1
|
Wang D, Feng S, Yang M. Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution. ACS NANO 2024; 18:29636-29647. [PMID: 39425938 DOI: 10.1021/acsnano.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of bones is elegantly adapted to the local strain environment, which is critical for maintaining mechanical functions. Such an adaptation enables the strong correlation between strain distributions and multiple gradients, underlying a promising pathway for creating complex gradient structures. However, this potential remains largely unexplored for the synthesis of functional gradient materials. In this work, heterogeneous bone-like nanocomposites with complex structural and compositional gradients comparable to bones are synthesized by inducing strain distributions within the polymer matrix containing amorphous calcium phosphate (ACP). Uniaxial stretching of composite films exerts the highest strain in the center, which ceases gradually toward the sides, resulting in the gradual decrease of polymer alignment and crystallinity. Simultaneously, the center with high orientation traps most ACP during stretching due to the nanoconfinement effect, which in turn promotes the formation of aligned nanofibrous structures. The sides experiencing the least strain have the smallest amounts of ACP, characteristic of porous architectures. Further crystallization of ACP produces oriented apatite nanorods in the center with a larger crystalline/amorphous ratio than the sides because of template-induced crystallization. The combination of structural and compositional gradients leads to gradient mechanical properties, and the gradient span and magnitude correlate nicely with strain distributions. Accompanying bone-like mechanical gradients, the center is less adhesive and self-healable than the sides, which allows a better recovery after a complete cutting. Our work may represent a general strategy for the synthesis of biomimetic materials with complex gradients thanks to the ubiquitous presence of strain distributions in load-bearing structures.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Yin X, Castro-Claros JD, Griesshaber E, Salas C, Sancho Vaquer A, Checa AG, Schmahl WW. Molluscs generate preferred crystallographic orientation of biominerals by organic templates, the texture and microstructure of Caudofoveata (Aplacophora) shells. Sci Rep 2024; 14:13469. [PMID: 38866846 PMCID: PMC11169368 DOI: 10.1038/s41598-024-63042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Caudofoveata are molluscs that protect their vermiform body with a scleritome, a mosaic of unconnected blade/lanceolate-shaped aragonite sclerites. For the species Falcidens gutturosus and Scutopus ventrolineatus we studied the crystallographic constitution and crystal orientation texture of the sclerites and the scleritome with electron-backscatter-diffraction (EBSD), laser-confocal-microscopy (LCM) and field-emission electron microscopy (FE-SEM) imaging. Each sclerite is an aragonite single crystal that is completely enveloped by an organic sheath. Adjacent sclerites overlap laterally and vertically are, however, not connected to each other. Sclerites are thickened in their central portion, relative to their periphery. Thickening increases also from sclerite tip towards its base. Accordingly, cross-sections through a sclerite are straight at its tip, curved and bent towards the sclerite base. Irrespective of curved sclerite morphologies, the aragonite lattice within the sclerite is coherent. Sclerite aragonite is not twinned. For each sclerite the crystallographic c-axis is parallel to the morphological long axis of the sclerite, the a-axis is perpendicular to its width and the b-axis is within the width of the sclerite. The single-crystalinity of the sclerites and their mode of organization in the scleritome is outstanding. Sclerite and aragonite arrangement in the scleritome is not given by a specific crystal growth mode, it is inherent to the secreting cells. We discuss that morphological characteristics of the sclerites and crystallographic preferred orientation (texture) of sclerite aragonite is not the result of competitive growth selection. It is generated by the templating effect of the organic substance of the secreting cells and associated extracellular biopolymers.
Collapse
Affiliation(s)
- X Yin
- Bruker, Beijing, Scientific Technology, Minhang District, Shanghai, 200233, China
- Department of Geo- and Environmental Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - J D Castro-Claros
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071, Granada, Spain
| | - E Griesshaber
- Department of Geo- and Environmental Sciences, Ludwig Maximillians University Munich, Munich, Germany.
| | - C Salas
- Departmento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - A Sancho Vaquer
- Department of Geo- and Environmental Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - A G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071, Granada, Spain
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100, Armilla, Spain
| | - W W Schmahl
- Department of Geo- and Environmental Sciences, Ludwig Maximillians University Munich, Munich, Germany
| |
Collapse
|
3
|
Jiang Q, Wu Q, Nie M, Han R, Wu L. Low-Temperature Assembling Strategy of a Nacre-Inspired Lamellar Configuration to Upcycling Biaxially Oriented Polypropylene Film Waste. ACS OMEGA 2023; 8:31510-31517. [PMID: 37663481 PMCID: PMC10468935 DOI: 10.1021/acsomega.3c04689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
The efficient recycling and utilization of plastic waste have become a hot topic of global concern, but conventional mechanical recycling not only deteriorates the performance of recycled plastic but also loses the intrinsic structure and properties of the original product. Herein, an upcycling strategy of a biaxially oriented polypropylene (BOPP) film was proposed by duplicating the lamellar configuration established in nature nacre. Especially the suspension of PP wax was deposited on the surface of the BOPP film by spray-coating, followed by layer-by-layer assembling and hot-pressing at 160 °C above the melting temperature of PP wax but below the initial melting temperature of the BOPP film. In this case, PP wax not only functioned as a binder to enable strong interfacial adhesion between the BOPP films via interfacial diffusion but also acted as a soft phase to insert between the rigid BOPP films, constructing a soft-hard alternatively aligned configuration similar to brick-and-mortar architecture in nature nacre. As a result, the mechanical properties of the lamellar sample markedly outperformed those of the conventional mechanically recycling sample, evidenced by 113 and 1141% increases in tensile strength and impact strength, respectively. This simple and effective method provides a new strategy for efficient upcycling of oriented packaging films, which is important to realize the sustainable recycling of plastic waste.
Collapse
Affiliation(s)
- Qingquan Jiang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Min Nie
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Rui Han
- School
of Materials Science and Engineering, Xihua
University, Chengdu 610039, China
| | - Lei Wu
- Tianhong
New Materials Co., Ltd., No. 3 Shengli Road, Industrial Park, Jieshou 236503, China
| |
Collapse
|
4
|
Cai J, Chen H, Li Y, Akbarzadeh A. Lessons from Nature for Carbon‐Based Nanoarchitected Metamaterials. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jun Cai
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Haoyu Chen
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Youjian Li
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
5
|
Krings W, Brütt JO, Gorb SN. Micro-cracks and micro-fractures reveal radular tooth architecture and its functional significance in the paludomid gastropod Lavigeria grandis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210335. [PMID: 35909353 DOI: 10.1098/rsta.2021.0335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Most molluscan taxa forage with their radula, a chitinous membrane with embedded teeth. The teeth are the actual interfaces between the animal and its ingesta and serve as load-transmitting regions. During foraging, these structures have to withstand high stresses without structural failure and without a high degree of wear. Mechanisms contributing to this failure- and wear-resistance were well studied in the heavily mineralized teeth of Polyplacophora and Patellogastropoda, but for the rather chitinous teeth of non-limpet snails, we are confronted with a large gap in data. The work presented here on the paludomid gastropod Lavigeria grandis aims to shed some light on radular tooth composition and its contribution to failure- and wear-prevention in this type of radula. The teeth were fractured and the micro-cracks studied in detail by scanning electron microscopy, revealing layers within the teeth. Two layers of distinct fibre densities and orientations were detected, covered by a thin layer containing high proportions of calcium and silicon, as determined by elemental dispersive X-ray spectroscopy. Our results clearly demonstrate the presence of failure- and wear-prevention mechanisms in snail radulae without the involvement of heavy mineralization-rendering this an example of a highly functional biological lightweight structure. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations. Acta Biomater 2022; 147:120-128. [PMID: 35609803 DOI: 10.1016/j.actbio.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Nacre's superior mechanical properties and failure behavior are strongly orientation-dependent due to its brick-and-mortar microstructure. In this work, the anisotropic microscopic deformation and the resulting macroscopic mechanical properties are evaluated under different loading conditions. Our in situ transmission electron microscopy deformation experiments and finite element simulations reveal that nacre possesses enhanced indentation resistance along the direction normal to the tablets through delocalization of indentation-induced deformation by taking advantage of its layered structure. In addition, nacre's ability to recover from large deformations is observed. We study the strong loading direction dependence of nacre's macroscopic mechanical properties and elucidate the underlying microscopic deformation patterns in the tablets and the soft matrix. Particularly, its performance along the transverse direction is optimized to withstand the loading conditions in nature. We show the importance of the vertical matrix for the initial stiffness and fracture toughness of the composite. These findings provide guidelines for designing nacre-inspired artificial composites with enhanced mechanical properties. STATEMENT OF SIGNIFICANCE: Nacre is widely recognized as an excellent structural model for designing bio-inspired tough and strong artificial composites. Due to its brick-and-mortar microstructure, it exhibits loading direction-dependent mechanical behavior. In this contribution, we investigate the macroscopic mechanical properties and microscopic deformation behavior of nacre under different loading conditions by means of in situ TEM deformation tests and FE simulations. It is found that effective elastic moduli and microscopic deformation strongly depend on the loading direction. The organic matrix is highly deformable. The indentation resistance along the direction normal to tablets is enhanced via deformation delocalization. Our quantitative and qualitative results provide guidelines on optimizing the mechanical properties of nacre-inspired novel composites.
Collapse
|
7
|
Li Y, Zhang B, Niu S, Zhang Z, Song W, Wang Y, Zhang S, Li B, Mu Z, Han Z, Ren L. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability. Acta Biomater 2022; 147:91-101. [PMID: 35598876 DOI: 10.1016/j.actbio.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Hedgehog spines with evolved unique structures are studied on account of their remarkable mechanical efficiency. However, because of limitations of existing knowledge, it remains unclear how spines work as a material with a balance of stiffness and toughness. By combining qualitative three-dimensional (3D) structural characterization, material composition analysis, biomechanical analysis, and parametric simulations, the relationship between microstructural characteristic and multifunctional features of hedgehog spines is revealed here. The result shows that the fibers transform from the outer cortex to the interior cellular structures by the "T" section composed of the "L" section and a deltoid. The outer cortex, however, shows an arrangement of a layered fibrous structure. An inward change in Young's moduli is observed. In addition, these spines are featured with a sandwich structure that combines an inner porous core with an outer dense cortex. This feature confirms that the hedgehog spines are a kind of biological functionally graded fiber-reinforced composite. Biomimetic models based on the spine are then built, and the corresponding mechanical performance is tested. The results confirm that the internal cellular structure of the spine effectively improve impact resistance. Furthermore, the transverse diaphragm can prevent ellipticity, which may delay buckling. The longitudinal stiffeners also contribute to promote buckling resistance. The design strategies of the spine proposed here provide inspirations for designing T-joint composites. It also exhibits potential applications in low-density, impact and buckling resistance artificial composites. STATEMENT OF SIGNIFICANCE: The spines of a hedgehog are its protective armor that combines strength and toughness. The animal can not only withstand longitudinal and radial forces that are 1 × 106∼ 3 × 106 times the gravity generated by its own weight, but it can also survive unscathed by elastic buckling while dropping to the ground at a speed of up to 15 m/s. Here, we first demonstrate that hedgehog spines are biological graded fiber-reinforced structural composites and reveal their superior impact and buckling resistance mechanism through simulation analysis. Our results broaden the understanding of the relationship among morphology, materials, and function of hedgehog spines. It is anticipated that the survival strategies of hedgehog revealed here could provide inspirations for the development of synthetic composites with impact resistance and structural stability.
Collapse
Affiliation(s)
- Yujiao Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China
| | - Binjie Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China.
| | - Zhiyan Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Wenda Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Yufei Wang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Shuang Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China; Weihai institute for Bionic, Jilin University, Weihai 264200, China
| |
Collapse
|
8
|
Jia Z, Deng Z, Li L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106259. [PMID: 35085421 DOI: 10.1002/adma.202106259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Biomineralized materials are sophisticated material systems with hierarchical 3D material architectures, which are broadly used as model systems for fundamental mechanical, materials science, and biomimetic studies. The current knowledge of the structure of biological materials is mainly based on 2D imaging, which often impedes comprehensive and accurate understanding of the materials' intricate 3D microstructure and consequently their mechanics, functions, and bioinspired designs. The development of 3D techniques such as tomography, additive manufacturing, and 4D testing has opened pathways to study biological materials fully in 3D. This review discusses how applying 3D techniques can provide new insights into biomineralized materials that are either well known or possess complex microstructures that are challenging to understand in the 2D framework. The diverse structures of biomineralized materials are characterized based on four universal structural motifs. Nacre is selected as an example to demonstrate how the progression of knowledge from 2D to 3D can bring substantial improvements to understanding the growth mechanism, biomechanics, and bioinspired designs. State-of-the-art multiscale 3D tomographic techniques are discussed with a focus on their integration with 3D geometric quantification, 4D in situ experiments, and multiscale modeling. Outlook is given on the emerging approaches to investigate the synthesis-structure-function-biomimetics relationship.
Collapse
Affiliation(s)
- Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
9
|
Dong Z, Chen S, Gupta HS, Zhao X, Yang Y, Chang G, Xue J, Zhang Y, Luo S, Dong Y, Zhang Y. In situ determination of the extreme damage resistance behavior in stomatopod dactyl club. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:775-786. [PMID: 35511010 PMCID: PMC9070693 DOI: 10.1107/s1600577522001217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 05/22/2023]
Abstract
The structure and mechanical properties of the stomatopod dactyl club have been studied extensively for its extreme impact tolerance, but a systematic in situ investigation on the multiscale mechanical responses under high-speed impact has not been reported. Here the full dynamic deformation and crack evolution process within projectile-impacted dactyl using combined fast 2D X-ray imaging and high-resolution ex situ tomography are revealed. The results show that hydration states can lead to significantly different toughening mechanisms inside dactyl under dynamic loading. A previously unreported 3D interlocking structural design in the impact surface and impact region is reported using nano X-ray tomography. Experimental results and dynamic finite-element modeling suggest this unique structure plays an important role in resisting catastrophic structural damage and hindering crack propagation. This work is a contribution to understanding the key toughening strategies of biological materials and provides valuable information for biomimetic manufacturing of impact-resistant materials in general.
Collapse
Affiliation(s)
- Zheng Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Sen Chen
- School of Materials Science and Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| | - Himadri S. Gupta
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, People’s Republic of China
| | - Xiaoyi Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Chinese Spallation Neutron Source Science Centre, Dongguan, Guangdong 523808, People’s Republic of China
| | - Yiming Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Guangcai Chang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jian Xue
- State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yiyang Zhang
- School of Materials Science and Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| | - Shengnian Luo
- School of Materials Science and Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
- Correspondence e-mail: , ,
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Correspondence e-mail: , ,
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Correspondence e-mail: , ,
| |
Collapse
|
10
|
Ghimire A, Chen PY. Seed protection strategies of the brainy Elaeocarpus ganitrus endocarp: Gradient motif yields fracture tolerance. Acta Biomater 2022; 138:430-442. [PMID: 34728425 DOI: 10.1016/j.actbio.2021.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Be it animals or plants, most of the organism's offspring come into existence after their embryos develop inside a protective shell. In plants, these hard protective shells are called endocarps. They serve the function of nourishing and protecting the seeds from external mechanical damage. Through evolution, endocarps of plants have developed various structural strategies to protect the enclosed seeds from external threats, and these strategies can vary according to the habitat or lifestyle of a particular plant. One such intriguing hard plant shell is the endocarp of the Elaeocarpus ganitrus fruit. It mostly grows in South Asia's mountainous forests, and its endocarps are known in the local communities as unbreakable and everlasting prayer beads. We report an in-depth investigation on microstructure, tomography, and mechanical properties to cast light on its performance and the underlying structure-property relation. The 3D structural quantifications by micro-CT demonstrate that the endocarp has gradient microarchitecture. In addition, the endocarp also exhibits gradient hardness and stiffness. The toughening mechanisms arising from the layered cellular structure enable the endocarps to withstand higher loads up to 5000 N before they fracture. Our findings provide experimental evidence of outstanding fracture tolerance and seed protection strategies developed by Elaeocarpus ganitrus endocarp that encourage the design of synthetic fracture tolerant structures. STATEMENT OF SIGNIFICANCE: Endocarps are low-density plant shells that exhibit remarkable fracture resistance and energy absorption when they encounter impact by falling from high trees and prolonged compression and abrasion by the predators. Such outstanding mechanical performance originates through structural design strategies developed to protect their seeds. Here we demonstrate previously undiscovered structural features and mechanical properties of Elaeocarpus ganitrus endocarp. We scrutinize the microstructure using high-resolution x-ray tomography scans and the 3D structural quantifications reveal a gradient microstructure which is in agreement with the gradient hardness and stiffness. The multiscale hierarchical structures combined with the gradient motif yield impressive fracture tolerance in Elaeocarpus ganitrus endocarp. These findings advance the knowledge of the structure-property relation in hard plant shells, and the procured structural design strategies can be utilized to design fracture-resistant structures.
Collapse
|
11
|
Lei C, Xie Z, Wu K, Fu Q. Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103495. [PMID: 34590751 DOI: 10.1002/adma.202103495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/08/2021] [Indexed: 05/23/2023]
Abstract
Vertically aligned structures, which are a series of characteristic conformations with thickness-direction alignment, interconnection, or assembly of filler in polymeric composite materials that can provide remarkable structural performance and advanced anisotropic functions, have attracted considerable attention in recent years. The past two decades have witnessed extensive development with regard to universal fabrication methods, subtle control of morphological features, improvement of functional properties, and superior applications of vertically aligned structures in various fields. However, a systematic review remains to be attempted. The various configurations of vertical structures inspired from biological samples in nature, such as vertically aligned structures with honeycomb, reed, annual ring, radial, and lamellar configurations are summarized here. Additionally, relevant processing methods, which include the transformation of oriented direction, external-field inducement, template method, and 3D printing method, are discussed in detail. The diverse applications in mechanical, thermal, electric, dielectric, electromagnetic, water treatment, and energy fields are also highlighted by providing representative examples. Finally, future opportunities and prospects are listed to identify current issues and potential research directions. It is expected that perspectives on the vertically aligned structures presented here will contribute to the research on advanced multifunctional composites.
Collapse
Affiliation(s)
- Chuxin Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
12
|
Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci Rep 2021; 11:22775. [PMID: 34815469 PMCID: PMC8611077 DOI: 10.1038/s41598-021-02102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.
Collapse
|
13
|
Modelling the Shear Banding in Gradient Nano-Grained Metals. NANOMATERIALS 2021; 11:nano11102468. [PMID: 34684909 PMCID: PMC8541060 DOI: 10.3390/nano11102468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Extensive experiments have shown that gradient nano-grained metals have outstanding synergy of strength and ductility. However, the deformation mechanisms of gradient metals are still not fully understood due to their complicated gradient microstructure. One of the difficulties is the accurate description of the deformation of the nanocrystalline surface layer of the gradient metals. Recent experiments with a closer inspection into the surface morphology of the gradient metals reported that shear bands (strain localization) occur at the surface of the materials even under a very small, applied strain, which is in contrast to previously suggested uniform deformation. Here, a dislocation density-based computational model is developed to investigate the shear band evolution in gradient Cu to overcome the above difficulty and to clarify the above debate. The Voronoi polygon is used to establish the irregular grain structure, which has a gradual increase in grain size from the material surface to the interior. It was found that the shear band occurs at a small applied strain in the surface region of the gradient structure, and multiple shear bands are gradually formed with increasing applied load. The early appearance of shear banding and the formation of abundant shear bands resulted from the constraint of the coarse-grained interior. The number of shear bands and the uniform elongation of the gradient material were positively related, both of which increased with decreasing grain size distribution index and gradient layer thickness or increasing surface grain size. The findings are in good agreement with recent experimental observations in terms of stress-strain responses and shear band evolution. We conclude that the enhanced ductility of gradient metals originated from the gradient deformation-induced stable shear band evolution during tension.
Collapse
|
14
|
Li S, Liu P, Lin W, Tian J, Miao C, Zhang X, Zhang R, Peng J, Zhang H, Gu P, Zhang Z, Wang Z, Luo T. Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17380-17391. [PMID: 33822600 DOI: 10.1021/acsami.1c02867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tail spike of the mantis shrimp is the appendage for counteracting the enemy from behind. Here, we investigate the correlations between the chemical compositions, the microstructures, and the mechanical properties of the spike. We find that the spike is a hollow beam with a varying cross section along the length. The cross section comprises four different layers with distinct features of microstructures and chemical compositions. The local mechanical properties of these layers correlate well with the microstructures and chemical compositions, a combination of which effectively restricts the crack propagation while maximizing the release of strain energy during deformation. Finite element analysis and mechanics modeling demonstrate that the optimized structure of the spike confines the mechanical damage in the region near the tip and prevents catastrophic breakage at the base. Furthermore, we use a 3D printing technique to fabricate multiple hollow cylindrical samples consisting of biomimetic microstructures of the spike and confirm that the combination of the Bouligand structure with radially oriented parallel sheets greatly improves the toughness and strength during compression tests. The multiscale design strategy of the spike revealed here is expected to be of great interest for the development of novel bioinspired materials.
Collapse
Affiliation(s)
- Shan Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Pan Liu
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Weiqin Lin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Jie Tian
- Experimental Center of Engineering and Materials Sciences, University of Science and Technology of China, Hefei 230052, China
| | - Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Xiao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Ruogu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Jinlan Peng
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230052, China
| | - Hong Zhang
- Hefei Institutes of Physical Science, Hefei Institute of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China
| | - Ping Gu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Zhengzhi Wang
- Department of Engineering Mechanics, School of Civil Engineering, and State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
15
|
Shishehbor M, Son H, Nuruddin M, Youngblood JP, Davis C, Zavattieri PD. Influence of alignment and microstructure features on the mechanical properties and failure mechanisms of cellulose nanocrystals (CNC) films. J Mech Behav Biomed Mater 2021; 118:104399. [PMID: 33662741 DOI: 10.1016/j.jmbbm.2021.104399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
The mechanical properties of cellulose nanocrystal (CNC) films critically depend on many microstructural parameters such as fiber length distribution (FLD), fiber orientation distribution (FOD), and the strength of the interactions between the fibers. In this paper, we use our coarse-grained molecular model of CNC to study the effect of length and orientation distribution and attractions between CNCs on the mechanical properties of neat CNCs. The effect of misalignment of a 2D staggered structure of CNC with respect to the loading direction was studied with simulations and analytical solutions and then verified with experiments. To understand the effect of FLD and FOD on the mechanical performance, various 3D microstructures representing different case studies such as highly aligned, randomly distributed, short length CNCs and long length CNCs were generated and simulated. According to the misalignment study, three different failure modes: sliding mode, mixed mode, and normal mode were defined. Also, comparing the effects of FOD, FLD, and CNC interaction strength, shows that the adhesion strength is the only parameter that can significantly improve the mechanical properties, regardless of loading direction or FOD of CNCs.
Collapse
Affiliation(s)
- Mehdi Shishehbor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyeyoung Son
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Md Nuruddin
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chelsea Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Krings W, Marcé-Nogué J, Karabacak H, Glaubrecht M, Gorb SN. Finite element analysis of individual taenioglossan radular teeth (Mollusca). Acta Biomater 2020; 115:317-332. [PMID: 32853812 DOI: 10.1016/j.actbio.2020.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Molluscs are a highly successful group of invertebrates characterised by a specialised feeding organ called the radula. The diversity of this structure is associated with distinct feeding strategies and ecological niches. However, the precise function of the radula (each tooth type and their arrangement) remains poorly understood. Here for the first time, we use a quantitative approach, Finite-Element-Analysis (FEA), to test hypotheses regarding the function of particular taenioglossan tooth types. Taenioglossan radulae are of special interest, because they are comprised of multiple teeth that are regionally distinct in their morphology. For this study we choose the freshwater gastropod species Spekia zonata, endemic to Lake Tanganyika, inhabiting and feeding on algae attached to rocks. As a member of the African paludomid species flock, the enigmatic origin and evolutionary relationships of this species has received much attention. Its chitinous radula comprises several tooth types with distinctly different shapes. We characterise the tooth's position, material properties and attachment to the radular membrane and use this data to evaluate 18 possible FEA scenarios differing in the above parameters. Our estimations of stress and strain indicate different functional loads for different teeth. We posit that the central and lateral teeth are best suitable for scratching substrate loosening ingesta, whereas the marginals are best suited for gathering food particles. Our successful approach and workflow are readily applicable to other mollusc species.
Collapse
|
17
|
Mitchell RL, Coleman M, Davies P, North L, Pope EC, Pleydell-Pearce C, Harris W, Johnston R. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: correlative imaging, biological form and function, and bioinspiration. J R Soc Interface 2019; 16:20190218. [PMID: 31387487 PMCID: PMC6731510 DOI: 10.1098/rsif.2019.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 11/12/2022] Open
Abstract
Correlative imaging combines information from multiple modalities (physical-chemical-mechanical properties) at various length scales (centimetre to nanometre) to understand the complex biological materials across dimensions (2D-3D). Here, we have used numerous coupled systems: X-ray microscopy (XRM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), optical light microscopy (LM) and focused ion beam (FIB-SEM) microscopy to ascertain the microstructural and crystallographic properties of the wall-plate joints in the barnacle Semibalanus balanoides. The exoskeleton is composed of six interlocking wall plates, and the interlocks between neighbouring plates (alae) allow barnacles to expand and grow while remaining sealed and structurally strong. Our results indicate that the ala contain functionally graded orientations and microstructures in their crystallography, which has implications for naturally functioning microstructures, potential natural strengthening and preferred oriented biomineralization. Elongated grains at the outer edge of the ala are oriented perpendicularly to the contact surface, and the c-axis rotates with the radius of the ala. Additionally, we identify for the first time three-dimensional nanoscale ala pore networks revealing that the pores are only visible at the tip of the ala and that pore thickening occurs on the inside (soft bodied) edge of the plates. The pore networks appear to have the same orientation as the oriented crystallography, and we deduce that the pore networks are probably organic channels and pockets, which are involved with the biomineralization process. Understanding these multiscale features contributes towards an understanding of the structural architecture in barnacles, but also their consideration for bioinspiration of human-made materials. The work demonstrates that correlative methods spanning different length scales, dimensions and modes enable the extension of the structure-property relationships in materials to form and function of organisms.
Collapse
Affiliation(s)
- R. L. Mitchell
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - M. Coleman
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - P. Davies
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - L. North
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - E. C. Pope
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - C. Pleydell-Pearce
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - W. Harris
- Carl Zeiss Microscopy, Pleasanton, CA 94588, USA
| | - R. Johnston
- Advanced Imaging of Materials (AIM) Facility, College of Engineering, Swansea University, Swansea SA1 8EN, UK
| |
Collapse
|
18
|
Drol CJ, Kennedy EB, Hsiung BK, Swift NB, Tan KT. Bioinspirational understanding of flexural performance in hedgehog spines. Acta Biomater 2019; 94:553-564. [PMID: 31129360 DOI: 10.1016/j.actbio.2019.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022]
Abstract
In this research, the flexural performance of hedgehog spines is investigated in four ways. First, X-ray micro-computed tomography (μCT) is employed to analyze the complex internal architecture of hedgehog spines. μCT images reveal distinct structural morphology, characterized by longitudinal stringers and transverse central plates, which enhance flexural performance. Second, computer-aided design (CAD) is utilized to create and produce different three-dimensional (3D) computational models that gradually approach resemblance to hedgehog spines. Various levels of models are constructed by including and excluding key internal features of hedgehog spines, resulting in the formation of model levels from the simplest to the most realistic form. Third, finite element analysis (FEA) is exploited to simulate flexural behavior of hedgehog spines undergoing three-point bending. FEA results aim to identify and elucidate how internal structural features affect flexural stiffness and bending stress contours. Fourth, flexural analytical modeling is performed to calculate flexural shear flow and twist angle during transverse loading. The effects of the number of hedgehog outer cells, the spine wall thickness ratio and radius ratio are theoretically investigated to predict the shear stress and twist angle of the hedgehog spine structure. Results demonstrate that longitudinal stringers of the hedgehog spine significantly increase the overall flexural stiffness, while the transverse central plates provide support and rigidity to prevent spines from buckling and collapsing. Interestingly, the 3D model level that most realistically resembles the actual hedgehog spine is evidenced to have the highest specific bending stiffness, demonstrating nature's most efficient design. The findings of this study may be useful for developing hedgehog-inspired lightweight, high-stiffness, impact-tolerant structures. STATEMENT OF SIGNIFICANCE: This research has given much needed insight on the inner morphology of hedgehog spines and the structure-property relationship to the spine's flexural performance. X-ray μCT images reveal inner structural morphology, characterized by longitudinal stringers and transverse plates. Finite element analysis shows that longitudinal stringers significantly increase flexural stiffness, while the transverse plates provide support and rigidity to prevent buckling. The model that resembles the actual hedgehog spine is evidenced to have the highest specific bending stiffness, demonstrating nature's most efficient design. Analytical model studies influence on cell number, spine geometrical ratios, and further confirms nature's perfect design with lowest flexural shear flow and twist angle during transverse loading. This work paths future design for hedgehog-inspired lightweight, high-stiffness, impact-tolerant structures.
Collapse
Affiliation(s)
- Christopher J Drol
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Emily B Kennedy
- Department of Biology, Integrated Bioscience PhD Program, The University of Akron, Akron, OH 44325, USA
| | - Bor-Kai Hsiung
- Department of Biology, Integrated Bioscience PhD Program, The University of Akron, Akron, OH 44325, USA
| | - Nathan B Swift
- Department of Physics, Science Technology Entrepreneurship Master's Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kwek-Tze Tan
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
19
|
Sumey JL, Sarver JA, Kiran E. Foaming of polystyrene and poly(methyl methacrylate) multilayered thin films with supercritical carbon dioxide. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Liu Z, Zhang Y, Zhang M, Tan G, Zhu Y, Zhang Z, Ritchie RO. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomater 2019; 86:96-108. [PMID: 30639350 DOI: 10.1016/j.actbio.2019.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Seeking strategies to enhance the overall combinations of mechanical properties is of great significance for engineering materials, but still remains a key challenge because many of these properties are often mutually exclusive. Here we reveal from the perspective of materials science and mechanics that adaptive structural reorientation during deformation, which is an operating mechanism in a wide variety of composite biological materials, functions more than being a form of passive response to allow for flexibility, but offers an effective means to simultaneously enhance rigidity, robustness, mechanical stability and damage tolerance. As such, the conflicts between different mechanical properties can be "defeated" in these composites merely by adjusting their structural orientation. The constitutive relationships are established based on the theoretical analysis to clarify the effects of structural orientation and reorientation on mechanical properties, with some of the findings validated and visualized by computational simulations. Our study is intended to give insight into the ingenious designs in natural materials that underlie their exceptional mechanical efficiency, which may provide inspiration for the development of new man-made materials with enhanced mechanical performance. STATEMENT OF SIGNIFICANCE: It is challenging to attain certain combinations of mechanical properties in man-made materials because many of these properties - for example, strength with toughness and stability with flexibility - are often mutually exclusive. Here we describe an effective solution utilized by natural materials, including wood, bone, fish scales and insect cuticle, to "defeat" such conflicts and elucidate the underlying mechanisms from the perspective of materials science and mechanics. We show that, by adaptation of their structural orientation on loading, composite biological materials are capable of developing enhanced rigidity, strength, mechanical stability and damage tolerance from constrained flexibility during deformation - combinations of attributes that are generally unobtainable in man-made systems. The design principles extracted from these biological materials present an unusual yet potent new approach to guide the development of new synthetic composites with enhanced combinations of mechanical properties.
Collapse
|
21
|
Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality. J Mech Behav Biomed Mater 2019; 91:278-286. [DOI: 10.1016/j.jmbbm.2018.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/04/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
22
|
Shi S, Liu Y, Nie M, Wang Q. Nacre-Mimetic Polypropylene Featuring Heterogeneous Distribution of Polymorphic Compositions via Controlled Diffusion of β-Nucleating Agent. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaohong Shi
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuansen Liu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Bar-On B. On the form and bio-mechanics of venom-injection elements. Acta Biomater 2019; 85:263-271. [PMID: 30583109 DOI: 10.1016/j.actbio.2018.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
A wide variety of animals-from insects to snakes-crucially depend on their ability to inject venom into their target, be it their prey or their predator. To effectively deliver their venom, venomous animals use a specialized biomechanical element whose tip must penetrate through the integument of the target. During this process, the tip of the venom-injection element (VIE) is subject to local forces, which may deform it and cause considerable structural damage to the VIE, with devastating consequences for the survival of the animal or, in the case of eusocial insects, to the colony. Hence, it is plausible that millions of years of evolution have carefully 'shaped' the architecture of VIEs across different taxa toward a similar mechanical function, namely, to effectively resist the mechanical forces exerted on the tip. The present study aims to identify such a common architecture by analyzing the form-function relationships in various biological VIEs. A universal structural modeling, which quantifies the fundamental geometrical characteristics of a wide range of VIEs is constituted, and a theoretical mechanical framework that analytically correlates these characteristics with the material stress fields is introduced. This investigation reveals that the architecture of biological VIEs reduces the magnitude of applied stresses and confines the maximal stress to the near-tip region of the element. The presented analytical approach and modeling can be straightforwardly applied to various other types of bio-mechanical elements and can potentially be employed for developing a new class of microscopic injection elements for bio-medical and engineering applications. STATEMENT OF SIGNIFICANCE: Venomous animals-both vertebrate and invertebrate-use an extremely wide variety of venom-injection elements to incapacitate their prey or predator. Despite the clear differences in their typical dimensions, shapes, and evolutionary paths, all venom-injection elements have evolved to perform a single mechanical function, namely, to penetrate a target surface. Accordingly, the architecture of many such elements appears to follow similar principles and their material exhibits similar stress characteristics upon biologically relevant mechanical loadings. The current study introduces a theoretical model that draws connections between the 'universal' structural characteristics of such elements and their bio-mechanical functions. It is found that all examined venom-injection elements provide extreme load-bearing capabilities and unusual post-failure functionalities, which are in good agreement with the wide range of numerical and experimental findings from the literature. The emerging theoretical insights from this study thus shed light on the biomechanical origins of the naturally evolved forms of various biological organisms, including bee and wasp stingers, spider and snake fangs, porcupine fish spines, and scorpion stingers.
Collapse
Affiliation(s)
- Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
24
|
du Plessis A, Broeckhoven C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater 2019; 85:27-40. [PMID: 30543937 DOI: 10.1016/j.actbio.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Albert Einstein once said "look deep into nature, and then you will understand everything better". Looking deep into nature has in the last few years become much more achievable through the use of high-resolution X-ray micro-computed tomography (microCT). The non-destructive nature of microCT, combined with three-dimensional visualization and analysis, allows for the most complete internal and external "view" of natural materials and structures at both macro- and micro-scale. This capability brings with it the possibility to learn from nature at an unprecedented level of detail in full three dimensions, allowing us to improve our current understanding of structures, learn from them and apply them to solve engineering problems. The use of microCT in the fields of biomimicry, biomimetic engineering and bioinspiration is growing rapidly and holds great promise. MicroCT images and three-dimensional data can be used as generic bio-inspiration, or may be interpreted as detailed blueprints for specific engineering applications, i.e., reverse-engineering nature. In this review, we show how microCT has been used in bioinspiration and biomimetic studies to date, including investigations of multifunctional structures, hierarchical structures and the growing use of additive manufacturing and mechanical testing of 3D printed models in combination with microCT. The latest microCT capabilities and developments which might support biomimetic studies are described and the unique synergy between microCT and biomimicry is demonstrated. STATEMENT OF SIGNIFICANCE: This review highlights the growing use of X-ray micro computed tomography in biomimetic research. We feel the timing of this paper is excellent as there is a significant growth and interest in biomimetic research, also coupled with additive manufacturing, but still no review of the use of microCT in this field. The use of microCT for structural biomimetic and biomaterials research has huge potential but is still under-utilized, partly due to lack of knowledge of the capabilities and how it can be used in this field. We hope this review fills this gap and fuels further advances in this field using microCT.
Collapse
|
25
|
Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation. ARCHITECTURED MATERIALS IN NATURE AND ENGINEERING 2019. [DOI: 10.1007/978-3-030-11942-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Liu Z, Weng Z, Zhai ZF, Huang N, Zhang ZJ, Tan J, Jiang C, Jiao D, Tan G, Zhang J, Jiang X, Zhang Z, Ritchie RO. Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomater 2018; 81:267-277. [PMID: 30273740 DOI: 10.1016/j.actbio.2018.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
The tooth enamel of vertebrates comprises a hyper-mineralized bioceramic, but is distinguished by an exceptional durability to resist impact and wear throughout the lifetime of organisms; however, enamels exhibit a low resistance to the initiation of large-scale cracks comparable to that of geological minerals based on fracture mechanics. Here we reveal that the tooth enamel, specifically from the giant panda, is capable of developing durability through counteracting the early stage of damage by partially recovering its innate geometry and structure at nano- to micro- length-scales autonomously. Such an attribute results essentially from the unique architecture of tooth enamel, specifically the vertical alignment of nano-scale mineral fibers and micro-scale prisms within a water-responsive organic-rich matrix, and can lead to a decrease in the dimension of indent damage in enamel introduced by indentation. Hydration plays an effective role in promoting the recovery process and improving the indentation fracture toughness of enamel (by ∼73%), at a minor cost of micro-hardness (by ∼5%), as compared to the dehydrated state. The nano-scale mechanisms that are responsible for the recovery deformation, specifically the reorientation and rearrangement of mineral fragments and the inter- and intra-prismatic sliding between constituents that are closely related to the viscoelasticity of organic matrix, are examined and analyzed with respect to the structure of tooth enamel. Our study sheds new light on the strategies underlying Nature's design of durable ceramics which could be translated into man-made systems in developing high-performance ceramic materials. STATEMENT OF SIGNIFICANCE: Tooth enamel plays a critical role in the function of teeth by providing a hard surface layer to resist wear/impact throughout the lifetime of organisms; however, such enamel exhibits a remarkably low resistance to the initiation of large-scale cracks, of hundreds of micrometers or more, comparable to that of geological minerals. Here we reveal that tooth enamel, specifically that of the giant panda, is capable of partially recovering its geometry and structure to counteract the early stages of damage at nano- to micro-scale dimensions autonomously. Such an attribute results essentially from the architecture of enamel but is markedly enhanced by hydration. Our work discerns a series of mechanisms that lead to the deformation and recovery of enamel and identifies a unique source of durability in the enamel to accomplish this function. The ingenious design of tooth enamel may inspire the development of new durable ceramic materials in man-made systems.
Collapse
Affiliation(s)
- Zengqian Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zhaoyong Weng
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhao-Feng Zhai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Nan Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhen-Jun Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jun Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanbin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Da Jiao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guoqi Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; State Key Laboratory of Advanced Non-ferrous Materials, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhefeng Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Das R, Yadav RN, Sihota P, Uniyal P, Kumar N, Bhushan B. Biomechanical Evaluation of Wasp and Honeybee Stingers. Sci Rep 2018; 8:14945. [PMID: 30297700 PMCID: PMC6175873 DOI: 10.1038/s41598-018-33386-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022] Open
Abstract
In order to design a painless and mechanically durable micro syringe-needle system for biomedical applications, the study of insect stingers is of interest because of their elegant structures and functionalities. In the present work, the structure, mechanical properties and the mechanical behavior during insertion of wasp and honeybee stingers have been investigated. The non-invasive imaging tool, micro-computed tomography has been employed to reveal the 3D-structures of wasp and honeybee stingers. A quasi-static nanoindentation instrument was used to measure the nanomechanical properties. Both wasp and honeybee stingers have graded mechanical properties, decreasing along their longitudinal direction starting from the base. The computed tomography images and the measured material properties from nanoindentation were fed into a computational framework to determine the mechanical behavior of the stingers during penetration. The computation results predicted the penetration angle of +10° for the wasp stinger and −6° for the honeybee stinger, which mimics the practical insertion mechanism of both stingers. Based on this understanding, a wasp and honeybee stringer inspired micro syringe-needle design has also been proposed.
Collapse
Affiliation(s)
- Rakesh Das
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Piyush Uniyal
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Bharat Bhushan
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH, 43210-1142, USA.
| |
Collapse
|
28
|
Wang Z, Wang K, Huang H, Cui X, Shi X, Ma X, Li B, Zhang Z, Tang X, Chiang MYM. Bioinspired Wear-Resistant and Ultradurable Functional Gradient Coatings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802717. [PMID: 30272833 DOI: 10.1002/smll.201802717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Indexed: 06/08/2023]
Abstract
For mechanically protective coatings, the coating material usually requires sufficient stiffness and strength to resist external forces and meanwhile matched mechanical properties with the underneath substrate to maintain the structural integrity. These requirements generate a conflict that limits the coatings from achieving simultaneous surface properties (e.g., high wear-resistance) and coating/substrate interfacial durability. Herein this conflict is circumvented by developing a new manufacturing technique for functional gradient coatings (FGCs) with the material composition and mechanical properties gradually varying crossing the coating thickness. The FGC is realized by controlling the spatial distribution of magnetic-responsive nanoreinforcements inside a polymer matrix through a magnetic actuation process. By concentrating the reinforcements with hybrid sizes at the surface region and continuously diminishing toward the coating/substrate interface, the FGC is demonstrated to exhibit simultaneously high surface hardness, stiffness, and wear-resistance, as well as superb interfacial durability that outperforms the homogeneous counterparts over an order of magnitude. The concept of FGC represents a mechanically optimized strategy in achieving maximal performances with minimal use and site-specific distribution of the reinforcements, in accordance with the design principles of many load-bearing biological materials. The presented manufacturing technique for gradient nanocomposites can be extended to develop various bioinspired heterogeneous materials with desired mechanical performances.
Collapse
Affiliation(s)
- Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Kun Wang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Cui
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoming Shi
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xingqiao Ma
- Department of Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zuoqi Zhang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xuhai Tang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Martin Y M Chiang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
29
|
Guarino R, Costagliola G, Bosia F, Pugno NM. Evidence of friction reduction in laterally graded materials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2443-2456. [PMID: 30254839 PMCID: PMC6142729 DOI: 10.3762/bjnano.9.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
In many biological structures, optimized mechanical properties are obtained through complex structural organization involving multiple constituents, functional grading and hierarchical organization. In the case of biological surfaces, the possibility to modify the frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we investigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young's modulus and the local friction coefficients. Using finite-element simulations and a two-dimensional spring-block model, we investigate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transition from static to dynamic friction. The results suggest that the graded material properties can be exploited to reduce static friction with respect to the corresponding non-graded material and to tune it to desired values, opening possibilities for the design of bio-inspired surfaces with tailor-made tribological properties.
Collapse
Affiliation(s)
- Roberto Guarino
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Gianluca Costagliola
- Department of Physics and Nanostructured Interfaces and Surfaces Centre, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Federico Bosia
- Department of Physics and Nanostructured Interfaces and Surfaces Centre, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1-4NS London, United Kingdom
| |
Collapse
|
30
|
Mirzaali MJ, Edens ME, de la Nava AH, Janbaz S, Vena P, Doubrovski EL, Zadpoor AA. Length-scale dependency of biomimetic hard-soft composites. Sci Rep 2018; 8:12052. [PMID: 30104571 PMCID: PMC6089912 DOI: 10.1038/s41598-018-30012-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
Biomimetic composites are usually made by combining hard and soft phases using, for example, multi-material additive manufacturing (AM). Like other fabrication methods, AM techniques are limited by the resolution of the device, hence, setting a minimum length scale. The effects of this length scale on the performance of hard-soft composites are not well understood. Here, we studied how this length scale affects the fracture toughness behavior of single-edge notched specimens made using random, semi-random, and ordered arrangements of the hard and soft phases with five different ratios of hard to soft phases. Increase in the length scale (40 to 960 μm) was found to cause a four-fold drop in the fracture toughness. The effects of the length scale were also modulated by the arrangement and volumetric ratio of both phases. A decreased size of the crack tip plastic zone, a crack path going through the soft phase, and highly strained areas far from the crack tip were the main mechanisms explaining the drop of the fracture toughness with the length scale.
Collapse
Affiliation(s)
- M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - M E Edens
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - A Herranz de la Nava
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - S Janbaz
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - P Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, Italy
| | - E L Doubrovski
- Faculty of Industrial Design Engineering (IDE), Delft University of Technology (TU Delft), Landbergstraat, 15, 2628 CE, Delft, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
31
|
Liu Z, Zhang Z, Ritchie RO. On the Materials Science of Nature's Arms Race. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705220. [PMID: 29870573 DOI: 10.1002/adma.201705220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Indexed: 05/05/2023]
Abstract
Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed.
Collapse
Affiliation(s)
- Zengqian Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zhefeng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Albéric M, Gourrier A, Wagermaier W, Fratzl P, Reiche I. The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties. Acta Biomater 2018; 72:342-351. [PMID: 29477454 DOI: 10.1016/j.actbio.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/17/2023]
Abstract
Elephant tusks are composed of dentin or ivory, a hierarchical and composite biological material made of mineralized collagen fibers (MCF). The specific arrangement of the MCF is believed to be responsible for the optical and mechanical properties of the tusks. Especially the MCF organization likely contributes to the formation of the bright and dark checkerboard pattern observed on polished sections of tusks (Schreger pattern). Yet, the precise structural origin of this optical motif is still controversial. We hereby address this issue using complementary analytical methods (small and wide angle X-ray scattering, cross-polarized light microscopy and scanning electron microscopy) on elephant ivory samples and show that MCF orientation in ivory varies from the outer to the inner part of the tusk. An external cohesive layer of MCF with fiber direction perpendicular to the tusk axis wraps the mid-dentin region, where the MCF are oriented mainly along the tusk axis and arranged in a plywood-like structure with fiber orientations oscillating in a narrow angular range. This particular oscillating-plywood structure of the MCF and the birefringent properties of the collagen fibers, likely contribute to the emergence of the Schreger pattern, one of the most intriguing macroscopic optical patterns observed in mineralized tissues and of great importance for authentication issues in archeology and forensic sciences. STATEMENT OF SIGNIFICANCE Elephant tusks are intriguing biological materials as they are composed of dentin (ivory) like teeth but have mineralized collagen fibers (MCF) similarly arranged to the ones of lamellar bones and function as bones or antlers. Here, we showed that ivory has a graded structure with varying MCF orientations and that MCF of the mid-dentin are arranged in plywood like layers with fiber orientations oscillating in a narrow angular range around the tusk axis. This organization of the MCF may contribute to ivory's mechanical properties and, together with the collagen fibers birefringence properties, strongly relates to its optical properties, i.e. the emergence of a macroscopic checkerboard pattern, well known as the Schreger pattern.
Collapse
|
33
|
Marcus MA, Amini S, Stifler CA, Sun CY, Tamura N, Bechtel HA, Parkinson DY, Barnard HS, Zhang XXX, Chua JQI, Miserez A, Gilbert PUPA. Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals. ACS NANO 2017; 11:11856-11865. [PMID: 29053258 DOI: 10.1021/acsnano.7b05044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Parrotfish (Scaridae) feed by biting stony corals. To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish Chlorurus microrhinos tooth. Its enameloid is a fluorapatite (Ca5(PO4)3F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m1/2, relatively high for a highly mineralized material. This combination of properties results in high abrasion resistance. Fluorapatite X-ray absorption spectroscopy exhibits linear dichroism at the Ca L-edge, an effect that makes peak intensities vary with crystal orientation, under linearly polarized X-ray illumination. This observation enables polarization-dependent imaging contrast mapping of apatite, a method to quantitatively measure and display nanocrystal orientations in large, pristine arrays of nano- and microcrystalline structures. Parrotfish enameloid consists of 100 nm-wide, microns long crystals co-oriented and assembled into bundles interwoven as the warp and the weave in fabric and therefore termed fibers here. These fibers gradually decrease in average diameter from 5 μm at the back to 2 μm at the tip of the tooth. Intriguingly, this size decrease is spatially correlated with an increase in hardness.
Collapse
Affiliation(s)
- Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Shahrouz Amini
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Harold S Barnard
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - Xiyue X X Zhang
- Advanced Light Source, Lawrence Berkeley Laboratory , Berkeley, California 94720, United States
| | - J Q Isaiah Chua
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory, School of Materials Science and Engineering, Nanyang Technological University , 637553 Singapore
- School of Biological Sciences, Nanyang Technological University , 637551 Singapore
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
- Departments of Chemistry, Geoscience, Materials Science Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales. J Mech Behav Biomed Mater 2017. [DOI: 10.1016/j.jmbbm.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
36
|
Su FY, Bushong EA, Deerinck TJ, Seo K, Herrera S, Graeve OA, Kisailus D, Lubarda VA, McKittrick J. Spines of the porcupine fish: Structure, composition, and mechanical properties. J Mech Behav Biomed Mater 2017; 73:38-49. [DOI: 10.1016/j.jmbbm.2017.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|