1
|
Bordet M, Rival G, Seveyrat L, Millon A, Capsal JF, Cottinet PJ, Le MQ, Della Schiava N. Cold Storage of Human Femoral Arteries for Twelve Months: Impact on Mechanical Properties. Eur J Vasc Endovasc Surg 2024; 68:797-802. [PMID: 39111534 DOI: 10.1016/j.ejvs.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
OBJECTIVE This biomechanical pre-clinical study aimed to assess the consequences on mechanical properties of long term cold storage (+2 to +8 °C) of arterial allografts. METHODS Femoropopliteal arterial segments were collected from multiorgan donors and stored at +2 to +8 °C for twelve months in saline solution with added antibiotics. Mechanical characterisation was carried out using two different tests, with the aim of defining the physiological modulus and the maximum stress and strain borne by the sample before rupture. These characterisations were carried out after zero, six, and twelve months of storage for each sample (T0, T6, and T12, respectively). For comparison, the same tests were performed on cryopreserved femoropopliteal segments after thawing. RESULTS Twelve refrigerated allografts (RAs), each divided into three segments, and 10 cryopreserved allografts (CAs) were characterised. The median (interquartile range [IQR]) Young's modulus was not statistically significantly different between the storage times for cold stored allografts: RAT0, 164 (150, 188) kPa; RAT6, 178 (141, 185) kPa; RAT12, 177 (149, 185) kPa. The median (IQR) Young's modulus of the CA group (153; 130, 170 kPa) showed no significant differences from the RA groups, irrespective of storage time. Furthermore, median (IQR) maximum stress and strain values were not significantly different between the different groups: for maximum stress: RAT0, 1.58 (1.08, 2.09) MPa; RAT6, 1.74 (1.55, 2.36) MPa; RAT12, 2.25 (1.87, 2.53) MPa; CA, 2.25 (1.77, 2.61) MPa; and for maximum strain: RAT0, 64% (50, 90); RAT6, 79% (63, 84); RAT12, 72% (65, 86); CA, 67% (50, 95). CONCLUSION Cold storage for up to twelve months appears to have no impact on the mechanical characteristics of human arterial allografts. Therefore, this preservation method, which would greatly simplify routine care, seems feasible. Other indicators are being studied to verify the safety of this preservation process before considering its use in vivo.
Collapse
Affiliation(s)
- Marine Bordet
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France; Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France.
| | - Guilhem Rival
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France
| | | | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France
| | | | | | - Minh Quyen Le
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France
| | - Nellie Della Schiava
- Université de Lyon, INSA Lyon, LGEF, EA682, Villeurbanne, France; Department of Vascular and Endovascular Surgery, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France; Centre de Référence des Infections Vasculaire Complexes (CRIVasc Network), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
2
|
Chen J, Tang Y, Shen Z, Wang W, Hou J, Li J, Chen B, Mei Y, Liu S, Zhang L, Lu S. Predicting and Analyzing Restenosis Risk after Endovascular Treatment in Lower Extremity Arterial Disease: Development and Assessment of a Predictive Nomogram. J Endovasc Ther 2024; 31:1140-1149. [PMID: 36891634 DOI: 10.1177/15266028231158294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
PURPOSE This study aimed to develop and internally validate nomograms for predicting restenosis after endovascular treatment of lower extremity arterial diseases. MATERIALS AND METHODS A total of 181 hospitalized patients with lower extremity arterial disease diagnosed for the first time between 2018 and 2019 were retrospectively collected. Patients were randomly divided into a primary cohort (n=127) and a validation cohort (n=54) at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) regression was used to optimize the feature selection of the prediction model. Combined with the best characteristics of LASSO regression, the prediction model was established by multivariate Cox regression analysis. The predictive models' identification, calibration, and clinical practicability were evaluated by the C index, calibration curve, and decision curve. The prognosis of patients with different grades was compared by survival analysis. Internal validation of the model used data from the validation cohort. RESULTS The predictive factors included in the nomogram were lesion site, use of antiplatelet drugs, application of drug coating technology, calibration, coronary heart disease, and international normalized ratio (INR). The prediction model demonstrated good calibration ability, and the C index was 0.762 (95% confidence interval: 0.691-0.823). The C index of the validation cohort was 0.864 (95% confidence interval: 0.801-0.927), which also showed good calibration ability. The decision curve shows that when the threshold probability of the prediction model is more significant than 2.5%, the patients benefit significantly from our prediction model, and the maximum net benefit rate is 30.9%. Patients were graded according to the nomogram. Survival analysis found that there was a significant difference in the postoperative primary patency rate between patients of different classifications (log-rank p<0.001) in both the primary cohort and the validation cohort. CONCLUSION We developed a nomogram to predict the risk of target vessel restenosis after endovascular treatment by considering information on lesion site, postoperative antiplatelet drugs, calcification, coronary heart disease, drug coating technology, and INR. CLINICAL IMPACT Clinicians can grade patients after endovascular procedure according to the scores of the nomograms and apply intervention measures of different intensities for people at different risk levels. During the follow-up process, an individualized follow-up plan can be further formulated according to the risk classification. Identifying and analyzing risk factors is essential for making appropriate clinical decisions to prevent restenosis.
Collapse
Affiliation(s)
- Jinxing Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Yanan Tang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Zekun Shen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Weiyi Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Jiaxuan Hou
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Jiayan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Bingyi Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Yifan Mei
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Shuang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Liwei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
3
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive framework for aging muscular and elastic arteries. Acta Biomater 2024; 188:223-241. [PMID: 39303831 DOI: 10.1016/j.actbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK.
| |
Collapse
|
4
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Consolini J, Oberman AG, Sayut J, Damen FW, Goergen CJ, Ravosa MJ, Holland MA. Investigation of direction- and age-dependent prestretch in mouse cranial dura mater. Biomech Model Mechanobiol 2024; 23:721-735. [PMID: 38206531 PMCID: PMC11261808 DOI: 10.1007/s10237-023-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Cranial dura mater is a dense interwoven vascularized connective tissue that helps regulate neurocranial remodeling by responding to strains from the growing brain. Previous ex vivo experimentation has failed to account for the role of prestretch in the mechanical behavior of the dura. Here we aim to estimate the prestretch in mouse cranial dura mater and determine its dependency on direction and age. We performed transverse and longitudinal incisions in parietal dura excised from newborn (day ∼ 4) and mature (12 weeks) mice and calculated the ex vivo normalized incision opening (measured width over length). Then, similar incisions were simulated under isotropic stretching within Abaqus/Standard. Finally, prestretch was estimated by comparing the ex vivo and in silico normalized openings. There were no significant differences between the neonatal and adult mice when comparing cuts in the same direction, but adult mice were found to have significantly greater stretch in the anterior-posterior direction than in the medial-lateral direction, while neonatal dura was essentially isotropic. Additionally, our simulations show that increasing curvature impacts the incision opening, indicating that flat in silico models may overestimate prestretch.
Collapse
Affiliation(s)
- Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alyssa G Oberman
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew J Ravosa
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Shahbad R, Pipinos M, Jadidi M, Desyatova A, Gamache J, MacTaggart J, Kamenskiy A. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Ann Biomed Eng 2024; 52:794-815. [PMID: 38321357 PMCID: PMC11455778 DOI: 10.1007/s10439-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Margarita Pipinos
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Anastasia Desyatova
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA.
| |
Collapse
|
7
|
Struczewska P, Razian SA, Townsend K, Jadidi M, Shahbad R, Zamani E, Gamache J, MacTaggart J, Kamenskiy A. Mechanical, structural, and physiologic differences between above and below-knee human arteries. Acta Biomater 2024; 177:278-299. [PMID: 38307479 PMCID: PMC11456514 DOI: 10.1016/j.actbio.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Peripheral Artery Disease (PAD) affects the lower extremities and frequently results in poor clinical outcomes, especially in the vessels below the knee. Understanding the biomechanical and structural characteristics of these arteries is important for improving treatment efficacy, but mechanical and structural data on tibial vessels remain limited. We compared the superficial femoral (SFA) and popliteal (PA) arteries that comprise the above-knee femoropopliteal (FPA) segment to the infrapopliteal (IPA) anterior tibial (AT), posterior tibial (PT), and fibular (FA) arteries from the same 15 human subjects (average age 52, range 42-67 years, 87 % male). Vessels were imaged using μCT, evaluated with biaxial mechanical testing and constitutive modeling, and assessed for elastin, collagen, smooth muscle cells (SMCs), and glycosaminoglycans (GAGs). IPAs were more often diseased or calcified compared to the FPAs. They were also twice smaller, 53 % thinner, and significantly stiffer than the FPA longitudinally, but not circumferentially. IPAs experienced 48 % higher physiologic longitudinal stresses (62 kPa) but 27 % lower circumferential stresses (24 kPa) and similar cardiac cycle stretch of <1.02 compared to the FPA. IPAs had lower longitudinal pre-stretch (1.12) than the FPAs (1.29), but there were no differences in the stored elastic energy during pulsation. The physiologic circumferential stiffness was similar in the above and below-knee arteries (718 kPa vs 754 kPa). Structurally, IPAs had less elastin, collagen, and GAGs than the FPA, but maintained similar SMC content. Our findings contribute to a better understanding of segment-specific human lower extremity artery biomechanics and may inform the development of better medical devices for PAD treatment. STATEMENT OF SIGNIFICANCE: Peripheral Artery Disease (PAD) in the lower extremity arteries exhibits distinct characteristics and results in different clinical outcomes when treating arteries above and below the knee. However, their mechanical, structural, and physiologic differences are poorly understood. Our study compared above- and below-knee arteries from the same middle-aged human subjects and demonstrated distinct differences in size, structure, and mechanical properties, leading to variations in their physiological behavior. These insights could pave the way for creating location-specific medical devices and treatments for PAD, offering a more effective approach to its management. Our findings provide new, important perspectives for clinicians, researchers, and medical device developers interested in treating PAD in both above- and below-knee locations.
Collapse
Affiliation(s)
| | | | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
8
|
Nguyen VA, Brooks-Richards TL, Ren J, Woodruff MA, Allenby MC. Quantitative and large-format histochemistry to characterize peripheral artery compositional gradients. Microsc Res Tech 2023; 86:1642-1654. [PMID: 37602569 DOI: 10.1002/jemt.24400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
The femoropopliteal artery (FPA) is a long, flexible vessel that travels down the anteromedial compartment of the thigh as the femoral artery and then behind the kneecap as the popliteal artery. This artery undergoes various degrees of flexion, extension, and torsion during normal walking movements. The FPA is also the most susceptible peripheral artery to atherosclerosis and is where peripheral artery disease manifests in 80% of cases. The connection between peripheral artery location, its mechanical flexion, and its physiological or pathological biochemistry has been investigated for decades; however, histochemical methods remain poorly leveraged in their ability to spatially correlate normal or abnormal extracellular matrix and cells with regions of mechanical flexion. This study generates new histological image processing pipelines to quantitate tissue composition across high-resolution FPA regions-of-interest or low-resolution whole-section cross-sections in relation to their anatomical locations and flexions during normal movement. Comparing healthy ovine femoral, popliteal, and cranial-tibial artery sections as a pilot, substantial arterial contortion was observed in the distal popliteal and cranial tibial regions of the FPA which correlated with increased vascular smooth muscle cells and decreased elastin content. These methods aim to aid in the quantitative characterization of the spatial distribution of extracellular matrix and cells in large heterogeneous tissue sections such as the FPA. RESEARCH HIGHLIGHTS: Large-format histology preserves artery architecture. Elastin and smooth muscle content is correlated with distance from heart and contortion during flexion. Cell and protein analyses are sensitive to sectioning plane and image magnification.
Collapse
Affiliation(s)
- V A Nguyen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - T L Brooks-Richards
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - J Ren
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M A Woodruff
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M C Allenby
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Chemical Engineering, University of Queensland (UQ), Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Kriener K, Whiting H, Storr N, Homes R, Lala R, Gabrielyan R, Kuang J, Rubin B, Frails E, Sandstrom H, Futter C, Midwinter M. Applied use of biomechanical measurements from human tissues for the development of medical skills trainers: a scoping review. JBI Evid Synth 2023; 21:2309-2405. [PMID: 37732940 DOI: 10.11124/jbies-22-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION Open Science Framework https://osf.io/fgb34.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harrison Whiting
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Royal Brisbane Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Storr
- Gold Coast University Hospital, Southport, QLD Australia
| | - Ryan Homes
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Raushan Lala
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Gabrielyan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Jasmine Kuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Bryn Rubin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Edward Frails
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hannah Sandstrom
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Christopher Futter
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Anaesthesia and Intensive Care Program, Herston Biofabrication institute, Brisbane, QLD, Australia
| | - Mark Midwinter
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive model for human femoropopliteal arteries. Acta Biomater 2023; 170:68-85. [PMID: 37699504 PMCID: PMC10802972 DOI: 10.1016/j.actbio.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
High failure rates present challenges for surgical and interventional therapies for peripheral artery disease of the femoropopliteal artery (FPA). The FPA's demanding biomechanical environment necessitates complex interactions with repair devices and materials. While a comprehensive understanding of the FPA's mechanical characteristics could improve medical treatments, the viscoelastic properties of these muscular arteries remain poorly understood, and the constitutive model describing their time-dependent behavior is absent. We introduce a new viscoelastic constitutive model for the human FPA grounded in its microstructural composition. The model is capable of detailing the contributions of each intramural component to the overall viscoelastic response. Our model was developed utilizing fractional viscoelasticity and tested using biaxial experimental data with hysteresis and relaxation collected from 10 healthy human subjects aged 57 to 65 and further optimized for high throughput and automation. The model accurately described the experimental data, capturing significant nonlinearity and hysteresis that were particularly pronounced circumferentially, and tracked the contribution of passive smooth muscle cells to viscoelasticity that was twice that of the collagen fibers. The high-throughput parameter estimation procedure we developed included a specialized objective function and modifications to enhance convergence for the common exponential-type fiber laws, facilitating computational implementation. Our new model delineates the time-dependent behavior of human FPAs, which will improve the fidelity of computational simulations investigating device-artery interactions and contribute to their greater physical accuracy. Moreover, it serves as a useful tool to investigate the contribution of arterial constituents to overall tissue viscoelasticity, thereby expanding our knowledge of arterial mechanophysiology. STATEMENT OF SIGNIFICANCE: The demanding biomechanical environment of the femoropopliteal artery (FPA) necessitates complex interactions with repair devices and materials, but the viscoelastic properties of these muscular arteries remain poorly understood with the constitutive model describing their time-dependent behavior being absent. We hereby introduce the first viscoelastic constitutive model for the human FPA grounded in its microstructures. This model was tested using biaxial mechanical data collected from 10 healthy human subjects between the ages of 57 to 65. It can detail the contributions of each intramural component to the overall viscoelastic response, showing that the contribution of passive smooth muscle cells to viscoelasticity is twice that of collagen fibers. The usefulness of this model as tool to better understand arterial mechanophysiology was demonstrated.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz Univerisity of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
11
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
12
|
Pineda-Castillo SA, Aparicio-Ruiz S, Burns MM, Laurence DW, Bradshaw E, Gu T, Holzapfel GA, Lee CH. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery. Acta Biomater 2022; 150:295-309. [PMID: 35905825 PMCID: PMC10230544 DOI: 10.1016/j.actbio.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Coronary atherosclerosis is the main cause of death worldwide. Advancing the understanding of coronary microstructure-based mechanics is fundamental for the development of therapeutic tools and surgical procedures. Although the passive biaxial properties of the coronary arteries have been extensively explored, their regional differences and the relationship between tissue microstructure and mechanics have not been fully characterized. In this study, we characterized the passive biaxial mechanical properties and microstructural properties of the proximal, medial, and distal regions of the porcine left anterior descending artery (LADA). We also attempted to relate the biaxial stress-stretch response of the LADA and its respective birefringent responses to the polarized light for obtaining information about the load-dependent microstructural variations. We found that the LADA extensibility is reduced in the proximal-to-distal direction and that the medial region exhibits more heterogeneous mechanical behavior than the other two regions. We have also observed highly dynamic microstructural behavior where fiber families realign themselves depending on loading. In addition, we found that the microstructure of the distal region exhibited highly aligned fibers along the longitudinal axis of the artery. To verify this microstructural feature, we imaged the LADA specimens with multi-photon microscopy and observed that the adventitia microstructure transitioned from a random fiber network in the proximal region to highly aligned fibers in the distal region. Our findings could offer new perspectives for understanding coronary mechanics and aid in the development of tissue-engineered vascular grafts, which are currently limited due to their mismatch with native tissue in terms of mechanical properties and microstructural features. STATEMENT OF SIGNIFICANCE: The tissue biomechanics of coronary arteries is fundamental for the development of revascularization techniques such as coronary artery bypass. These therapeutics require a deep understanding of arterial mechanics, microstructure, and mechanobiology to prevent graft failure and reoperation. The present study characterizes the unique regional mechanical and microstructural properties of the porcine left anterior descending artery using biaxial testing, polarized-light imaging, and confocal microscopy. This comprehensive characterization provides an improved understanding of the collagen/elastin architecture in response to mechanical loads using a region-specific approach. The unique tissue properties obtained from this study will provide guidance for the selection of anastomotic sites in coronary artery bypass grafting and for the design of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Sergio A Pineda-Castillo
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA; Stephenson School of Biomedical Engineering, The University of Oklahoma, USA
| | - Santiago Aparicio-Ruiz
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Madison M Burns
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Elizabeth Bradshaw
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Tingting Gu
- Samuel Roberts Noble Microscopy Laboratory, The University of Oklahoma, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA.
| |
Collapse
|
13
|
Multiscale agent-based modeling of restenosis after percutaneous transluminal angioplasty: Effects of tissue damage and hemodynamics on cellular activity. Comput Biol Med 2022; 147:105753. [DOI: 10.1016/j.compbiomed.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
|
14
|
Kareem AK, Gabir MM, Ali IR, Ismail AE, Taib I, Darlis N, Almoayed OM. A review on femoropopliteal arterial deformation during daily lives and nickel-titanium stent properties. J Med Eng Technol 2022; 46:300-317. [PMID: 35234558 DOI: 10.1080/03091902.2022.2041749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing number of studies on the behaviour of stent placement in recent decades provides a clear understanding of peripheral artery disease (PAD). The severe mechanical loads (axial tension and compression, bending, radial compression and torsion) deformation of the femoropopliteal artery (FPA) is responsible for the highest failure rate of permanent nickel-titanium (Nitinol) stents. Therefore, the purpose of this article is to review research papers that examined the deformation of the natural load environment of FPA, the properties of Nitinol and mechanical considerations. In conclusion, a better understanding of mechanical behaviour for FPA Nitinol stents contributes to increased mechanical performance and fatigue-life.
Collapse
Affiliation(s)
- Ali K Kareem
- Department of Biomedical Engineering, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Mustafa M Gabir
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Inas R Ali
- Business Administration Department, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Muar, Malaysia
| | - Al E Ismail
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Ishkrizat Taib
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Nofrizalidris Darlis
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Omar M Almoayed
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| |
Collapse
|
15
|
STAHLBERG E, PLANERT M, ANTON S, SIEREN M, WIEDNER M, BARKHAUSEN J, GOLTZ JP. Functional angiograms after stent implantation into the femoropopliteal artery. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2022. [DOI: 10.23736/s1824-4777.21.01471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Pioneering personalised design of femoropopliteal nitinol stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112462. [PMID: 34702537 DOI: 10.1016/j.msec.2021.112462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND/MOTIVATION Percutaneous femoropopliteal artery intervention moves towards personalised therapy, which requires design of unique lesion-specific stents. However, to date, not much progress has been made in the development of personalised stents. OBJECTIVE This paper aims to design personalised nitinol stents for femoropopliteal arteries based on medical imaging of patients and advanced computational mechanics, which is the first attempt to the authors' best knowledge. METHODS The design process is based on three objectives: (i) achieving the healthy lumen area; (ii) reducing the stress in the media layer; (iii) improving the lumen shape after stenting. The design parameters include the strut width and thickness, the crown length, the nominal radius and the number of strut units per crown. Using representative unit-cell models, the effects of the five geometric parameters on the stent performance are investigated thoroughly with numerical simulations. Then, design protocols, especially for the circumferentially varying strut size and the oval stent shape, are developed and fully evaluated for an asymmetric stenosis. RESULTS Using the design protocols, full personalised stents are designed for arteries with diffuse and focal plaques, based on medical imaging of patients. The personalised stent designs provide a double lumen gain, a reduced stress in the media layer and an improved lumen shape compared to a commercial stent. CONCLUSIONS The suggested protocols prove their high effectiveness in design of personalised stents, and the suggested approach can be applied to development of personalised therapies involving the use of stent technology including percutaneous coronary artery intervention, transcatheter aortic valve implantation, endovascular aneurysm repair and ureteric stenting.
Collapse
|
17
|
Maleckis K, Keiser C, Jadidi M, Anttila E, Desyatova A, MacTaggart J, Kamenskiy A. Safe balloon inflation parameters for resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg 2021; 91:302-309. [PMID: 34039932 PMCID: PMC8375400 DOI: 10.1097/ta.0000000000003276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noncompressible hemorrhage is a leading cause of preventable death in civilian and military trauma populations. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a promising method for controlling noncompressible hemorrhage, but safe balloon inflation parameters are not well defined. Our goal was to determine the balloon inflation parameters associated with benchtop flow occlusion and aortic/balloon rupture in ex vivo human aortas and test the hypothesis that optimal balloon inflation characteristics depend on systolic pressure and subject demographics. METHODS Aortic occlusion parameters in human thoracic aortas (TAs) and abdominal aortas (AAs) from 79 tissue donors (median ± SD age, 52 ± 18 years [range, 13-75 years]; male, 52; female, 27) were recorded under 100/40, 150/40, and 200/40 mm Hg flow pressures for ER-REBOA and Coda balloons. Rupture tests were done with Coda balloons only without flow. RESULTS In the TA, the average balloon inflation volumes and pressures resulting in 100/40 mm Hg flow occlusion were 11.7 ± 3.8 mL and 174 ± 65 mm Hg for the ER-REBOA, and 10.6 ± 4.3 mL and 94 ± 57 mm Hg for the Coda balloons. In the AA, these values were 6.2 ± 2.6 mL and 110 ± 47 mm Hg for the ER-REBOA, and 5.9 ± 2.2 mL and 71 ± 30 mm Hg for the Coda. The average balloon inflation parameters associated with aortic/Coda balloon rupture were 39.1 ± 6.5 mL and 1,284 ± 385 mm Hg in the TA, and 27.7 ± 7.7 mL and 1,410 ± 483 mm Hg in the AA. Age, sex, and systolic pressure all had significant effects on balloon occlusion and rupture parameters. CONCLUSION Optimal balloon inflation parameters depend on anatomical, physiological, and demographic characteristics. Pressure-guided rather than volume-guided balloon inflation may reduce the risk of aortic rupture. These results can be used to help improve the safety of REBOA procedures and devices.
Collapse
Affiliation(s)
- Kaspars Maleckis
- Department of Biomechanics, University of Nebraska Omaha, Nebraska 68182, United States
| | - Courtney Keiser
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Nebraska 68182, United States
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anastasia Desyatova
- Department of Biomechanics, University of Nebraska Omaha, Nebraska 68182, United States
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Nebraska 68182, United States
| |
Collapse
|
18
|
Assessment of thoracic aorta in different cardiac phases in patients with non-aorta diseases using cardiac CT. Sci Rep 2021; 11:15209. [PMID: 34312448 PMCID: PMC8313572 DOI: 10.1038/s41598-021-94677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
The aim was to evaluate the thoracic aorta in different cardiac phases to obtain the correct cardiac phase for measuring the maximum diameter required to predict aortic disease. Cardiac CT was performed on 97 patients for suspected coronary artery disease. The average diameter of ascending (AAD) and descending aorta (DAD) in the plane of pulmonary bifurcation, in the plane of the sinus junction (AAD [STJ] and DAD [STJ]), descending aorta in the plane of the diaphragm (DAD [Dia]), the diameter of the main pulmonary artery (MPAD), distance from the sternum to the spine (S-SD), and distance from the sternum to the ascending aorta (S-AAD) were assessed at 20 different time points in the cardiac cycle. Differences in aortic diameter in different cardiac phases and the correlation between aortic diameter and traditional risk factors were analyzed by the general linear mixed model. The diameter of the thoracic aorta reached the minimum at the phase of 95–0%, and reached the maximum at 30–35%. The maximum values of AAD, AAD (STJ), DAD, DAD (STJ), and DAD (Dia) were 32.51 ± 3.35 mm, 28.86 ± 3.01 mm, 23.46 ± 2.88 mm, 21.85 ± 2.58 mm, and 21.09 ± 2.66 mm, respectively. The maximum values of MPAD/AAD and DAD/AAD (STJ) were 0.8140 ± 0.1029, 0.7623 ± 0.0799, respectively. The diameter of the thoracic aorta varies with the cardiac phase. Analyzing the changes in aortic diameter, which can be done using cardiac CT, could provide a more accurate clinical measurement for predicting aortic disease.
Collapse
|
19
|
Ramondou P, Hersant J, Bernardeau E, Moumneh T, Feuilloy M, Henni S, Abraham P. Kneeling-induced calf ischemia: a pilot study in apparently healthy European young subjects. Eur J Appl Physiol 2021; 121:3031-3040. [PMID: 34254181 DOI: 10.1007/s00421-021-04764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Many tasks, sports or leisure activities require maximal knee flexion. We hypothesized that this position could result in reduced calf perfusion, in young European subjects. METHODS We quantified calf ischemia resulting from the knee flexion with transcutaneous oxygen pressure (TcpO2) sensors by assessing the decrease from rest of TcpO2 (DROP) defined as limb changes minus chest changes. A minimal DROP (DROPm) <-15 mmHg defines the presence of ischemia. From the crawling position, participants kneeled for 3 min while bending as in prostration/prayer position (P). Thirty-five participants repeated this maneuver a second time, while 7 participants were also required to sit on their heels with the torso in the vertical position to attain knee flexion without significant groin flexion (S). RESULT In 41 healthy young volunteers (30 males), 25 [20-31] years old, 37 patients showed a DROPm < -15 mmHg from "R" to "P" in one (n = 4) or both (n = 33) calves (90.2%; 95% CI 76.9-97.3). After backward regression of the DROPm, there was no significant association with side, body weight of systolic blood pressure. However, age was strongly associated with DROPm (OR 5.34 [2.45-8.69]) so that DROPm was significantly higher in older, with a correlation ρ = 0.31 (p = 0.003). CONCLUSION Kneeling dramatically reduces calf perfusion, likely through popliteal artery kinking, possibly through muscle crushing. Eastern lifestyle includes routine flexed position since childhood. Whether or not such a chronic training reduces the risk of kneeling-induced ischemia in adults is unknown to date.
Collapse
Affiliation(s)
- Pierre Ramondou
- Vascular Medicine, University Hospital, Angers, France.,Institut MITOVASC, UMR CNRS 6015 UMR INSERM 1083, Université d'Angers, Angers, France
| | | | - Elise Bernardeau
- Sports and Exercise Medicine and Vascular Medicine, University Hospital, Angers, France
| | - Thomas Moumneh
- Vascular Medicine, University Hospital, Angers, France.,Institut MITOVASC, UMR CNRS 6015 UMR INSERM 1083, Université d'Angers, Angers, France.,Département de Médecine d'Urgence, CHU d'Angers, Angers, France
| | - Mathieu Feuilloy
- School of Electronics (ESEO), Angers, France.,UMR CNRS 6613 LAUM, Le Mans, France
| | - Samir Henni
- Vascular Medicine, University Hospital, Angers, France.,Institut MITOVASC, UMR CNRS 6015 UMR INSERM 1083, Université d'Angers, Angers, France
| | - Pierre Abraham
- Vascular Medicine, University Hospital, Angers, France. .,Institut MITOVASC, UMR CNRS 6015 UMR INSERM 1083, Université d'Angers, Angers, France. .,Sports and Exercise Medicine and Vascular Medicine, University Hospital, Angers, France.
| |
Collapse
|
20
|
Dilba K, van Dam-Nolen DHK, Crombag GAJC, van der Kolk AG, Koudstaal PJ, Nederkoorn PJ, Hendrikse J, Kooi ME, van der Steen AFW, Wentzel JJ, van der Lugt A, Bos D. Dolichoarteriopathies of the extracranial internal carotid artery: The Plaque At RISK study. Eur J Neurol 2021; 28:3133-3138. [PMID: 34133824 PMCID: PMC8457194 DOI: 10.1111/ene.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Dolichoarteriopathies of the extracranial part of the internal carotid artery (ICA) are associated with cerebrovascular events, yet information on their prevalence and risk factors remains limited. The aim of the present study therefore was to study the prevalence and risk factors of dolichoarteriopathies in a sample of patients with cerebrovascular symptoms from the Plaque At RISK (PARISK) study. METHODS In a random sample of 100 patients from the PARISK study, multidetector computed tomography angiography (MDCTA) was performed as part of clinical workup. On MDCTA, we evaluated the extracranial trajectory of the ICA by measuring the length (in millimeters), the tortuosity index (TI; defined as the ICA length divided by the shortest possible distance from bifurcation to skull base), and dolichoarteriopathy type (tortuosity, coiling or kinking). Next, we investigated the association between cardiovascular risk factors and these measurements using linear and logistic regression analyses. RESULTS The mean (standard deviation) length of the ICA was 93 (± 14) mm, with a median (interquartile range) TI of 1.2 (1.1-1.3). The overall prevalence of dolichoarteriopathies was 69%, with tortuosity being the most common (72%), followed by coiling (20%), and kinking (8%). We found that age and obesity were associated with a higher TI: difference per 10-year increase in age: 0.05 (95% confidence interval [CI] 0.02-0.08) and 0.16 (95% CI 0.07-0.25) for obesity. Obesity and hypercholesterolemia were associated with a more severe type of dolichoarteriopathy (odds ratio [OR] 2.07 [95% CI 1.04-4.12] and OR 2.17 [95% CI 1.02-4.63], respectively). CONCLUSION Dolichoarteriopathies in the extracranial ICA are common in patients with cerebrovascular symptoms, and age, obesity and hypercholesterolemia may play an important role in the pathophysiology of these abnormalities.
Collapse
Affiliation(s)
- Kristine Dilba
- Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dianne H K van Dam-Nolen
- Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Geneviève A J C Crombag
- Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Peter J Koudstaal
- Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul J Nederkoorn
- Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Hendrikse
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Eline Kooi
- Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Jolanda J Wentzel
- Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel Bos
- Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Maleckis K, Kamenskiy A, Lichter EZ, Oberley-Deegan R, Dzenis Y, MacTaggart J. Mechanically tuned vascular graft demonstrates rapid endothelialization and integration into the porcine iliac artery wall. Acta Biomater 2021; 125:126-137. [PMID: 33549808 DOI: 10.1016/j.actbio.2021.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Mechanical properties of vascular grafts likely play important roles in healing and tissue regeneration. Healthy arteries are compliant at low pressures but stiffen rapidly with increasing load, ensuring sufficient volumetric expansion without overstretching the vessel. Commercial synthetic vascular grafts are stiff and unable to expand under physiologic loads, which may result in altered hemodynamics, deleterious cellular responses, and compromised clinical performance. The goal of this study was to develop an Elastomeric Nanofibrillar Graft (ENG) with artery-tuned nonlinear compliance and compare its healing responses to conventional expanded polytetrafluoroethylene (ePTFE) grafts in a porcine iliac artery model. Human and porcine iliac arteries were mechanically characterized, and an ENG with similar properties was created by utilizing residual strains within electrospun nanofibers. The ENG was tested for implantation suitability and implanted onto n = 5 domestic swine iliac arteries, with control ePTFE grafts implanted onto the contralateral iliac arteries. After two weeks in vivo, all iliac arteries and grafts remained patent with no signs of thrombosis or dilation. The mechanically tuned ENG implants exhibited a more confluent CD31-positive cell monolayer (1.53 ± 0.73 µm2/mm vs 0.52 ± 0.55 µm2/mm, p = 0.042) on the graft lumenal surface and a higher fraction of αSMA-positive cells (16.2 ± 8.6% vs 1.4 ± 0.7%, p = 0.018) within the graft wall than the ePTFE controls. Despite heavy cellular infiltration, the ENG retained its artery-like mechanical characteristics after two weeks in vivo. These short-term results demonstrate potential advantages of mechanically tuned biomimetic vascular grafts over standard ePTFE grafts. STATEMENT OF SIGNIFICANCE: Off-the-shelf synthetic vascular grafts are often the only option available for treating advanced stages of vascular disease. Despite significant efforts devoted to improving their biochemical characteristics, synthetic peripheral arterial grafts continue to demonstrate poor clinical outcomes leading to costly reinterventions. Here, we hypothesized that a synthetic vascular graft with elastomeric mechanical properties tuned to a healthy peripheral artery promotes better healing responses than a synthetic stiff graft. To test this hypothesis, we developed an Elastomeric Nanofibrillar Graft (ENG) with artery-tuned mechanical properties and compared its performance to a commercial ePTFE graft in a preclinical porcine iliac artery model. Our results suggest that mechanically tuned ENGs can offer better healing responses, potentially leading to better clinical outcomes for peripheral arterial repairs.
Collapse
|
22
|
Murtada SI, Kawamura Y, Weiss D, Humphrey JD. Differential biomechanical responses of elastic and muscular arteries to angiotensin II-induced hypertension. J Biomech 2021; 119:110297. [PMID: 33647550 DOI: 10.1016/j.jbiomech.2021.110297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries are distinguished by their distinct microstructures, biomechanical properties, and smooth muscle cell contractile functions. They also exhibit differential remodeling in aging and hypertension. Although regional differences in biomechanical properties have been compared, few studies have quantified biaxial differences in response to hypertension. Here, we contrast passive and active changes in large elastic and medium- and small-sized muscular arteries in adult mice in response to chronic infusion of angiotensin over 14 days. We found a significant increase in wall thickness, both medial and adventitial, in the descending thoracic aorta that associated with trends of an increased collagen:elastin ratio. There was adventitial thickening in the small-sized mesenteric artery, but also significant changes in elastic lamellar structure and contractility. An increased contractile response to phenylephrine coupled with a reduced vasodilatory response to acetylcholine in the mesenteric artery suggested an increased contractile state in response to hypertension. Overall reductions in the calculated gradients in pulse wave velocity and elastin energy storage capability from elastic-to-muscular arteries suggested a possible transfer of excessive pulsatile energy into the small-sized muscular arteries resulting in significant functional consequences in response to hypertension.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Y Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Jadidi M, Razian SA, Anttila E, Doan T, Adamson J, Pipinos M, Kamenskiy A. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomater 2021; 121:431-443. [PMID: 33227490 PMCID: PMC7855696 DOI: 10.1016/j.actbio.2020.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620μm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sayed Ahmadreza Razian
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Doan
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Josiah Adamson
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Margarita Pipinos
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
24
|
Jadidi M, Sherifova S, Sommer G, Kamenskiy A, Holzapfel GA. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater 2021; 121:461-474. [PMID: 33279711 PMCID: PMC8464405 DOI: 10.1016/j.actbio.2020.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Arterial mechanics plays an important role in vascular pathophysiology and repair, and advanced imaging can inform constitutive models of vascular behavior. We have measured the mechanical properties of 14 human superficial femoral arteries (SFAs) (age 12-70, mean 48±19 years) using planar biaxial extension, and determined the preferred collagen fiber direction and dispersion using multiphoton microscopy. The collagen fiber direction and dispersion were evaluated using second-harmonic generation imaging and modeled using bivariate von Mises distributions. The microstructures of elastin and collagen were assessed using two-photon fluorescence imaging and conventional bidirectional histology. The mechanical and structural data were used to describe the SFA mechanical behavior using two- and four-fiber family invariant-based constitutive models. Older SFAs were stiffer and mechanically more nonlinear than younger specimens. In the adventitia, collagen fibers were undulated and diagonally-oriented, while in the media, they were straight and circumferentially-oriented. The media was rich in collagen that surrounded the circumferentially-oriented smooth muscle cells, and the elastin was present primarily in the internal and external elastic laminae. Older SFAs had a more circumferential collagen fiber alignment, a decreased circumferential-radial fiber dispersion, but the same circumferential-longitudinal fiber dispersion as younger specimens. Both the two- and the four-fiber family constitutive models were able to capture the experimental data, and the fits were better for the four-fiber family formulation. Our data provide additional details on the SFA intramural structure and inform structurally-based constitutive models.
Collapse
|
25
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
26
|
Abstract
Vascular tortuosity may impede blood flow, occlude the lumen, and ultimately lead to ischemia or even infarction. Mechanical loads like blood pressure, axial force, and also torsion are key factors participating in this complex mechanobiological process. The available studies on arterial torsion instability followed computational or experimental approaches, yet single available theoretical study had modeled the artery as isotropic linear elastic. This paper aim is to validate a theoretical model of arterial torsion instability against experimental data. The artery is modeled as a single-layered, nonlinear, hyperelastic, anisotropic solid, with parameters calibrated from experiment. Linear bifurcation analysis is then performed to predict experimentally measured stability margins. Uncertainties in geometrical parameters and in measured mechanical response were considered. Also, the type of rate (incremental) boundary conditions (RBCs) impact on the results was examined (e.g., dead load, fluid pressure). The predicted critical torque and twist angle followed the experimentally measured trends. The closest prediction errors in the critical torque and twist rate were 22% and 67%, respectively. Using the different RBCs incurred differences of up to 50% difference within the model predictions. The present results suggest that the model may require further improvements. However, it offers an approach that can be used to predict allowable twist levels in surgical procedures (like anastomosis and grafting) and in the design of stents for arteries subjected to high torsion levels (like the femoropopliteal arteries). It may also be instructive in understanding biomechanical processes like arterial tortuosity, kinking, and coiling.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
27
|
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 2020; 103:172-188. [PMID: 31877371 DOI: 10.1016/j.actbio.2019.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kaspars Maleckis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States.
| |
Collapse
|
28
|
Abstract
BACKGROUND Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. OBJECTIVES To determine how different stent designs affect limb flexion-induced FPA deformations. METHODS Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. RESULTS Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. CONCLUSIONS Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.
Collapse
|
29
|
Desyatova A, Poulson W, MacTaggart J, Maleckis K, Kamenskiy A. Cross-sectional pinching in human femoropopliteal arteries due to limb flexion, and stent design optimization for maximum cross-sectional opening and minimum intramural stresses. J R Soc Interface 2019; 15:rsif.2018.0475. [PMID: 30135264 DOI: 10.1098/rsif.2018.0475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb flexion. One of these deformations, cross-sectional pinching, has a direct effect on blood flow, but is poorly characterized. Intra-arterial markers were deployed into n = 50 in situ cadaveric FPAs (80 ± 12 years old, 14F/11M), and limbs were imaged in standing, walking, sitting and gardening postures. Image analysis was used to measure marker openings and calculate FPA pinching. Parametric finite element analysis on a stent section was used to determine the optimal combination of stent strut amplitude, thickness and the number of struts per section to maximize cross-sectional opening and minimize intramural mechanical stress and low wall shear stress. Pinching was higher distally and increased with increasing limb flexion. In the walking, sitting and gardening postures, it was 1.16-1.24, 1.17-1.26 and 1.19-1.35, respectively. Stent strut amplitude and thickness had strong effects on both intramural stresses and pinching. Stents with a strut amplitude of 3 mm, thickness of 175 µm and 20 struts per section produced pinching and intramural stresses typical for a non-stented FPA, while also minimizing low wall shear stress areas, and ensuring a stent lifespan of at least 107 cycles. These results can help guide the development of improved devices and materials to treat peripheral arterial disease.
Collapse
Affiliation(s)
- Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, 987690 Nebraska Medical Center, Omaha, NE 68198-7690, USA
| | - William Poulson
- Department of Surgery, University of Nebraska Medical Center, 987690 Nebraska Medical Center, Omaha, NE 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, 987690 Nebraska Medical Center, Omaha, NE 68198-7690, USA
| | - Kaspars Maleckis
- Department of Surgery, University of Nebraska Medical Center, 987690 Nebraska Medical Center, Omaha, NE 68198-7690, USA
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, 987690 Nebraska Medical Center, Omaha, NE 68198-7690, USA
| |
Collapse
|
30
|
Jadidi M, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech Model Mechanobiol 2019; 18:1591-1605. [PMID: 31069592 DOI: 10.1007/s10237-019-01162-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Planar biaxial testing is commonly used to characterize the mechanical properties of arteries, but stresses associated with specimen flattening during this test are unknown. We quantified flattening effects in human femoropopliteal arteries (FPAs) of different ages and determined how they affect the calculated arterial physiologic stress-stretch state. Human FPAs from 472 tissue donors (age 12-82 years, mean 53 ± 16 years) were tested using planar biaxial extension, and morphometric and mechanical characteristics were used to assess the flattening effects. Constitutive parameters for the invariant-based model were adjusted to account for specimen flattening and used to calculate the physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy for the FPAs in seven age groups. Flattened specimens were overall 12 ± 4% stiffer longitudinally and 19 ± 11% stiffer circumferentially when biaxially tested. Differences between the stress-stretch curves adjusted and non-adjusted for the effects of flattening were relatively constant across all age groups longitudinally, but increased with age circumferentially. In all age groups, these differences were smaller than the intersubject variability. Physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy were all qualitatively and quantitatively similar when calculated with and without the flattening effects. Stresses, stretches, axial force, and stored energy reduced with age, but circumferential stiffness remained relatively constant between 25 and 65 years of age suggesting a homeostatic target of 0.75 ± 0.02 MPa. Flattening effects associated with planar biaxial testing are smaller than the intersubject variability and have little influence on the calculated physiologic stress-stretch state of human FPAs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
31
|
Anttila E, Balzani D, Desyatova A, Deegan P, MacTaggart J, Kamenskiy A. Mechanical damage characterization in human femoropopliteal arteries of different ages. Acta Biomater 2019; 90:225-240. [PMID: 30928732 PMCID: PMC6532398 DOI: 10.1016/j.actbio.2019.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
Endovascular treatment of Peripheral Arterial Disease (PAD) is notorious for high failure rates, and interaction between the arterial wall and the repair devices plays a significant role. Computational modeling can help improve clinical outcomes of these interventions, but it requires accurate inputs of elastic and damage characteristics of the femoropopliteal artery (FPA) which are currently not available. Fresh human FPAs from n = 104 tissue donors 14-80 years old were tested using planar biaxial extension to capture elastic and damage characteristics. Damage initiation stretches and stresses were determined for both longitudinal and circumferential directions, and their correlations with age and risk factors were assessed. Two and four-fiber-family invariant-based constitutive models augmented with damage functions were used to describe stress softening with accumulating damage. In FPAs younger than 50 years, damage began accumulating after 1.51 ± 0.13 and 1.49 ± 0.11 stretch, or 196 ± 110 kPa and 239 ± 79 kPa Cauchy stress in the longitudinal and circumferential directions, respectively. In FPAs older than 50 years, damage initiation stretches and stresses decreased to 1.27 ± 0.09 (106 ± 52 kPa) and 1.26 ± 0.09 (104 ± 59 kPa), respectively. Damage manifested primarily as tears at the internal and external elastic laminae and within the tunica media layer. Higher body mass index and presence of diabetes were associated with lower damage initiation stretches and higher stresses. The selected constitutive models were able to accurately portray the FPA behavior in both elastic and inelastic domains, and properties were derived for six age groups. Presented data can help improve fidelity of computational models simulating endovascular PAD repairs that involve arterial damage. STATEMENT OF SIGNIFICANCE: This manuscript describes inelastic, i.e. damage, behavior of human femoropopliteal arteries, and provides values for three constitutive models simulating this behavior computationally. Using a set of 104 human FPAs 14-80 years old, we have investigated stress and stretch levels corresponding to damage initiation, and have studied how these damage characteristics change across different age groups. Presented inelastic arterial characteristics are important for computational simulations modeling balloon angioplasty and stenting of peripheral arterial disease lesions.
Collapse
Affiliation(s)
- Eric Anttila
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel Balzani
- Continuum Mechanics, Ruhr-University Bochum, Bochum, Germany
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Deegan
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Prim DA, Mohamed MA, Lane BA, Poblete K, Wierzbicki MA, Lessner SM, Shazly T, Eberth JF. Comparative mechanics of diverse mammalian carotid arteries. PLoS One 2018; 13:e0202123. [PMID: 30096185 PMCID: PMC6086448 DOI: 10.1371/journal.pone.0202123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
The prevalence of diverse animal models as surrogates for human vascular pathologies necessitate a comprehensive understanding of the differences that exist between species. Comparative passive mechanics are presented here for the common carotid arteries taken from bovine, porcine, ovine, leporine, murine-rat, and murine-mouse specimens. Data is generated using a scalable biaxial mechanical testing device following consistent circumferential (pressure-diameter) and axial (force-length) testing protocols. The structural mechanical response of carotids under equivalent loading, quantified by the deformed inner radius, deformed wall thickness, lumen area compliance and axial force, varies significantly among species but generally follows allometric scaling. Conversely, descriptors of the local mechanical response within the deformed arterial wall, including mean circumferential stress, mid-wall circumferential stretch, and mean axial stress, are relatively consistent across species. Unlike the larger animals studied, the diameter distensibility curves of murine specimens are non-monotonic and have a significantly higher value at 100 mmHg. Taken together, our results provide baseline structural and mechanical information for carotid arteries across a broad range of common animal models.
Collapse
Affiliation(s)
- David A. Prim
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Mohamed A. Mohamed
- Cullen College of Engineering, Biomedical Engineering Department, University of Houston, Houston, TX, United States of America
| | - Brooks A. Lane
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Kelley Poblete
- College of Health Sciences, Physical Therapy Program, Texas Women’s University, Houston, TX, United States of America
| | - Mark A. Wierzbicki
- Dwight Look College of Engineering, Biomedical Engineering Department, Texas A&M University, College Station, TX, United States of America
| | - Susan M. Lessner
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- College of Engineering and Computing, Mechanical Engineering Department, University of South Carolina, Columbia, SC, United States of America
| | - John F. Eberth
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sommer G, Benedikt C, Niestrawska JA, Hohenberger G, Viertler C, Regitnig P, Cohnert TU, Holzapfel GA. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion. Acta Biomater 2018; 75:235-252. [PMID: 29859367 DOI: 10.1016/j.actbio.2018.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
Peripheral vascular trauma due to injuries of the upper and lower limbs are life-threatening, and their treatment require rapid diagnosis and highly-qualified surgical procedures. Experienced surgeons have recognized that subclavian arteries, affected by injuries of the upper limbs, require a more careful handling due to fragility than common iliac arteries, which are may be affected by injures of the lower limbs. We investigated these two artery types with comparable diameter to evaluate the differences in the biomechanical properties between subclavian and iliac arteries. Human subclavian and common iliac arteries of 14 donors either from the right or the left side (age: 63 yrs, SD: 19,9 female and 5 male) were investigated. Extension-inflation-torsion experiments at different axial strains (0-20%), transmural pressures (0-200 mmHg) and torsion (±25°) on preconditioned arterial tubes were performed. Residual stresses in both circumferential and axial direction were determined. Additionally, the microstructure of the tissues was determined via second-harmonic generation imaging and by histological investigations. At physiological conditions (pi=13.3 kPa, λz=1.1) common iliac arteries revealed higher Cauchy stresses in circumferential and axial directions but a more compliant response in the circumferential direction than subclavian arteries. Both arteries showed distinct stiffer behavior in circumferential than in axial direction. Circumferential stiffness of common iliac arteries at physiological conditions increased significantly with aging (r=-0.67,p=0.02). The median inversion stretches, where the axial force is basically independent of the transmural pressure, were determined to be 1.05 for subclavian arteries and 1.11 for common iliac arteries. Both arteries exhibited increased torsional stiffness, when either axial prestretch or inflation pressure was increased. Residual stresses in the circumferential direction were significantly lower for subclavian arteries than for common iliac arteries at measurements after 30 min (p=0.05) and 16hrs (p=0.01). Investigations of the collagen microstructure revealed different collagen fiber orientations and dispersions in subclavian and iliac arteries. The difference in the collagen microstructure revealed further that the adventitia seems to contribute significantly to the passive mechanical response of the tested arteries at physiological loadings. Histological investigations indicated pronounced thickened intimal layers in subclavian and common iliac arteries, with a thickness comparable to the adventitial layer. In conclusion, we obtained biomechanical differences between subclavian and common iliac arteries, which possibly resulted from their different mechanical loadings/environments and respective in vivo movements caused by their anatomical locations. The biomechanical differences explored in this study are well reflected by the microstructure of the collagen and the histology of the investigated arteries, and the results can improve trauma patient care and endovascular implant design. STATEMENT OF SIGNIFICANCE During surgical interventions surgeons experienced that subclavian arteries (SAs) supplying the upper extremities, appear more fragile and prone to damage during surgical repair than common iliac arteries (CIAs), supplying the lower extremities. To investigate this difference in a systematic way the aim of this study was to compare the biomechanical properties of these two arteries from the same donors in terms of geometry, extension-inflation-torsion behavior, residual stresses, microstructure, and histology. In regard to cardiovascular medicine the material behavior of aged human arteries is of crucial interest. Moreover, the investigation of SA is important as it can help to improve surgical procedures at this challenging location. Over the long-term it might well be of value in the construction of artificial arteries for substituting native arteries. In addition, the analysis of mechanical stresses can improve design and material choice for endovascular implants to optimize long-term implant function.
Collapse
Affiliation(s)
- Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | | | | | - Gloria Hohenberger
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University Graz, Austria
| | - Tina U Cohnert
- Clinical Department of Vascular Surgery, Medical University Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
34
|
Maleckis K, Anttila E, Aylward P, Poulson W, Desyatova A, MacTaggart J, Kamenskiy A. Nitinol Stents in the Femoropopliteal Artery: A Mechanical Perspective on Material, Design, and Performance. Ann Biomed Eng 2018; 46:684-704. [PMID: 29470746 DOI: 10.1007/s10439-018-1990-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.
Collapse
Affiliation(s)
- Kaspars Maleckis
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Eric Anttila
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Paul Aylward
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - William Poulson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
35
|
Poulson W, Kamenskiy A, Seas A, Deegan P, Lomneth C, MacTaggart J. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J Vasc Surg 2018; 67:607-613. [PMID: 28526560 PMCID: PMC5690897 DOI: 10.1016/j.jvs.2017.01.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND High failure rates of femoropopliteal artery (FPA) interventions are often attributed in part to severe mechanical deformations that occur with limb movement. Axial compression and bending of the FPA likely play significant roles in FPA disease development and reconstruction failure, but these deformations are poorly characterized. The goal of this study was to quantify axial compression and bending of human FPAs that are placed in positions commonly assumed during the normal course of daily activities. METHODS Retrievable nitinol markers were deployed using a custom-made catheter system into 28 in situ FPAs of 14 human cadavers. Contrast-enhanced, thin-section computed tomography images were acquired with each limb in the standing (180 degrees), walking (110 degrees), sitting (90 degrees), and gardening (60 degrees) postures. Image segmentation and analysis allowed relative comparison of spatial locations of each intra-arterial marker to determine axial compression and bending using the arterial centerlines. RESULTS Axial compression in the popliteal artery (PA) was greater than in the proximal superficial femoral artery (SFA) or the adductor hiatus (AH) segments in all postures (P = .02). Average compression in the SFA, AH, and PA ranged from 9% to 15%, 11% to 19%, and 13% to 25%, respectively. The FPA experienced significantly more acute bending in the AH and PA segments compared with the proximal SFA (P < .05) in all postures. In the walking, sitting, and gardening postures, average sphere radii in the SFA, AH, and PA ranged from 21 to 27 mm, 10 to 18 mm, and 8 to 19 mm, whereas bending angles ranged from 150 to 157 degrees, 136 to 147 degrees, and 137 to 148 degrees, respectively. CONCLUSIONS The FPA experiences significant axial compression and bending during limb flexion that occur at even modest limb angles. Moreover, different segments of the FPA appear to undergo significantly different degrees of deformation. Understanding the effects of limb flexion on axial compression and bending might assist with reconstructive device selection for patients requiring peripheral arterial disease intervention and may also help guide the development of devices with improved characteristics that can better adapt to the dynamic environment of the lower extremity vasculature.
Collapse
Affiliation(s)
- William Poulson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Andreas Seas
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County
| | - Paul Deegan
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Carol Lomneth
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
36
|
Kamenskiy A, Poulson W, Sim S, Reilly A, Luo J, MacTaggart J. Prevalence of Calcification in Human Femoropopliteal Arteries and its Association with Demographics, Risk Factors, and Arterial Stiffness. Arterioscler Thromb Vasc Biol 2018; 38:e48-e57. [PMID: 29371245 DOI: 10.1161/atvbaha.117.310490] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Arterial calcification and stiffening increase the risk of reconstruction failure, amputation, and mortality in patients with peripheral arterial disease, but underlying mechanisms and prevalence are unclear. APPROACH AND RESULTS Fresh human femoropopliteal arteries were obtained from n=431 tissue donors aged 13 to 82 years (mean age, 53±16 years) recording the in situ longitudinal prestretch. Arterial diameter, wall thickness, and opening angles were measured optically, and stiffness was assessed using planar biaxial extension and constitutive modeling. Histological features were determined using transverse and longitudinal Verhoeff-Van Gieson and Alizarin stains. Medial calcification was quantified using a 7-stage grading scale and was correlated with structural and mechanical properties and clinical characteristics. Almost half (46%) of the femoropopliteal arteries had identifiable medial calcification. Older arteries were more calcified, but small calcium deposits were observed in arteries as young as 18 years old. After controlling for age, positive correlations were observed between calcification, diabetes mellitus, dyslipidemia, and body mass index. Tobacco use demonstrated a negative correlation. Calcified arteries were larger in diameter but had smaller circumferential opening angles. They were also stiffer longitudinally and circumferentially and had thinner tunica media and external elastic lamina with more discontinuous elastic fibers. CONCLUSIONS Although aging is the dominant risk factor for femoropopliteal artery calcification and stiffening, these processes seem to be linked and can begin at a young age. Calcification is associated with the presence of certain risk factors and with elastic fiber degradation, suggesting overlapping molecular pathways that require further investigation.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| | - William Poulson
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Sylvie Sim
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Austin Reilly
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jiangtao Luo
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jason MacTaggart
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| |
Collapse
|
37
|
Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta Biomater 2017; 64:50-58. [PMID: 28974476 DOI: 10.1016/j.actbio.2017.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022]
Abstract
Atherosclerotic obstructive disease of the femoropopliteal artery (Peripheral Arterial Disease, PAD) is notorious for high treatment failure rates. Older age and diabetes mellitus (DM) are among the major risk factors for PAD, and both are associated with increased arterial stiffness. Our goal was to develop a constitutive model describing multiaxial arterial stiffening, and use it to portray aging of normal and diabetic human femoropopliteal arteries (FPA). Fresh human FPAs (n=744) were obtained from 13-82-year-old donors. Arteries were tested using planar biaxial extension, and their behavior was modeled with a constitutive relation that included stiffening functions of age. FPA diameter, wall thickness, circumferential, and longitudinal opening angles increased with age, while longitudinal pre-stretch decreased. Diameter and circumferential opening angle did not change with age in subjects with DM. Younger FPAs were more compliant longitudinally but became more isotropic with age. Arteries with DM stiffened significantly faster in the circumferential direction than arteries without DM. Constitutive model accurately portrayed orthotropic stiffening with age of both normal and diabetic arteries. Constitutive description of FPA aging contributes to understanding of arterial pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in PAD repair by providing more personalized arterial properties. STATEMENT OF SIGNIFICANCE We have analyzed n=744 human femoropopliteal artery (FPA) specimens using biaxial tensile testing to derive constitutive description of FPA aging in diabetic and non-diabetic subjects. The proposed model allows determination of FPA mechanical properties for subjects of any given age in the range of 13-82years. These results contribute to understanding of FPA pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in peripheral arterial disease repair by providing more personalized arterial properties. In addition, they can guide the development of new materials tunable to diabetic and non-diabetic arteries.
Collapse
|
38
|
Desyatova A, Poulson W, Deegan P, Lomneth C, Seas A, Maleckis K, MacTaggart J, Kamenskiy A. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. J R Soc Interface 2017; 14:rsif.2017.0025. [PMID: 28330991 DOI: 10.1098/rsif.2017.0025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/24/2017] [Indexed: 01/18/2023] Open
Abstract
High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb movement. Torsion of the FPA likely plays a significant role, but is poorly characterized and the associated intramural stresses are currently unknown. FPA torsion in the walking, sitting and gardening postures was characterized in n = 28 in situ FPAs using intra-arterial markers. Principal mechanical stresses and strains were quantified in the superficial femoral artery (SFA), adductor hiatus segment (AH) and the popliteal artery (PA) using analytical modelling. The FPA experienced significant torsion during limb flexion that was most severe in the gardening posture. The associated mechanical stresses were non-uniformly distributed along the length of the artery, increasing distally and achieving maximum values in the PA. Maximum twist in the SFA ranged 10-13° cm-1, at the AH 8-16° cm-1, and in the PA 14-26° cm-1 in the walking, sitting and gardening postures. Maximum principal stresses were 30-35 kPa in the SFA, 27-37 kPa at the AH and 39-43 kPa in the PA. Understanding torsional deformations and intramural stresses in the FPA can assist with device selection for peripheral arterial disease interventions and may help guide the development of devices with improved characteristics.
Collapse
Affiliation(s)
- Anastasia Desyatova
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William Poulson
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Deegan
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol Lomneth
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andreas Seas
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore, MD, USA
| | - Kaspars Maleckis
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Surgery, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
39
|
Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Biomech Model Mechanobiol 2017; 17:181-189. [PMID: 28815378 DOI: 10.1007/s10237-017-0953-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/07/2017] [Indexed: 10/24/2022]
Abstract
Femoropopliteal artery (FPA) reconstructions are notorious for poor clinical outcomes. Mechanical and flow conditions that occur in the FPA with limb flexion are thought to play a significant role, but are poorly characterized. FPA deformations due to acute limb flexion were quantified using a human cadaver model and used to build a finite element model that simulated surrounding tissue forces associated with limb flexion-induced deformations. Strains and intramural principal mechanical stresses were determined for seven age groups. Computational fluid dynamics analysis was performed to assess hemodynamic variables. FPA shape, stresses, and hemodynamics significantly changed with age. Younger arteries assumed straighter positions in the flexed limb with less pronounced bends and more uniform stress distribution along the length of the artery. Even in the flexed limb posture, FPAs younger than 50 years of age experienced tension, while older FPAs experienced compression. Aging resulted in localization of principal mechanical stresses to the adductor hiatus and popliteal artery below the knee that are typically prone to developing vascular pathology. Maximum principal stresses in these areas increased threefold to fivefold with age with largest increase observed at the adductor hiatus. Atheroprotective wall shear stress reduced after 35 years of age, and atheroprone and oscillatory shear stresses increased after the age of 50. These data can help better understand FPA pathophysiology and can inform the design of targeted materials and devices for peripheral arterial disease treatments.
Collapse
|
40
|
Desyatova A, MacTaggart J, Poulson W, Deegan P, Lomneth C, Sandip A, Kamenskiy A. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages. Biomech Model Mechanobiol 2017; 16:775-785. [PMID: 27868162 PMCID: PMC5423836 DOI: 10.1007/s10237-016-0852-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.
Collapse
Affiliation(s)
- Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - William Poulson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Paul Deegan
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Carol Lomneth
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anjali Sandip
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
41
|
Kamenskiy A, Seas A, Deegan P, Poulson W, Anttila E, Sim S, Desyatova A, MacTaggart J. Constitutive description of human femoropopliteal artery aging. Biomech Model Mechanobiol 2017; 16:681-692. [PMID: 27771811 PMCID: PMC5352506 DOI: 10.1007/s10237-016-0845-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Andreas Seas
- Department of Chemical Engineering, University of Maryland, Baltimore County, MD, USA
| | - Paul Deegan
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - William Poulson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sylvie Sim
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
42
|
Wang R, Raykin J, Brewster LP, Gleason RL. A Novel Approach to Assess the In Situ Versus Ex Vivo Mechanical Behaviors of the Coronary Artery. J Biomech Eng 2017; 139:2588204. [PMID: 27893049 DOI: 10.1115/1.4035262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 11/08/2022]
Abstract
Ex vivo mechanical testing has provided tremendous insight toward prediction of the in vivo mechanical behavior and local mechanical environment of the arterial wall; however, the role of perivascular support on the local mechanical behavior of arteries is not well understood. Here, we present a novel approach for quantifying the impact of the perivascular support on arterial mechanics using intravascular ultrasound (IVUS) on cadaveric porcine hearts. We performed pressure-diameter tests (n = 5) on the left anterior descending coronary arteries (LADCAs) in situ while embedded in their native perivascular environment using IVUS imaging and after removal of the perivascular support of the artery. We then performed standard cylindrical biaxial testing on these vessels ex vivo and compared the results. Removal of the perivascular support resulted in an upward shift of the pressure-diameter curve. Ex vivo testing, however, showed significantly lower circumferential compliance compared to the in situ configuration. On a second set of arteries, local axial stretch ratios were quantified (n = 5) along the length of the arteries. The average in situ axial stretch ratio was 1.28 ± 0.16; however, local axial stretch ratios showed significant variability, ranging from 1.01 to 1.70. Taken together, the data suggest that both the perivascular loading and the axial tethering have an important role in arterial mechanics. Combining nondestructive testing using IVUS with traditional ex vivo cylindrical biaxial testing yields a more comprehensive assessment of the mechanical behavior of arteries.
Collapse
Affiliation(s)
- Ruoya Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Julia Raykin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Luke P Brewster
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Woodruff Memorial Research Building, 101 Woodruff Circle, Suite 5105, Atlanta, GA 30332;Department of Surgery, Emory University School of Medicine, Atlanta, GA 30307; Surgical and Research Services, Atlanta VA Medical Center, Atlanta, GA 30033 e-mail:
| | - Rudolph L Gleason
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, IBB 2305, Atlanta, GA 30332 e-mail:
| |
Collapse
|
43
|
Mohd Atan BA, Ismail AE, Taib I, Lazim Z. A review on fracture prevention of stent in femoropopliteal artery. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2017; 165:012006. [DOI: 10.1088/1757-899x/165/1/012006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
44
|
Noble C, Smulders N, Green NH, Lewis R, Carré MJ, Franklin SE, MacNeil S, Taylor ZA. Creating a model of diseased artery damage and failure from healthy porcine aorta. J Mech Behav Biomed Mater 2016; 60:378-393. [DOI: 10.1016/j.jmbbm.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 01/24/2023]
|
45
|
Nagata T, Masumoto K, Hayashi Y, Watanabe Y, Kato Y, Katou F. Three-dimensional computed tomographic analysis of variations of the carotid artery. J Craniomaxillofac Surg 2016; 44:734-42. [DOI: 10.1016/j.jcms.2016.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
|
46
|
A comparison of age-related changes in axial prestretch in human carotid arteries and in human abdominal aorta. Biomech Model Mechanobiol 2016; 16:375-383. [DOI: 10.1007/s10237-016-0797-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
47
|
Kamenskiy A, Seas A, Bowen G, Deegan P, Desyatova A, Bohlim N, Poulson W, MacTaggart J. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater 2016; 32:231-237. [PMID: 26766633 DOI: 10.1016/j.actbio.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. STATEMENT OF SIGNIFICANCE This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in the n=148 human femoropopliteal arteries in the context of subject demographics and risk factors, and structural and physiologic characteristics of the artery. Our results demonstrate that LPS reduces with age due to degradation and fragmentation of intramural elastin. LPS may serve as an energy reserve for adaptive remodeling, and reduction of LPS can be accelerated in tobacco users.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Andreas Seas
- Dept of Chemical Engineering, University of Maryland, Baltimore County, MD, United States
| | - Grant Bowen
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paul Deegan
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Anastasia Desyatova
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Dept of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nick Bohlim
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - William Poulson
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jason MacTaggart
- Dept of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
48
|
Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. J Theor Biol 2016; 393:118-26. [DOI: 10.1016/j.jtbi.2015.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/25/2015] [Accepted: 12/28/2015] [Indexed: 11/21/2022]
|
49
|
Prim DA, Zhou B, Hartstone-Rose A, Uline MJ, Shazly T, Eberth JF. A mechanical argument for the differential performance of coronary artery grafts. J Mech Behav Biomed Mater 2015; 54:93-105. [PMID: 26437296 DOI: 10.1016/j.jmbbm.2015.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022]
Abstract
Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives.
Collapse
Affiliation(s)
- David A Prim
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Boran Zhou
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Adam Hartstone-Rose
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA; University of South Carolina, Department of Anthropology, Columbia, SC, USA
| | - Mark J Uline
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Chemical Engineering, Columbia, SC, USA
| | - Tarek Shazly
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Mechanical Engineering, Columbia, SC, USA
| | - John F Eberth
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA.
| |
Collapse
|
50
|
Jelinic M, Tare M, Conrad KP, Parry LJ. Differential effects of relaxin deficiency on vascular aging in arteries of male mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9803. [PMID: 26109313 PMCID: PMC4480228 DOI: 10.1007/s11357-015-9803-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Exogenous treatment with the naturally occurring peptide relaxin increases arterial compliance and reduces vascular stiffness. In contrast, relaxin deficiency reduces the passive compliance of small renal arteries through geometric and compositional vascular remodeling. The role of endogenous relaxin on passive mechanical wall properties in other vascular beds is unknown. Importantly, no studies have investigated the effects of aging in arteries of relaxin-deficient mice. Therefore, we tested the hypothesis that mesenteric and femoral arteries stiffen with aging, and this is exacerbated with relaxin deficiency. Male wild-type (Rln (+/+)) and relaxin knockout (Rln (-/-)) mice were aged to 3, 6, 12, 18, and 23 months. Passive mechanical wall properties were assessed by pressure myography. In both genotypes, there was a significant increase in circumferential stiffening in mesenteric arteries with aging, whereas in the femoral artery, aging reduced volume compliance. This was associated with a reduced ability of the artery to lengthen with aging. The predominant phenotype observed in Rln (-/-) mice was reduced volume compliance in young mice in both mesenteric and femoral arteries. In summary, aging induces circumferential stiffening in mesenteric arteries and axial stiffening in femoral arteries. Passive mechanical wall properties of Rln (-/-) mouse arteries predominantly differ at younger ages compared with Rln (+/+) mice, suggesting that a lack of endogenous relaxin only has a minor effect on vascular aging.
Collapse
Affiliation(s)
- Maria Jelinic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Marianne Tare
- />Department of Physiology and School of Rural Health, Monash University, Melbourne, VIC Australia
| | - Kirk P. Conrad
- />Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL USA
| | - Laura J. Parry
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|