1
|
Ercole F, Kim CJ, Dao NV, Tse WKL, Whittaker MR, Caruso F, Quinn JF. Synthesis of Thermoresponsive, Catechol-Rich Poly(ethylene glycol) Brush Polymers for Attenuating Cellular Oxidative Stress. Biomacromolecules 2023; 24:387-399. [PMID: 36469858 DOI: 10.1021/acs.biomac.2c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nam V Dao
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Warren K L Tse
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Zwitterionic polymers: addressing the barriers for drug delivery. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Zhu CN, Lv MY, Song F, Zheng DY, Liu C, Liu XJ, Cheng DB, Qiao ZY. Reversible covalent nanoassemblies for augmented nuclear drug translocation in drug resistance tumor. J Control Release 2023; 353:186-195. [PMID: 36403684 DOI: 10.1016/j.jconrel.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China..
| | - Mei-Yu Lv
- Department of Respiratory, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fei Song
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Jun Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China..
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST), Beijing 100190, China..
| |
Collapse
|
4
|
Well-Defined pH-Sensitive Self-Assembled Triblock Copolymer-Based Crosslinked Micelles for Efficient Cancer Chemotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238153. [PMID: 36500245 PMCID: PMC9735831 DOI: 10.3390/molecules27238153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Delivery of chemotherapeutics to cancer cells using polymeric micelles is a promising strategy for cancer treatment. However, limited stability of micelles, premature drug release and off-target effect are the major obstacles that restrict the utilization of polymeric micelles as effective drug delivery systems. In this work, we addressed these issues through the innovative design of targeted pH-sensitive crosslinked polymeric micelles for chemotherapeutic delivery. A well-defined triblock copolymer, poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate)-b-poly(butyl acrylate) (PEG-b-PHEMA-b-PBA), was synthesized by living radical polymerization, and then modified by using 4-pentenoic anhydride to incorporate pendant crosslinkable alkene groups in the middle block. The resulting copolymer underwent self-assembly in aqueous solution to form non-crosslinked micelles (NCMs). Subsequently, intramicellar thiol-ene crosslinking was performed by using 1,4-butanediol bis(3-mercaptopropionate) to give crosslinked micelles (CMs) with pH-sensitive crosslinks. The targeted CM (cRGD-DOX10-CM5) was readily prepared by using tumor-targeting ligand cyclo(Arg-Gly-Asp-D-Phe-Cys) (cRGD) together with the 1,4-butanediol bis(3-mercaptopropionate) during the crosslinking step. The study of cumulative DOX release revealed the pH-sensitive feature of drug release from these CMs. An in vitro MTT assay revealed that NCMs and CMs are biocompatible with MCF 10A cells, and the samples exhibited significant therapeutic efficiency as compared to free DOX. Cellular uptake studies confirmed higher uptake of cRGD-DOX10-CM5 by MCF 10A cancer cells via cRGD-receptor-mediated endocytosis as compared to the corresponding analogues without cRGD. These results indicate that such pH-responsive crosslinked PEG-b-PHEMA-b-PBA-based micelles are therapeutically effective against cancer cells and hold remarkable promise to act as smart drug delivery systems for cancer therapy.
Collapse
|
5
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Xu X, Ran Y, Huang C, Yin Z. Glucose and H 2O 2 Dual-Responsive Nanocomplex Grafted with Insulin Prodrug for Blood Glucose Regulation. Biomacromolecules 2022; 23:1765-1776. [PMID: 35275618 DOI: 10.1021/acs.biomac.2c00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although "closed-loop" smart insulin delivery systems have been extensively investigated, the majority of them suffer from low insulin loading efficiency and slow glucose response. Here, we constructed a novel nanocomplex (NC), which was prepared by electrostatic interaction between negatively charged insulin prodrug nanoparticles (NPs) and positively charged polycaprolactone-polyethylenimine (PCL-PEI) micelles. The insulin prodrug was linked to acetalated dextran (AD) via borate ester bonds to form IAD NPs, and glucose oxidase (GOx) was encapsulated in PCL-PEI micelles. The NC was negatively charged with a high insulin grafting rate (0.473 mg/mg), and in vitro experiments revealed that IAD was sensitive to hyperglycemia and H2O2, whereas GOx significantly improved the response to glucose by altering the microenvironment to promote sustained insulin release. Furthermore, compared with free insulin and IAD NPs, subcutaneously injected NCs in diabetic rats had long-term hypoglycemic effects, showing excellent biocompatibility in vitro and in vivo, which had good potential in insulin self-regulation delivery.
Collapse
Affiliation(s)
- Xiaowen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Kim MH, Nguyen H, Chang CY, Lin CC. Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking. ACS Biomater Sci Eng 2021; 7:4196-4208. [PMID: 34370445 DOI: 10.1021/acsbiomaterials.1c00709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelatin-based hydrogels are widely used in biomedical fields because of their abundance of bioactive motifs that support cell adhesion and matrix remodeling. Although inherently bioactive, unmodified gelatin exhibits temperature-dependent rheology and solubilizes at body temperature, making it unstable for three-dimensional (3D) cell culture. Therefore, the addition of chemically reactive motifs is required to render gelatin-based hydrogels with highly controllable cross-linking kinetics and tunable mechanical properties that are critical for 3D cell culture. This article provides a series of methods toward establishing orthogonally cross-linked gelatin-based hydrogels for dynamic 3D cell culture. In particular, we prepared dually functionalized gelatin macromers amenable for sequential, orthogonal covalent cross-linking. Central to this material platform is the synthesis of norbornene-functionalized gelatin (GelNB), which forms covalently cross-linked hydrogels via orthogonal thiol-norbornene click cross-linking. Using GelNB as the starting material, we further detail the methods for synthesizing gelatin macromers susceptible to hydroxyphenylacetic acid (HPA) dimerization (i.e., GelNB-HPA) and hydrazone bonding (i.e., GelNB-CH) for on-demand matrix stiffening. Finally, we outline the protocol for synthesizing a gelatin macromer capable of adjusting hydrogel stress relaxation via boronate ester bonding (i.e., GelNB-BA). The combination of these orthogonal chemistries affords a wide range of gelatin-based hydrogels as biomimetic matrices in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
9
|
Zheng G, Zheng J, Xiao L, Shang T, Cai Y, Li Y, Xu Y, Chen X, Liu Y, Yang B. Construction of a Phenylboronic Acid-Functionalized Nano-Prodrug for pH-Responsive Emodin Delivery and Antibacterial Activity. ACS OMEGA 2021; 6:8672-8679. [PMID: 33817529 PMCID: PMC8015135 DOI: 10.1021/acsomega.1c00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, a pH-responsive nano-prodrug was fabricated by conjugating emodin to the PEGylated polyethyleneimine (mPEG-PEI) with acid-sensitive boronate ester bonds. 1H NMR spectra results showed that emodin was effectively bonded to mPEG-PEI, and acid-sensitive assay further confirmed the formation of boronate ester bonds. The size and morphology of the nano-prodrug were ascertained through transmission electron microscopy (TEM) and dynamic light scattering (DLS), which showed that the prodrug has a sphere-like shape with hydrodynamic size around 102 nm at pH 7.4. Subsequently, a drug-release behavior assay was carried out to carefully investigate the acid-sensitive drug-delivery property of the prodrug. Moreover, in vitro cell viability assay confirmed the superior cytotoxic effect of the nano-prodrug against HeLa cells compared to free emodin. Furthermore, the antibacterial study showed that the nano-prodrug could inhibit the bacterial (both Gram-positive and Gram-negative) growth more effectively than free emodin. Overall, this study provides a promising paradigm of the multifunctional nano-prodrug for pH-responsive tumor therapy and antibacterial activity.
Collapse
Affiliation(s)
- Guodong Zheng
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiahui Zheng
- School
of Pharmaceutical Sciences, Guangzhou Medical
University, Guangzhou 511436, P. R. China
| | - Le Xiao
- Guangdong
Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Tongyi Shang
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yanjun Cai
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yuwei Li
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yiming Xu
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiaoming Chen
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yun Liu
- Guangdong
Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Bin Yang
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Department
of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
10
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
11
|
Zhang M, Yang R, Zhou Z, Li C, Liu Y, Li W, Pan J, Sun M, Qian C. Tissue-Specific Regulation of Reactive Oxygen Species by an ATP-Responsive Nanoregulator Enhances Anticancer Efficacy and Reduces Anthracycline-Induced Cardiotoxicity. ACS APPLIED BIO MATERIALS 2020; 3:8000-8011. [DOI: 10.1021/acsabm.0c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minghua Zhang
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ruoxi Yang
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanwei Zhou
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenzi Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yadong Liu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiacheng Pan
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
13
|
Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Combining dual drugs in one vehicle to cancer cells offers spatiotemporal localization of drug at the site of action, leading to synergistic therapeutic effects and reduced side effects. To improve pH/redox responsiveness to the tumor microenvironments for cancer therapy, a pH/redox-responsive micelle based on poly(ε-caprolactone)-SS-poly(methacrylic acid) (PCL-SS-PMAA) diblock copolymer was fabricated for dual drug delivery. The PCL-SS-PMAA was formulated into a core-shell micelle (PSPm) in an aqueous solution. The critical micelle concentration (CMC) values of PSPm were 7.94 × 10-3 mg mL-1 at pH 5.0 and 1.00 × 10-2 mg mL-1 at pH 7.4. The hydrodynamic diameters of PSPm were within 210-270 nm, depending on pH values. Changes in morphology and size of PSPm were clearly observed before and after exposure to a reducing agent. Paclitaxel (PTX) was encapsulated into the core and cisplatin (CDDP) was chelated on the shell of PSPm, with both PTX and CDDP being efficiently released from PSPm in the presence of a reducing agent in an acid condition. MTT and annexin V/propidium iodide dual staining results demonstrated that co-loading of CDDP and PTX into PSPm had a synergistic effect in killing lung cancer cells and exerted superior antitumor activity over the combination of single drug-loaded PSPm or the combination of free-CDDP and free-PTX at equivalent drug amounts. Hence, encapsulating the dual drugs into PSPm exhibits a synergistic effect for potential lung cancer therapy.
Collapse
Affiliation(s)
- Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Xiao-Shan Huang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsuan-Ying Chen
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuan-Chun Huang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
14
|
The Efficacy of Cholesterol-Based Carriers in Drug Delivery. Molecules 2020; 25:molecules25184330. [PMID: 32971733 PMCID: PMC7570546 DOI: 10.3390/molecules25184330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.
Collapse
|
15
|
Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, Meng L, Yu D. Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomater Sci Eng 2020; 6:4285-4293. [PMID: 33463351 DOI: 10.1021/acsbiomaterials.0c00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH ∼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH ∼ 6.8) and lysosome and endosome (∼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Demei Yu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
16
|
Xu J, Cui Z, Ge X, Luo Y, Xu F. Polymers prepared through an “ATRP polymerization–esterification” strategy for dual temperature- and reduction-induced paclitaxel delivery. RSC Adv 2020; 10:28891-28901. [PMID: 35520090 PMCID: PMC9055954 DOI: 10.1039/d0ra05422d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
A dual temperature- and reduction-responsive nanovehicle with 29.36% paclitaxel loading was fabricated using an “ATRP polymerization–esterification” method for tumor suppression.
Collapse
Affiliation(s)
- JingWen Xu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - ZhuoMiao Cui
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xin Ge
- The First Affiliated Hospital of USTC
- Division of Life Science and Medicine
- University of Science and Technology of China
- Hefei
- China
| | - YanLing Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
17
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
18
|
The utilization of low molecular weight heparin-poloxamer associated Laponite nanoplatform for safe and efficient tumor therapy. Int J Biol Macromol 2019; 134:63-72. [PMID: 31071393 DOI: 10.1016/j.ijbiomac.2019.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
19
|
Si X, Song W, Yang S, Ma L, Yang C, Tang Z. Glucose and pH Dual‐Responsive Nanogels for Efficient Protein Delivery. Macromol Biosci 2019; 19:e1900148. [DOI: 10.1002/mabi.201900148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Xinghui Si
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| | - Shengcai Yang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- College of ChemistryJilin University Changchun 130012 P. R. China
| | - Lili Ma
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| | - Chenguang Yang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| |
Collapse
|
20
|
Hou G, Qian J, Xu W, Sun T, Wang Y, Wang J, Ji L, Suo A. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer. Carbohydr Polym 2019; 212:334-344. [DOI: 10.1016/j.carbpol.2019.02.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
|
21
|
Brooks WLA, Deng CC, Sumerlin BS. Structure-Reactivity Relationships in Boronic Acid-Diol Complexation. ACS OMEGA 2018; 3:17863-17870. [PMID: 31458380 PMCID: PMC6644144 DOI: 10.1021/acsomega.8b02999] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 06/01/2023]
Abstract
Boronic acids have found widespread use in the field of biomaterials, primarily through their ability to bind with biologically relevant 1,2- and 1,3-diols, including saccharides and peptidoglycans, or with polyols to prepare hydrogels with dynamic covalent or responsive behavior. Despite a wide range of boronic acid architectures that have been previously considered, there is a need for greater understanding of the structure-reactivity relationships that govern binding affinity to diols. In this study, various boronic acids and other organoboron compounds were investigated to determine their pK a and their binding constants with the biologically relevant diols including sorbitol, fructose, and glucose. Boronic acid pK a values were determined through spectroscopic titration, whereas binding constants were determined by fluorescence spectroscopy during competitive binding studies. Key structure-reactivity relationships clearly indicated that both boronic acid structure and solution pH must be carefully considered. By considering a variety of boronic acids with systematically varied electronics and sterics, these results provide guidance during selection of organoboron compounds in sensing, delivery, and materials chemistry.
Collapse
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Christopher C. Deng
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
22
|
Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 2018; 5:2369-2380. [PMID: 29051950 DOI: 10.1039/c7bm00730b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide amphiphiles (PAs), functionalized with alkyl chains, are capable of self-assembling into various nanostructures. Recently, PAs have been considered as ideal drug carriers due to their good biocompatibility, specific biological functions, and hypotoxicity to normal cells and tissues. Meanwhile, the nanocarriers formed by PAs are able to achieve controlled drug release and enhanced cell uptake in response to the stimulus of the physiological environment or specific biological factors in the location of the lesion. However, the underlying detailed drug delivery mechanism, especially from the aspect of primary and secondary structures of PAs, has not been systematically summarized or discussed. Focusing on the relationship between the primary and secondary structures of PAs and stimuli-responsive drug delivery applications, this review highlights the recent advances, challenges, and opportunities of PA-based functional drug nanocarriers, and their potential pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Zhenhua Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
25
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
26
|
Fattahi A, Karimi N, Rahmati F, Shokoohinia Y, Sadrjavadi K. Preparation and physicochemical characterization of camptothecin conjugated poly amino ester–methyl ether poly ethylene glycol copolymer. RSC Adv 2018; 8:12951-12959. [PMID: 35541238 PMCID: PMC9079732 DOI: 10.1039/c8ra01407h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022] Open
Abstract
In the present study, camptothecin grafted poly amino ester-methyl ether polyethylene glycol (CPT-PEA-MPEG) as a novel copolymer was synthesized by Michael reaction at different ratios of MPEG and CPT (60 : 40 and 80 : 20). The microemulsion was used to prepare nanomicelles, and in vitro cytotoxicity was performed on the HT29 cell line, and cell survival was measured by MTT assay. The syntheses were confirmed by 1H NMR and FT-IR. Several characterization methods including CMC, particle size, size distribution, and transmission electron microscopy were performed to evaluate features of prepared nanomicelles. Low critical micelle concentration, small particle size and IC50 of 0.1 mg ml−1 at MPEG to CPT ratio of 60 : 40 make this micelle a promising drug delivery carrier. CPT-PAE-MPEG nanomicelles at a MPEG : CPT ratio of 60 : 40 can be a suitable choice to improve the physiochemical properties of CPT and its therapeutic effect, while it can be potentially used as a nano-carrier for other anticancer drugs to purpose a dual drug delivery. In the present study, camptothecin grafted poly amino ester-methyl ether polyethylene glycol (CPT-PEA-MPEG) as a novel copolymer was synthesized by Michael reaction at different ratios of MPEG and CPT (60 : 40 and 80 : 20).![]()
Collapse
Affiliation(s)
- Ali Fattahi
- Medical Biology Research Center
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Nadia Karimi
- Medical Biology Research Center
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
- Department of Chemistry
| | - Fatemeh Rahmati
- Student Research Committee
- School of Pharmacy
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center
- School of Pharmacy
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Komail Sadrjavadi
- Pharmaceutical Sciences Research Center
- School of Pharmacy
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| |
Collapse
|
27
|
Seidi F, Druet V, Huynh N, Phakkeeree T, Crespy D. Hemiaminal ether linkages provide a selective release of payloads from polymer conjugates. Chem Commun (Camb) 2018; 54:13730-13733. [DOI: 10.1039/c8cc05386c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemiaminal linkages allow for a selective and pH-responsive release of triazoles from polymer conjugates.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Victor Druet
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Nguyen Huynh
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Treethip Phakkeeree
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
28
|
Wu Q, Hou Y, Han G, Liu X, Tang X, Li H, Song X, Zhang G. Mixed shell mesoporous silica nanoparticles for controlled drug encapsulation and delivery. Nanomedicine (Lond) 2017; 12:2699-2711. [DOI: 10.2217/nnm-2017-0216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: Smart mesoporous silica nanoparticles (MSNs) with mixed polymeric shell (MS-MSNs) were prepared to realize controlled encapsulation and responsive delivery of anticancer drugs. Materials & methods: Two kinds of polymers, including nonthermoresponsive poly(ethylene glycol) and thermoresponsive poly(N-isopropyl acrylamide), were grafted onto the outlets of the MSNs through acidic liable Schiff base bonds. Results: Poly(N-isopropyl acrylamide) chains could control the release rate of drugs through phase transition, while poly(ethylene glycol) chains could maintain the colloid stability of MSNs. Drugs can be released through the gradual hydrolysis of Schiff base bonds in tumor acidic environment. Conclusion: The MS-MSNs gave consideration to both the responsiveness and stability of carriers, and could realize the release of drugs as much as possible in tumor tissues.
Collapse
Affiliation(s)
- Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yu Hou
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Guangxi Han
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xiuping Tang
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hong Li
- Liaoning Province Academy of Analytic Sciences, Shenyang 110036, PR China
| | - Ximing Song
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis & Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
29
|
Xiao W, Suby N, Xiao K, Lin TY, Al Awwad N, Lam KS, Li Y. Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J Control Release 2017; 264:169-179. [PMID: 28847739 DOI: 10.1016/j.jconrel.2017.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023]
Abstract
Mortality rates for ovarian cancer have declined only slightly in the past forty years since the "War on Cancer" was declared. The current standard care of ovarian cancer is still cytoredutive surgery followed by several cycles of chemotherapy. The severe adverse effect from chemotherapy drug is a leading cause for the patients to fail in long term therapy post-surgery. New nanocarriers able to minimize the premature drug release in blood circulation while releasing drug on-demand at tumor site have profound impact on the improvement of the efficacy and toxicity profile of the chemotherapeutic drugs. Here we reported a unique type of extremely long tumor retention, multi-responsive boronate crosslinked micelles (BCM) for ovarian cancer therapy. We systemically investigated the stability of BCM in serum and plasma, and their responsiveness to acidic pH and cis-diols (such as mannitol, a safe FDA approved drug for diuresis) through particle size measurement and förster resonance energy transfer (FRET) approach. Paclitaxel (PTX) loaded BCM (BCM-PTX) exhibited higher stability than non-crosslinked micelles (NCM) in the presence of plasma or serum. BCMs possessed a longer in vivo blood circulation time when compared to NCM. Furthermore, BCM could be disassembled in an acidic pH environment or by administrating mannitol, facilitating drug release in an acidic tumor environment and triggered by exogenous stimuli after drug enrichment in tumor mass. Near infra-red fluorescence (NIRF) imaging on SKOV-3 ovarian cancer mouse model demonstrated that the NIR dye DiD encapsulated BCM could preferentially accumulate in tumor site and their tumor retention was very long with still 66% remained on 12th day post injection. DiD-NCM had similar high-level uptake in tumor with DiD-BCM within the first 3days, its accumulation, however, decreased obviously on 4th day and only 15% dye was left 12days later. In both formulations, the dye uptake in normal organs was mostly washed away within the first 24-48h. In in vivo tumor treatment study, PTX loaded BCM showed superior therapeutic efficacy than that of NCM and Taxol. The mice could tolerate 20mg/kg PTX formulated in nano-formulations, which doubled the maximum tolerated dose (MTD) of Taxol. The administration of mannitol 24h after BCM-PTX injection further improved the tumor therapeutic effect and elongated the survival time of the mice. The novel boronate-catechol crosslinked nanocarrier platform demonstrated its superior capability in targeted drug delivery, which is not only useful for ovarian cancer treatment but will also be beneficial for the therapy of many other solid tumors.
Collapse
Affiliation(s)
- Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Nell Suby
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Tzu-Yin Lin
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Nasir Al Awwad
- Pathology College of Clinical Pharmacy, Al-Baha University, Al-Baha City 11074, Saudi Arabia
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Gennari A, Gujral C, Hohn E, Lallana E, Cellesi F, Tirelli N. Revisiting Boronate/Diol Complexation as a Double Stimulus-Responsive Bioconjugation. Bioconjug Chem 2017; 28:1391-1402. [DOI: 10.1021/acs.bioconjchem.7b00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arianna Gennari
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Chirag Gujral
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Erwin Hohn
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Lallana
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Francesco Cellesi
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Tirelli
- NorthWest
Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
31
|
Cheng DB, Qi GB, Wang JQ, Cong Y, Liu FH, Yu H, Qiao ZY, Wang H. In Situ Monitoring Intracellular Structural Change of Nanovehicles through Photoacoustic Signals Based on Phenylboronate-Linked RGD-Dextran/Purpurin 18 Conjugates. Biomacromolecules 2017; 18:1249-1258. [PMID: 28269979 DOI: 10.1021/acs.biomac.6b01922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The stimuli-responsive polymeric nanocarriers have been studied extensively, and their structural changes in cells are important for the controlled intracellular drug release. The present work reported RGD-dextran/purpurin 18 conjugates with pH-responsive phenylboronate as spacer for monitoring the structural change of nanovehicles through ratiometric photoacoustic (PA) signal. Phenylboronic acid modified purpurin 18 (NPBA-P18) could attach onto the RGD-decorated dextran (RGD-Dex), and the resulting RGD-Dex/NPBA-P18 (RDNP) conjugates with different molar ratios of RGD-Dex and NPBA-P18 were prepared. When the moles of NPBA-P18 were equivalent to more than triple of RGD-Dex, the single-stranded RDNP conjugates could self-assemble into nanoparticles in aqueous solution due to the fairly strong hydrophobicity of NPBA-P18. The pH-responsive aggregations of NPBA-P18 were investigated by UV-vis, fluorescence, and circular dichroism spectra, as well as transmission electron microscope. Based on distinct PA signals between monomeric and aggregated state, ratiometric PA signal of I750/I710 could be presented to trace the structural change progress. Compared with RDNP single chains, the nanoparticles exhibited effective cellular internalization through endocytosis pathway. Furthermore, the nanoparticles could form well-ordered aggregates responding to intracellular acidic environment, and the resulting structural change was also monitored by ratiometric PA signal. Therefore, the noninvasive PA approach could provide a deep insight into monitoring the intracellular structural change process of stimuli-responsive nanocarriers.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Jing-Qi Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing, 100190, China
| |
Collapse
|
32
|
Yang B, Xiao L, Wang Y, Hu X, Zhou G. Facile synthesis of low-polydispersity block copolymer vesicles by azide-zwitterion cycloaddition. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1250318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Cheng DB, Yang PP, Cong Y, Liu FH, Qiao ZY, Wang H. One-pot synthesis of pH-responsive hyperbranched polymer–peptide conjugates with enhanced stability and loading efficiency for combined cancer therapy. Polym Chem 2017. [DOI: 10.1039/c7py00101k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles as drug-delivery systems have received significant attention due to their merits such as prolonged circulation time and passive targeting of a tumor site.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| |
Collapse
|
34
|
Coumes F, Woisel P, Fournier D. Facile Access to Multistimuli-Responsive Self-Assembled Block Copolymers via a Catechol/Boronic Acid Ligation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01889] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fanny Coumes
- ENSCL, Unité des Matériaux
Et Transformations, UMR CNRS 8207, Ingénierie des Systèmes
Polymères (ISP) team, Université de Lille, 59655 Villeneuve d’Ascq, Cedex, France
| | - Patrice Woisel
- ENSCL, Unité des Matériaux
Et Transformations, UMR CNRS 8207, Ingénierie des Systèmes
Polymères (ISP) team, Université de Lille, 59655 Villeneuve d’Ascq, Cedex, France
| | - David Fournier
- ENSCL, Unité des Matériaux
Et Transformations, UMR CNRS 8207, Ingénierie des Systèmes
Polymères (ISP) team, Université de Lille, 59655 Villeneuve d’Ascq, Cedex, France
| |
Collapse
|
35
|
Vancoillie G, Hoogenboom R. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. SENSORS 2016; 16:s16101736. [PMID: 27775572 PMCID: PMC5087521 DOI: 10.3390/s16101736] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023]
Abstract
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| |
Collapse
|
36
|
Gong C, Shan M, Li B, Wu G. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release. Colloids Surf B Biointerfaces 2016; 146:396-405. [DOI: 10.1016/j.colsurfb.2016.06.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
|
37
|
Wang C, Wang J, Chen X, Zheng X, Xie Z, Chen L, Chen X. Phenylboronic Acid-Cross-Linked Nanoparticles with Improved Stability as Dual Acid-Responsive Drug Carriers. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chunran Wang
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Jinze Wang
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xiaofei Chen
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xu Zheng
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhigang Xie
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Li Chen
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
38
|
Mokhtarzadeh A, Alibakhshi A, Hejazi M, Omidi Y, Ezzati Nazhad Dolatabadi J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Zhu JY, Zeng X, Qin SY, Wan SS, Jia HZ, Zhuo RX, Feng J, Zhang XZ. Acidity-responsive gene delivery for “superfast” nuclear translocation and transfection with high efficiency. Biomaterials 2016; 83:79-92. [DOI: 10.1016/j.biomaterials.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/19/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022]
|
40
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1679] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
41
|
Mesoporous silica nanoparticles combining Au particles as glutathione and pH dual-sensitive nanocarriers for doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:258-264. [DOI: 10.1016/j.msec.2015.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022]
|
42
|
Liu YS, Huang SJ, Huang XS, Wu YT, Chen HY, Lo YL, Wang LF. The synthesis and comparison of poly(methacrylic acid)–poly(ε-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake. RSC Adv 2016. [DOI: 10.1039/c6ra15307k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A self-assembled poly(methacrylic acid)–poly(ε-caprolactone) block copolymer with a disulfide linkage, PMAA-b-PCL-SS-PCL-b-PMAA, was synthesized for enhanced cellular uptake due to a reduction response to GSH and pH-sensitive characteristics.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Shih-Jer Huang
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Xiao-Shan Huang
- Institute of Medical Science and Technology
- National Sun Yat-Sen University
- Kaohsiung 804
- Taiwan
| | - Yi-Ting Wu
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Hsuan-Ying Chen
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Yu-Lun Lo
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry
- College of Life Science
- Kaohsiung Medical University
- Kaohsiung 80708
- Taiwan
| |
Collapse
|
43
|
Chen S, Rong L, Lei Q, Cao PX, Qin SY, Zheng DW, Jia HZ, Zhu JY, Cheng SX, Zhuo RX, Zhang XZ. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2015; 77:149-63. [PMID: 26599622 DOI: 10.1016/j.biomaterials.2015.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
To improve the tumor therapeutic efficiency and reduce undesirable side effects, ternary FK/p53/PEG-PLL(DA) complexes with a detachable surface shielding layer were designed. The FK/p53/PEG-PLL(DA) complexes were fabricated by coating the folate incorporated positively charged FK/p53 complexes with charge-switchable PEG-shield (PEG-PLL(DA)) through electrostatic interaction. At the physiological pH 7.4 in the bloodstream, PEG-PLL(DA) could extend the circulating time by shielding the positively charged FK/p53 complexes. After the accumulation of the FK/p53/PEG-PLL(DA) complexes in tumor sites, tumor-acidity-triggered charge switch led to the detachment of PEG-PLL(DA) from the FK/p53 complexes, and resulted in efficient tumor cell entry by folate-mediated uptake and electrostatic attraction. Stimulated by the high content glutathione (GSH) in cytoplasm, the cleavage of disulfide bond resulted in the liberation of proapoptosis peptide C-KLA(TPP) and the p53 gene, which exerted the combined tumor therapy by regulating both intrinsic and extrinsic apoptotic pathways. Both in vitro and in vivo studies confirmed that the ternary detachable complexes FK/p53/PEG-PLL(DA) could enhance antitumor efficacy and reduce adverse effects to normal cells. These findings indicate that the tumor-triggered decomplexation of FK/p53/PEG-PLL(DA) supplies a useful strategy for targeting delivery of different therapeutic agents in synergetic anticancer therapy.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Lei Rong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Peng-Xi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Yong Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
44
|
Wu Q, Tang X, Liu X, Hou Y, Li H, Yang C, Yi J, Song X, Zhang G. Thermo/pH Dual Responsive Mixed-Shell Polymeric Micelles Based on the Complementary Multiple Hydrogen Bonds for Drug Delivery. Chem Asian J 2015; 11:112-9. [PMID: 26377387 DOI: 10.1002/asia.201500847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 12/23/2022]
Abstract
Thermo/pH dual responsive mixed-shell polymeric micelles based on multiple hydrogen bonding were prepared by self-assembly of diaminotriazine-terminated poly(ɛ-caprolactone) (DAT-PCL), uracil-terminated methoxy poly(ethylene glycol) (MPEG-U), and uracil-terminated poly(N-vinylcaprolactam) (PNVCL-U) at room temperature. PCL acted as the core and MPEG/PNVCL as the mixed shell. Increasing the temperature, PNVCL collapsed and enclosed the PCL core, while MPEG penetrated through the PNVCL shell, thereby leading to the formation of MPEG channels on the micelles surface. The low cytotoxicity of the mixed micelles was confirmed by an MTT assay against BGC-823 cells. Studies on the in vitro drug release showed that a much faster release rate was observed at pH 5.0 compared to physiological pH, owing to the dissociation of hydrogen bonds. Therefore, the mixed-shell polymeric micelles would be very promising candidates in drug delivery systems.
Collapse
Affiliation(s)
- Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Xiuping Tang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Yu Hou
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - He Li
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Chen Yang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Jie Yi
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Ximing Song
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, No.66 Chongshan Mid-Road, Huanggu District, Shenyang, 110036, Liaoning Province, P. R. China.
| |
Collapse
|
45
|
Brooks WLA, Sumerlin BS. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 2015; 116:1375-97. [DOI: 10.1021/acs.chemrev.5b00300] [Citation(s) in RCA: 552] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
46
|
Nguyen CT, Tran TH, Amiji M, Lu X, Kasi RM. Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2071-82. [PMID: 26169153 DOI: 10.1016/j.nano.2015.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 11/18/2022]
Abstract
UNLABELLED A novel amphiphilic cholesterol-based block copolymer comprised of a polymethacrylate bearing cholesterol block and a polyethylene glycol block with reducible disulfide bonds (PC5MA-SS-PEO) was synthesized and evaluated as a redox-sensitive nanoparticulate delivery system. The self-assembled PC5MA-SS-PEO nanoparticles (SS-NPs) encapsulated the anticancer drug doxorubicin (DOX) with high drug loading (18.2% w/w) and high encapsulation efficiency (94.9%). DOX-encapsulated PC5MA-SS-PEO self-assembled nanoparticles (DOX-encapsulated SS-NPs) showed excellent stability and exhibited a rapid DOX release in response to dithiothreitol reductive condition. Importantly, following internalization by lung cancer cells, the reducible DOX-encapsulated SS-NPs achieved higher cytotoxicity than the non-reducible thioester NPs whereas blank nanoparticles were non-cytotoxic. Furthermore, in vivo imaging studies in tumor-bearing severe combined immunodeficiency (SCID) mice showed that the nanoparticles preferentially accumulated in tumor tissue with remarkably reduced accumulation in the healthy non-target organs. The results indicated that the SS-NPs may be a promising platform for cancer-cell specific delivery of hydrophobic anticancer drugs. FROM THE CLINICAL EDITOR The use of nanocarriers for drug delivery against tumors has been under intense research. One problem of using carrier system is the drug release kinetics at tumor site. In this article, the authors continued their previous study in the development of an amphiphilic cholesterol-based block copolymer with redox-sensitive modification, so that the payload drug could be released in response to the microenvironment. The interesting results should provide a new direction for designing future novel nanocarrier systems.
Collapse
Affiliation(s)
- Chi Thanh Nguyen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT
| | - Thanh Huyen Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | - Xiuling Lu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT.
| | - Rajeswari M Kasi
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT; Department of Chemistry, University of Connecticut, Storrs, CT.
| |
Collapse
|
47
|
Kim BJ, Cheong H, Hwang BH, Cha HJ. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. Angew Chem Int Ed Engl 2015; 54:7318-22. [PMID: 25968933 DOI: 10.1002/anie.201501748] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/04/2015] [Indexed: 12/17/2022]
Abstract
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications.
Collapse
Affiliation(s)
- Bum Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea)
| | - Hogyun Cheong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea)
| | - Byeong Hee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea).,Division of Bioengineering, Incheon National University, Incheon 406-772 (Korea)
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea).
| |
Collapse
|
48
|
Kim BJ, Cheong H, Hwang BH, Cha HJ. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Zhu JY, Lei Q, Yang B, Jia HZ, Qiu WX, Wang X, Zeng X, Zhuo RX, Feng J, Zhang XZ. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly. Biomaterials 2015; 52:281-90. [PMID: 25818434 DOI: 10.1016/j.biomaterials.2015.02.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
The present study reported a lysosome-acidity-targeting bio-responsive nanovehicle self-assembled from dextran (Dex) and phenylboronic acid modified cholesterol (Chol-PBA), aiming at the nucleus-tropic drug delivery. The prominent advantage of this assembled nanoconstruction arose from its susceptibility to acidity-labile dissociation concurrently accompanied with the fast liberation of encapsulated drugs, leading to efficient nuclear drug translocation and consequently favorable drug efficacy. By elaborately exploiting NH4Cl pretreatment to interfere with the cellular endosomal acidification progression, this study clearly evidenced at a cellular level the strong lysosomal-acidity dependency of nuclear drug uptake efficiency, which was shown to be the main factor influencing the drug efficacy. The boronate-linked nanoassembly displayed nearly no cytotoxicity and can remain structural stability under the simulated physiological conditions including 10% serum and the normal blood sugar concentration. The cellular exposure to cholesterol was found to bate the cellular uptake of nanoassembly in a dose-dependent manner, suggesting a cholesterol-associated mechanism of the intracellular internalization. The in vivo antitumor assessment in xenograft mouse models revealed the significant superiority of DOX-loaded Dex/Chol-PBA nanoassembly over the controls including free DOX and the DOX-loaded non-sensitive Dex-Chol, as reflected by the more effective tumor-growth inhibition and the better systematic safety. In terms of the convenient preparation, sensitive response to lysosomal acidity and efficient nuclear drug translocation, Dex/Chol-PBA nanoassembly derived from natural materials shows promising potentials as the nanovehicle for nucleus-tropic drug delivery especially for antitumor agents. More attractively, this study offers a deeper insight into the mechanism concerning the contribution of acidity-responsive delivery to the enhanced chemotherapy performance.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuli Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84108, USA
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
50
|
Wang J, Xu W, Ding J, Lu S, Wang X, Wang C, Chen X. Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2015; 8:216-230. [PMID: 28787934 PMCID: PMC5455236 DOI: 10.3390/ma8010216] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/07/2015] [Indexed: 12/02/2022]
Abstract
Nanoscale micelles as an effective drug delivery system have attracted increasing interest in malignancy therapy. The present study reported the construction of the cholesterol-enhanced doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (CDM/DOX), poly(L-lactide)-based micelle (CLM/DOX), and stereocomplex micelle (CSCM/DOX) from the equimolar enantiomeric 4-armed poly(ethylene glycol)-polylactide copolymers in aqueous condition. Compared with CDM/DOX and CLM/DOX, CSCM/DOX showed the smallest hydrodynamic size of 96 ± 4.8 nm and the slowest DOX release. The DOX-loaded micelles exhibited a weaker DOX fluorescence inside mouse renal carcinoma cells (i.e., RenCa cells) compared to free DOX·HCl, probably because of a slower DOX release. More importantly, all the DOX-loaded micelles, especially CSCM/DOX, exhibited the excellent antiproliferative efficacy that was equal to or even better than free DOX·HCl toward RenCa cells attributed to their successful internalization. Furthermore, all of the DOX-loaded micelles exhibited the satisfactory hemocompatibility compared to free DOX·HCl, indicating the great potential for systemic chemotherapy through intravenous injection.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, China.
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shengfan Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaoqing Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Chunxi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|