1
|
Sousa AC, Mcdermott G, Shields F, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Richardson SM, Domingos M, Maurício AC. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024; 10:831. [PMID: 39727588 DOI: 10.3390/gels10120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Grace Mcdermott
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Fraser Shields
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal and Veterinary Sciences, University Institute of Health Sciences (IUCS), Cooperative of Polytechnic and University Higher Education, CRL (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Stephen M Richardson
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Xu Z, Wang J, Gao L, Zhang W. Hydrogels in Alveolar Bone Regeneration. ACS Biomater Sci Eng 2024; 10:7337-7351. [PMID: 39571179 DOI: 10.1021/acsbiomaterials.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.
Collapse
Affiliation(s)
- Zhuoran Xu
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyi Wang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Liheng Gao
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
3
|
da Silva ISP, Bordini EAF, Bronze-Uhle ES, de Stuani V, Costa MC, de Carvalho LAM, Cassiano FB, de Azevedo Silva LJ, Borges AFS, Soares DG. Photo-crosslinkable hydrogel incorporated with bone matrix particles for advancements in dentin tissue engineering. J Biomed Mater Res A 2024; 112:2273-2288. [PMID: 39015005 DOI: 10.1002/jbm.a.37777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The objective of this study was to create injectable photo-crosslinkable biomaterials, using gelatin methacryloyl (GelMA) hydrogel, combined with a decellularized bone matrix (BMdc) and a deproteinized (BMdp) bovine bone matrix. These were intended to serve as bioactive scaffolds for dentin regeneration. The parameters for GelMA hydrogel fabrication were initially selected, followed by the incorporation of BMdc and BMdp at a 1% (w/v) ratio. Nano-hydroxyapatite (nHA) was also included as a control. A physicochemical characterization was conducted, with FTIR analysis indicating that the mineral phase was complexed with GelMA, and BMdc was chemically bonded to the amide groups of gelatin. The porous structure was preserved post-BMdc incorporation, with bone particles incorporated alongside the pores. Conversely, the mineral phase was situated inside the pore opening, affecting the degree of porosity. The mineral phase did not modify the degradability of GelMA, even under conditions of type I collagenase-mediated enzymatic challenge, allowing hydrogel injection and increased mechanical strength. Subsequently, human dental pulp cells (HDPCs) were seeded onto the hydrogels. The cells remained viable and proliferative, irrespective of the GelMA composition. All mineral phases resulted in a significant increase in alkaline phosphatase activity and mineralized matrix deposition. However, GelMA-BMdc exhibited higher cell expression values, significantly surpassing those of all other formulations. In conclusion, our results showed that GelMA-BMdc produced a porous and stable hydrogel, capable of enhancing odontoblastic differentiation and mineral deposition when in contact with HDPCs, thereby showing potential for dentin regeneration.
Collapse
Affiliation(s)
- Isabela Sanches Pompeo da Silva
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Vitor de Stuani
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Matheus Castro Costa
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | | | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Lucas José de Azevedo Silva
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Ana Flávia Sanches Borges
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| |
Collapse
|
4
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
5
|
Feng Q, Zhang M, Zhang G, Mei H, Su C, Liu L, Wang X, Wan Z, Xu Z, Hu L, Nie Y, Li J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B 2024; 12:3719-3740. [PMID: 38529844 DOI: 10.1039/d3tb02898d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.
Collapse
Affiliation(s)
- Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Guanning Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Chongying Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Lisa Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Xiaoxia Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Ziqianhong Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Liangkui Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Yang SY, Zhou YN, Yu XG, Fu ZY, Zhao CC, Hu Y, Lin KL, Xu YJ. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. J Nanobiotechnology 2024; 22:59. [PMID: 38347563 PMCID: PMC10863132 DOI: 10.1186/s12951-024-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-β (TGF-β) signaling pathway. CONCLUSION Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ge Yu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Fu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can-Can Zhao
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Zhang S, Liu J, Feng F, Jia Y, Xu F, Wei Z, Zhang M. Rational design of viscoelastic hydrogels for periodontal ligament remodeling and repair. Acta Biomater 2024; 174:69-90. [PMID: 38101557 DOI: 10.1016/j.actbio.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The periodontal ligament (PDL) is a distinctive yet critical connective tissue vital for maintaining the integrity and functionality of tooth-supporting structures. However, PDL repair poses significant challenges due to the complexity of its mechanical microenvironment encompassing hard-soft-hard tissues, with the viscoelastic properties of the PDL being of particular interest. This review delves into the significant role of viscoelastic hydrogels in PDL regeneration, underscoring their utility in simulating biomimetic three-dimensional microenvironments. We review the intricate relationship between PDL and viscoelastic mechanical properties, emphasizing the role of tissue viscoelasticity in maintaining mechanical functionality. Moreover, we summarize the techniques for characterizing PDL's viscoelastic behavior. From a chemical bonding perspective, we explore various crosslinking methods and characteristics of viscoelastic hydrogels, along with engineering strategies to construct viscoelastic cell microenvironments. We present a detailed analysis of the influence of the viscoelastic microenvironment on cellular mechanobiological behavior and fate. Furthermore, we review the applications of diverse viscoelastic hydrogels in PDL repair and address current challenges in the field of viscoelastic tissue repair. Lastly, we propose future directions for the development of innovative hydrogels that will facilitate not only PDL but also systemic ligament tissue repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
8
|
Zheng H, Zhou Y, Zheng Y, Liu G. Advances in hydrogels for the treatment of periodontitis. J Mater Chem B 2023; 11:7321-7333. [PMID: 37431231 DOI: 10.1039/d3tb00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Periodontitis is the second most prevalent oral disease and can cause serious harm to human health. Hydrogels are excellent biomaterials that can be used for periodontitis as drug delivery platforms to achieve inflammation control through high drug delivery efficiency and sustained drug release and as tissue scaffolds to achieve tissue remodelling through encapsulated cell wrapping and effective mass transfer. In this review, we summarize the latest advances in the treatment of periodontitis with hydrogels. The pathogenic mechanisms of periodontitis are introduced first, followed by the recent progress of hydrogels in controlling inflammation and tissue reconstruction, in which the specific performance of hydrogels is discussed in detail. Finally, the challenges and limitations of hydrogels for clinical applications in periodontitis are discussed and possible directions for development are proposed. This review aims to provide a reference for the design and fabrication of hydrogels for the treatment of periodontitis.
Collapse
Affiliation(s)
- Huiyu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yuan Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Popov S, Paderin N, Chistiakova E, Ptashkin D, Vityazev F, Markov PA, Erokhin KS. Effect of Chitosan on Rheological, Mechanical, and Adhesive Properties of Pectin-Calcium Gel. Mar Drugs 2023; 21:375. [PMID: 37504906 PMCID: PMC10381555 DOI: 10.3390/md21070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
In the present study, chitosan was included in the pectin ionotropic gel to improve its mechanical and bioadhesive properties. Pectin-chitosan gels P-Ch0, P-Ch1, P-Ch2, and P-Ch3 of chitosan weight fractions of 0.00, 0.25, 0.50, and 0.75 were prepared and characterized by dynamic rheological tests, penetration tests, and serosal adhesion ex vivo assays. The storage modulus (G') and loss modulus (G″) values, gel hardness, and elasticity of P-Ch1 were significantly higher than those of P-Ch0 gel. However, a further increase in the content of chitosan in the gel significantly reduced these parameters. The inclusion of chitosan into the pectin gel led to a decrease in weight and an increase in hardness during incubation in Hanks' solution at pH 5.0, 7.4, and 8.0. The adhesion of P-Ch1 and P-Ch2 to rat intestinal serosa ex vivo was 1.3 and 1.7 times stronger, whereas that of P-Ch3 was similar to that of a P-Ch0 gel. Pre-incubation in Hanks' solution at pH 5.0 and 7.4 reduced the adhesivity of gels; however, the adhesivity of P-Ch1 and P-Ch2 exceeded that of P-Ch0 and P-Ch3. Thus, serosal adhesion combined with higher mechanical stability in a wide pH range appeared to be advantages of the inclusion of chitosan into pectin gel.
Collapse
Affiliation(s)
- Sergey Popov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Elizaveta Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Dmitry Ptashkin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Pavel A Markov
- The Federal State Budgetary Institution "National Medical Research Center of Rehabilitation and Balneologyk", 121099 Moscow, Russia
| | - Kirill S Erokhin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Zhang W, Yu M, Cao Y, Zhuang Z, Zhang K, Chen D, Liu W, Yin J. An anti-bacterial porous shape memory self-adaptive stiffened polymer for alveolar bone regeneration after tooth extraction. Bioact Mater 2023; 21:450-463. [PMID: 36185742 PMCID: PMC9486049 DOI: 10.1016/j.bioactmat.2022.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Weijun Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Meilin Yu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Yongqiang Cao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Zihan Zhuang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| | - Dong Chen
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
- Corresponding author. Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China.
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- Corresponding author.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| |
Collapse
|
11
|
Machado A, Pereira I, Costa F, Brandão A, Pereira JE, Maurício AC, Santos JD, Amaro I, Falacho R, Coelho R, Cruz N, Gama M. Randomized clinical study of injectable dextrin-based hydrogel as a carrier of a synthetic bone substitute. Clin Oral Investig 2023; 27:979-994. [PMID: 36707442 PMCID: PMC9985577 DOI: 10.1007/s00784-023-04868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study aimed to improve the performance and mode of administration of a glass-reinforced hydroxyapatite synthetic bone substitute, Bonelike by Biosckin® (BL®), by association with a dextrin-based hydrogel, DEXGEL, to achieve an injectable and moldable device named DEXGEL Bone. METHODS Twelve participants requiring pre-molar tooth extraction and implant placement were enrolled in this study. BL® granules (250-500 µm) were administered to 6 randomized participants whereas the other 6 received DEXGEL Bone. After 6 months, a bone biopsy of the grafted area was collected for histological and histomorphometric evaluation, prior to implant placement. The performance of DEXGEL Bone and BL® treatments on alveolar preservation were further analyzed by computed tomography and Hounsfield density analysis. Primary implant stability was analyzed by implant stability coefficient technique. RESULTS The healing of defects was free of any local or systemic complications. Both treatments showed good osseointegration with no signs of adverse reaction. DEXGEL Bone exhibited increased granule resorption (p = 0.029) accompanied by a tendency for more new bone ingrowth (although not statistically significant) compared to the BL® group. The addition of DEXGEL to BL® granules did not compromise bone volume or density, being even beneficial for implant primary stability (p = 0.017). CONCLUSIONS The hydrogel-reinforced biomaterial exhibited an easier handling, a better defect filling, and benefits in implant stability. CLINICAL RELEVANCE This study validates DEXGEL Bone safety and performance as an injectable carrier of granular bone substitutes for alveolar ridge preservation. TRIAL REGISTRATION European Databank on Medical Devices (EUDAMED) No. CIV-PT-18-01-02,705; Registo Nacional de Estudos Clínicos, RNEC, No. 30122.
Collapse
Affiliation(s)
- Alexandra Machado
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Isabel Pereira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Filomena Costa
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Brandão
- Biosckin, Molecular and Cell Therapies S.A., TecMaia, Rua Engenheiro Frederico Ulrich 2650, 4470-605, Maia, Portugal
| | - José Eduardo Pereira
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-495, Porto, Portugal
| | - Inês Amaro
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Falacho
- Institute of Oral Implantology and Prosthodontics, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Coelho
- RESDEVMED, Unipessoal Lda., Travessa do Navega, 436 C, 3885-183, Ovar, Portugal
| | - Nuno Cruz
- Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Miguel Gama
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
12
|
Xiao X, Liu Z, Shu R, Wang J, Zhu X, Bai D, Lin H. Periodontal bone regeneration with a degradable thermoplastic HA/PLCL bone graft. J Mater Chem B 2023; 11:772-786. [PMID: 36444735 DOI: 10.1039/d2tb02123d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Strategic bone grafts are required to regenerate periodontal bone defects owing to limited self-healing. Current bioceramic particle or deproteinized bovine bone (DBB) products are not able to ideally meet clinical requirements, such as insufficient operability and slow degradation rates. Herein, a strong-interacted bone graft was designed and synthesized by modifying hydroxyapatite (HA) with a lactide-caprolactone copolymer (PLCL) to improve component homogeneity and mechanical properties. The physical-chemical analysis indicated that HA particles were homogenously distributed in HA/PLCL bone grafts, possessed outstanding thermoplasticity, and facilitated clinic operability and initial mechanical support. The in vitro study suggested that HA/PLCL bone graft degraded in a spatiotemporal model. Micropores were formed on the non-porous surface at the beginning, and interconnected porous structures were gradually generated. Furthermore, HA/PLCL bone grafts exhibited excellent biocompatibility and osteogenic ability as revealed in vitro cell culture and in vivo animal experiments. When applied to rat periodontal bone defects, the HA/PLCL bone graft showed a non-inferior bone regeneration compared to the commercial DBB. This study proposes a potential bone graft for periodontal bone repair with thermoplastic, spatiotemporal degraded, and osteogenic characteristics.
Collapse
Affiliation(s)
- Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Polymers (Basel) 2022; 14:polym14224999. [PMID: 36433126 PMCID: PMC9698531 DOI: 10.3390/polym14224999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
In this work, shape-customized scaffolds based on waterborne polyurethane-urea (WBPUU) were prepared via the combination of direct ink writing 3D-printing and freeze-drying techniques. To improve the printing performance of the ink and guarantee a good shape fidelity of the scaffold, cellulose nanocrystals (CNC) were added during the synthesis of the WBPUU and some of the printed constructs were immersed in CaCl2 prior to the freeze-drying process to promote ionic crosslinking between calcium ions and the polyurethane. The results showed that apart from allowing the ink to be successfully printed, obtaining scaffolds with good shape fidelity, the addition of the CNC resulted in a greater homogeneity of the porous structure as well as an increase of the swelling capacity of the scaffolds. Additionally, the CNC has a reinforcement effect in the printed systems, presenting a higher compression modulus as the CNC content increases. In the case of samples crosslinked by calcium ions, a rigid shell was observed by scanning electron microscopy, which resulted in stiffer scaffolds that presented a lower water absorption capacity as well as an enhancement of the thermal stability. These results showed the potential of this type of post-printing process to tune the mechanical properties of the scaffold, thus widening the potential of this type of material.
Collapse
|
14
|
Adarsh R, Das EC, Gopan GV, Selvam S, Komath M. Functionally Graded Bioactive Composites Based on Poly(vinyl alcohol) Made through Thiol-Ene Click Reaction. ACS OMEGA 2022; 7:29246-29255. [PMID: 36033676 PMCID: PMC9404466 DOI: 10.1021/acsomega.2c03382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Functionally graded materials (FGMs) composed of a polymer matrix embedded with calcium phosphate particles are preferred for bone tissue engineering, as they can mimic the hierarchical and gradient structure of bones. In this study, we report the design and development of a FGM based on thiolated poly(vinyl alcohol) (TPVA) and nano-hydroxyapatite (nano-HA) with graded bioactivity, cell compatibility, and degradability properties that are conducive for bone regeneration. The polymer matrix comprises crosslinked poly(vinyl alcohol) with ester and thioether linkages formed via the thiol-ene click reaction, avoiding undesired additives and byproducts. Freshly precipitated and spray-dried HA was mixed with the TPVA hydrogel, and layers of varying concentrations were cast. Upon lyophilization, the hydrogel structure yielded porous sheets of the graded composite of TPVA and nano-HA. The new FGM showed higher values of tensile strength and degradation in phosphate buffer saline (PBS) in vitro, compared to bare TPVA. The bioactive nature of the FGM was confirmed through bioactivity studies in simulated body fluid (SBF), while cytocompatibility was demonstrated with human periodontal ligament cells in vitro. Cumulatively, our results indicate that based on the composition, mechanical properties, bioactivity, and cytocompatibility, the fabricated TPVA-HA composites can find potential use as guided bone regeneration (GBR) membranes.
Collapse
|
15
|
Wang L, Mi J, Sun B, Yang G, Liu S, Chen M, Yu L, Pan J, Liu Y. Role of transient receptor potential channel 6 in the osteogenesis of periodontal ligament cells. Int Immunopharmacol 2021; 100:108134. [PMID: 34547679 DOI: 10.1016/j.intimp.2021.108134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Transient receptor potential channel 6 (TRPC6) is a receptor-operated Ca2+ channel that plays an important role in Ca2+ influx in the majority of non-excitable cells and influences calcium signalling and cellular responses. Therefore, the purpose of the present study was to gain insight into the role of TRPC6 in the osteogenesis of periodontal ligament cells (PDLCs). By western blot and immunohistochemical staining, the protein level of TRPC6 was found to be increased in a time-dependent manner during osteoblastic differentiation of PDLCs. In addition, the TRPC6 inhibitor SKF96365 was used to block the function of TRPC6 and inhibit osteoblastic differentiation of PDLCs. The TRPC6 activator hyperforin dicyclohexylammonium salt (hyperforin DCHA) was used to activate TRPC6 and promote osteoblastic differentiation of PDLCs. In vivo, wild-type mice showed better bone regeneration than TRPC6-/- mice, suggesting that TRPC6 has notable osteogenic induction properties and is important for bone defect repair. In conclusion, the current data demonstrated that TRPC6 plays a significant role in osteoblastic differentiation of PDLCs, suggesting that it may be a promising therapeutic target in osteogenesis.
Collapse
Affiliation(s)
- Li Wang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Dental Department, Shanghai 1st People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jing Mi
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Bingjing Sun
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Gang Yang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Shangfen Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Meihua Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China; Department of Periodontology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
18
|
Swetha S, Balagangadharan K, Lavanya K, Selvamurugan N. Three-dimensional-poly(lactic acid) scaffolds coated with gelatin/magnesium-doped nano-hydroxyapatite for bone tissue engineering. Biotechnol J 2021; 16:e2100282. [PMID: 34424602 DOI: 10.1002/biot.202100282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Treatment of critical-sized bone defects has progressively evolved over the years from metallic implants to more ingenious three-dimensional-based scaffolds. The use of three-dimensional scaffolds for bone regeneration from biodegradable polymers like poly(lactic acid) (PLA) is gaining popularity. Scaffolds with surface functionalization using gelatin (Gel) have the advantages of biocompatibility and cell adhesion. Nano-hydroxyapatite (nHAp) is one of the most promising implant materials utilized in orthopaedics. The osteogenic potential of the nHAp can be improved by the substitution of magnesium (Mg) ions onto the crystal lattice of nHAp. Thus, the goal of this work was to make three-dimensional-PLA scaffolds covered with Gel/Mg-nHAp for osteogenic effect. METHODS AND RESULTS The designed three-dimensional-PLA/Gel/Mg-nHAp scaffolds were attributed to various characterizations for the examination of their physicochemical, mechanical properties, cyto-compatibility, and biodegradability as well as their ability to promote osteogenesis in vitro. Mouse mesenchymal stem cells (mMSCs) were cytocompatible with these scaffolds. The osteogenic potential of three-dimensional-PLA/Gel/Mg-nHAp scaffolds employing mMSCs was validated at the cellular and molecular levels. The three-dimensional-PLA/Gel/Mg-nHAp scaffolds stimulated the differentiation of mMSCs towards osteoblastic lineage. CONCLUSION Based on these findings, we suggest that the three-dimensional-PLA/Gel/Mg-nHAp scaffolds' osteogenic capability may be advantageous in the mending of bone defects in orthopedic applications.
Collapse
Affiliation(s)
- Sampath Swetha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
19
|
Sivashankari PR, Krishna Kumar K, Devendiran M, Prabaharan M. Graphene oxide-reinforced pectin/chitosan polyelectrolyte complex scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2246-2266. [PMID: 34347566 DOI: 10.1080/09205063.2021.1963931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) porous scaffolds based on graphene oxide (GO) incorporated pectin/chitosan polyelectrolyte complex (PCGO) were prepared by the freeze-drying technique. The chemical composition and microstructure of the prepared PCGO scaffolds were studied by FTIR and XRD analysis. The presence of GO and its uniform distribution within the polymer matrix was confirmed by Raman spectroscopy and confocal Raman mapping analysis, respectively. TGA analysis revealed that the addition of GO improves the thermal stability of the pectin/chitosan complex. SEM analysis confirmed the uniform pore distribution of PCGO scaffolds. Moreover, it showed that the pore size of the scaffolds was decreased with the increase in GO content. Among the developed PCGO scaffolds, the scaffolds with 1 wt.% of GO presented the improved hydrophilicity by exhibiting the water swelling degree of 2004%, water retention capacity of 1101% and water contact angle (WCA) of 21°. In addition, these scaffolds presented better compressive strength (∼283 kPa) and resistance towards lysozyme-mediated degradation. The PCGO scaffolds presented an acceptable level of bio-and hemocompatibility and GO concentration-dependent cell attachment ability. These results demonstrate the suitability of PCGO scaffolds for tissue engineering.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, India
| | - K Krishna Kumar
- Department of Analytical Chemistry, School of Chemical Science, University of Madras, Chennai, India
| | - M Devendiran
- Central Instrumentation Laboratory, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, India
| |
Collapse
|
20
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
21
|
Farzaneh S, Hosseinzadeh S, Samanipour R, Hatamie S, Ranjbari J, Khojasteh A. Fabrication and characterization of cobalt ferrite magnetic hydrogel combined with static magnetic field as a potential bio-composite for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
23
|
Iviglia G, Torre E, Cassinelli C, Morra M. Functionalization with a Polyphenol-Rich Pomace Extract Empowers a Ceramic Bone Filler with In Vitro Antioxidant, Anti-Inflammatory, and Pro-Osteogenic Properties. J Funct Biomater 2021; 12:jfb12020031. [PMID: 34063147 PMCID: PMC8167574 DOI: 10.3390/jfb12020031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Oral diseases and periodontitis in particular are a major health burden worldwide, because of their association with various systemic diseases and with conditions such as peri-implantitis. Attempts have been made over the years to reverse bone loss due to the host disproportionate inflammatory response and to prevent failure of dental implants. To this end, the use of biomaterials functionalized with molecules characterized by anti-inflammatory and antioxidant properties could represent a new frontier for regenerating functional periodontal tissues. In this study, a new ceramic granulated biomaterial, named Synergoss Red (SR), functionalized with a polyphenolic mixture extracted from pomace of the Croatina grape variety, is introduced. Following a preliminary in-depth characterization of the extract by HPLC analysis and of the biomaterial surface and composition, we performed evaluations of cytocompatibility and a biological response through in vitro assays. The anti-inflammatory and antioxidant properties of the identified phenolic molecules contained in SR were shown to downregulate inflammation in macrophages, to stimulate in osteoblast-like cells the expression of genes involved in deposition of the early bone matrix, and to mitigate bone remodeling by decreasing the RANKL/OPG ratio. Thanks to its cytocompatibility and assorted beneficial effects on bone regeneration, SR could be considered an innovative regenerative approach in periodontal therapy.
Collapse
|
24
|
Goel H, Gupta N, Santhiya D, Dey N, Bohidar HB, Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int J Biol Macromol 2021; 174:240-253. [PMID: 33515570 DOI: 10.1016/j.ijbiomac.2021.01.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
In this report, we discuss the design of a novel collagen/pectin (CP) hybrid composite hydrogel (CPBG) containing in-situ mineralized bioactive glass (BG) particles to simulate an integrative 3D cell environment. Systematic analysis of the CP sol revealed collagen and pectin molecules interacted regardless of both possessing similar net negative charge through the mechanism of surface patch binding interaction. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed this associative interaction which resulted in the formation of a hybrid crosslinked network with the BG nanoparticles acting as pseudo crosslink junctions. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and Transmission Electron Microscopy (TEM) results confirmed uniform mineralization of BG particles, and their synergetic interaction with the network. The in-vitro bioactivity tests on CPBG indicated the formation of bone-like hydroxyapatite (Ca10(PO4)6(OH)2) microcrystals on its surface after interaction with simulated body fluid. This hydrogel was loaded with a model antifungal drug amphotericin-B (AmB) and tested against Candida albicans. The AmB release kinetics from the hydrogel followed the Fickian mechanism and showed direct proportionality to gel swelling behavior. Rheological analysis revealed the viscoelastic compatibility of CPBG for the mechanical load bearing applications. Cell viability tests indicated appreciable compatibility of the hydrogel against U2OS and HaCaT cell lines. FDA/PI on the hydrogel portrayed preferential U2OS cell adhesion on hydrophobic hydroxyapatite layer compared to hydrophilic surfaces, thereby promising the regeneration of both soft and hard tissues.
Collapse
Affiliation(s)
- Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Nidhi Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India.
| | - Namit Dey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Himadri B Bohidar
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India.
| | - Aditi Bhattacharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
25
|
Catori DM, Fragal EH, Messias I, Garcia FP, Nakamura CV, Rubira AF. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. Int J Biol Macromol 2020; 167:726-735. [PMID: 33285200 DOI: 10.1016/j.ijbiomac.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Hydrogels based on pectin and cellulose nanocrystals (CNC) were used in our study to nucleation and growth of hydroxyapatite (HAp) by the biomimetic method. In this study, we evaluated the direct impact of the different percentages of CNC on pectin hydrogel and the influence of HAp obtained through two methods. CNC were obtained from HCl hydrolysis following chemical functionalization through vinyl groups. The percentage of CNC positively induces thermal stability, mechanical properties and HAp mineralization from biomimetic using simulated body fluid (1.5 SBF). Hydrogels with 5% of CNC showed a higher amount of HAp immersed for 14 days, about 28% of HAp. The obtained hydrogels were compared with hydrogels containing 20% of HAp nanoparticles obtained by chemical precipitation. Biocompatibility of the hydrogels was evaluated by cell viability using fibroblasts (L929). In general, the hydrogels obtained through the biomimetic method show slightly larger biocompatibility compared to the hybrid hydrogels obtained from chemical precipitation.
Collapse
Affiliation(s)
- Daniele M Catori
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Elizângela H Fragal
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| | - Igor Messias
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Francielle P Garcia
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Adley F Rubira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
26
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
27
|
Hui J, Sharma S, Rajani S, Singh A. The Specific Molecular Composition and Structural Arrangement of Eleutherodactylus Coqui Gular Skin Tissue Provide Its High Mechanical Compliance. Int J Mol Sci 2020; 21:E5593. [PMID: 32764252 PMCID: PMC7460573 DOI: 10.3390/ijms21165593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
A male Eleutherodactylus Coqui (EC, a frog) expands and contracts its gular skin to a great extent during mating calls, displaying its extraordinarily compliant organ. There are striking similarities between frog gular skin and the human bladder as both organs expand and contract significantly. While the high extensibility of the urinary bladder is attributed to the unique helical ultrastructure of collagen type III, the mechanism behind the gular skin of EC is unknown. We therefore aim to understand the structure-property relationship of gular skin tissues of EC. Our findings demonstrate that the male EC gular tissue can elongate up to 400%, with an ultimate tensile strength (UTS) of 1.7 MPa. Species without vocal sacs, Xenopus Laevis (XL) and Xenopus Muelleri (XM), elongate only up to 80% and 350% with UTS~6.3 MPa and ~4.5 MPa, respectively. Transmission electron microscopy (TEM) and histological staining further show that EC tissues' collagen fibers exhibit a layer-by-layer arrangement with an uninterrupted, knot-free, and continuous structure. The collagen bundles alternate between a circular and longitudinal shape, suggesting an out-of-plane zig-zag structure, which likely provides the tissue with greater extensibility. In contrast, control species contain a nearly linear collagen structure interrupted by thicker muscle bundles and mucous glands. Meanwhile, in the rat bladder, the collagen is arranged in a helical structure. The bladder-like high extensibility of EC gular skin tissue arises despite it having eight-fold lesser elastin and five times more collagen than the rat bladder. To our knowledge, this is the first study to report the structural and molecular mechanisms behind the high compliance of EC gular skin. We believe that these findings can lead us to develop more compliant biomaterials for applications in regenerative medicine.
Collapse
Affiliation(s)
- Justin Hui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (J.H.); (S.R.)
| | - Shivang Sharma
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sarah Rajani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (J.H.); (S.R.)
| | - Anirudha Singh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Wu T, Li B, Wang W, Chen L, Li Z, Wang M, Zha Z, Lin Z, Xia H, Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci 2020; 8:4603-4615. [PMID: 32627770 DOI: 10.1039/d0bm00523a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The strontium-substituted hydroxyapatite (SrHA) is a commonly used material in bone regeneration for its good osteoconductivity and high alkaline phosphatase (ALP) activity. Scaffolds used in bone defects require a high compressive modulus. However, the SrHA nanoparticle-doped scaffold cannot properly fit the required mechanical properties. Therefore, a lot of effort has been used to fabricate synthetic bone scaffolds with biocompatibility, suitable mechanical properties, antibacterial ability and osteoconductivity. Here, we used a facile hydrothermal method to synthesize graphene oxide (GO)-reinforced SrHA nanoparticles. The incorporation of GO can be used as nucleation and growth active sites of hydroxyapatite. In addition, GO is easy to self-assemble into a layered structure in the dispersion, which can effectively regulate the deposition of hydroxyapatite on the surface of GO. The scaffold was fabricated using a freeze-drying method by incorporating SrHA/GO nanoparticles into chitosan (CS) and quaternized chitosan (QCS) mixed solutions. The compressive modulus of the CS/QCS/SrHA/GO scaffold reached 438.5 kPa, which was 4-fold higher than that of the CS/QCS scaffold. The CS/QCS/SrHA/GO scaffold exhibited significantly higher in vitro mineralization levels and ALP activity. In vivo rat skull repair indicated that the CS/QCS/SrHA/GO scaffold had a significant role in promoting bone regeneration. This study provides a new strategy for modifying hydroxyapatite to satisfy the biomedical demand of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pinto RV, Gomes PS, Fernandes MH, Costa ME, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110557. [DOI: 10.1016/j.msec.2019.110557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
|
30
|
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 2020; 5:297-308. [PMID: 32154444 PMCID: PMC7052441 DOI: 10.1016/j.bioactmat.2020.02.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
31
|
Zhou W, Hu Z, Wang T, Yang G, Xi W, Gan Y, Lu W, Hu J. Enhanced corrosion resistance and bioactivity of Mg alloy modified by Zn-doped nanowhisker hydroxyapatite coatings. Colloids Surf B Biointerfaces 2019; 186:110710. [PMID: 31838267 DOI: 10.1016/j.colsurfb.2019.110710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022]
Abstract
In this work, Zn is doped into a hydroxyapatite coating on the surface of ZK60 magnesium alloys using a one-pot hydrothermal method to obtain a corrosion-resistant implant with abilities of osteogenic differentiation and bacterial inhibition. With the addition of Zn, the morphology changes with a nanowhisker structure appearing on the coating. Electrochemical measurements show that the nanowhisker hydroxyapatite coating provides a high corrosion resistance. Compared with hydroxyapatite coating, the nanowhisker coating not only effectively inhibits bacteria, but also promotes the adhesion and differentiation of rat bone marrow mesenchymal stem cells at appropriate Zn concentrations. In conclusion, a novel nanowhisker structure prepared by a single variable Zn doping can significantly improve the corrosion resistance and biological activity of hydroxyapatite coatings.
Collapse
Affiliation(s)
- Wuchao Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Zhenrong Hu
- Weifang Medical University School of Stomatology, Weifang 261053, China
| | - Taolei Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Guangzheng Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Weihong Xi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Yanzi Gan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Lu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jingzhou Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.
| |
Collapse
|
32
|
Pan J, Deng J, Yu L, Wang Y, Zhang W, Han X, Camargo PHC, Wang J, Liu Y. Investigating the repair of alveolar bone defects by gelatin methacrylate hydrogels-encapsulated human periodontal ligament stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:3. [PMID: 31811403 DOI: 10.1007/s10856-019-6333-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Although various efforts have been made to develop effective treatments for alveolar bone defect, alveolar regeneration has been emerging as the one with the most potential Herein, we investigated the potential of gelatin methacrylate (GelMA) hydrogels-encapsulated human periodontal ligament stem cells (hPDLSCs) to regenerate alveolar bone. The easy, rapid, and cost-effective nature of GelMA hydrogels makes them a promising mode of stem cell-delivery for clinically relevant alveolar bone regeneration. More importantly, GelMA hydrogels provide an optimal niche for hPDLSCs proliferation, migration and osteogenic differentiation, which are critical for alveolar bone regeneration. In this study, we examined the microstructure of GelMA hydrogels, and identified a highly porous and interconnected network. Compressive test of GelMA hydrogels showed that the stress reached a maximum value of 13.67 ± 0.03 kPa when the strain reached 55%. The maximum values of swelling ratio were 700 ± 47% at the fifth hour. The proliferation rate of hPDLSCs in the GelMA hydrogels resembled that in 2D culture and gradually increased. We established a critical-sized rat model of alveolar bone defects, and applied Micro-CT to assess new bone formation. Compared to the control group, there was substantial bone regeneration in the GelMA + hPDLSCs group at both 4 and 8 weeks after the operation. Histological analysis results were consistent with Micro-CT results. Our study demonstrates that the GelMA hydrogels-encapsulated hPDLSCs have a significant alveolar regenerative potential, and may represent a new strategy for the therapy of alveolar bone defects.
Collapse
Affiliation(s)
- Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Yuhui Wang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Xinxin Han
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, FI, 00014, Helsinki, Finland
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Jiale Wang
- College of Science, Donghua University, Shanghai, 201620, China.
- Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai, 201620, China.
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China.
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China.
| |
Collapse
|
33
|
Pan J, Deng J, Luo Y, Yu L, Zhang W, Han X, You Z, Liu Y. Thermosensitive Hydrogel Delivery of Human Periodontal Stem Cells Overexpressing Platelet-Derived Growth Factor-BB Enhances Alveolar Bone Defect Repair. Stem Cells Dev 2019; 28:1620-1631. [PMID: 31663419 DOI: 10.1089/scd.2019.0184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alveolar bone defects can arise as a consequence of trauma, infection, periodontal disease, or congenital alveolar fenestration. Many approaches have been employed in an effort to treat or overcome such defects, but the ability to effectively achieve alveolar regeneration remains elusive. Platelet-derived growth factor-BB (PDGF-BB) has been shown to serve as a key factor capable of orchestrating cell proliferation, angiogenesis, and chemoattraction in the context of osteogenic processes. Exactly how PDGF-BB affects human periodontal ligament stem cells (hPDLSCs), however, requires further exploration. In this report, we utilized a lentiviral construct to achieve PDGF-BB overexpression in hPDLSCs, allowing us to establish that this gene was able to enhance the proliferation of these cells and to mediate osteogenic gene upregulation therein. In addition, we established a rat model of alveolar defects that were implanted using different complexes, and then monitored through histological and micro-CT analyses 4 and 8 weeks postsurgery to assess bone repair outcomes. These analyses revealed that a thermosensitive hydrogel was an effective 3D cell culture scaffold, while PDLSCs overexpressing PDGF-BB enhanced bone growth in the context of alveolar bone defects. Together, these results thus indicate that PDGF-BB represents a potent means of promoting stem cell-based alveolar bone tissue regeneration.
Collapse
Affiliation(s)
- Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuan Luo
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Oral Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Popat KC, Mantovani D, Moraes ÂM. Polysaccharide-based tissue-engineered vascular patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109973. [PMID: 31499972 DOI: 10.1016/j.msec.2019.109973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Coronary artery and peripheral vascular diseases are the leading cause of morbidity and mortality worldwide and often require surgical intervention to replace damaged blood vessels, including the use of vascular patches in endarterectomy procedures. Tissue engineering approaches can be used to obtain biocompatible and biodegradable materials directed to this application. In this work, dense or porous scaffolds constituted of chitosan (Ch) complexed with alginate (A) or pectin (P) were fabricated and characterized considering their application as tissue-engineered vascular patches. Scaffolds fabricated with alginate presented higher culture medium uptake capacity (up to 17 g/g) than materials produced with pectin. A degradation study of the patches in the presence of lysozyme showed longer-term stability for Ch-P-based scaffolds. Pectin-containing matrices presented higher elastic modulus (around 280 kPa) and ability to withstand larger deformations. Moreover, these materials demonstrated better performance when tested for hemocompatibility, with lower levels of platelet adhesion and activation. Human smooth muscle cells (HSMC) adhered, spread and proliferated better on matrices produced with pectin, probably as a consequence of cell response to higher stiffness of this material. Thus, the outcomes of this study demonstrate that Ch-P-based scaffolds present superior characteristics for the application as vascular patches. Despite polysaccharides are yet underrated in this field, this work shows that biocompatible tridimensional structures based on these polymers present high potential to be applied for the reconstruction and regeneration of vascular tissues.
Collapse
Affiliation(s)
- Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bernard Drouin
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
35
|
Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater 2019; 10:E3. [PMID: 30609698 PMCID: PMC6463184 DOI: 10.3390/jfb10010003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases involve injuries to the supporting structures of the tooth and, if left untreated, can lead to the loss of the tooth. Regenerative periodontal therapies aim, ideally, at healing all the damaged periodontal tissues and represent a significant clinical and societal challenge for the current ageing population. This review provides a picture of the currently-used biomaterials for periodontal regeneration, including natural and synthetic polymers, bioceramics (e.g., calcium phosphates and bioactive glasses), and composites. Bioactive materials aim at promoting the regeneration of new healthy tissue. Polymers are often used as barrier materials in guided tissue regeneration strategies and are suitable both to exclude epithelial down-growth and to allow periodontal ligament and alveolar bone cells to repopulate the defect. The problems related to the barrier postoperative collapse can be solved by using a combination of polymeric membranes and grafting materials. Advantages and drawbacks associated with the incorporation of growth factors and nanomaterials in periodontal scaffolds are also discussed, along with the development of multifunctional and multilayer implants. Tissue-engineering strategies based on functionally-graded scaffolds are expected to play an ever-increasing role in the management of periodontal defects.
Collapse
Affiliation(s)
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
36
|
Combining Calcium Phosphates with Polysaccharides: A Bone-Inspired Material Modulating Monocyte/Macrophage Early Inflammatory Response. Int J Mol Sci 2018; 19:ijms19113458. [PMID: 30400326 PMCID: PMC6274876 DOI: 10.3390/ijms19113458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
The use of inorganic calcium/phosphate supplemented with biopolymers has drawn lots of attention in bone regenerative medicine. While inflammation is required for bone healing, its exacerbation alters tissue regeneration/implants integration. Inspired by bone composition, a friendly automated spray-assisted system was used to build bioactive and osteoinductive calcium phosphate/chitosan/hyaluronic acid substrate (CaP-CHI-HA). Exposing monocytes to CaP-CHI-HA resulted in a secretion of pro-healing VEGF and TGF-β growth factors, TNF-α, MCP-1, IL-6 and IL-8 pro-inflammatory mediators but also IL-10 anti-inflammatory cytokine along with an inflammatory index below 1.5 (versus 2.5 and 7.5 following CaP and LPS stimulation, respectively). Although CD44 hyaluronic acid receptor seems not to be involved in the inflammatory regulation, results suggest a potential role of chemical composition and calcium release from build-up substrates, in affecting the intracellular expression of a calcium-sensing receptor. Herein, our findings indicate a great potential of CaP-CHI-HA in providing required inflammation-healing balance, favorable for bone healing/regeneration.
Collapse
|
37
|
Balbinot GDS, Collares FM, Visioli F, Soares PBF, Takimi AS, Samuel SMW, Leitune VCB. Niobium addition to sol-gel derived bioactive glass powders and scaffolds: In vitro characterization and effect on pre-osteoblastic cell behavior. Dent Mater 2018; 34:1449-1458. [DOI: 10.1016/j.dental.2018.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
38
|
Gaihre B, Jayasuriya AC. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:330-339. [PMID: 30033262 PMCID: PMC6061966 DOI: 10.1016/j.msec.2018.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Zirconium (Zr) based bioceramic nanoparticles, as the filler material to chitosan (CS), for the development of composite scaffolds are less studied compared to hydroxyapatite nanoparticles. This is predominantly due to the biological similarity of nano-hydroxyapatite (nHA; Ca10(PO4)6(OH)2) with bone inorganic component. In this study, we compared the physical and biological properties of CS composite scaffolds hybridized with nHA, nano-zirconia (nZrO; ZrO2), and nano-calcium zirconate (nCZ; CaZrO3). For the first time in this study, the properties of CS-nCZ composite scaffolds have been reported. The porous composite scaffolds were developed using the freeze-drying technique. The compressive strength and modulus were in the range of 50-55 KPa and 0.75-0.95 MPa for composite scaffolds, significantly higher (p < 0.05), compared to CS alone scaffolds (28 KPa and 0.25 MPa) and were comparable among CS-nHA, CS-nZrO, and CS-nCZ scaffolds. Peak force quantitative nanomechanical mapping (PFQNM) using an atomic force microscope (AFM) showed that the Young's modulus of composite material was higher compared to only CS (p < 0.001), and the values were similar among the composite materials. One of the major issues in the use of Zr based bioceramic materials in bone tissue regeneration applications is their lower osteoblasts response. This study has shown that CS-nCZ supported higher proliferation of pre-osteoblasts compared to CS-nZrO and the spreading was more similar to that observed in CS-nHA scaffolds. Taken together, results show that the physical and biological properties, studied here, of CS composite with Zr based bio-ceramic was comparable with CS-nHA composite scaffolds and hence show the prospective of CS-nCZ for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, Toledo 43614, OH, USA
| | - Ambalangodage C Jayasuriya
- Department of Bioengineering, The University of Toledo, Toledo 43614, OH, USA; Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo 43614, OH, USA.
| |
Collapse
|
39
|
Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery. Carbohydr Polym 2018; 196:126-134. [DOI: 10.1016/j.carbpol.2018.04.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
|
40
|
Kosik-Kozioł A, Costantini M, Bolek T, Szöke K, Barbetta A, Brinchmann J, Święszkowski W. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication 2017; 9:044105. [DOI: 10.1088/1758-5090/aa90d7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Uskoković V, Ghosh S, Wu VM. Antimicrobial Hydroxyapatite-Gelatin-Silica Composite Pastes with Tunable Setting Properties. J Mater Chem B 2017; 5:6065-6080. [PMID: 29104753 DOI: 10.1039/c7tb01794d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone grafting is one of the commonest surgical procedures, yet all bone substitutes developed so far suffer from specific weaknesses and the search for a bone graft material with ideal physical and biological properties is still ongoing. Calcium phosphate pastes are the most frequently used synthetic bone grafts, yet they (a) often take an impractically long time to set, (b) release the drug content too fast, and (c) do not form pores large enough to accommodate host cells and foster osseointegration. To make up for these deficiencies, we introduced gelatin and silica to pastes composed of 5-15 nm sized hydroxyapatite nanoparticles and yielded a bioresorbable composite that is compact, yet flowing upon injection; that prevents setting at room temperature, but sets promptly, in minutes, at 37 °C; that displays an increase in surface porosity following immersion in physiological fluids; that allows for sustained release of antibiotics; and that sets in a tunable manner and in clinically relevant time windows: 1-3 minutes at its fastest. Timelapse, in situ X-ray diffraction analysis demonstrated that the setting process is accompanied by an increase in crystallinity of the initially amorphous hydroxyapatite, involving no polymorphic phase transitions in its course. Setting time can be tuned by controlling the weight content of gelatin or powder-to-liquid ratio. The release of vancomycin was slow, ~ 8 % after 2 weeks, and unaffected by the gelatin content. While vancomycin-loaded pastes were effective in reducing the concentration of all bacterial species analyzed, the bacteriostatic effects of the antibiotic-free pastes were pronounced against S. liquefaciens and E. coli. S. liquefaciens bacilli underwent beading and filamentation during the treatment, suggesting that the antimicrobial effects are attributable to cell wall disruption by hydroxyapatite nanoparticles. Vancomycin-loaded pastes augmented the activity of the antibiotic against P. aeruginosa and S. liquefaciens, while exhibiting no negative effects against human mesenchymal stem cells. They were also uptaken three times more abundantly than pure hydroxyapatite, indicating the theoretical favorability of their use for intracellular delivery of therapeutics. This selectivity, toxic for bacteria and harmless for primary stem cells, is promising for application as bone grafts for osteomyelitis.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Shreya Ghosh
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| |
Collapse
|
42
|
Mouser VHM, Abbadessa A, Levato R, Hennink WE, Vermonden T, Gawlitta D, Malda J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication 2017; 9:015026. [PMID: 28229956 PMCID: PMC7116181 DOI: 10.1088/1758-5090/aa6265] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored. Additionally, co-printing with polycaprolactone (PCL) was performed for mechanical reinforcement. Chondrocyte-laden hydrogels composed of pHPMA-lac-PEG and different concentrations of HAMA (0%-1% w/w) were cultured for 28 d in vitro and subsequently evaluated for the presence of cartilage-like matrix. Young's moduli were determined for hydrogels with the different HAMA concentrations. Additionally, hydrogel/PCL constructs with different internal architectures were co-printed and analyzed for their mechanical properties. The results of this study demonstrated a dose-dependent effect of HAMA concentration on cartilage matrix synthesis by chondrocytes. Glycosaminoglycan (GAG) and collagen type II content increased with intermediate HAMA concentrations (0.25%-0.5%) compared to HAMA-free controls, while a relatively high HAMA concentration (1%) resulted in increased fibrocartilage formation. Young's moduli of generated hydrogel constructs ranged from 14 to 31 kPa and increased with increasing HAMA concentration. The pHPMA-lac-PEG hydrogels with 0.5% HAMA were found to be optimal for cartilage-like tissue formation. Therefore, this hydrogel system was co-printed with PCL to generate porous or solid constructs with different mesh sizes. Young's moduli of these composite constructs were in the range of native cartilage (3.5-4.6 MPa). Interestingly, the co-printing procedure influenced the mechanical properties of the final constructs. These findings are relevant for future bio-ink development, as they demonstrate the importance of selecting proper HAMA concentrations, as well as appropriate print settings and construct designs for optimal cartilage matrix deposition and final mechanical properties of constructs, respectively.
Collapse
Affiliation(s)
- VHM Mouser
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - A Abbadessa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - WE Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - T Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | - D Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80163, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
43
|
van Gestel NAP, Hulsen DJW, Geurts J, Hofmann S, Ito K, Arts JJ, van Rietbergen B. Composition dependent mechanical behaviour of S53P4 bioactive glass putty for bone defect grafting. J Mech Behav Biomed Mater 2017; 69:301-306. [PMID: 28131065 DOI: 10.1016/j.jmbbm.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/24/2022]
Abstract
To improve the handling properties of S53P4 bioactive glass granules for clinical applications, bioactive glass putty formulations were developed. These formulations contain both granules and a synthetic binder to form an injectable material that is easy to shape. To explore its applicability in load-bearing bone defect grafting, the relation between the putty composition and its mechanical behaviour was assessed in this study. Five putty formulations with variations in synthetic binder and granule content were mechanically tested in confined compression. The results showed that the impaction strains significantly decreased and the residual strains significantly increased with an increasing binder content. The stiffness of all tested formulations was found to be in the same range as the reported stiffness of cancellous bone. The measured creep strains were low and no significant differences between formulations were observed. The stiffness significantly increased when the samples were subjected to a second loading stage. The residual strains calculated from this second loading stage were also significantly different from the first loading stage, showing an increasing difference with an increasing binder content. Since residual strains are detrimental for graft layer stability in load-bearing defects, putty compositions with a low binder content would be most beneficial for confined, load-bearing bone defect grafting.
Collapse
Affiliation(s)
- N A P van Gestel
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - D J W Hulsen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX Maastricht, The Netherlands; MICT Department, Jeroen Bosch Ziekenhuis, PO Box 90153, 5200 ME 's-Hertogenbosch, The Netherlands
| | - J Geurts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX Maastricht, The Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETHZ), Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Department of Orthopaedics, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - J J Arts
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX Maastricht, The Netherlands
| | - B van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|