1
|
Duverger O, Lee JS. The intricacies of tooth enamel: Embryonic origin, development and human genetics. J Struct Biol 2024; 216:108135. [PMID: 39384002 PMCID: PMC11645192 DOI: 10.1016/j.jsb.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its "construction" (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.
Collapse
Affiliation(s)
- Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Cohen KE, Fitzpatrick AR, Huie JM. Dental Dynamics: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer. Integr Org Biol 2024; 6:obae015. [PMID: 39045422 PMCID: PMC11263487 DOI: 10.1093/iob/obae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
Collapse
Affiliation(s)
- K E Cohen
- California State University Fullerton, Biological Science, Fullerton, CA 98231, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Museum of Natural History, Gainesville, FL 32611, USA
| | - A R Fitzpatrick
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - J M Huie
- Department of Biology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
4
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
5
|
Wang D, Han S, Yang M. Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics (Basel) 2023; 8:biomimetics8010042. [PMID: 36810373 PMCID: PMC9944091 DOI: 10.3390/biomimetics8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis.
Collapse
|
6
|
Taylor JD, Glover EA, Ball AD, Najorka J. Nanocrystalline fluorapatite mineralization in the calciphile rock-boring bivalve Lithophaga: functional and phylogenetic significance. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Phosphate mineralization as a skeletal material is uncommon in invertebrate animals and rare in Mollusca. Remarkably, apatite minerals were first reported more than 30 years ago in the periostracum of two species of the mytilid bivalve Lithophaga where shells are mostly constructed of calcium carbonate. This discovery extended the range of biominerals secreted by molluscs but has attracted no subsequent research. In this study we review the occurrence of phosphate mineralization in Lithophaga and putatively allied taxa. Lithophagine bivalves, particularly Lithophaga and the more diverse Leiosolenus species, are well known for their endolithic chemical dissolution of calcareous rocks and corals with calcium-binding lipoproteins secreted by mantle glands. Fluorapatite was identified by X-ray diffraction in an outer layer of the periostracum in six species of Lithophaga. Morphological study by scanning electron microscopy of four species showed the fluorapatite crystals embedded in periostracal material in a layer 10–20 µm thick. Dilute bleach treatment revealed the crystals as densely packed euhedral prisms 250–400 nm in size. The succeeding inner layers of the periostracum were unmineralized. Observations of the developing periostracum of Lithophaga teres suggest that the initial mineralization is in the form of amorphous granules that coalesce and transform into euhedral crystals. Periostracal phosphate was not recorded in other members of the Lithophaginae – Leiosolenus, Botula or Zelithophaga species. Leiosolenus species characteristically have extraperiostracal aragonitic encrustations that can be thick and structurally complex. Published molecular phylogenies of Mytilidae bivalves show a division into two major clades with Lithophaga species in one clade and Leiosolenus species in the other, indicating that the subfamily Lithophaginae as presently understood is polyphyletic. This result implies that the two genera have independent evolutionary pathways to endolithic occupation of calcareous substrates although using similar mantle gland secretions to excavate their crypts. Because fluorapatite is considerably less soluble and harder than calcium carbonate, it is suggested that the phosphate layer of Lithophaga is a functional adaptation to protect their shells from self-dissolution from their rock-dissolving glandular secretions and may also act as defence against other shell-eroding organisms.
Collapse
Affiliation(s)
- John D Taylor
- Life Sciences, The Natural History Museum , London SW7 5BD , UK
| | - Emily A Glover
- Life Sciences, The Natural History Museum , London SW7 5BD , UK
| | - Alexander D Ball
- Imaging and Analysis Centre, The Natural History Museum , London SW7 5BD , UK
| | - Jens Najorka
- Imaging and Analysis Centre, The Natural History Museum , London SW7 5BD , UK
| |
Collapse
|
7
|
Tang L, Li Y, Li R, Tao X, Huang X. Gradient Magnesium Content Affects Nanomechanics via Decreasing the Size and Crystallinity of Nanoparticles of Pseudoosteodentine of the Pacific Cutlassfish, Trichiurus lepturus Teeth. ACS OMEGA 2022; 7:39214-39223. [PMID: 36340077 PMCID: PMC9631885 DOI: 10.1021/acsomega.2c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The formation of biomaterials such as enamel, dentin, and bone is important for many organisms, and the mechanical properties of biomaterials are affected by a wide range of structural and chemical factors. Special dentins exist in extant aquatic gnathostomes, and many more are present in fossils. When a layer of compact orthodentine surrounds the porous osteodentine core in the crown, the composite dentin is called pseudoosteodentine. Using various high-resolution analytical techniques, including micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and nanoindentation, we analyzed the micro- and nanostructures, chemical composition, and mechanical properties of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus teeth. Nanoscale oval-shaped hydroxyapatite (HA) crystals were distributed in a disordered manner in the pseudoosteodentine, and a cross-sectional analysis showed that the mineral crystallinity and crystalline particle size of the outer orthodentine were greater than those of middle and inner osteodentine. Moreover, the outer orthodentine comprised a mixture of smaller crystals and larger, more mature crystals. The nano-hardness and nano-stiffness of outer orthodentine were significantly higher than those of middle and inner osteodentine along a radical direction. The hardness and stiffness of pseudoosteodentine were inversely proportional to its magnesium (Mg) content. These data are consistent with the concept that Mg delays crystal maturation. The crystal size, crystallinity, nano-hardness, and nano-stiffness of pseudoosteodentine all decreased commensurately with the increase of its Mg concentration. The pseudoosteodentine of T. lepturus also can be regarded as a functional gradient material (FGM) because its mechanical properties are closely related to its chemical composition and nanostructure. Special pseudoosteodentine may therefore serve as a design standard for biomimetic synthetic mineral composites.
Collapse
Affiliation(s)
- Li Tang
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Department
of Orthodontics, The Affiliated Hospital
of Qingdao University, Qingdao 266005, China
- School
of Stomatology, Qingdao University, Qingdao 266071, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongfeng Li
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruiqi Li
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xingfu Tao
- National
Institute of Metrology, Beijing 100013, China
| | - Xiaofeng Huang
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Manard BT, Hintz CJ, Quarles CD, Burns W, Zirakparvar NA, Dunlap DR, Beiswenger T, Cruz-Uribe AM, Petrus JA, Hexel CR. Determination of Fluorine Distribution in Shark Teeth by Laser Induced Breakdown Spectroscopy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6631561. [PMID: 35790145 PMCID: PMC9314717 DOI: 10.1093/mtomcs/mfac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022]
Abstract
Quantifying the chemical composition of fast-growing hard tissues in the environment can shed valuable information in terms of understanding ecosystems both prehistoric and current. Changes in chemical composition can be correlated with environmental conditions and can provide information about the organism's life. Sharks can lose 0.1 to 1.1 teeth/day, depending on species, which offers a unique opportunity to record environmental changes over a short duration of time. Shark teeth contain a biomineral phase that is made up of fluorapatite [Ca5(PO4)3F], and the F distribution within the tooth can be correlated to tooth hardness. Typically, this is determined by bulk acid digestion, energy-dispersive X-ray spectroscopy (EDS), or wavelength-dispersive spectroscopy. Here we present laser-induced breakdown spectroscopy (LIBS) as an alternative and faster approach for determining F distribution within shark teeth. Using a two-volume laser ablation chamber (TwoVol3) with innovative embedded collection optics for LIBS, shark teeth were investigated from sand tiger (Carcharias Taurus), tiger (Galeocerdo Cuvier), and hammerhead sharks (Sphyrnidae). Fluorine distribution was mapped using the CaF 603 nm band (CaF, Β 2Σ+ → X 2Σ+) and quantified using apatite reference materials. In addition, F measurements were cross referenced with EDS analyses to validate the findings. Distributions of F (603 nm), Na (589 nm), and H (656 nm) within the tooth correlate well with the expected biomineral composition and expected tooth hardness. This rapid methodology could transform the current means of determining F distribution, particularly when large sample specimens (350 mm2, presented here) and large quantities of specimens are of interest.
Collapse
Affiliation(s)
| | | | | | - William Burns
- Marine and Environmental Sciences, Savannah State University, USA
| | | | - Daniel R Dunlap
- Chemical Sciences Division, Oak Ridge National Laboratory, USA
| | - Toya Beiswenger
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, USA
| | | | | | - Cole R Hexel
- Chemical Sciences Division, Oak Ridge National Laboratory, USA
| |
Collapse
|
9
|
Deng Z, Jia Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103524. [PMID: 35315243 PMCID: PMC9108615 DOI: 10.1002/advs.202103524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Indexed: 05/02/2023]
Abstract
Biomineralized composites, which are usually composed of microscopic mineral building blocks organized in 3D intercrystalline organic matrices, have evolved unique structural designs to fulfill mechanical and other biological functionalities. While it has been well recognized that the intricate architectural designs of biomineralized composites contribute to their remarkable mechanical performance, the structural features within and corresponding mechanical properties of individual mineral building blocks are often less appreciated in the context of bio-inspired structural composites. The mineral building blocks in biomineralized composites exhibit a variety of salient intracrystalline structural features, such as, organic inclusions, inorganic impurities (or trace elements), crystalline features (e.g., amorphous phases, single crystals, splitting crystals, polycrystals, and nanograins), residual stress/strain, and twinning, which significantly modify the mechanical properties of biogenic minerals. In this review, recent progress in elucidating the intracrystalline structural features of three most common biomineral systems (calcite, aragonite, and hydroxyapatite) and their corresponding mechanical significance are discussed. Future research directions and corresponding challenges are proposed and discussed, such as the advanced structural characterizations and formation mechanisms of intracrystalline structures in biominerals, amorphous biominerals, and bio-inspired synthesis.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Zian Jia
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| | - Ling Li
- Department of Mechanical EngineeringVirginia Polytechnic Institute of Technology and State UniversityBlacksburgVA24060USA
| |
Collapse
|
10
|
Leung JYS, Nagelkerken I, Pistevos JCA, Xie Z, Zhang S, Connell SD. Shark teeth can resist ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:2286-2295. [PMID: 35023266 DOI: 10.1111/gcb.16052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the 'corrosive' effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (-0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5 (PO4 )3 F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Jennifer C A Pistevos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- PSL Research University EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, South Australia, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Epple M, Enax J, Meyer F. Prevention of Caries and Dental Erosion by Fluorides-A Critical Discussion Based on Physico-Chemical Data and Principles. Dent J (Basel) 2022; 10:6. [PMID: 35049604 PMCID: PMC8774499 DOI: 10.3390/dj10010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dental erosion is a common problem in dentistry. It is defined as the loss of tooth mineral by the attack of acids that do not result from caries. From a physico-chemical point of view, the nature of the corroding acids only plays a minor role. A protective effect of fluorides, to prevent caries and dental erosion, is frequently claimed in the literature. The proposed modes of action of fluorides include, for example, the formation of an acid-resistant fluoride-rich surface layer and a fluoride-induced surface hardening of the tooth surface. We performed a comprehensive literature study on the available data on the interaction between fluoride and tooth surfaces (e.g., by toothpastes or mouthwashes). These data are discussed in the light of general chemical considerations on fluoride incorporation and the acid solubility of teeth. The analytical techniques available to address this question are presented and discussed with respect to their capabilities. In summary, the amount of fluoride that is incorporated into teeth is very low (a few µg mm-2), and is unlikely to protect a tooth against an attack by acids, be it from acidic agents (erosion) or from acid-producing cariogenic bacteria.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (F.M.)
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (F.M.)
| |
Collapse
|
12
|
Wilmers J, Waldron M, Bargmann S. Hierarchical Microstructure of Tooth Enameloid in Two Lamniform Shark Species, Carcharias taurus and Isurus oxyrinchus. NANOMATERIALS 2021; 11:nano11040969. [PMID: 33918809 PMCID: PMC8070439 DOI: 10.3390/nano11040969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022]
Abstract
Shark tooth enameloid is a hard tissue made up of nanoscale fluorapatite crystallites arranged in a unique hierarchical pattern. This microstructural design results in a macroscopic material that is stiff, strong, and tough, despite consisting almost completely of brittle mineral. In this contribution, we characterize and compare the enameloid microstructure of two modern lamniform sharks, Isurus oxyrinchus (shortfin mako shark) and Carcharias taurus (spotted ragged-tooth shark), based on scanning electron microscopy images. The hierarchical microstructure of shark enameloid is discussed in comparison with amniote enamel. Striking similarities in the microstructures of the two hard tissues are found. Identical structural motifs have developed on different levels of the hierarchy in response to similar biomechanical requirements in enameloid and enamel. Analyzing these structural patterns allows the identification of general microstructural design principles and their biomechanical function, thus paving the way for the design of bioinspired composite materials with superior properties such as high strength combined with high fracture resistance.
Collapse
Affiliation(s)
- Jana Wilmers
- Chair of Solid Mechanics, University of Wuppertal, 42119 Wuppertal, Germany;
- Correspondence: ; Tel.: +49-202-439-2086
| | - Miranda Waldron
- Electron Microscope Unit, University of Cape Town, Cape Town 7701, South Africa;
| | - Swantje Bargmann
- Chair of Solid Mechanics, University of Wuppertal, 42119 Wuppertal, Germany;
- Wuppertal Center for Smart Materials, University of Wuppertal, 42119 Wuppertal, Germany
| |
Collapse
|
13
|
Tütken T, Weber M, Zohar I, Helmy H, Bourgon N, Lernau O, Jochum KP, Sisma-Ventura G. Strontium and Oxygen Isotope Analyses Reveal Late Cretaceous Shark Teeth in Iron Age Strata in the Southern Levant. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.570032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skeletal remains in archaeological strata are often assumed to be of similar ages. Here we show that combined Sr and O isotope analyses can serve as a powerful tool for assessing fish provenance and even for identifying fossil fish teeth in archaeological contexts. For this purpose, we established a reference Sr and O isotope dataset of extant fish teeth from major water bodies in the Southern Levant. Fossil shark teeth were identified within Iron Age cultural layers dating to 8–9th century BCE in the City of David, Jerusalem, although the reason for their presence remains unclear. Their enameloid 87Sr/86Sr and δ18OPO4 values [0.7075 ± 0.0001 (1 SD, n = 7) and 19.6 ± 0.9‰ (1 SD, n = 6), respectively], are both much lower than values typical for modern marine sharks from the Mediterranean Sea [0.7092 and 22.5–24.6‰ (n = 2), respectively]. The sharks’ 87Sr/86Sr are also lower than those of rain- and groundwater as well as the main soil types in central Israel (≥0.7079). This indicates that these fossil sharks incorporated Sr (87Sr/86Sr ≈ 0.7075) from a marine habitat with values typical for Late Cretaceous seawater. This scenario is in line with the low shark enameloid δ18OPO4 values reflecting tooth formation in the warm tropical seawater of the Tethys Ocean. Age estimates using 87Sr/86Sr stratigraphy place these fossil shark teeth at around 80-million-years-old. This was further supported by their taxonomy and the high dentine apatite crystallinity, low organic carbon, high U and Nd contents, characteristics that are typical for fossil specimens, and different from those of archaeological Gilthead seabream (Sparus aurata) teeth from the same cultural layers and another Chalcolithic site (Gilat). Chalcolithic and Iron Age seabream enameloid has seawater-like 87Sr/86Sr of 0.7091 ± 0.0001 (1 SD, n = 6), as expected for modern marine fish. Fossil shark and archaeological Gilthead seabream teeth both preserve original, distinct enameloid 87Sr/86Sr and δ18OPO4 signatures reflecting their different aquatic habitats. Fifty percent of the analysed Gilthead seabream teeth derive from hypersaline seawater, indicating that these seabreams were exported from the hypersaline Bardawil Lagoon in Sinai (Egypt) to the Southern Levant since the Iron Age period and possibly even earlier.
Collapse
|
14
|
Fossil microbial shark tooth decay documents in situ metabolism of enameloid proteins as nutrition source in deep water environments. Sci Rep 2020; 10:20979. [PMID: 33262401 PMCID: PMC7708646 DOI: 10.1038/s41598-020-77964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Alteration of organic remains during the transition from the bio- to lithosphere is affected strongly by biotic processes of microbes influencing the potential of dead matter to become fossilized or vanish ultimately. If fossilized, bones, cartilage, and tooth dentine often display traces of bioerosion caused by destructive microbes. The causal agents, however, usually remain ambiguous. Here we present a new type of tissue alteration in fossil deep-sea shark teeth with in situ preservation of the responsible organisms embedded in a delicate filmy substance identified as extrapolymeric matter. The invading microorganisms are arranged in nest- or chain-like patterns between fluorapatite bundles of the superficial enameloid. Chemical analysis of the bacteriomorph structures indicates replacement by a phyllosilicate, which enabled in situ preservation. Our results imply that bacteria invaded the hypermineralized tissue for harvesting intra-crystalline bound organic matter, which provided nutrient supply in a nutrient depleted deep-marine environment they inhabited. We document here for the first time in situ bacteria preservation in tooth enameloid, one of the hardest mineralized tissues developed by animals. This unambiguously verifies that microbes also colonize highly mineralized dental capping tissues with only minor organic content when nutrients are scarce as in deep-marine environments.
Collapse
|
15
|
Shape-preserving erosion controlled by the graded microarchitecture of shark tooth enameloid. Nat Commun 2020; 11:5971. [PMID: 33235202 PMCID: PMC7686312 DOI: 10.1038/s41467-020-19739-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
The teeth of all vertebrates predominantly comprise the same materials, but their lifespans vary widely: in stark contrast to mammals, shark teeth are functional only for weeks, rather than decades, making lifelong durability largely irrelevant. However, their diets are diverse and often mechanically demanding, and as such, their teeth should maintain a functional morphology, even in the face of extremely high and potentially damaging contact stresses. Here, we reconcile the dilemma between the need for an operative tooth geometry and the unavoidable damage inherent to feeding on hard foods, demonstrating that the tooth cusps of Port Jackson sharks, hard-shelled prey specialists, possess unusual microarchitecture that controls tooth erosion in a way that maintains functional cusp shape. The graded architecture in the enameloid provokes a location-specific damage response, combining chipping of outer enameloid and smooth wear of inner enameloid to preserve an efficient shape for grasping hard prey. Our discovery provides experimental support for the dominant theory that multi-layered tooth enameloid facilitated evolutionary diversification of shark ecologies. Shark teeth have short lifespans yet can be subject to significant mechanical damage. Here, the authors report on a site-specific damage mechanism in shark teeth enameloid, which maintains tooth functional shape, providing experimental evidence that tooth architecture may have influenced the diversification of shark ecologies over evolution.
Collapse
|
16
|
Dziergwa J, Singh S, Bridges CR, Kerwath SE, Enax J, Auerswald L. Acid-base adjustments and first evidence of denticle corrosion caused by ocean acidification conditions in a demersal shark species. Sci Rep 2019; 9:18668. [PMID: 31857600 PMCID: PMC6923475 DOI: 10.1038/s41598-019-54795-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Global ocean acidification is expected to chronically lower the pH to 7.3 (>2200 µatm seawater pCO2) by the year 2300. Acute hypercapnia already occurs along the South African west and south coasts due to upwelling- and low-oxygen events, with increasing frequency. In the present project we investigated the impact of hypercapnia on the endemic demersal shark species Haploblepharus edwardsii. Specifically, we experimentally analysed acid-base regulation during acute and chronic hypercapnia, the effects of chronic hypercapnia on growth rates and on denticle structure- and composition. While H. edwardsii are physiologically well adapted to acute and chronic hypercapnia, we observed, for the first time, denticle corrosion as a result of chronic exposure. We conclude that denticle corrosion could increase denticle turnover and compromise hydrodynamics and skin protection.
Collapse
Affiliation(s)
- Jacqueline Dziergwa
- Heinrich-Heine University, Düsseldorf, Institute of Metabolic Physiology/Ecophysiology, Düsseldorf, Germany
| | - Sarika Singh
- Ocean and Coastal Research, Department of Environmental Affairs (DEA), Cape Town, South Africa
| | - Christopher R Bridges
- Heinrich-Heine University, Düsseldorf, Institute of Metabolic Physiology/Ecophysiology, Düsseldorf, Germany
| | - Sven E Kerwath
- Branch: Fisheries Management, Department of Agriculture, Forestry and Fisheries (DAFF), Cape Town, South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Joachim Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Lutz Auerswald
- Branch: Fisheries Management, Department of Agriculture, Forestry and Fisheries (DAFF), Cape Town, South Africa.
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
17
|
Luebke A, Loza K, Prymak O, Dammann P, Fabritius HO, Epple M. Optimized biological tools: ultrastructure of rodent and bat teeth compared to human teeth. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.19.00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enamel, the outer layer of the teeth of vertebrates, is the hardest tissue in their body. In general, enamel is highly mineralized and has a special ultrastructure that directs the mechanical properties of teeth and thereby their biological functions. However, there are differences between the enamel ultrastructures of different species. The authors compare the teeth of the Eurasian beaver Castor fiber, the African mole rat Fukomys kafuensis and the common pipistrelle bat Pipistrellus pipistrellus by high-resolution analytical methods, including scanning electron microscopy, quantitative wavelength-dispersive X-ray spectroscopy and X-ray powder diffraction. The enamel of all animals consists of long, thin and differently oriented calcium phosphate crystallites (length > 1 µm; thickness about 50 nm). On the outer surface of the beaver tooth, a thin layer of brown iron oxide was found. The diameter of the dentin tubuli was between 1 and 3 µm for all species – that is, comparable to that for human teeth.
Collapse
Affiliation(s)
- Alwina Luebke
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Dammann
- Department of General Zoology, University of Duisburg-Essen, Essen, Germany; Central Animal Laboratory, University Clinics Essen, Essen, Germany
| | - Helge Otto Fabritius
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Malferrari D, Ferretti A, Mascia MT, Savioli M, Medici L. How Much Can We Trust Major Element Quantification in Bioapatite Investigation? ACS OMEGA 2019; 4:17814-17822. [PMID: 31681888 PMCID: PMC6822107 DOI: 10.1021/acsomega.9b02426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Bioapatite is probably the key factor in the unreplicated success of vertebrates. Chemical data on bioapatite composition can be achieved on a solid sample by using different analytical tools such as spectroscopic and spectrometric methods. As analytical outputs can be affected by the physical-chemical characteristics of the sample matrix, an internal standard is usually required to correct and validate the results. Bioapatite lattice can accommodate iso- and heterovalent substitutions during life or diagenesis varying its chemical composition through (geological) time. If on the one hand, this makes bioapatite a unique archive of physical and chemical information for both the living cycle and the events occurring after death, on the other, it excludes the identification of a sole internal standard. Here, we propose a method to measure major element concentration with specific care for P, Ca, Mg, Na, K, Si, Al, and Fe, which are the main substituent atoms in bioapatite, through homemade matrix-matched external calibration standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). We tested the method on living and fossil shark teeth, critically comparing the results obtained using other analytical techniques and certified external standards. We demonstrated that matrix-matched calibration in LA-ICPMS is mandatory for obtaining a reliable chemical characterization even if factors such as matrix aggregation variability, diverse presence of volatile compounds, the fossilization footprint, and the instrumental variability can represent further variability parameters.
Collapse
Affiliation(s)
- Daniele Malferrari
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Annalisa Ferretti
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Maria Teresa Mascia
- Department
of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Via Campi 213/b, I-41125 Modena, Italy
| | - Martina Savioli
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Luca Medici
- National
Research Council of Italy, Institute of
Methodologies for Environmental Analysis, C. da S. Loja, Zona Industriale, I-85050 Tito Scalo, Potenza, Italy
| |
Collapse
|
19
|
Past aquatic environments in the Levant inferred from stable isotope compositions of carbonate and phosphate in fish teeth. PLoS One 2019; 14:e0220390. [PMID: 31365545 PMCID: PMC6668807 DOI: 10.1371/journal.pone.0220390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022] Open
Abstract
Here we explore the carbon and oxygen isotope compositions of the co-existing carbonate and phosphate fractions of fish tooth enameloid as a tool to reconstruct past aquatic fish environments and harvesting grounds. The enameloid oxygen isotope compositions of the phosphate fraction (δ18OPO4) vary by as much as ~4‰ for migratory marine fish such as gilthead seabream (Sparus aurata), predominantly reflecting the different saline habitats it occupies during its life cycle. The offset in enameloid Δ18OCO3-PO4 values of modern marine Sparidae and freshwater Cyprinidae from the Southeast Mediterranean region vary between 8.1 and 11.0‰, similar to values reported for modern sharks. The mean δ13C of modern adult S. aurata and Cyprinus carpio teeth of 0.1±0.4‰ and -6.1±0.7‰, respectively, mainly reflect the difference in δ13C of dissolved inorganic carbon (DIC) of the ambient water and dietary carbon sources. The enameloid Δ18OCO3-PO4 and δ13C values of ancient S. aurata (Holocene) and fossil Luciobarbus sp. (Cyprinidae; mid Pleistocene) teeth agree well with those of modern specimens, implying little diagenetic alteration of these tooth samples. Paired δ18OPO4-δ13C data from ancient S. aurata teeth indicate that hypersaline water bodies formed in the Levant region during the Late Holocene from typical Mediterranean coastal water with high evaporation rates and limited carbon input from terrestrial sources. Sparid tooth stable isotopes further suggest that coastal lagoons in the Eastern Mediterranean had already formed by the Early Holocene and were influenced by terrestrial carbon sources. Overall, combined enameloid oxygen and carbon isotope analysis of fish teeth is a powerful tool to infer the hydrologic evolution of aquatic environments and assess past fishing grounds of human populations in antiquity.
Collapse
|
20
|
Enax J, Fabritius HO, Fabritius-Vilpoux K, Amaechi BT, Meyer F. Modes of Action and Clinical Efficacy of Particulate Hydroxyapatite in Preventive Oral Health Care − State of the Art. Open Dent J 2019. [DOI: 10.2174/1874210601913010274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background:Particulate Hydroxyapatite (HAP; Ca5(PO4)3(OH)) is being increasingly used as multifunctional active ingredient in oral care. Due to its high similarity to human enamel crystallites, it is considered as a biomimetic agent.Objective:The aim of this narrative review is to identify the modes of action of HAP in preventive oral health care based on published studies. The outcomes are expected to improve the understanding of the effects of HAP in the oral cavity and to provide a knowledge base for future research in the field of biomimetic oral care.Methods:The data analyzed and discussed are primarily based on selected published scientific studies and reviews fromin vivo,in situ, andin vitrostudies on HAP in the field of preventive oral health care. The databases Cochrane Library, EBSCO, PubMed and SciFinder were used for literature search.Results:We identified different modes of action of HAP in the oral cavity. They are mainly based on (I) Physical principles (e.g. attachment of HAP-particles to the tooth surface and cleaning properties), (II) Bio-chemical principles (e.g. source of calcium and phosphate ions under acidic conditions and formation of an interface between HAP-particles and the enamel), and (III) Biological principles (e.g. HAP-particles interacting with microorganisms).Conclusion:Although more mechanistic studies are needed, published data show that HAP has multiple modes of action in the oral cavity. Since the effects address a wide range of oral health problems, HAP is a biomimetic agent with a broad range of applications in preventive oral health care.
Collapse
|
21
|
Fabritius-Vilpoux K, Enax J, Herbig M, Raabe D, Fabritius HO. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kathia Fabritius-Vilpoux
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Michael Herbig
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Dierk Raabe
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Helge-Otto Fabritius
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| |
Collapse
|
22
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
23
|
Liu Z, Zhang Z, Ritchie RO. On the Materials Science of Nature's Arms Race. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705220. [PMID: 29870573 DOI: 10.1002/adma.201705220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Indexed: 05/05/2023]
Abstract
Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed.
Collapse
Affiliation(s)
- Zengqian Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zhefeng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Meyer F, Amaechi BT, Fabritius HO, Enax J. Overview of Calcium Phosphates used in Biomimetic Oral Care. Open Dent J 2018; 12:406-423. [PMID: 29988215 PMCID: PMC5997847 DOI: 10.2174/1874210601812010406] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background: The use of biomimetic agents is an emerging field in modern oral care. Promising biomimetic substances for such applications are calcium phosphates, because their chemical composition is very similar to that of the mineral phase in human teeth, especially of natural enamel. Examples for their application include the remineralization of early caries lesions and repair of small enamel defects. Objective: This review provides an interdisciplinary view on calcium phosphates and their applications in biomimetic oral care. The aim of this work is to give an overview of in vivo and in situ studies comparing several calcium phosphates in preventive dentistry that can be used as a knowledge base for the development of innovative alternative oral care concepts. Methods: Books, reviews, and original research papers with a focus on in vivo and in situ studies were included. The databases PubMed® and SciFinder® were used for literature search. Calcium phosphates that are frequently utilized in oral care products are covered in this review and were used as search terms alone and together with the following key words: in vivo, in situ, caries, clinical study, and remineralization. From 13,470 studies found, 35 studies complied with the inclusion criteria and were used for this review. Results: Published in vivo and in situ studies demonstrate calcium phosphates’ potential in enamel remineralization. However, more studies are needed to further substantiate existing results and to extend and refine the application of calcium phosphates in modern oral care. Conclusion: Calcium phosphates represent an innovative biomimetic approach for daily oral care because of their high similarity to natural enamel that will broaden the range of future treatments in preventive dentistry.
Collapse
Affiliation(s)
- Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health Science Center, 703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | - Helge-Otto Fabritius
- Max-Planck-Institut für Eisenforschung GmbH, Microstructure Physics and Alloy Design, Max-Planck-Straße 1, 40237 Duesseldorf, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| |
Collapse
|
25
|
Marcus MA, Amini S, Stifler CA, Sun CY, Tamura N, Bechtel HA, Parkinson DY, Barnard HS, Zhang XXX, Chua JQI, Miserez A, Gilbert PUPA. Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals. ACS NANO 2017; 11:11856-11865. [PMID: 29053258 DOI: 10.1021/acsnano.7b05044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Parrotfish (Scaridae) feed by biting stony corals. To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish Chlorurus microrhinos tooth. Its enameloid is a fluorapatite (Ca5(PO4)3F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m1/2, relatively high for a highly mineralized material. This combination of properties results in high abrasion resistance. Fluorapatite X-ray absorption spectroscopy exhibits linear dichroism at the Ca L-edge, an effect that makes peak intensities vary with crystal orientation, under linearly polarized X-ray illumination. This observation enables polarization-dependent imaging contrast mapping of apatite, a method to quantitatively measure and display nanocrystal orientations in large, pristine arrays of nano- and microcrystalline structures. Parrotfish enameloid consists of 100 nm-wide, microns long crystals co-oriented and assembled into bundles interwoven as the warp and the weave in fabric and therefore termed fibers here. These fibers gradually decrease in average diameter from 5 μm at the back to 2 μm at the tip of the tooth. Intriguingly, this size decrease is spatially correlated with an increase in hardness.
Collapse
Affiliation(s)
- Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Shahrouz Amini
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Harold S Barnard
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Xiyue X X Zhang
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - J Q Isaiah Chua
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
- School of Biological Sciences, Nanyang Technological University , 637551 Singapore
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
- Departments of Chemistry, Geoscience, Materials Science Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
|
27
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): Occurrence and properties. Morphologie 2017; 101:125-142. [PMID: 28501354 DOI: 10.1016/j.morpho.2017.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries (tooth decay) and osteoporosis (a low bone mass with microarchitectural changes) mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Due to the compositional similarities to the calcified tissues of mammals, CaPO4 are widely used as biomaterials for bone grafting purposes. In addition, CaPO4 have many other applications. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
28
|
Luebke A, Loza K, Patnaik R, Enax J, Raabe D, Prymak O, Fabritius HO, Gaengler P, Epple M. Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Adv 2017. [DOI: 10.1039/c6ra27121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure and composition of 13 fossilized tooth and bone samples aged between 3 and 70 million years were analysed.
Collapse
Affiliation(s)
- A. Luebke
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - K. Loza
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - R. Patnaik
- Centre of Advanced Study in Geology
- Panjab University
- Chandigarh 160014
- India
| | - J. Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - D. Raabe
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - O. Prymak
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - H.-O. Fabritius
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - P. Gaengler
- ORMED
- Institute for Oral Medicine at the University of Witten/Herdecke
- 58448 Witten
- Germany
| | - M. Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
29
|
Manzanares E, Rasskin-Gutman D, Botella H. New insights into the enameloid microstructure of batoid fishes (Chondrichthyes). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esther Manzanares
- Department of Geology; University of Valencia; C/Dr. Moliner 50 Burjassot Valencia E-46100 Spain
| | - Diego Rasskin-Gutman
- Institut Cavanilles de Biodiversitat I Biología Evolutiva; University of Valencia; C/Catedrático José Beltrán, 5, Paterna Valencia E-46980 Spain
| | - Héctor Botella
- Department of Geology; University of Valencia; C/Dr. Moliner 50 Burjassot Valencia E-46100 Spain
| |
Collapse
|
30
|
Lübke A, Enax J, Wey K, Fabritius HO, Raabe D, Epple M. Composites of fluoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement. BIOINSPIRATION & BIOMIMETICS 2016; 11:035001. [PMID: 27159921 DOI: 10.1088/1748-3190/11/3/035001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synthetic composite materials that mimic the structure and composition of mammalian tooth enamel were prepared by mixing fluoroapatite rods (diameter 2-3 μm, thickness about 0.5 μm) and methylmethacrylate (MMA), followed by polymerization either during or immediately after ultracentrifugation, using either a tertiary amine/radical initiator for polymerization at room temperature or a radical initiator for thermal polymerization. This led to mineral-rich composites (mineral content between 50 and 75 wt%). To enhance the mechanical stability and the interaction between fluoroapatite and polymer matrix, small amounts of differently functionalized MMA monomers were added to the co-monomer mixture. Another approach was the coating of the fluoroapatite rods with silica and the polymerization in the presence of a siloxane-functionalized MMA monomer. The hardness of the composites was about 0.2-0.4 GPa as determined by Vickers indentation tests, about 2 times higher than the polymer matrix alone. The composites had a good resistance against acids (60 min at pH 3, 37 °C).
Collapse
Affiliation(s)
- Alwina Lübke
- Institute of Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Horbens M, Eder M, Neinhuis C. A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties. Acta Biomater 2015; 28:13-22. [PMID: 26441125 DOI: 10.1016/j.actbio.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/10/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022]
Abstract
Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal.
Collapse
|
32
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
33
|
Galea L, Alexeev D, Bohner M, Doebelin N, Studart AR, Aneziris CG, Graule T. Textured and hierarchically structured calcium phosphate ceramic blocks through hydrothermal treatment. Biomaterials 2015. [DOI: 10.1016/j.biomaterials.2015.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
de Obaldia EE, Jeong C, Grunenfelder LK, Kisailus D, Zavattieri P. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. J Mech Behav Biomed Mater 2015; 48:70-85. [DOI: 10.1016/j.jmbbm.2015.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 12/26/2022]
|
35
|
Enault S, Guinot G, Koot MB, Cuny G. Chondrichthyan tooth enameloid: past, present, and future. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sébastien Enault
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD); c.c. 064 Université Montpellier 2 place Eugène Bataillon F-34095 Montpellier Cedex 05 France
| | - Guillaume Guinot
- Department of Geology and Palaeontology; Natural History Museum of Geneva; Route de Malagnou 1 CP 6434 CH-1211 Geneva 6 Switzerland
| | | | - Gilles Cuny
- UMR CNRS 5276 ENS LGLTPE; Université Claude Bernard Lyon 1 Campus de la Doua Bâtiment Géode 2, rue Raphaël Dubois F-69622 Villeurbanne Cedex France
| |
Collapse
|
36
|
Lübke A, Enax J, Loza K, Prymak O, Gaengler P, Fabritius HO, Raabe D, Epple M. Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks. RSC Adv 2015. [DOI: 10.1039/c5ra11560d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sharks and dinosaurs used fluoroapatite in their teeth, unlike their contemporary relatives, as shown by a comprehensive analysis of the composition and structure of their fossilized teeth.
Collapse
Affiliation(s)
- A. Lübke
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - J. Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - K. Loza
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - O. Prymak
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - P. Gaengler
- ORMED
- Institute for Oral Medicine at the University of Witten/Herdecke
- 58448 Witten
- Germany
| | - H.-O. Fabritius
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - D. Raabe
- Microstructure Physics and Alloy Design
- Max-Planck-Institut für Eisenforschung
- 40237 Düsseldorf
- Germany
| | - M. Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
37
|
Hirayama Y, Watanabe T, Yokoyama M, Fujiseki M, Yamazaki T, Sohn WJ, Kim JY, Yamamoto H. Histological Observation of the Jaws and Teeth of the Green Spotted Pufferfish (Tetraodon Nigroviridis). J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuzo Hirayama
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Tae Watanabe
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo
| | - Motoya Fujiseki
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Takaki Yamazaki
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Wern-Joo Sohn
- School of Life Science and Biotechnology, Kyungpook National University
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|