1
|
Luo Z, Wan Z, Ren P, Zhang B, Huang Y, West RE, Huang H, Chen Y, Nolin TD, Xie W, Wang J, Li S, Sun J. In Situ Formation of Fibronectin-Enriched Protein Corona on Epigenetic Nanocarrier for Enhanced Synthetic Lethal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307940. [PMID: 38482976 PMCID: PMC11109615 DOI: 10.1002/advs.202307940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Indexed: 05/23/2024]
Abstract
PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Zhuoya Wan
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Pengfei Ren
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Bei Zhang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Yixian Huang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Raymond E. West
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Haozhe Huang
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Yuang Chen
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Thomas D. Nolin
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Wen Xie
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening CenterUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Song Li
- Center for PharmacogeneticsDepartment of Pharmaceutical ScienceUniversity of Pittsburgh School of PharmacyPittsburghPA15213USA
| | - Jingjing Sun
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68106USA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68106USA
| |
Collapse
|
2
|
Luo Z, Huang Y, Batra N, Chen Y, Huang H, Wang Y, Zhang Z, Li S, Chen CY, Wang Z, Sun J, Wang QJ, Yang D, Lu B, Conway JF, Li LY, Yu AM, Li S. Inhibition of iRhom1 by CD44-targeting nanocarrier for improved cancer immunochemotherapy. Nat Commun 2024; 15:255. [PMID: 38177179 PMCID: PMC10766965 DOI: 10.1038/s41467-023-44572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shichen Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Yu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lu-Yuan Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Zhang Y, Wu X, Xu X, Zhang M, Liu L, Wu J, Xie D, Song S. Nanosized Assemblies from Amphiphilic Solanesol Derivatives for Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3875-3888. [PMID: 37622987 DOI: 10.1021/acsabm.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Unexpected functionalities of pharmaceutical excipients have been found in some cases. Preplanned introduction of excipients with therapeutic effects might not only reduce the risks of metabolism-related toxicity but also provide synergistic therapeutic effects. Herein, natural original solanesol (SOL), one of the isoprene compounds with some pharmacological activities, was selected to prepare a series of amphiphilic derivatives by chemical modification, and drug delivery systems for oncotherapy were established. Three derivatives, including solanesyl bromide (SOL-Br), monosolanesolsolanesyl succinate (MSS), and solanesylthiosalicylate (STS), were synthesized and formulated into nanosized self-assemblies for doxorubicin (DOX) encapsulation. Meanwhile, polyethylene glycol (PEG) derivatives were synthesized as the stabilizer of solanesol-based self-assemblies, among which hydrazine-poly(ethylene glycol)-hydrazine (PEG6000-DiHZ) was found to be more reliable. The optimized molar ratio between PEG6000-DiHZ and solanesol derivatives was found to be 2:1, considering the drug-loading capacity of self-assemblies. Consistent release profiles were found for the DOX-loaded self-assemblies, in which about 75-80% DOX was cumulatively released within 60 h at pH 5.0. The three DOX-loaded self-assemblies were found to be homogeneous spheres with average particle sizes in the range of 100-200 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Blank self-assemblies were found to have an inhibiting ability toward MCF-7 and HepG-2 cancer cells, which might originate from the inherent nature of solanesol derivatives. In vivo pharmacodynamic experiments demonstrated that blank self-assemblies had certain inhibitory effect on tumor growth compared with the controls. Further enhanced effects were also found for the drug-loaded self-assemblies due to the synergistic anti-tumor effect existing between the drug and the carriers. This work has presented a simple and effective strategy to prepare a therapeutic carrier by direct assembling of the therapeutic compound without PEGylation steps, by which the therapeutic carrier materials could take their effect directly and synergistically along with the loaded drugs.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaohe Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xu Xu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengke Zhang
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Liu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhong Wu
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Dongshun Xie
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shiyong Song
- State Key Laboratory of Antiviral Drugs, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
5
|
Li J, Cao Y, Zhang X, An M, Zhang J, Liu Y. Simultaneous assaying of NLG919, tryptophan and kynurenine by ultrahigh performance LC-MS in pharmacokinetics and biodistribution studies. Bioanalysis 2023; 15:315-330. [PMID: 37083471 DOI: 10.4155/bio-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Indocyanine2,3-dioxygenase (IDO) is an enzyme that can catalyze the metabolism of tryptophan (Trp) into kynurenine (Kyn), thus inhibiting the tumor immune microenvironment. Method: Based on its inhibitor, NLG919(NLG), the authors developed a new immunomodulatory polymer micelle and established and verified an ultrahigh performance liquid chromatography-mass spectrometry method for the simultaneous determination of NLG, Trp and Kyn in mouse tumors through the ratio determination of Trp/Kyn tissue distribution and pharmacokinetics. The linear range of the method was 0.001-10 μg/ml. Results: Compared with NLG solution, the immunomodulatory polymeric drug-loaded micelles based on polystyrene-arginine showed higher Trp/Kyn ratio, more tumor aggregation and good pharmacokinetics. Conclusion: This method has been successfully applied to the simultaneous determination of Trp/Kyn and NLG in tumor tissues of mice.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| |
Collapse
|
6
|
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2023; 18:193-204. [PMID: 36424448 PMCID: PMC9974593 DOI: 10.1038/s41565-022-01266-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2022] [Indexed: 05/14/2023]
Abstract
Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.
Collapse
Affiliation(s)
- Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzhe Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - LinXinTian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Runzi Sun
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Hosseini M, Amiri M, Ghanbari M, Mahdi MA, Abdulsahib WK, Salavati-Niasari M. Drug delivery based on chitosan, β-cyclodextrin and sodium carboxymethyl cellulose as well as nanocarriers for advanced leukemia treatment. Biomed Pharmacother 2022; 153:113369. [PMID: 35780615 DOI: 10.1016/j.biopha.2022.113369] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/09/2023] Open
Abstract
Medicine/nanotechnology as a new and applicable technique according to drug delivery systems has gained great consideration for cancer treatment. Polysaccharides including, cellulose, β-cyclodextrin and sodium carboxymethyl cellulose and chitosan as natural bio-materials, are appropriate candidates for designing and formulations of these nanosystems because of the exceptional advantages such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. An intelligent drug delivery platform based on these hybrids nowadays is developed, which can be used for dual-responsive dual-drug delivery. Nanotechnology accompany with biological molecules has been carefully considered to decrease the drawbacks of conventional cancer treatments. Consequently, this review is intended to state and investigate on the latest development on the combination treatment of platforms based on the hybrids of anticancer drugs/nanoparticles/Polysaccharides in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, the challenges and future perspectives are reported as well.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Makarim A Mahdi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran.
| |
Collapse
|
8
|
Živanović AS, Bukonjić AM, Jovanović-Stević S, Bogojeski J, Ćoćić D, Bijelić AP, Ratković ZR, Volarević V, Miloradović D, Tomović DL, Radić GP. Complexes of copper(II) with tetradentate S,O-ligands: Synthesis, characterization, DNA/albumin interactions, molecular docking simulations and antitumor activity. J Inorg Biochem 2022; 233:111861. [DOI: 10.1016/j.jinorgbio.2022.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022]
|
9
|
Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z, Rathod S, Zhang Z, Chen Y, Zhang B, Fernandez CA, Sun J, Li S. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B 2022; 12:1148-1162. [PMID: 35530140 PMCID: PMC9072252 DOI: 10.1016/j.apsb.2021.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy. However, most reported polymeric systems have sizes above 100 nm, which limits effective extravasation into tumors that are poorly vascularized and have dense stroma. This will, in turn, limit the overall effectiveness of the subsequent uptake by tumor cells via active targeting. In this study, we combined the passive targeting via ultra-small-sized gemcitabine (GEM)-based nanoparticles (NPs) with the active targeting provided by folic acid (FA) conjugation for enhanced dual targeted delivery to tumor cells and tumor-associated macrophages (TAMs). We developed an FA-modified prodrug carrier based on GEM (PGEM) to load doxorubicin (DOX), for co-delivery of GEM and DOX to tumors. The co-delivery system showed small particle size of ∼10 nm in diameter. The ligand-free and FA-targeted micelles showed comparable drug loading efficiency and a sustained DOX release profile. The FA-conjugated micelles effectively increased DOX uptake in cultured KB cancer cells that express a high level of folate receptor (FR), but no obvious increase was observed in 4T1.2 breast cancer cells that have a low-level expression of FR. Interestingly, in vivo, systemic delivery of FA-PGEM/DOX led to enhanced accumulation of the NPs in tumor and drastic reduction of tumor growth in a murine 4T1.2 breast cancer model. Mechanistic study showed that 4T1.2 tumor grown in mice expressed a significantly higher level of FOLR2, which was selectively expressed on TAMs. Thus, targeting of TAM may also contribute to the improved in vivo targeted delivery and therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Apurva Pardeshi
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Simultaneous Determination of 1-Methyltryptophan and Indoleamine 2,3-Dioxygenase Biomakers of Tryptophan and Kynurenine in Mice Tumors by HPLC–MS/MS. Chromatographia 2021. [DOI: 10.1007/s10337-021-04043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sun J, Wan Z, Chen Y, Xu J, Luo Z, Parise RA, Diao D, Ren P, Beumer JH, Lu B, Li S. Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomater 2020; 106:289-300. [PMID: 32004652 PMCID: PMC7183357 DOI: 10.1016/j.actbio.2020.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Poor tumor penetration and highly immunosuppressive tumor microenvironment are two major factors that limit the therapeutic efficacy for the treatment of pancreatic ductal adenocarcinoma (PDA). In this work, a redox-responsive gemcitabine (GEM)-conjugated polymer, PGEM, was employed as a tumor penetrating nanocarrier to co-load an immunomodulating agent (NLG919, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and a chemotherapeutic drug (paclitaxel (PTX)) for immunochemo combination therapy. The NLG919/PTX co-loaded micelles showed very small size of ~15 nm. In vivo tumor imaging study indicated that PGEM was much more effective than the relatively large-sized POEG-co-PVD nanoparticles (~160 nm) in deep tumor penetration and could reach the core of the pancreatic tumor. PTX formulated in the PGEM carrier showed improved tumor inhibition effect compared with PGEM alone. Incorporation of NLG919 in the formulation led to a more immunoactive tumor microenvironment with significantly decreased percentage of Treg cells, and increased percentages of CD4+ IFNγ+ T and CD8+ IFNγ+ T cells. PGEM micelles co-loaded with PTX and NLG919 showed the best anti-tumor activity in pancreatic (PANC02) as well as two other tumor models compared to PGEM micelles loaded with PTX or NLG919 alone, suggesting that codelivery of NLG919 and PTX via PGEM may represent an effective strategy for immunochemotherapy of PDA as well as other types of cancers. STATEMENT OF SIGNIFICANCE: In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhuoya Wan
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yichao Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jieni Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dingwei Diao
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomater 2020. [PMID: 32004652 DOI: 10.1016/j.ctbio.2020.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Poor tumor penetration and highly immunosuppressive tumor microenvironment are two major factors that limit the therapeutic efficacy for the treatment of pancreatic ductal adenocarcinoma (PDA). In this work, a redox-responsive gemcitabine (GEM)-conjugated polymer, PGEM, was employed as a tumor penetrating nanocarrier to co-load an immunomodulating agent (NLG919, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and a chemotherapeutic drug (paclitaxel (PTX)) for immunochemo combination therapy. The NLG919/PTX co-loaded micelles showed very small size of ~15 nm. In vivo tumor imaging study indicated that PGEM was much more effective than the relatively large-sized POEG-co-PVD nanoparticles (~160 nm) in deep tumor penetration and could reach the core of the pancreatic tumor. PTX formulated in the PGEM carrier showed improved tumor inhibition effect compared with PGEM alone. Incorporation of NLG919 in the formulation led to a more immunoactive tumor microenvironment with significantly decreased percentage of Treg cells, and increased percentages of CD4+ IFNγ+ T and CD8+ IFNγ+ T cells. PGEM micelles co-loaded with PTX and NLG919 showed the best anti-tumor activity in pancreatic (PANC02) as well as two other tumor models compared to PGEM micelles loaded with PTX or NLG919 alone, suggesting that codelivery of NLG919 and PTX via PGEM may represent an effective strategy for immunochemotherapy of PDA as well as other types of cancers. STATEMENT OF SIGNIFICANCE: In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.
Collapse
|
13
|
Self-assembling mertansine prodrug improves tolerability and efficacy of chemotherapy against metastatic triple-negative breast cancer. J Control Release 2020; 318:234-245. [DOI: 10.1016/j.jconrel.2019.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
|
14
|
Ma W, Sun J, Xu J, Luo Z, Diao D, Zhang Z, Oberly PJ, Minnigh MB, Xie W, Poloyac SM, Huang Y, Li S. Sensitizing Triple Negative Breast Cancer to Tamoxifen Chemotherapy via a Redox-Responsive Vorinostat-containing Polymeric Prodrug Nanocarrier. Am J Cancer Res 2020; 10:2463-2478. [PMID: 32194813 PMCID: PMC7052901 DOI: 10.7150/thno.38973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
There is an urgent and unmet need to develop effective therapies for triple negative breast cancers (TNBCs) which are much more aggressive and have poor prognosis due to lack of receptor targets for Her2-targeted and endocrine therapy. In this study we systematically evaluated the effect of Vorinostat (SAHA, a pan-HDAC inhibitor) in reactivating the expression of functional estrogen receptor α (ERα) and synergizing with tamoxifen (TAM, a selective estrogen-receptor modulator) in antitumor activity. In addition, a SAHA prodrug-based dual functional nanocarrier was developed for codelivery of SAHA and TAM for effective combination therapy. Methods: A SAHA-containing polymeric nanocarrier, POEG-co-PVDSAHA was developed via reversible addition-fragmentation transfer (RAFT) polymerization with SAHA incorporated into the polymer through a redox-responsive disulfide linkage. The effect of both free SAHA and POEG-co-PVDSAHA on reactivating the expression of functional ERα was investigated in several human and murine TNBC cell lines via examining the mRNA and protein expression of ERα target genes. The cytotoxicity of free SAHA and TAM combination and TAM-loaded POEG-co-PVDSAHA micelles was examined via MTT assay. The in vivo antitumor activity of TAM-loaded POEG-co-PVDSAHA was investigated in a murine breast cancer model (4T1.2). Results: Both free SAHA and POEG-co-PVDSAHA were effective in inducing the reexpression of functional estrogen receptor α (ERα), which may have helped to sensitize TNBCs to TAM. More importantly, POEG-co-PVDSAHA self-assembled to form small-sized micellar carrier that is effective in formulating and codelivery of TAM. TAM-loaded POEG-co-PVDSAHA micelles exhibited enhanced and synergistic cytotoxicity against TNBC cell lines compared with free SAHA, free TAM and TAM loaded into a pharmacologically inert control carrier (POEG-co-PVMA). In addition, codelivery of TAM via POEG-co-PVDSAHA micelles led to significantly improved antitumor efficacy in 4T1.2 tumor model compared with other groups such as combination of free SAHA and TAM and TAM-loaded POEG-co-PVMA micelles. Conclusion: Our prodrug-based co-delivery system may provide an effective and simple strategy to re-sensitize TNBCs to TAM-based hormone therapy.
Collapse
|
15
|
Wan Z, Sun J, Xu J, Moharil P, Chen J, Xu J, Zhu J, Li J, Huang Y, Xu P, Ma X, Xie W, Lu B, Li S. Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomater 2019; 90:300-313. [PMID: 30930305 PMCID: PMC6513707 DOI: 10.1016/j.actbio.2019.03.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Immunotherapy based on checkpoint blockade has been regarded as one of the most promising approaches towards many types of cancers. However, low response rate hinders its application due to insufficient tumor immunogenicity and immunosuppressive tumor microenvironment. To achieve an overall enhanced therapeutic outcome, we developed a dual-functional immuno-stimulatory polymeric prodrug carrier modified with pendent indoximod, an indoleamine 2,3-dioxygenase (IDO) inhibitor that can be used to reverse immune suppression, for co-delivery of Doxorubicin (Dox), a hydrophobic anticancer agent that can promote immunogenic cell death (ICD) and elicit antitumor immunity. The resulted carrier denoted as POEG-b-PVBIND, consisting of poly (oligo (ethylene glycol) methacrylate) (POEG) hydrophilic blocks and indoximod conjugated hydrophobic blocks, is rationally designed to improve immunotherapy by synergistically modulating the tumor microenvironment (TME). Our data showed that Dox-triggered ICD promoted intra-tumoral infiltration of CD8+ T cells and IFN-γ-production by CD8+ T cells. Meanwhile, cleaved indoximod significantly increased CD8+ T cell infiltration while reducing the immunosuppressive T regulatory cells (Tregs). More importantly, Dox/POEG-b-PVBIND micelles led to significantly improved tumor regression in an orthotopic murine breast cancer model compared to both Dox-loaded POEG-b-PVB micelles (a control inert carrier) and POEG-b-PVBIND micelles alone, confirming combination effect of indoximod and Dox in improving the overall antitumor activity. STATEMENT OF SIGNIFICANCE: Indoleamine 2,3-dioxygenase (IDO) is an enzyme that can induce immune suppressive microenvironment in tumors. As a well-studied IDO inhibitor, indoximod (IND) represents a promising agent for cancer immunotherapy and could be particularly useful in combination with other chemotherapeutic agents. However, three major problems hinder its application: (1) IND is barely soluble in water; (2) IND delivery efficiency is limited (3) simultaneous delivery of two agents into tumor site is still challenging. Currently, most reports largely focus on improving the pharmacokinetic profile of IND alone via different formulations such as IND prodrug and IND nanocrystal. However, there is limited information about IND based co-delivery systems, especially for delivering hydrophobic chemotherapeutic agents. Here, we developed a new dual-functional polymeric prodrug carrier modified with a number of pendent IND units (denoted as POEG-b-PVBIND). POEG-b-PVBIND shows immunostimulatory and antitumor activities by itself. More importantly, POEG-b-PVBIND polymer is able to self-assemble into nano-sized micelles that are highly effective in formulating and codelivering other hydrophobic agents including doxorubicin (Dox), sunitinib (Sun), and daunorubicin (Dau), which can elicit antitumor immunity via promoting immunogenic cell death (ICD). We have shown that our new combination therapy led to a significantly improved antitumor activity in an aggressive murine breast cancer model (4T1.2).
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jieni Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jing Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junchi Xu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Yang T, Lan Y, Cao M, Ma X, Cao A, Sun Y, Yang J, Li L, Liu Y. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as combination therapy treatment for liver cancer. Colloids Surf B Biointerfaces 2019; 175:106-115. [DOI: 10.1016/j.colsurfb.2018.11.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
|
17
|
Oliveira RR, Carrião MS, Pacheco MT, Branquinho LC, de Souza ALR, Bakuzis AF, Lima EM. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:547-553. [DOI: 10.1016/j.msec.2018.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
|
18
|
Xu J, Zhao W, Sun J, Huang Y, Wang P, Venkataramanan R, Yang D, Ma X, Rana A, Li S. Novel glucosylceramide synthase inhibitor based prodrug copolymer micelles for delivery of anticancer agents. J Control Release 2018; 288:212-226. [PMID: 30223045 PMCID: PMC6177216 DOI: 10.1016/j.jconrel.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
Abstract
In order to improve the efficacy of chemotherapy for cancers, we have developed a novel prodrug micellar formulation to co-deliver ceramide-generating anticancer agents and ceramide degradation inhibitor (PPMP). The prodrug nanocarrier is based on a well-defined POEG-b-PPPMP diblock copolymer. The hydrophilic block of POEG-b-PPPMP is POEG, and the hydrophobic block is composed of a number of PPMP units, which could work synergistically with loaded anticancer drugs. POEG-b-PPPMP was readily synthesized via a one-step reversible addition-fragment transfer (RAFT) polymerization from a PPMP monomer. The newly synthesized polymers were self-assembled into micelles and served as a carrier for several hydrophobic anticancer drugs including DOX, PTX and C6-ceramide. POEG-b-PPPMP prodrug polymer exhibited intrinsic antitumor activity in vitro and in vivo. In addition, POEG-b-PPPMP prodrug polymer was comparable to free PPMP in selectively enhancing the production of pro-apoptotic ceramide species as well as down-regulating the mRNA expression of GCS. DOX-loaded POEG-b-PPPMP micelles exhibited an excellent stability of 42 days at 4 °C. Moreover, DOX loaded in POEG-b-PPPMP micelles showed higher levels of cytotoxicity than DOX loaded in a pharmacologically inert polymer (POEG-b-POM) and Doxil formulation in several tumor cell lines. Consistently, in a 4T1.2 murine breast cancer model, the tumor inhibition followed the order of DOX/POEG-b-PPPMP > DOX/POEG-b-POM ≥ Doxil > POEG-b-PPPMP > POEG-b-POM. Our data suggest that POEG-b-PPPMP micelles are a promising dual-functional carrier that warrants more studies in the future.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Whenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengcheng Wang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ajay Rana
- Department of Surgery/Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Song Li
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Chen Y, Sun J, Huang Y, Liu Y, Liang L, Yang D, Lu B, Li S. Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:129-141. [PMID: 30308300 DOI: 10.1016/j.nano.2018.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Cancer metastasis is the main cause for the high mortality in breast cancer patients. In this work we developed a polymer POEG-st-Pmor for targeted co-delivery of IL-36γ expression plasmid and doxorubicin (Dox) to lung metastasis of breast cancer. The polymer readily formed micelles that were effective in loading Dox and simultaneously forming complexes with IL-36γ plasmid. Interestingly, particles co-loaded with Dox and plasmid was significantly smaller and more stable than the particles loaded with Dox only. Gene transfection in both lungs and s.c. tumors was significantly higher with our polymer compared to PEI. In addition, the Dox + IL-36γ/POEG-st-Pmor not only could bring improved anti-metastatic effect but synergistically enhance the type I immune response by increasing the IFN-γ positive CD4+ and CD8+ T cells and simultaneously decreasing the immunosuppressive myeloid-derived suppressor cells in the lung. POEG-st-Pmor may represent a simple and effective delivery system for an optimal chemo-gene combination therapy.
Collapse
Affiliation(s)
- Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Chen Y, Sun J, Huang Y, Lu B, Li S. Improved Cancer Immunochemotherapy via Optimal Co-delivery of Chemotherapeutic and Immunomodulatory Agents. Mol Pharm 2018; 15:5162-5173. [PMID: 30222360 DOI: 10.1021/acs.molpharmaceut.8b00717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is highly demanded and still a big challenge to develop an effective formulation for immunochemotherapy against advanced tumors. We have previously reported a PEG-NLG-based immunostimulatory nanocarrier (PEG2k-Fmoc-NLG919) for co-delivery of an IDO1 inhibitor (NLG919) and a chemotherapeutic agent (paclitaxel, PTX). Although antitumor immune responses were enhanced with a PTX-loaded nanocarrier, the accumulation of myeloid-derived suppressor cells (MDSCs) was also significantly increased, which may limit the overall efficacy of therapy. In the present work, we developed an improved dual-functional nanocarrier (PEG5k-Fmoc-NLG2) to co-load PTX and sunitinib (SUN, a multitarget receptor tyrosine kinase inhibitor) for improved cancer immunochemotherapy. We found that the recruited MDSCs negatively impacted the overall antitumor activity of the PTX-loaded PEG-NLG nanocarrier. Mechanistic study suggests that this is likely attributed to the PTX-mediated induction of a number of chemokines that are involved in the recruitment of MDSCs. We have further shown that the induction of these chemokines was drastically blocked by SUN. Co-delivery of PTX and SUN via the PEG5k-Fmoc-NLG9192 nanocarrier led to a further improvement in the therapeutic efficacy with a concomitant reduction in MDSCs.
Collapse
Affiliation(s)
- Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Binfeng Lu
- Department of Immunology , University of Pittsburgh School of Medicine , 200 Lothrop Street , Pittsburgh , Pennsylvania 15261 , United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
21
|
Xu XL, Lu KJ, Zhu ML, Du YL, Zhu YF, Zhang NN, Wang XJ, Kang XQ, Xu DM, Ying XY, Yu RS, Lu CY, Ji JS, You J, Du YZ. Sialic Acid-Functionalized pH-Triggered Micelles for Enhanced Tumor Tissue Accumulation and Active Cellular Internalization of Orthotopic Hepatocarcinoma. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31903-31914. [PMID: 30178997 DOI: 10.1021/acsami.8b09498] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Both targeted and stimuli-sensitive drug-delivery systems (DDSs) have been developed to augment antitumor effects. However, lack of knowledge regarding tumor tissue targeting and different effects of the stimuli-sensitive DDSs in orthotropic and ectopic tumors have impeded further advances in their clinical applications. Herein, we first reported a pH-triggered micelle with sialic acid (SA)-driven targeting ability (SA-poly(ethylene glycol)-hydrazone linker-doxorubicin (DOX), SPD). The SPD micelles encapsulated with DOX (SPDD) showed sustained drug release over 48 h in response to the pH gradient in vivo, slow under physical conditions and accelerated in the acid tumor microenvironment. In addition, the SPD micelles showed 2.3-fold higher accumulation in tumors after 48 h compared to the micelles lacking the SA moiety. The overexpression of E-selectin on the inflammatory vascular endothelial cells surrounding the tumors increased the accumulation of SPD micelles in tumor tissues, whereas that on the tumor cells increased the internalization of micelles. Consequently, SPDD micelles exerted remarkable antitumor effects in both orthotopic and ectopic models. Application of SPDD micelles in the in situ model reduced the tumor volume (77.57 mm3 vs 62.13 mm3) and metastasis after treatment for 25 days. These results suggest that SA-driven targeted DDS with a pH-responsive switch has the potential to treat hepatocarcinoma effectively both ectopically and orthotopically.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Meng-Lu Zhu
- Department of Pharmacy , The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu 322000 , PR China
| | - Yang-Long Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Ya-Fang Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Nan-Nan Zhang
- Lishui Hospital , Zhejiang University School of Medicine , Lishui 323000 , PR China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - De-Min Xu
- Department of Radiology , The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310009 , PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Ri-Sheng Yu
- Department of Radiology , The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310009 , PR China
| | - Chen-Ying Lu
- Lishui Hospital , Zhejiang University School of Medicine , Lishui 323000 , PR China
- Department of Radiology , The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310009 , PR China
| | - Jian-Song Ji
- Lishui Hospital , Zhejiang University School of Medicine , Lishui 323000 , PR China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , PR China
| |
Collapse
|
22
|
Zhu ML, Xu XL, Wang XJ, Zhang NN, Lu KJ, Qi J, Jin FY, Liu D, Du YZ. Sialic-Acid-Anchored Micelles: A Hierarchical Targeting Device for Enhanced Tumor Tissue Accumulation and Cellular Internalization. Mol Pharm 2018; 15:4235-4246. [PMID: 30110551 DOI: 10.1021/acs.molpharmaceut.8b00649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery systems (TDDS) have attracted wide attention for their reduced drug side effects and improved antitumor efficacy in comparison with traditional preparations. While targeting moieties in existing TDDS have principally focused on recognition of receptors on the surface of tumor cells, accumulation into tumor tissue only could be performed by enhanced permeability and retention effects and active transportation into tumor cells. Doxorubicin (DOX)-loaded sialic acid-dextran (Dex)-octadecanoic acid (OA) micelles (SA-Dex-OA/DOX) were designed for targeting hepatocellular carcinoma effectively. The synthesized conjugates could self-aggregate to form micelles with a critical micelle concentration of 27.6 μg·mL-1 and diameter of 54.53 ± 3.23 nm. SA-Dex-OA micelles incorporated with 4.36% DOX-loading content could prolong in vitro drug release to 96 h with 80% of final release. Cellular transportation studies revealed that SA-Dex-OA micelles mediated more efficient DOX delivery into Bel-7402 cells than those without SA modification. In vivo biodistribution testing demonstrated that SA-Dex-OA/ICG micelles showed 3.05-fold higher accumulation into Bel-7402 tumors. The recognition of overexpressed E-selectin in inflammatory tumor vascular endothelial cells led to a large accumulation of SA-Dex-OA/ICG micelles into tumor tissue, and the E-selectin upregulated on the surface of tumor cells contributed to active cellular transportation into tumor cells. Accordingly, SA-Dex-OA/DOX exhibited prior suppression of Bel-7402 tumor growth greater than that of Dex-OA/DOX micelles and free DOX (the tumor inhibition: 79.2% vs 61.0 and 51.3%). These results suggest that SA-functionalized micelles with dual targeting properties have high potential for liver cancer therapy.
Collapse
Affiliation(s)
- Meng-Lu Zhu
- The Fourth Affiliated Hospital , Zhejiang University School of Medicine , Yiwu 322000 , China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Nan-Nan Zhang
- Lishui Hospital , Zhejiang University School of Medicine , Lishui 323000 , China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| |
Collapse
|
23
|
Li Z, Sun J, Huang Y, Liu Y, Xu J, Chen Y, Liang L, Li J, Liao Q, Li S, Zhou K. A Nanomicellar Prodrug Carrier Based on Ibuprofen-Conjugated Polymer for Co-delivery of Doxorubicin. Front Pharmacol 2018; 9:781. [PMID: 30154714 PMCID: PMC6102750 DOI: 10.3389/fphar.2018.00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug (NSAID), which is widely used to reduce fever and treat inflammation and acute pain. Recently, its application in cancer treatment is also being explored. In this work, we synthesized a well-defined IBU-based amphiphilic diblock copolymer via reversible addition fragmentation transfer (RAFT) polymerization of IBU-based vinyl monomer. The amphiphilic copolymer POEG-b-PVBIBU (denoted as POVI) was composed of a hydrophilic poly(oligo(ethylene glycol)) block and a hydrophobic IBU-bearing prodrug block, which was able to self-assemble into prodrug nanomicelles. In addition, it could serve as a carrier to co-load other drugs including doxorubicin (DOX), paclitaxel (PTX), and docetaxel (DTX). By using DOX as a model anti-cancer drug, the delivery function of POVI carrier, including the drug release, in vitro cytotoxicity, cellular uptake, and in vivo antitumor activity, was evaluated. DOX-loaded POVI micelles exhibited sustained release of DOX. Besides, DOX/POVI micelles were effectively taken up by tumor cells with an efficiency comparable to that of free DOX. Moreover, in vivo studies showed that POVI carrier itself had modest antitumor activity. After loading DOX, the antitumor activity was significantly increased, which was significantly higher than that of free DOX. Our results suggest that POVI polymer represents a simple and effective dual-functional carrier for co-delivery of IBU and DOX to improve the anticancer activity.
Collapse
Affiliation(s)
- Zuojun Li
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| |
Collapse
|
24
|
Sun J, Sun L, Li J, Xu J, Wan Z, Ouyang Z, Liang L, Li S, Zeng D. A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy. Acta Biomater 2018; 75:312-322. [PMID: 29885530 PMCID: PMC6119490 DOI: 10.1016/j.actbio.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023]
Abstract
Multifunctional nanoplatforms offering simultaneous imaging and therapeutic functions have been recognized as a highly promising strategy for personalized nanomedicine. In this work, we synthesized a farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) based triblock copolymer POEG-b-PVBA-b-PFTS (POVF) composed of a poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic block, a poly(FTS) hydrophobic block, and a poly(4-vinylbenzyl azide) (PVBA) middle block. The POVF polymer itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it could serve as a carrier to effectively encapsulate paclitaxel (PTX) to form stable PTX/POVF mixed micelles with a diameter around 100 nm. Meanwhile, POVF polymer provides the active azide group for incorporating a positron emission tomography (PET) imaging modality via a facile strategy based on metal-free click chemistry. This nanocarrier system could not only be used for co-delivery of PTX and FTS, but also for PET imaging guided drug delivery. In the 4T1.2 tumor bearing mice, PET imaging showed rapid uptake and slow clearance of radiolabeled PTX/POVF nanomicelles in the tumor tissues. In addition, the FTS-based multi-functional nanocarrier was able to inhibit tumor growth effectively, and the co-delivery of PTX by the carrier further improved the therapeutic effect. STATEMENT OF SIGNIFICANCE Due to the intrinsic heterogeneity of cancer and variability in individual patient response, personalized nanomedicine based on multi-functional carriers that integrate the functionalities of combination therapy and imaging guidance is highly demanded. Here we developed a multi-functional nanocarrier based on triblock copolymer POEG-b-PVBA-b-PFTS (POVF), which could not only be used for co-delivery of anticancer drugs PTX and Ras inhibitor FTS, but also for PET imaging guided drug delivery. The POVF carrier itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it was effective in formulating PTX with high drug loading capacity, which further enhanced the tumor inhibition effect. Meanwhile, we developed a simple and universal approach to incorporate a PET radioisotope (Zr-89 and Cu-64) into the azide-containing PTX/POVF micelles via metal-free click chemistry in aqueous solution. The radiolabeled PTX/POVF micelles exhibited excellent serum stability, rapid tumor uptake and slow clearance, which validated the feasibility of the PET image-guided delivery of PTX/POVF micelles.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lingyi Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jianchun Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Dexing Zeng
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
25
|
Zhong Y, Zeberl BJ, Wang X, Luo J. Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomater 2018; 73:21-37. [PMID: 29654990 PMCID: PMC5985219 DOI: 10.1016/j.actbio.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
The combinatorial polymer library approach has been proven to be effective for the optimization of therapeutic delivery systems. The library of polymers with chemical diversity has been synthesized by (i) polymerization of functionalized monomers or (ii) post-polymerization modification of reactive polymers. Most scientists have followed the first approach so far, and the second method has emerged as a versatile approach for combinatorial biomaterials discovery. This review focuses on the second approach, especially discussing the post-modifications that employ reactive polymers as templates for combinatorial synthesis of a library of functional polymers with distinct structural diversity or a combination of different functionalities. In this way, the functional polymers have a consistent chain length and distribution, which allows for systematic optimization of therapeutic delivery polymers for the efficient delivery of genes, small-molecule drugs, and protein therapeutics. In this review, the modification of representative reactive polymers for the delivery of different therapeutic payloads are summarized. The recent advances in rational design and optimization of therapeutic delivery systems based on reactive polymers are highlighted. This review ends with a summary of the current achievements and the prospect on future directions in applying the approach of post-polymerization modification of polymers to accelerate the development of therapeutic delivery systems. STATEMENT OF SIGNIFICANCE A strategy to rationally design and systematically optimize polymers for the efficient delivery of specific therapeutics is highly needed. The combinatorial polymer library approach could be an effective way to this end. The post-polymerization modification of reactive polymer precursors is applicable for the combinatorial synthesis of a library of functional polymers with distinct structural diversity across a consistent degree of polymerization. This allows for parallel comparison and systematic evaluation/optimization of functional polymers for efficient therapeutic delivery. This review summarizes the key elements of this combinatorial polymer synthesis approach realized by post-polymerization modification of reactive polymer precursors towards the development and identification of optimal polymers for the efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Yuanbo Zhong
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Brian J Zeberl
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
26
|
Xu J, Sun J, Wang P, Ma X, Li S. Pendant HDAC inhibitor SAHA derivatised polymer as a novel prodrug micellar carrier for anticancer drugs. J Drug Target 2017; 26:448-457. [PMID: 29251528 DOI: 10.1080/1061186x.2017.1419355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACi) approved by FDA for the treatment of cutaneous T cell lymphoma, is a promising anticancer drug for various cancers with a unique mode of action. However, it demonstrates limited clinical benefits in solid tumours as a single drug. In order to achieve enhanced and synergistic co-delivery of SAHA and doxorubicin (DOX), a cleavable SAHA-based prodrug polymer (POEG-b-PSAHA), consisting of hydrophilic poly(oligo(ethylene glycol) methacrylate) (POEG) blocks and hydrophobic SAHA segments, has been developed. POEG-b-PSAHA prodrug polymer was able to form spherical micelles with a diameter around 60 nm and well retained the pharmacological activity of SAHA in either inhibiting the proliferation of tumour cells or inducing histone acetylation. DOX formulated in POEG-b-PSAHA-based micelles showed a sustained release profile. DOX-loaded POEG-b-PSAHA exhibited more potent cytotoxicity towards tumour cells than free DOX and DOX loaded in a pharmacologically 'inert' nanocarrier, POEG-b-POM. Consistently, DOX/POEG-b-PSAHA formulation resulted in an improved therapeutic effect in vivo compared to free DOX, Doxil or DOX formulated in POEG-b-POM micelles. These results suggest that SAHA-based prodrug micelles may serve as a dual functional carrier for combination strategies in epigenetic-oriented anticancer therapy.
Collapse
Affiliation(s)
- Jieni Xu
- a Center for Pharmacogenetics , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA.,c University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Jingjing Sun
- a Center for Pharmacogenetics , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA.,c University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Pengcheng Wang
- a Center for Pharmacogenetics , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Xiaochao Ma
- a Center for Pharmacogenetics , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Song Li
- a Center for Pharmacogenetics , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA.,c University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
27
|
Huang C, Li NM, Gao P, Yang S, Ning Q, Huang W, Li ZP, Ye PJ, Xiang L, He DX, Tan XW, Yu CY. In vitro and in vivo evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Drug Deliv 2017; 24:459-466. [PMID: 28219253 PMCID: PMC8241166 DOI: 10.1080/10717544.2016.1264499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022] Open
Abstract
A novel type of macromolecular prodrug delivery system is reported in this research. The N-galactosylated-chitosan-5-fluorouracil acetic acid conjugate (GC-FUA) based nanoparticle delivery system was evaluated in vitro and in vivo. Biocompatibility of GC-FUA-NPs was screened by BSA adsorption test and hemolysis activity examination in vitro. Cytotoxicity and cellular uptake study in HepG2 and A549 cells demonstrated that compared to free 5-Fu, the GC-FUA-NPs play great function in killing cancer cells for the cell endocytosis mediated by asialoglycoprotein receptor (ASGPR), which overexpresses on the cell surface. Pharmacokinetics study further illustrated that the drug-loaded nanoparticles has a much longer half-time than free 5-Fu in blood circulation in Sprague-Dawley (SD) rats. Tissue distribution was investigated in Kunming mice, and the result showed that the GC-FUA-NPs have a long circulation effect. The obtained data suggested that GC-FUA-NP is a very promising drug delivery system for efficient treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Can Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Na-Mei Li
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy & Pharmacology University of South China, Hengyang, China, and
| | - Pei Gao
- Chemistry Department, Eastern Kentucky University, Richmond, KY, USA
| | - Sa Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Qian Ning
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wen Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhi-Ping Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Li Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiang-Wen Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy & Pharmacology University of South China, Hengyang, China, and
| |
Collapse
|
28
|
Sun J, Liu Y, Chen Y, Zhao W, Zhai Q, Rathod S, Huang Y, Tang S, Kwon YT, Fernandez C, Venkataramanan R, Li S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J Control Release 2017; 258:43-55. [PMID: 28501705 PMCID: PMC5525542 DOI: 10.1016/j.jconrel.2017.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Two novel prodrug polymers POEG-b-PSSDas (redox-sensitive) and POEG-b-PCCDas (redox-insensitive), which consist of poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic blocks and dasatinib (DAS, an oncogenic tyrosine kinases inhibitor) conjugated hydrophobic blocks, were designed as dual-functional carriers for codelivery with doxorubicin (DOX). Both carriers retained antitumor activity of DAS and could form mixed micelles with DOX. Compared to POEG-b-PCCDas micelles, incorporation of disulfide linkage into POEG-b-PSSDas micelles facilitated efficient cleavage of DAS from prodrug micelles in tumor cells/tissues, leading to a higher level of anti-tumor activity in vitro and in vivo. In addition, DOX-loaded POEG-b-PSSDas micelles exhibited triggered DOX release under a redox environment (10mM glutathione, GSH), and demonstrated enhanced cytotoxicity against 4T1.2 and PC3 cell lines compared to DOX and DOX-loaded POEG-b-PCCDas micelles. More importantly, DOX-loaded POEG-b-PSSDas micelles were more effective in inhibiting the tumor growth and prolonging the survival rate in an aggressive murine breast cancer model (4T1.2) compared to DOX-loaded POEG-b-PCCDas micelles and a micellar formulation co-loaded with DOX and DAS. This redox-responsive prodrug micellar system provides an attractive strategy for effective combination of tumor targeted therapy and traditional chemotherapy, which warrants further investigation.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Wenchen Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Qianyu Zhai
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Suoqin Tang
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yong Tae Kwon
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States; Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Christian Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Raman Venkataramanan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
29
|
Sekerdag E, Lüle S, Bozdağ Pehlivan S, Öztürk N, Kara A, Kaffashi A, Vural I, Işıkay I, Yavuz B, Oguz KK, Söylemezoğlu F, Gürsoy-Özdemir Y, Mut M. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J Control Release 2017; 261:187-198. [PMID: 28684169 DOI: 10.1016/j.jconrel.2017.06.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 11/26/2022]
Abstract
New drug delivery systems are highly needed in research and clinical area to effectively treat gliomas by reaching a high antineoplastic drug concentration at the target site without damaging healthy tissues. Intranasal (IN) administration, an alternative route for non-invasive drug delivery to the brain, bypasses the blood-brain-barrier (BBB) and eliminates systemic side effects. This study evaluated the antitumor efficacy of farnesylthiosalicylic acid (FTA) loaded (lipid-cationic) lipid-PEG-PLGA hybrid nanoparticles (HNPs) after IN application in rats. FTA loaded HNPs were prepared, characterized and evaluated for cytotoxicity. Rat glioma 2 (RG2) cells were implanted unilaterally into the right striatum of female Wistar rats. 10days later, glioma bearing rats received either no treatment, or 5 repeated doses of 500μM freshly prepared FTA loaded HNPs via IN or intravenous (IV) application. Pre-treatment and post-treatment tumor sizes were determined with MRI. After a treatment period of 5days, IN applied FTA loaded HNPs achieved a significant decrease of 55.7% in tumor area, equal to IV applied FTA loaded HNPs. Herewith, we showed the potential utility of IN application of FTA loaded HNPs as a non-invasive approach in glioblastoma treatment.
Collapse
Affiliation(s)
- Emine Sekerdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Neuroscience Research Lab, Research Center for Translational Medicine, Koҫ University, Istanbul, Turkey.
| | - Sevda Lüle
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Aslı Kara
- Department of Nanotechnology and Nanomedicine, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Biology, Faculty of Art and Science, Hitit University, Çorum, Turkey
| | - Abbas Kaffashi
- Department of Nanotechnology and Nanomedicine, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ilkay Işıkay
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burҫin Yavuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine, Koҫ University, Istanbul, Turkey; Department of Neurology, School of Medicine, Koҫ University, Istanbul, Turkey
| | - Melike Mut
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Sun JJ, Chen YC, Huang YX, Zhao WC, Liu YH, Venkataramanan R, Lu BF, Li S. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol Sin 2017; 38:823-834. [PMID: 28504251 PMCID: PMC5520195 DOI: 10.1038/aps.2017.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023] Open
Abstract
To achieve synergistic therapeutic efficacy and prevent cancer relapse, chemotherapy and immunotherapy have been combined as a new modality for tumor treatment. In this work, we designed a redox-responsive immunostimulatory polymeric prodrug carrier, PSSN10, for programmable co-delivery of an immune checkpoint inhibitor NLG919 (NLG) and a chemotherapeutic doxorubicin (DOX). NLG-containing PSSN10 prodrug polymers were self-assembled into nano-sized micelles that served as a carrier to load DOX (DOX/PSSN10 micelles). DOX/PSSN10 micelles displayed spherical morphology with a size of ∼170 nm. DOX was effectively loaded into PSSN10 micelles with a loading efficiency of 84.0%. In vitro DOX release studies showed that rapid drug release could be achieved in the highly redox environment after intracellular uptake by tumor cells. In 4T1.2 tumor-bearing mice, DOX/PSSN10 micelles exhibited greater accumulation of DOX and NLG in the tumor tissues compared with other organs. The PSSN10 carrier dose-dependently enhanced T-cell immune responses in the lymphocyte-Panc02 co-culture experiments, and significantly inhibited tumor growth in vivo. DOX/PSSN10 micelles showed potent cytotoxicity in vitro against 4T1.2 mouse breast cancer cells and PC-3 human prostate cancer cells comparable to that of DOX. In 4T1.2 tumor-bearing mice, DOX/PSSN10 mixed micelles (5 mg DOX/kg, iv) was more effective than DOXIL (a clinical formulation of liposomal DOX) or free DOX in inhibiting the tumor growth and prolonging the survival of the treated mice. In addition, a more immunoactive tumor microenvironment was observed in the mice treated with PSSN10 or DOX/PSSN10 micelles compared with the other treatment groups. In conclusion, systemic delivery of DOX via PSSN10 nanocarrier results in synergistic anti-tumor activity.
Collapse
Affiliation(s)
- Jing-jing Sun
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi-chao Chen
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi-xian Huang
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen-chen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy
| | - Yan-hua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | | | - Bin-feng Lu
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
31
|
Jeong JY, Hong EH, Lee SY, Lee JY, Song JH, Ko SH, Shim JS, Choe S, Kim DD, Ko HJ, Cho HJ. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater 2017; 53:414-426. [PMID: 28216300 DOI: 10.1016/j.actbio.2017.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
(3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface of HACE-AMPB/MB NPs (in the aqueous milieu) may react with the sialic acid over-expressed in cancer cells and intramolecular B‒O bond can be formed. This phenylboronic acid-sialic acid interaction may provide additional tumor targeting and penetration potentials together with an enhanced permeability and retention (EPR) effect (passive tumor targeting) and HA-CD44 receptor interaction (active tumor targeting). Developed HACE-AMPB NP may be one of promising nanocarriers for the imaging and therapy of CD44 receptor-expressed cancers.
Collapse
Affiliation(s)
- Jae Young Jeong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eun-Hye Hong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seung-Hak Ko
- Biogenics Inc., Daejeon 34027, Republic of Korea
| | - Jae-Seong Shim
- Biogenics Inc., Daejeon 34027, Republic of Korea; Skin & Tech Inc., Seongnam, Gyeonggi 13135, Republic of Korea
| | - Sunghwa Choe
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 16229, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 16229, Republic of Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|