID: PMC7658615 DOI: 10.1038/s41415-020-2280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction Transmission of SARS-CoV-2 through aerosol has been suggested, particularly in the presence of highly concentrated aerosols in enclosed environments. It is accepted that aerosols are produced during a range of dental procedures, posing potential risks to both dental practitioners and patients. There has been little agreement concerning aerosol transmission associated with orthodontics and associated mitigation.Methods Orthodontic procedures were simulated in a closed side-surgery using a dental manikin on an acrylic model using composite-based adhesive. Adhesive removal representing debonding was undertaken using a 1:1 contra-angle handpiece (W&H Synea Vision WK-56 LT, Bürmoos, Austria) and fast handpiece with variation in air and water flow. The removal of acid etch was also simulated with the use of combined 3-in-1 air-water syringe. An optical particle sizer (OPS 3330, TSI Inc., Minnesota, USA) and a portable scanning mobility particle sizer (NanoScan SMPS Nanoparticle Sizer 3910, TSI Inc., Minnesota, USA) were both used to assess particulate matter ranging in dimension from 0.08 to 10 μm.Results Standard debonding procedure (involving air but no water) was associated with clear increase in the 'very small' and 'small' (0.26-0.9 μm) particles but only for a short period. Debonding procedures without supplementary air coolant appeared to produce similar levels of aerosol to standard debonding. Debonding in association with water tended to produce large increases in aerosol levels, producing particles of all sizes throughout the experiment. The use of water and a fast handpiece led to the most significant increase in particles. Combined use of the 3-in-1 air-water syringe did not result in any detectable increase in the aerosol levels.Conclusions Particulate matter was released during orthodontic debonding, although the concentration and volume was markedly less than that associated with the use of a fast handpiece. No increase in particulates was associated with prolonged use of a 3-in-1 air-water syringe. Particulate levels reduced to baseline levels over a short period (approximately five minutes). Further research within alternative, open environments and without air exchange systems is required.
Collapse
Affiliation(s)
- Ahmed Riaz Din
- Barts Health NHS Trust, Orthodontic Department, The Royal London Dental Hospital, Turner Street, London, E1 1DE, UK
| | - Annika Hindocha
- Restorative Dentistry, The Royal London Dental Institute, Whitechapel Road, London, E1 1BB, UK
| | - Tulsi Patel
- Restorative Dentistry, The Royal London Dental Institute, Whitechapel Road, London, E1 1BB, UK
| | - Sanjana Sudarshan
- Paediatric Dentistry Department, Royal London Dental Hospital, Barts Health NHS Trust, Turner Street, London, E1 1DE, UK
| | - Neil Cagney
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, London, E1 4NS, UK
| | | | - Jens-Dominik Mueller
- Paediatric Dentistry Department, Royal London Dental Hospital, Barts Health NHS Trust, Turner Street, London, E1 1DE, UK
| | - Noha Seoudi
- Oral Microbiology, Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London, London, E1 2AD, UK
| | - Claire Morgan
- Restorative Dentistry, The Royal London Dental Hospital, Turner Street, London, E1 1DE, UK
| | - Shakeel Shahdad
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Institute of Dentistry, Turner Street, London, E1 1DE, UK
| | - Padhraig S Fleming
- Barts and The London School of Medicine and Dentistry, Orthodontics, Institute of Dentistry, Queen Mary University of London, London, E1 2AD, UK.
| |
Collapse
|
23
|
Stoeva I. Respiratory symptoms of exposure to substances in the workplace among Bulgarian dentists. Community Dent Oral Epidemiol 2020; 49:128-135. [PMID: 33104273 DOI: 10.1111/cdoe.12584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Dentists are exposed to a variety of airborne chemicals that can act as irritants and sensitizers and may give rise to work-related respiratory symptoms. The aim of this study was to estimate the prevalence of respiratory symptoms of exposure to substances in the workplace and associated risk factors in Bulgarian dentists. METHODS A cross-sectional study was performed among Bulgarian dentists by using a self-report questionnaire. A direct acyclic graph (DAG) was elaborated to illustrate the direct and indirect causal pathways between exposure to irritants and/or allergens from dental environment and work-related respiratory symptoms among dentists. Multiple logistic regression analysis was conducted in order to investigate the relationship between sex, work experience, daily exposure to chemicals from dental environment, history of atopic disorder and work-related respiratory symptoms. RESULTS A total of 4675 dentists completed the questionnaire (response rate 48.1%). The prevalence of self-reported work-related respiratory symptoms was 20.7%. The most common repeated causes of respiratory reactions were disinfectants (65.7%) and materials based on acrylic resins (29.7%). Factors associated with work-related respiratory symptoms are personal history of asthma (odds ratio (OR) 2.50, 95% confidence interval [CI]: 1.71-3.64), work experience >20 years (OR 2.17, 95% CI: 1.74-2.70) and female gender (OR 2.14, 95% CI: 1.81-2.56). CONCLUSION Work-related respiratory symptoms are frequent among dentists and indicate a need for efforts to establish effective programmes and techniques of reducing or eliminating direct exposure to airborne chemicals in the dental environment.
Collapse
Affiliation(s)
- Iliyana Stoeva
- Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Giubilato E, Cazzagon V, Amorim MJB, Blosi M, Bouillard J, Bouwmeester H, Costa AL, Fadeel B, Fernandes TF, Fito C, Hauser M, Marcomini A, Nowack B, Pizzol L, Powell L, Prina-Mello A, Sarimveis H, Scott-Fordsmand JJ, Semenzin E, Stahlmecke B, Stone V, Vignes A, Wilkins T, Zabeo A, Tran L, Hristozov D. Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4532. [PMID: 33066064 PMCID: PMC7601697 DOI: 10.3390/ma13204532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.
Collapse
Affiliation(s)
- Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Mónica J. B. Amorim
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Jacques Bouillard
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, 6708 WE Wageningen, The Netherlands;
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Carlos Fito
- Instituto Tecnologico del Embalaje, Transporte y Logistica, 46980 Paterna-Valencia, Spain;
| | - Marina Hauser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Lisa Pizzol
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Leagh Powell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin 8, Ireland;
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | | | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | | | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Alexis Vignes
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Terry Wilkins
- Nanomanufacturing Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Alex Zabeo
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK;
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| |
Collapse
|
25
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
26
|
Agnihotri R, Gaur S, Albin S. Nanometals in Dentistry: Applications and Toxicological Implications-a Systematic Review. Biol Trace Elem Res 2020; 197:70-88. [PMID: 31782063 DOI: 10.1007/s12011-019-01986-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
Abstract
Nanotechnology is a vital part of health care system, including the dentistry. This branch of technology has been incorporated into various fields of dentistry ranging from diagnosis to prevention and treatment. The latter involves application of numerous biomaterials that help in restoration of esthetic and functional dentition. Over the past decade, these materials were modified through the incorporation of metal nanoparticles (NP) like silver (Ag), gold (Au), titanium (Ti), zinc (Zn), copper (Cu), and zirconia (Zr). They enhanced antimicrobial, mechanical, and regenerative properties of these materials. However, lately, the toxicological implications of these nanometal particles have been realized. They were associated with cytotoxicity, genotoxicity altered inflammatory processes, and reticuloendothelial system toxicity. As dental biomaterials containing metal NPs remain functional in oral cavity over prolonged periods, it is important to know their toxicological effects in humans. With this background, the present systematic review is aimed to gain an insight into the plausible applications and toxic implications of nano-metal particles as related to dentistry.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Sacharia Albin
- Engineering Department, Norfolk State University, Norfolk, VA, 23504, USA
| |
Collapse
|
27
|
Eliades T, Koletsi D. Minimizing the aerosol-generating procedures in orthodontics in the era of a pandemic: Current evidence on the reduction of hazardous effects for the treatment team and patients. Am J Orthod Dentofacial Orthop 2020; 158:330-342. [PMID: 32682661 PMCID: PMC7364170 DOI: 10.1016/j.ajodo.2020.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this critical review is to list the sources of aerosol production during orthodontic standard procedure, analyze the constituent components of aerosol and their dependency on modes of grinding, the presence of water and type of bur, and suggest a method to minimize the quantity and detrimental characteristics of the particles comprising the solid matter of aerosol. Minimization of water-spray syringe utilization for rinsing is suggested on bonding related procedures, while temporal conditions as represented by seasonal epidemics should be considered for the decision of intervention scheme provided as a preprocedural mouth rinse, in an attempt to reduce the load of aerosolized pathogens. In normal conditions, chlorhexidine 0.2%, preferably under elevated temperature state should be prioritized for reducing bacterial counts. In the presence of oxidation vulnerable viruses within the community, substitute strategies might be represented by the use of povidone iodine 0.2%-1%, or hydrogen peroxide 1%. After debonding, extensive material grinding, as well as aligner related attachment clean-up, should involve the use of carbide tungsten burs under water cooling conditions for cutting efficiency enhancement, duration restriction of the procedure, as well as reduction of aerosolized nanoparticles. In this respect, selection strategies of malocclusions eligible for aligner treatment should be reconsidered and future perspectives may entail careful and more restricted utilization of attachment grips. For more limited clean-up procedures, such as grinding of minimal amounts of adhesive remnants, or individualized bracket debonding in the course of treatment, hand-instruments for remnant removal might well represent an effective strategy. Efforts to minimize the use of rotary instrumentation in orthodontic settings might also lead the way for future solutions. Measures of self-protection for the treatment team should never be neglected. Dressing gowns and facemasks with filter protection layers, appropriate ventilation and fresh air flow within the operating room comprise significant links to the overall picture of practice management. Risk management considerations should be constant, but also updated as new material applications come into play, while being grounded on the best available evidence.
Collapse
Affiliation(s)
- Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | - Despina Koletsi
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Manigrasso M, Protano C, Vitali M, Avino P. Where Do Ultrafine Particles and Nano-Sized Particles Come From? J Alzheimers Dis 2020; 68:1371-1390. [PMID: 31006689 DOI: 10.3233/jad-181266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper presents an overview of the literature studies on the sources of ultrafine particles (UFPs), nanomaterials (NMs), and nanoparticles (NPs) occurring in indoor (occupational and residential) and outdoor environments. Information on the relevant emission factors, particle concentrations, size, and compositions is provided, and health relevance of UFPs and NPs is discussed. Particular attention is focused on the fraction of particles that upon inhalation deposit on the olfactory bulb, because these particles can possibly translocate to brain and their possible role in neurodegenerative diseases is an important issue emerging in the recent literature.
Collapse
Affiliation(s)
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy
| |
Collapse
|
29
|
Iliadi A, Koletsi D, Eliades T, Eliades G. Particulate Production and Composite Dust during Routine Dental Procedures. A Systematic Review with Meta-Analyses. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2513. [PMID: 32486443 PMCID: PMC7321425 DOI: 10.3390/ma13112513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Composite dust generation is most likely a continuous and daily procedure in dental practice settings. The aim of this systematic review was to identify, compile and evaluate existing evidence on interventions and composite material properties related to the production of aerosolized dust during routine dental procedures. Seven electronic databases were searched, with no limits, supplemented by a manual search, on 27 April 2020 for published and unpublished research. Eligibility criteria comprised of studies of any design, describing composite dust production related to the implementation of any procedure in dental practice. Study selection, data extraction and risk of bias (RoB) assessment was undertaken independently either in duplicate, or confirmed by a second reviewer. Random effects meta-analyses of standardized mean differences (SMD) with associated 95% confidence intervals (CIs) were employed where applicable. A total of 375 articles were initially identified, resulting in 13 articles being included in the qualitative synthesis, of which 5 contributed to meta-analyses overall. Risk of bias recordings ranged between low and high, pertaining to unclear/raising some concerns, in most cases. All types of composites, irrespective of the filler particles, released significant amounts of nano-sized particles after being ground, with potentially disruptive respiratory effects. Evidence supported increased % distribution of particles < 100 nm for nanocomposite Filtek Supreme XTE compared to both conventional hybrid Z100MP (SMD: 1.96, 95% CI: 0.85, 3.07; p-value; 0.001) and nano- hybrid Tetric EvoCeram (SMD: 1.62, 95% CI: 0.56, 2.68; p-value: 0.003). For cytotoxicity considerations of generated aerosolized particles, both nanocomposites Filtek Supreme XTE and nanohybrid GradiO revealed negative effects on bronchial epithelial cell viability, as represented by % formazan reduction at 330-400 μg/ml for 24 hours, with no recorded differences between them (SMD: 0.19; 95% CI: -0.17, 0.55; p-value: 0.30). Effective and more rigorous management of dental procedures potentially liable to the generation of considerable amounts of aerosolized composite dust should be prioritized in contemporary dental practice. In essence, protective measures for the clinician and the practices' personnel should also be systematically promoted and additional interventions may be considered in view of the existing evidence.
Collapse
Affiliation(s)
- Anna Iliadi
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.I.); (G.E.)
| | - Despina Koletsi
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.I.); (G.E.)
| |
Collapse
|
30
|
Breul S, Van Landuyt KL, Reichl FX, Högg C, Hoet P, Godderis L, Van Meerbeek B, Cokic SM. Filtration efficiency of surgical and FFP3 masks against composite dust. Eur J Oral Sci 2020; 128:233-240. [DOI: 10.1111/eos.12697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Sebastian Breul
- Department of Conservative Dentistry and Periodontology University Hospital LMU Munich Munich Germany
| | - Kirsten L. Van Landuyt
- Department of Oral Health Sciences BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry KU Leuven (University of Leuven) Leuven Belgium
| | - Franz X. Reichl
- Department of Conservative Dentistry and Periodontology University Hospital LMU Munich Munich Germany
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology University Hospital LMU Munich Munich Germany
| | - Peter Hoet
- Centre for Environmental and Health Department of Public Health and Primary Care KU Leuven (University of Leuven) Leuven Belgium
| | - Lode Godderis
- Centre for Environmental and Health Department of Public Health and Primary Care KU Leuven (University of Leuven) Leuven Belgium
- External Service for Prevention and Protection at Work IDEWE Heverlee Belgium
| | - Bart Van Meerbeek
- Department of Oral Health Sciences BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry KU Leuven (University of Leuven) Leuven Belgium
| | - Stevan M. Cokic
- Department of Oral Health Sciences BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry KU Leuven (University of Leuven) Leuven Belgium
| |
Collapse
|
31
|
Cokic SM, Ghosh M, Hoet P, Godderis L, Van Meerbeek B, Van Landuyt KL. Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells. Dent Mater 2019; 36:270-283. [PMID: 31852585 DOI: 10.1016/j.dental.2019.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/30/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the cytotoxic and genotoxic potential of the respirable fraction of composite dust (<4 μm) on human bronchial epithelial cells. METHODS Composite sticks of three commercial dental composites (Filtek Supreme XTE, Grandio, Transbond XT) were ground in an enclosed plexiglass chamber with a rough dental bur (grain-size 100 μm) and the generated airborne respirable dust was collected in a personal cyclone on a teflon filter (pore size 5 μm). Immediately after particle collection, the dust was quantified gravimetrically and the particles were suspended in cell culturing medium. Next, human bronchial epithelial cells (16HBE14o-) were exposed to the suspensions (3 μg/ml-400 μg/ml). After 24 h, cell viability (WST-1 assay) and membrane integrity (LDH assay) were evaluated. Furthermore, the genotoxic effect of a sub-cytotoxic concentration (50 μg/ml) of composite dust was evaluated by the comet assay after 3 h exposure and cell cycle disturbances were analyzed by flow cytometry. Cellular uptake of particles was evaluated by transmission electronic microscope (TEM). RESULTS For all three tested composite materials, a decrease in metabolic activity of 10-35% was observed when the cells were exposed to the highest concentrations (100 μg/ml-400 μg/ml). Toxicity was partially linked to membrane disruption especially after 72 h exposure. All tested composites provoked a mild genotoxic effect after short-term exposure compared to the control groups. TEM revealed that respirable particles of all tested composites were taken up by the cells. SIGNIFICANCE The respirable fraction of composite dust only showed cytotoxic effects at the highest concentrations, whereas mild genotoxicity was observed after exposure to a sub-cytotoxic concentration.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven (University of Leuven), Kapucijnenvoer 35/5, 3000 Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven (University of Leuven), Kapucijnenvoer 35/5, 3000 Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven (University of Leuven), Kapucijnenvoer 35/5, 3000 Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Interleuvenlaan 58, B-3001 Heverlee, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Cokic SM, Asbach C, De Munck J, Van Meerbeek B, Hoet P, Seo JW, Van Landuyt KL. The effect of water spray on the release of composite nano-dust. Clin Oral Investig 2019; 24:2403-2414. [PMID: 31811493 DOI: 10.1007/s00784-019-03100-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the collection efficiency of water spray on the release of airborne composite particles during grinding of composite materials. MATERIALS AND METHODS Composite sticks (L:35 mm × W:5.4 mm × H:1.6 mm) of seven commercial dental composites were ground with a rough diamond bur (grain size 100 μm, speed 200,000 rpm). All experiments were performed in an enclosed 1-m3 chamber with low particulate background (< 1,000 #/cm3), and airborne particles were evaluated based on their electrical mobility. The number size distribution was determined by scanning mobility particle sizer (SMPS). Particles were collected by an electrostatic precipitator (ESP), and were ultramorphologically and chemically analyzed by a transmission electron microscope equipped with energy-dispersive X-ray spectroscopy (TEM-EDS). RESULTS SMPS measurements confirmed that both dry and wet grinding generated high concentrations of nanoparticles particles with the highest concentration recorded during the last minute of grinding (1.80 × 106 - 3.29 × 106#/cm3), after which a gradual decline in particle concentration took place. Nevertheless, grinding with water spray resulted in a significant reduction of the number of released particles (5.6 × 105 - 1.37 × 106#/cm3). The smallest particle diameter was recorded during the last minute of grinding followed by a continuous growth for every next measurement. TEM of composite dust revealed a high concentration of particles varying in both size and shape. CONCLUSIONS Regardless of whether the water cooling spray system was used during bur manipulation of composite materials, predominately nanoparticles were released. However, the particle concentrations were significantly decreased with water spray. CLINICAL RELEVANCE Since water spray might not be sufficient in nanoparticle collection, special care should be taken to prevent inhalation of composite dust.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Christof Asbach
- Institute of Energy and Environmental Technology (IUTA) e.V., Bliersheimer Straße 60, 47229, Duisburg, Germany
| | - Jan De Munck
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven (University of Leuven), Kapucijnenvoer 35/5, 3000, Leuven, Belgium
| | - Jin Won Seo
- Surface and Interface Engineered Materials, Department of Materials Engineering, KU Leuven (University of Leuven), Kasteelpark Arenberg 44, 3001, Heverlee, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium.
| |
Collapse
|
33
|
Liu MH, Chen CT, Chuang LC, Lin WM, Wan GH. Removal efficiency of central vacuum system and protective masks to suspended particles from dental treatment. PLoS One 2019; 14:e0225644. [PMID: 31770413 PMCID: PMC6879156 DOI: 10.1371/journal.pone.0225644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND High levels of suspended particulate matters (PMs) and bioaerosols are created by dental procedures. The present study aimed to evaluate the size and concentration of PMs produced by drilling and grinding teeth, and to assess the efficiency of central vacuum system and protective masks for the removal of PMs. METHODS A total of 20 extracted permanent teeth were collected. A novel experimental system and particle counter were used to evaluate the PMs produced by dental procedures and the PM removal efficiency of a central vacuum system and surgical/N95 masks. RESULTS The number concentration of total PMs produced by drilling and grinding teeth was significantly higher than the indoor background concentration. The average aerodynamic diameter of particle was generally less than 1 μm. The average number concentration of ultrafine particles was 2.1x1011 particles/m3 during tooth drilling and grinding. The efficiency of the central vacuum system was 35.74% for PM≥0.5 and 35.41% for PM10. For PM≥0.5, the ratios of inside and outside masks were 0.8-1.34 without vacuum and 1.18-1.36 with vacuum. No difference was found with the use of surgical/N95 masks during dental therapy, with or without vacuum use. CONCLUSIONS High levels of PMs were found during tooth drilling and grinding procedures, especially among PM1. The PM removal efficiency of a central vacuum system and surgical/N95 masks were limited.
Collapse
Affiliation(s)
- Ming-Hui Liu
- Department of Pediatric Dentistry, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Tsung Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Chuan Chuang
- Department of Pediatric Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Ming Lin
- Department of General Practice Dentistry, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Obstetrics and Gynaecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Nilsen BW, Jensen E, Örtengren U, Bang B, Michelsen VB. Airborne exposure to gaseous and particle-associated organic substances in resin-based dental materials during restorative procedures. Eur J Oral Sci 2019; 127:425-434. [PMID: 31313386 DOI: 10.1111/eos.12646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Dental composite dust has been shown to act as a vehicle for methacrylates in vivo/in vitro. The objective of this study was to assess airborne exposure of dental personnel to gaseous and particle-associated organic constituents from resin-based dental materials in a simulated clinic. Sampling of total aerosol fractions and gaseous substances was performed by dental students carrying particle filters and gas sorbents attached to a personal pump during preclinical restorative procedures in phantom models (n = 13). Water from the phantoms was sampled. Organic substances were extracted from the sampled water, particle filters, and gas sorbents. Qualitative and quantitative analyses were performed by gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The methacrylates 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) and the additives camphorquinone (CQ), butylated hydroxytoluene (BHT), and ethyl 4-(dimethylamino)benzoate (DMABEE), were quantified in the gas and particle fractions sampled. A positive-control experiment was conducted. No methacrylates were detected in the gas or particle fractions sampled, whereas strong signals for methacrylates were detected in the positive controls, matching the analysis of the uncured material. In addition, TEGDMA and DMABEE were quantified in the sampled water. Airborne exposure to constituents in resin-based dental materials was below the detection limit. However, the extent of exposure is probably dependent on the procedure, preventive measures, and type of materials used.
Collapse
Affiliation(s)
- Bo W Nilsen
- Department of Clinical Dentistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Einar Jensen
- Department of Pharmacy, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ulf Örtengren
- Department of Clinical Dentistry, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Cariology, Institute of Odontology/Sahlgrenska Academy, Gothenburg, Sweden
| | - Berit Bang
- Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway
| | | |
Collapse
|
35
|
Patel E, Pradeep P, Kumar P, Choonara YE, Pillay V. Oroactive dental biomaterials and their use in endodontic therapy. J Biomed Mater Res B Appl Biomater 2019; 108:201-212. [PMID: 30957440 DOI: 10.1002/jbm.b.34379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Dental biomaterials have revolutionized modern therapies. Untreated dental caries remains the major etiological factor for endodontic treatment, and together with a decreasing rate of tooth loss escalates the importance of continuously improving the materials used for endodontic therapies. Endodontic biomaterials are used for vital pulp therapies, irrigation, intracanal medicaments, obturation and regenerative procedures. These materials offer several functions including: antimicrobial activity, mechanical reinforcement, aesthetics, and therapeutic effects. Vital pulp therapies have seen an improvement in clinical results with an incremental approach to build on the strengths of past materials such as calcium hydroxide and calcium silicates. While sodium hypochlorite remains the gold standard for canal irrigation, numerous nanoparticle formulations have been developed to promote sustained antimicrobial action. Gutta-percha based bulk fillers remain the most common materials for root filling. However, while multiple studies focus on the development of novel formulations containing drugs, glass derivatives or ionic-, polymeric-, or drug- loaded nanoparticles, a lack of reliable and long-term clinical evidence obligates further study as experienced clinicians prefer to use what has worked for decades. This review delves in to the biochemistry of the materials to scrutinize their shortcomings, and where opportunity lies to further enhance their efficacy in endodontic practice. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:201-212, 2020.
Collapse
Affiliation(s)
- Ebrahim Patel
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Scientific update on nanoparticles in dentistry. Int Dent J 2018; 68:299-305. [PMID: 29786135 PMCID: PMC9379019 DOI: 10.1111/idj.12394] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanoparticles having a size from 1 to 100 nm are present in nature and are successfully used in many products of daily life. In dental materials, nanoparticles are typically embedded but they may also exist as by-products from milling processes. Possible adverse effects of nanoparticles have gained increased interest, with the lungs being the main target organ. Exposure to nanoparticles in the dental laboratory is addressed by legal regulations. In dental practice, nanoparticles are mainly produced by intra-oral grinding/polishing and removal of materials, by wear of restorations or release from dental implants. Based on worst-case mass-based calculations, the additional risk as a result of exposure to nanoparticles is considered to be low. However, more research is needed, especially on vulnerable groups (patients with asthma or chronic obstructive pulmonary disease). An assessment of risks for the environment is not possible because of lack of data. Exposure-reduction measures mainly include avoidance of abrasive processes (for example, by proper sculpturing), cooling by the use of water spray and sufficient ventilation of treatment areas.
Collapse
Affiliation(s)
- Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital, Regensburg, Germany
- Department of Peridontology, University of Bern, Bern, Switzerland
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | | | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
37
|
Iavicoli I, Fontana L, Pingue P, Todea AM, Asbach C. Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:689-702. [PMID: 29426194 DOI: 10.1016/j.scitotenv.2018.01.260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Exposure assessment is a key stage in the risk assessment/management of engineered nanomaterials. Although different sampling strategies and instruments have been used to define the occupational exposure to nano-scale materials, currently there is no international consensus regarding measurement strategy, metrics and limit values. In fact, the assessment of individual exposure to engineered nanomaterials remains a critical issue despite recent innovative developments in personal monitors and samplers. Hence, we used several of these instruments to evaluate the workers' personal exposure in a large research laboratory where engineered nanomaterials are produced, handled, and characterized in order to provide input data for nanomaterial exposure assessment strategies and future epidemiological studies. The results obtained using personal monitors showed that the workplace concentrations of engineered nanomaterials (lung deposited surface area and particle number concentrations) were quite low in all the different workplaces monitored, with short spikes during the execution of some specific job tasks. The sampling strategy was been adopted on the basis of an Organisation for Economic Cooperation and Development (OECD) suggestion for a tiered approach and was found to be suitable for determining the individual exposure and for identifying possible sources of emission, even those with very low emission rates. The use of these instruments may lead to a significant improvement not only in the exposure assessment stage but, more generally, in the entire risk assessment and management process.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy; Institute of Public Health, Catholic University of Sacred Health, Largo F. Vito 1, 00168 Rome, Italy.
| | - Luca Fontana
- Institute of Public Health, Catholic University of Sacred Health, Largo F. Vito 1, 00168 Rome, Italy
| | - Pasqualantonio Pingue
- Laboratory of National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.
| | - Ana Maria Todea
- Institut für Energie- und Umwelttechnik e. V. (IUTA), Air Quality & Filtration, 47229 Duisburg, Germany
| | - Christof Asbach
- Institut für Energie- und Umwelttechnik e. V. (IUTA), Air Quality & Filtration, 47229 Duisburg, Germany.
| |
Collapse
|
38
|
Lang A, Ovsenik M, Verdenik I, Remškar M, Oblak Č. Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:441-447. [PMID: 29370575 DOI: 10.1080/15459624.2018.1432864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During material treatment in dentistry particles of different size are released in the air. To examine the degree of particle exposure, air scanning to dental employees was performed by the Scanning Mobility Particle Sizer. The size, shape and chemical composition of particles collected with a low-pressure impactor were determined by scanning electronic microscopy and X-ray dispersive analysis. The average concentrations of nanoparticles during working periods in a clean dental laboratory (45,000-56,000 particles/cm3), in an unclean dental laboratory (28,000-74,000 particles/cm3), and in a dental office (21,000-50,000 particles/cm3), were significantly higher compared to average concentrations during nonworking periods in the clean dental laboratory (11,000-24,000 particles/cm3), unclean laboratory (14,000-40,000 particles/cm3), and dental office (13,000-26,000 particles/cm3). Peak concentration of nanoparticles in work-intensive periods were found significantly higher (up to 773,000 particles/cm3), compared to the non-working periods (147,000 particles/cm3) and work-less intensive periods (365,000 particles/cm3). The highest mass concentration value ranged from 0.055-0.166 mg/m3. X-ray dispersive analysis confirmed the presence of carbon, potassium, oxygen, iron, aluminum, zinc, silicon, and phosphorus as integral elements of dental restorative materials in form of nanoparticle clusters, all smaller than 100 nm. We concluded that dental employees are exposed to nanoparticles in their working environment and are therefore potentially at risk for certain respiratory and systematic diseases.
Collapse
Affiliation(s)
- Andreja Lang
- a Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Maja Ovsenik
- b Department of Orthodontics and Jaw Orthopaedics, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Ivan Verdenik
- c Department of Obstetrics and Gynecology , University Medical Center , Ljubljana , Slovenia
| | - Maja Remškar
- d Solid-State Physics Department , Josef Stefan Institute , Ljubljana , Slovenia
| | - Čedomir Oblak
- e Department of Prosthodontics, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
39
|
Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine (Lond) 2018; 13:639-667. [DOI: 10.2217/nnm-2017-0329] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The studies on tooth structure provided basis for nanotechnology-based dental treatment approaches known as nanodentistry which aims at detection and treatment of oral pathologies, such as dental caries and periodontal diseases, insufficiently being treated by conventional materials or drugs. This review aims at defining the role of nanodentistry in the medical area, its potential and hazards. Materials & methods: To validate these issues, current literature on nanomaterials for dental applications was critically reviewed. Results: Nanomaterials for teeth restoration, bone regeneration and oral implantology exhibit better mechanical properties and provide more efficient esthetic outcome. However, still little is known about influence of long-term function of such biomaterials in the living organism. Conclusion: As application of nanomaterials in industry and medical-related sciences is still expanding, more information is needed on how such nano-dental materials may interfere with oral cavity, GI tract and general health.
Collapse
Affiliation(s)
- Rafał Pokrowiecki
- Department of Head & Neck Surgery – Maxillofacial Surgery, Otolaryngology & Ophthalmology, Prof Stanislaw Popowski Voivoid Children Hospital, Żołnierska 18 A10-561 Olsztyn, Poland
| | - Krzysztof Pałka
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Asbach C, Alexander C, Clavaguera S, Dahmann D, Dozol H, Faure B, Fierz M, Fontana L, Iavicoli I, Kaminski H, MacCalman L, Meyer-Plath A, Simonow B, van Tongeren M, Todea AM. Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:793-806. [PMID: 28431758 DOI: 10.1016/j.scitotenv.2017.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 05/21/2023]
Abstract
Exposure to airborne agents needs to be assessed in the personal breathing zone by the use of personal measurement equipment. Specific measurement devices for assessing personal exposure to airborne nanomaterials have only become available in the recent years. They can be differentiated into direct-reading personal monitors and personal samplers that collect the airborne nanomaterials for subsequent analyses. This article presents a review of the available personal monitors and samplers and summarizes the available literature regarding their accuracy, comparability and field applicability. Due to the novelty of the instruments, the number of published studies is still relatively low. Where applicable, literature data is therefore complemented with published and unpublished results from the recently finished nanoIndEx project. The presented data show that the samplers and monitors are robust and ready for field use with sufficient accuracy and comparability. However, several limitations apply, e.g. regarding the particle size range of the personal monitors and their in general lower accuracy and comparability compared with their stationary counterparts. The decision whether a personal monitor or a personal sampler shall be preferred depends strongly on the question to tackle. In many cases, a combination of a personal monitor and a personal sampler may be the best choice to obtain conclusive results.
Collapse
Affiliation(s)
- Christof Asbach
- Institut für Energie- und Umwelttechnik e. V. (IUTA), Air Quality & Filtration, 47229 Duisburg, Germany.
| | - Carla Alexander
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Simon Clavaguera
- NanoSafety Platform, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, Grenoble 38054, France
| | - Dirk Dahmann
- Institute for the Research on Hazardous Substances (IGF), 44789 Bochum, Germany
| | - Hélène Dozol
- NanoSafety Platform, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, Grenoble 38054, France
| | - Bertrand Faure
- NanoSafety Platform, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, Grenoble 38054, France
| | - Martin Fierz
- University of Applied Sciences Northwestern Switzerland (FHNW), 5210 Windisch, Switzerland
| | - Luca Fontana
- Catholic University of the Sacred Heart (UCSC), 00168 Rome, Italy
| | - Ivo Iavicoli
- Catholic University of the Sacred Heart (UCSC), 00168 Rome, Italy; University of Naples Federico II (UNINA), 80131 Naples, Italy
| | - Heinz Kaminski
- Institut für Energie- und Umwelttechnik e. V. (IUTA), Air Quality & Filtration, 47229 Duisburg, Germany
| | - Laura MacCalman
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Asmus Meyer-Plath
- Federal Institute of Occupational Safety and Health (BAuA), 10317 Berlin, Germany
| | - Barbara Simonow
- Federal Institute of Occupational Safety and Health (BAuA), 10317 Berlin, Germany
| | | | - Ana Maria Todea
- Institut für Energie- und Umwelttechnik e. V. (IUTA), Air Quality & Filtration, 47229 Duisburg, Germany
| |
Collapse
|
41
|
Todea AM, Beckmann S, Kaminski H, Bard D, Bau S, Clavaguera S, Dahmann D, Dozol H, Dziurowitz N, Elihn K, Fierz M, Lidén G, Meyer-Plath A, Monz C, Neumann V, Pelzer J, Simonow BK, Thali P, Tuinman I, van der Vleuten A, Vroomen H, Asbach C. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:929-945. [PMID: 28688352 DOI: 10.1016/j.scitotenv.2017.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 05/15/2023]
Abstract
Personal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size. In view of their use for personal exposure studies, the comparability of these personal monitors was assessed in two measurement campaigns. Altogether 29 different polydisperse test aerosols were generated during the two campaigns, covering a large range of particle sizes, morphologies and concentrations. The data provided by the personal monitors were compared with those obtained from reference instruments: a scanning mobility particle sizer (SMPS) for LDSA and mean particle size and a ultrafine particle counter (UCPC) for number concentration. The results indicated that the LDSA concentrations and the mean particle sizes provided by all investigated instruments in this study were in the order of ±30% of the reference value obtained from the SMPS when the particle sizes of the test aerosols generated were within 20-400nm and the instruments were properly calibrated. Particle size, morphology and concentration did not have a major effect within the aforementioned limits. The comparability of the number concentrations was found to be slightly worse and in the range of ±50% of the reference value obtained from the UCPC. In addition, a minor effect of the particle morphology on the number concentration measurements was observed. The presence of particles >400nm can drastically bias the measurement results of all instruments and all metrics determined.
Collapse
Affiliation(s)
- Ana Maria Todea
- Institut für Energie- und Umwelttechnik e. V. (IUTA), 47229 Duisburg, Germany.
| | - Stefanie Beckmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA), 47229 Duisburg, Germany
| | - Heinz Kaminski
- Institut für Energie- und Umwelttechnik e. V. (IUTA), 47229 Duisburg, Germany
| | - Delphine Bard
- Health and Safety Laboratory (HSL), SK17 9JN Harpur Hill Buxton, UK
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité (INRS), Laboratoire de Métrologie des Aérosols, 54519 Vandoeuvre, France
| | - Simon Clavaguera
- NanoSafety Platform, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, 38054 Grenoble, France
| | - Dirk Dahmann
- Institut für Gefahrstoffforschung (IGF), 44789 Bochum, Germany
| | - Hélène Dozol
- NanoSafety Platform, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Univ. Grenoble Alpes, 38054 Grenoble, France
| | - Nico Dziurowitz
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), 10317 Berlin, Germany
| | - Karine Elihn
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Fierz
- University of Applied Sciences Northwestern Switzerland (FHNW), 5210 Windisch, Switzerland
| | - Göran Lidén
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Asmus Meyer-Plath
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), 10317 Berlin, Germany
| | - Christian Monz
- Institut für Gefahrstoffforschung (IGF), 44789 Bochum, Germany
| | - Volker Neumann
- Institut für Gefahrstoffforschung (IGF), 44789 Bochum, Germany
| | - Johannes Pelzer
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), 53757 Sankt Augustin, Germany
| | | | | | - Ilse Tuinman
- TNO, Defence, Security and Safety, 2288 GJ Rijswijk, The Netherlands
| | | | | | - Christof Asbach
- Institut für Energie- und Umwelttechnik e. V. (IUTA), 47229 Duisburg, Germany
| |
Collapse
|
42
|
Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Nanoparticles in dentistry. Dent Mater 2017; 33:1298-1314. [PMID: 28951037 DOI: 10.1016/j.dental.2017.08.193] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Nanoparticles having a size from 1 to 100nm are present in nature and are successfully used in many products of daily life. Nanoparticles are also embedded per se or as byproducts from milling processes of larger filler particles in many dental materials. METHODS AND RESULTS Recently, possible adverse effects of nanoparticles have gained increased interest with the lungs being a main target organ. Exposure to nanoparticles in dentistry may occur in the dental laboratory, by processing gypsum type products or by grinding and polishing materials. In the dental practice virtually no exposure to nanoparticles occurs when handling unset materials. However, nanoparticles are produced by intraoral adjustment of set restorative materials through grinding/polishing regardless whether they contain nanoparticles or not. Nanoparticles may also be produced through wear of restorations or released from dental implants and they enter the environment when removing restorations. The risk for dental technicians is taken care of by legal regulations. Based on model worst case mass-based calculations, the exposure of dental practice personnel and patients to nanoparticles through intraoral grinding/polishing and wear is low to negligible. Accordingly, the additional risk due to nanoparticles exposure from present materials is considered to be low. However, more research is needed, especially on vulnerable groups (asthma or COPD). An assessment of risks for the environment is not possible due to the lack of data. SIGNIFICANCE Measures to reduce exposure to nanoparticles include intraorally grinding/polishing using water coolants, proper sculpturing to reduce the need for grinding and sufficient ventilation of treatment areas.
Collapse
Affiliation(s)
- Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital, Regensburg, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | | | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany.
| |
Collapse
|
43
|
Cokic S, Duca R, Godderis L, Hoet P, Seo J, Van Meerbeek B, Van Landuyt K. Release of monomers from composite dust. J Dent 2017; 60:56-62. [DOI: 10.1016/j.jdent.2017.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022] Open
|
44
|
Schmalz G, Galler KM. Biocompatibility of biomaterials – Lessons learned and considerations for the design of novel materials. Dent Mater 2017; 33:382-393. [DOI: 10.1016/j.dental.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
45
|
Detection of nanoparticles released at finishing of dental composite materials. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-016-1912-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Van Landuyt KL, Cokic SM, Asbach C, Hoet P, Godderis L, Reichl FX, Van Meerbeek B, Vennemann A, Wiemann M. Interaction of rat alveolar macrophages with dental composite dust. Part Fibre Toxicol 2016; 13:62. [PMID: 27888833 PMCID: PMC5124269 DOI: 10.1186/s12989-016-0174-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 μm) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. METHODS: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-μm-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 μg/ml, 45 μg/ml, 90 μg/ml and 180 μg/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-α, and H2O2. RESULTS Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 μg/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-α. However, compared to the positive control, the released levels of H2O2 and TNF-α were still moderate, but their release profiles depended on the type of composite. CONCLUSIONS Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction.
Collapse
Affiliation(s)
- K L Van Landuyt
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium.
| | - S M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - C Asbach
- Institute of Energy and Environmental Technology (IUTA) e.V, BliersheimerStraße 58-60, Duisburg, 47229, Germany
| | - P Hoet
- Research Unit Experimental Toxicology, Center for Environmental and Health Research, Department of Public Health and Primary Care, University of Leuven, Herestraat 49, Leuven, 3001, Belgium
| | - L Godderis
- Research Unit Experimental Toxicology, Center for Environmental and Health Research, Department of Public Health and Primary Care, University of Leuven, Herestraat 49, Leuven, 3001, Belgium
| | - F X Reichl
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nussbaumstraße 26, Munich, 80336, Germany
| | - B Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - A Vennemann
- IBE, IBE R&D gGmbH, Mendelstraße 11, Münster, 48149, Germany
| | - M Wiemann
- IBE, IBE R&D gGmbH, Mendelstraße 11, Münster, 48149, Germany
| |
Collapse
|
47
|
Cokic SM, Hoet P, Godderis L, Wiemann M, Asbach C, Reichl FX, De Munck J, Van Meerbeek B, Van Landuyt KL. Cytotoxic effects of composite dust on human bronchial epithelial cells. Dent Mater 2016; 32:1482-1491. [PMID: 27726967 DOI: 10.1016/j.dental.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/21/2016] [Accepted: 09/03/2016] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (<5μm) including nano-sized particles (<100nm) may be released. OBJECTIVE To determine the cytotoxic potential of composite dust particles on bronchial epithelium cells. METHODS Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. RESULTS Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. SIGNIFICANCE Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Peter Hoet
- Centre for Environmental and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Lode Godderis
- Centre for Environmental and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Martin Wiemann
- IBE R&D gGmbH, Institute for Lung Health, Mendelstraße 11, 48149 Münster, Germany
| | - Christof Asbach
- Institute of Energy and Environmental Technology (IUTA) e.V., Bliersheimer Straße 60, 47229 Duisburg, Germany
| | - Franz X Reichl
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nussbaumstraße 26, 80336 Munich, Germany
| | - Jan De Munck
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Silge A, Bräutigam K, Bocklitz T, Rösch P, Vennemann A, Schmitz I, Popp J, Wiemann M. ZrO2 nanoparticles labeled via a native protein corona: detection by fluorescence microscopy and Raman microspectroscopy in rat lungs. Analyst 2016; 140:5120-8. [PMID: 26087290 DOI: 10.1039/c5an00942a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZrO2 nanoparticles are frequently used in composite materials such as dental fillers from where they may be released and inhaled upon polishing and grinding. Since the overall distribution of ZrO2 NP inside the lung parenchyma can hardly be observed by routine histology, here a labeling with a fluorphore was used secondary to the adsorption of serum proteins. Particles were then intratracheally instilled into rat lungs. After 3 h fluorescent structures consisted of agglomerates scattered throughout the lung parenchyma, which were mainly concentrated in alveolar macrophages after 3 d. A detection method based on Raman microspectroscopy was established to investigate the chemical composition of those fluorescent structures in detail. Raman measurements were arranged such that no spectral interference with the protein-bound fluorescence label was evident. Applying chemometrical methods, Raman signals of the ZrO2 nanomaterial were co-localized with the fluorescence label, indicating the stability of the nanomaterial-protein-dye complex inside the rat lung. The combination of Raman microspectroscopy and adsorptive fluorescence labeling may, therefore, become a useful tool for studying the localization of protein-coated nanomaterials in cells and tissues.
Collapse
Affiliation(s)
- Anja Silge
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jaymand M, Lotfi M, Lotfi R. Functional dendritic compounds: potential prospective candidates for dental restorative materials and in situ re-mineralization of human tooth enamel. RSC Adv 2016. [DOI: 10.1039/c6ra05722e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review provides a snapshot of recent progress in the synthesis and application of dendritic compounds as potential prospective candidates for dental restorative materials andin siture-mineralization of human tooth enamel.
Collapse
Affiliation(s)
- Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Meherdad Lotfi
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Department of Endodontics
| | - Rana Lotfi
- Faculty of Health
- York University
- Toronto
- Canada
| |
Collapse
|
50
|
Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol 2015; 33:621-636. [PMID: 26493710 DOI: 10.1016/j.tibtech.2015.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/16/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed.
Collapse
|