1
|
Peng X, Guo D, Ding H, Mu Z, Li B, Niu S, Han Z, Ren L. Chiton-Inspired Composites Synergizing Strength and Toughness Through Sinusoidal Interlocking Interfaces for Protective Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410836. [PMID: 39663684 DOI: 10.1002/adma.202410836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Introducing biological structures into materials design is expected to develop strong and tough structural materials. However, multiple interfaces are introduced simultaneously. They are always the weakest part of load transfer, becoming a critical vulnerability and failure-prone area. Here, it is the first found that the chiton achieves superior mechanical properties just by incorporating a unique sinusoidal interlocking interface into cross-lamellar architecture. These special interlocking interfaces make the chiton shell achieve damage delocalization and increase the resistance to crack initiation and propagation. Meanwhile, this "pre-engineered" path significantly increases the travel path of the cracks and balances the strength and toughness under quasi-static and impact loading. Inspired by this, a novel chiton-inspired composite is proposed. Through coupling the cross-lamellar structures and sinusoidal interlocking interfaces, its strength and toughness are increased by 88% and 107% under quasi-static loading, as well as by 17.8% and 52.4% under impact loading, respectively. These unusual interfaces make up the weak point of cross-lamellar structures and provide insights into the longer evolution of structural materials.
Collapse
Affiliation(s)
- Xianchang Peng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Dongfang Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun, Jilin, 130022, China
| |
Collapse
|
2
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|
3
|
Lekatou AG, Emmanouilidou S, Dimitriadis K, Baikousi M, Karakassides MA, Agathopoulos S. Simulating porcelain firing effect on the structure, corrosion and mechanical properties of Co-Cr-Mo dental alloy fabricated by soft milling. Odontology 2024; 112:372-389. [PMID: 37642767 PMCID: PMC10925571 DOI: 10.1007/s10266-023-00849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
This study aims at evaluating the effect of simulating porcelain firing on the microstructure, corrosion behavior and mechanical properties of a Co-Cr-Mo alloy fabricated by Metal Soft Milling (MSM). Two groups of Co-28Cr-5Mo specimens (25 × 20 × 3 mm) were prepared by MSM: The as-sintered (AS) specimens and the post-fired (PF) specimens that were subjected to 5 simulating porcelain firing cycles without applying the ceramic mass onto their surface. Phase identification by X-ray Diffraction (XRD), microstructure examination by optical microscopy and Scanning Electron Microscopy combined with Energy-Dispersive X-ray Spectroscopy (SEM/EDX), corrosion testing by cyclic polarization and chronoamperometry in simulated body fluid (SBF), the latter test accompanied by Cr3+ and Cr6+ detection in the electrolyte through the 1.5-diphenylcarbazide (DPC) method and UV/visible spectrophotometry, and mechanical testing by micro-/nano-indentation were conducted to evaluate the effect of the post-firing cycles on the properties of Co-Cr-Mo. The results were statistically analyzed by the t test (p < 0.05: statistically significant). All specimens had a mixed γ-fcc and ε-hcp cobalt-based microstructure with a dispersion of pores filled with SiO2 and a fine M23C6 intergranular presence. PF led to an increase in the ε-Co content and slight grain coarsening. Both AS and PF alloys showed high resistance to general and localized corrosion, whereas neither Cr6+ nor Cr3+ were detected during the passivity-breakdown stage. PF improved the mechanical properties of the AS-alloy, especially the indentation modulus and true hardness (statistically significant differences: p = 0.0009 and 0.006, respectively). MSM and MSM/simulating-porcelain firing have been proven trustworthy fabrication methods of Co-Cr-Mo substrates for metal-ceramic prostheses. Moreover, the post-firing cycles improve the mechanical behavior of Co-Cr-Mo, which is vital under the dynamically changing loads in the oral cavity, whereas they do not degrade the corrosion performance.
Collapse
Affiliation(s)
- Angeliki G Lekatou
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10, Ioannina, Greece
| | - Sevasti Emmanouilidou
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece
| | - Konstantinos Dimitriadis
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece.
- Division of Dental Technology, Department of Biomedical Sciences, University of West Attica, 122 43, Athens, Greece.
| | - Maria Baikousi
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece
| | - Michael A Karakassides
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece
| | - Simeon Agathopoulos
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
4
|
Lemine AS, Ahmad Z, Al-Thani NJ, Hasan A, Bhadra J. Mechanical properties of human hepatic tissues to develop liver-mimicking phantoms for medical applications. Biomech Model Mechanobiol 2024; 23:373-396. [PMID: 38072897 PMCID: PMC10963485 DOI: 10.1007/s10237-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 03/26/2024]
Abstract
Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.
Collapse
Affiliation(s)
- Aicha S Lemine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar
| | - Noora J Al-Thani
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientists Center (QUYSC), Qatar University, 2713, Doha, Qatar.
- Center for Advanced Materials (CAM), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Guatelli-Steinberg D, Renteria C, Grimm JR, Maeret Carpenter I, Arola DD, McGraw WS. How mangabey molar form differs under routine vs. fallback hard-object feeding regimes. PeerJ 2023; 11:e16534. [PMID: 38099313 PMCID: PMC10720418 DOI: 10.7717/peerj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Background Components of diet known as fallback foods are argued to be critical in shaping primate dental anatomy. Such foods of low(er) nutritional quality are often non-preferred, mechanically challenging resources that species resort to during ecological crunch periods. An oft-cited example of the importance of dietary fallbacks in shaping primate anatomy is the grey-cheeked mangabey Lophocebus albigena. This species relies upon hard seeds only when softer, preferred resources are not available, a fact which has been linked to its thick dental enamel. Another mangabey species with thick enamel, the sooty mangabey Cercocebus atys, processes a mechanically challenging food year-round. That the two mangabey species are both thickly-enameled suggests that both fallback and routine consumption of hard foods are associated with the same anatomical feature, complicating interpretations of thick enamel in the fossil record. We anticipated that aspects of enamel other than its thickness might differ between Cercocebus atys and Lophocebus albigena. We hypothesized that to function adequately under a dietary regime of routine hard-object feeding, the molars of Cercocebus atys would be more fracture and wear resistant than those of Lophocebus albigena. Methods Here we investigated critical fracture loads, nanomechanical properties of enamel, and enamel decussation in Cercocebus atys and Lophocebus albigena. Molars of Cercopithecus, a genus not associated with hard-object feeding, were included for comparison. Critical loads were estimated using measurements from 2D µCT slices of upper and lower molars. Nanomechanical properties (by nanoindentation) and decussation of enamel prisms (by SEM-imaging) in trigon basins of one upper second molar per taxon were compared. Results Protocone and protoconid critical fracture loads were significantly greater in Cercocebus atys than Lophocebus albigena and greater in both than in Cercopithecus. Elastic modulus, hardness, and elasticity index in most regions of the crown were greater in Cercocebus atys than in the other two taxa, with the greatest difference in the outer enamel. All taxa had decussated enamel, but that of Cercocebus atys uniquely exhibited a bundle of transversely oriented prisms cervical to the radial enamel. Quantitative comparison of in-plane and out-of-plane prism angles suggests that decussation in trigon basin enamel is more complex in Cercocebus atys than it is in either Lophocebus albigena or Cercopithecus cephus. These findings suggest that Cercocebus atys molars are more fracture and wear resistant than those of Lophocebus albigena and Cercopithecus. Recognition of these differences between Cercocebus atys and Lophocebus albigena molars sharpens our understanding of associations between hard-object feeding and dental anatomy under conditions of routine vs. fallback hard-object feeding and provides a basis for dietary inference in fossil primates, including hominins.
Collapse
Affiliation(s)
- Debbie Guatelli-Steinberg
- Department of Anthropology, The Ohio State University, Columbus, OH, United States of America
- School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom
| | - Cameron Renteria
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Jack R. Grimm
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Izabela Maeret Carpenter
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
| | - Dwayne D. Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States of America
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
6
|
Püffel F, Walthaus OK, Kang V, Labonte D. Biomechanics of cutting: sharpness, wear sensitivity and the scaling of cutting forces in leaf-cutter ant mandibles. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220547. [PMID: 37839449 PMCID: PMC10577030 DOI: 10.1098/rstb.2022.0547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Herbivores large and small need to mechanically process plant tissue. Their ability to do so is determined by two forces: the maximum force they can generate, and the minimum force required to fracture the plant tissue. The ratio of these forces determines the relative mechanical effort; how this ratio varies with animal size is challenging to predict. We measured the forces required to cut thin polymer sheets with mandibles from leaf-cutter ant workers which vary by more than one order of magnitude in body mass. Cutting forces were independent of mandible size, but differed by a factor of two between pristine and worn mandibles. Mandibular wear is thus likely a more important determinant of cutting force than mandible size. We rationalize this finding with a biomechanical analysis, which suggests that pristine mandibles are ideally 'sharp'-cutting forces are close to a theoretical minimum, which is independent of tool size and shape, and instead solely depends on the geometric and mechanical properties of the cut tissue. The increase of cutting force due to mandibular wear may be particularly problematic for small ants, which generate lower absolute bite forces, and thus require a larger fraction of their maximum bite force to cut the same plant. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - O. K. Walthaus
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Braunshtein O, Levavi L, Zlotnikov I, Bar-On B. Nanoscale dynamic mechanical analysis on interfaces of biological composites. J Mech Behav Biomed Mater 2023; 146:106091. [PMID: 37672957 DOI: 10.1016/j.jmbbm.2023.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Biological composites incorporate structural arrays of rigid-elastic reinforcements made of minerals or crystalline biopolymers, which are connected by thin, compliant, and viscoelastic macromolecular matrix material. The near-interface regions of these biological composites grant them energy dissipation capabilities against dynamic mechanical loadings, which promote various biomechanical functions such as impact adsorption, fracture toughness, and mechanical signal filtering. Here, we employ theoretical modeling and finite-element simulations to analyze the mechanical response of the near-interface in biological composites to nanoscale dynamic mechanical analysis (DMA). We identified the dominating load-bearing mechanisms of the near-interface region and employed these insights to introduce simple semi-empirical formulations for approaching the mechanical properties (storage and loss moduli) of the biological composite from the nanoscale DMA results. Our analysis paves the way for the nanomechanical characterization of biological composites in diverse natural materials systems, which can also be employed for bioinspired and biomedical configurations.
Collapse
Affiliation(s)
- Ofer Braunshtein
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel; Nuclear Research Center-Negev, P.O. Box 9001, Beer-Sheva, 84190, Israel
| | - Liat Levavi
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
8
|
Meng XS, Zhou LC, Liu L, Zhu YB, Meng YF, Zheng DC, Yang B, Rao QZ, Mao LB, Wu HA, Yu SH. Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata. Science 2023; 380:1252-1257. [PMID: 37347869 DOI: 10.1126/science.ade2038] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
The hinge of bivalve shells can sustain hundreds of thousands of repeating opening-and-closing valve motions throughout their lifetime. We studied the hierarchical design of the mineralized tissue in the hinge of the bivalve Cristaria plicata, which endows the tissue with deformability and fatigue resistance and consequently underlies the repeating motion capability. This folding fan-shaped tissue consists of radially aligned, brittle aragonite nanowires embedded in a resilient matrix and can translate external radial loads to circumferential deformation. The hard-soft complex microstructure can suppress stress concentration within the tissue. Coherent nanotwin boundaries along the longitudinal direction of the nanowires increase their resistance to bending fracture. The unusual biomineral, which exploits the inherent properties of each component through multiscale structural design, provides insights into the evolution of antifatigue structural materials.
Collapse
Affiliation(s)
- Xiang-Sen Meng
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Chuan Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
- School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Liu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Feng Meng
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Chang Zheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Bo Yang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Zhi Rao
- Anhui Shuyan Intelligent Technologies Co., Wuhu 241200, China
| | - Li-Bo Mao
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Püffel F, Meyer L, Imirzian N, Roces F, Johnston R, Labonte D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc Biol Sci 2023; 290:20230355. [PMID: 37312549 PMCID: PMC10265030 DOI: 10.1098/rspb.2023.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Many social insects display age polyethism: young workers stay inside the nest, and only older workers forage. This behavioural transition is accompanied by genetic and physiological changes, but the mechanistic origin of it remains unclear. To investigate if the mechanical demands on the musculoskeletal system effectively prevent young workers from foraging, we studied the biomechanical development of the bite apparatus in Atta vollenweideri leaf-cutter ants. Fully matured foragers generated peak in vivo bite forces of around 100 mN, more than one order of magnitude in excess of those measured for freshly eclosed callows of the same size. This change in bite force was accompanied by a sixfold increase in the volume of the mandible closer muscle, and by a substantial increase of the flexural rigidity of the head capsule, driven by a significant increase in both average thickness and indentation modulus of the head capsule cuticle. Consequently, callows lack the muscle force capacity required for leaf-cutting, and their head capsule is so compliant that large muscle forces would be likely to cause damaging deformations. On the basis of these results, we speculate that continued biomechanical development post eclosion may be a key factor underlying age polyethism, wherever foraging is associated with substantial mechanical demands.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Lara Meyer
- Faculty of Nature and Engineering, City University of Applied Sciences Bremen, Bremen, Germany
| | - Natalie Imirzian
- Department of Bioengineering, Imperial College London, London, UK
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
10
|
Yang X, Lan L, Pan X, Di Q, Liu X, Li L, Naumov P, Zhang H. Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity. Nat Commun 2023; 14:2287. [PMID: 37085510 PMCID: PMC10121608 DOI: 10.1038/s41467-023-37964-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
The capability of stimulated response by mechanical deformation to induce motion or actuation is the foundation of lightweight organic, dynamic materials for designing light and soft robots. Various biomimetic soft robots are constructed to demonstrate the vast versatility of responses and flexibility in shape-shifting. We now report that the integration of organic molecular crystals and polymers brings about synergistic improvement in the performance of both materials as a hybrid materials class, with the polymers adding hygroresponsive and thermally responsive functionalities to the crystals. The resulting hybrid dynamic elements respond within milliseconds, which represents several orders of magnitude of improvement in the time response relative to some other type of common actuators. Combining molecular crystals with polymers brings crystals as largely overlooked materials much closer to specific applications in soft (micro)robotics and related fields.
Collapse
Affiliation(s)
- Xuesong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| |
Collapse
|
11
|
Rodriguez-Navarro C, Monasterio-Guillot L, Burgos-Ruiz M, Ruiz-Agudo E, Elert K. Unveiling the secret of ancient Maya masons: Biomimetic lime plasters with plant extracts. SCIENCE ADVANCES 2023; 9:eadf6138. [PMID: 37075113 PMCID: PMC10115411 DOI: 10.1126/sciadv.adf6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ancient Maya produced some of the most durable lime plasters on Earth, yet how this was achieved remains a secret. Here, we show that ancient Maya plasters from Copan (Honduras) include organics and have a calcite cement with meso-to-nanostructural features matching those of calcite biominerals (e.g., shells). To test the hypothesis that the organics could play a similar toughening role as (bio)macromolecules in calcium carbonate biominerals, we prepared plaster replicas adding polysaccharide-rich bark extracts from Copan's local trees following an ancient Maya building tradition. We show that the replicas display similar features as the organics-containing ancient Maya plasters and demonstrate that, as in biominerals, in both cases, their calcite cement includes inter- and intracrystalline organics that impart a marked plastic behavior and enhanced toughness while increasing weathering resistance. Apparently, the lime technology developed by ancient Maya, and likely other ancient civilizations that used natural organic additives to prepare lime plasters, fortuitously exploited a biomimetic route for improving carbonate binders performance.
Collapse
|
12
|
Ezenwafor T, Anye V, Madukwe J, Amin S, Obayemi J, Odusanya O, Soboyejo W. Nanoindentation study of the viscoelastic properties of human triple negative breast cancer tissues: Implications for mechanical biomarkers. Acta Biomater 2023; 158:374-392. [PMID: 36640950 DOI: 10.1016/j.actbio.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
This paper presents the results of a combined experimental and theoretical study of the structure and viscoelastic properties of human non-tumorigenic mammary breast tissues and triple negative breast cancer (TNBC) tissues of different histological grades. A combination of immunofluorescence and confocal microscopy, and atomic force microscopy is used to study the actin cytoskeletal structures of non-tumorigenic and tumorigenic breast tissues (grade I to grade III). A combination of nanoindentation and statistical techniques is then used to measure viscoelastic properties of non-tumorigenic and human TNBC of different histological grades. A Standard Fluid Model/Anti-Zener Model II is also used to characterize the viscoelastic properties of the non-tumorigenic and tumorigenic TNBC tissues of different grades. The implications of the results are discussed for the potential application of nanoindentation and statistical deconvolution techniques to the development of mechanical biomarkers for TNBC detection/cancer diagnosis. STATEMENT OF SIGNIFICANCE: There is increasing interest in the development of mechanical biomarkers for cancer diagnosis. Here, we show that nanoindentation techniques can be used to characterize the viscoelastic properties of normal breast tissue and TNBC tissues of different histological grades. The Standard Fluid Model (Anti-Zener Model II) is used to classify the viscoelastic properties of breast tissues of different TNBC histological grades. Our results suggest that breast tissue and TNBC tissue viscoelastic properties can be used as mechanical biomarkers for the detection of TNBC at different stages.
Collapse
Affiliation(s)
- Theresa Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; NASENI Centre of Excellence in Nanotechnology and Advanced Materials, Km 4, Ondo Road, Akure, Ondo State, Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States
| | - Vitalis Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Jonathan Madukwe
- Department of Histopathology, National Hospital Abuja, Federal Capital Territory (FCT), Nigeria
| | - Said Amin
- Department of Histopathology, National Hospital Abuja, Federal Capital Territory (FCT), Nigeria
| | - John Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States
| | - Olushola Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Kwale, Federal Capital Territory, Abuja, Nigeria
| | - Winston Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States.
| |
Collapse
|
13
|
Püffel F, Johnston R, Labonte D. A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221066. [PMID: 36816849 PMCID: PMC9929505 DOI: 10.1098/rsos.221066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have a significant ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance, and its variation with mandible gape. To address this gap, we derived a biomechanical model that characterizes the relationship between bite force and mandibular opening angle from first principles. We validate this model by comparing its geometric predictions with morphological measurements on the muscoloskeletal bite apparatus of Atta cephalotes leaf-cutter ants, using computed tomography (CT) scans obtained at different mandible opening angles. We then demonstrate its deductive and inductive utility with three examplary use cases: Firstly, we extract the physiological properties of the leaf-cutter ant mandible closer muscle from in vivo bite force measurements. Secondly, we show that leaf-cutter ants are specialized to generate extraordinarily large bite forces, equivalent to about 2600 times their body weight. Thirdly, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that a more detailed quantitative understanding of the link between morphology, physiology, and bite performance will facilitate future comparative studies on the insect bite apparatus, and help to advance our knowledge of the behaviour, ecology and evolution of arthropods.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Johnston
- School of Engineering, Materials Research Centre, Swansea University, Swansea SA2 8PP, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
Deng Z, Chen L, Li L. Comparative nanoindentation study of biogenic and geological calcite. J Mech Behav Biomed Mater 2023; 137:105538. [PMID: 36343519 DOI: 10.1016/j.jmbbm.2022.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Biogenic minerals are often reported to be harder and tougher than their geological counterparts. However, quantitative comparison of their mechanical properties, particularly fracture toughness, is still limited. Here we provide a systematic comparison of geological and biogenic calcite (mollusk shell Atrina rigida prisms and Placuna placenta laths) through nanoindentation under both dry and 90% relative humidity conditions. Berkovich nanoindentation is used to reveal the mechanical anisotropy of geological calcite when loaded on different crystallographic planes, i.e., reduced modulus Er{104} ≥ Er{108} > Er{001} and hardness H{001} ≥ H{104} ≥ H{108}, and biogenic calcite has comparable modulus but increased hardness than geological calcite. Based on conical nanoindentation, we elucidate that plastic deformation is activated in geological calcite at the low-load regime (<20 mN), involving r{104} and f{012} dislocation slips as well as e{018} twinning, while cleavage fracture dominates under higher loads by cracking along {104} planes. In comparison, biogenic calcite tends to undergo fracture, while the intercrystalline organic interfaces contribute to damage confinement. In addition, increased humidity does not show a significant influence on the properties of geological calcite and the single-crystal A. rigida prisms, however, the laminate composite of P. placenta laths (layer thickness, ∼250-300 nm) exhibits increased toughness and decreased hardness and modulus. We believe the results of this study can provide a benchmark for future investigations on biominerals and bio-inspired materials.
Collapse
Affiliation(s)
- Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Liuni Chen
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
15
|
Karothu DP, Mahmoud Halabi J, Ahmed E, Ferreira R, Spackman PR, Spackman MA, Naumov P. Global Analysis of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Durga Prasad Karothu
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Jad Mahmoud Halabi
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Ejaz Ahmed
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Rodrigo Ferreira
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
| | - Peter R. Spackman
- The University of Western Australia 35 Stirling Highway 6009 Perth Australia
- Current address: Curtin Institute for Computation School of Molecular and Life Sciences Curtin University PO Box U1987 Perth Western Australia 6845 Australia
| | - Mark A. Spackman
- The University of Western Australia 35 Stirling Highway 6009 Perth Australia
| | - Panče Naumov
- Smart Materials Lab New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced Study Harvard University 10 Garden St. Cambridge MA 02138 USA
- Molecular Design Institute Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
16
|
Cell wall composition determines handedness reversal in helicoidal cellulose architectures of Pollia condensata fruits. Proc Natl Acad Sci U S A 2021; 118:2111723118. [PMID: 34911759 PMCID: PMC8713805 DOI: 10.1073/pnas.2111723118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Helicoidal architectures are widespread in nature; several species adopt this structure to produce brilliant colorations. Such chiral architectures are usually left-handed in plants, with the only exception found in the cell walls of epicarp cells of Pollia condensata, where both handednesses are observed. Here, we aim to understand the origin of handednesses by analyzing optical and mechanical responses of single cells. Surprisingly, we discover that left-handed and right-handed cells show different distributions of spectra and elasticity. We verified by using finite element analysis simulation that the elasticity of helicoids is sensitive to the ratio of cellulose/cell wall matrix. Our findings reveal that cell wall composition affects the helicoidal architectures, suggesting that chemical composition plays a role in morphogenesis of the chirality reversal. Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.
Collapse
|
17
|
Karothu DP, Halabi JM, Ahmed E, Ferreira R, Spackman PR, Spackman MA, Naumov P. Global Analysis of the Mechanical Properties of Organic Crystals. Angew Chem Int Ed Engl 2021; 61:e202113988. [PMID: 34845806 DOI: 10.1002/anie.202113988] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/09/2022]
Abstract
Organic crystals, although widely studied, have not been considered nascent candidate materials in the engineering design. Here we summarize the reported mechanical properties of organic crystals reported over the past three decades, and we establish a global mechanical property profile that can be used to predict and identify mechanically robust organic crystals. Being composed of light elements, organic crystals populate a narrow region in the mechanical property-density space between soft, disordered organic materials and stiff, ordered materials. Two subsets of extraordinarily stiff and hard organic crystalline materials were identified and rationalized by the normalized number density, strength and directionality of their intermolecular interactions. We conclude that the future light-weight, soft, all-organic components in devices should capitalize on the combination of long-range structural order and softness as the greatest asset of organic single crystals.
Collapse
Affiliation(s)
| | | | - Ejaz Ahmed
- New York University - Abu Dhabi Campus, Science, UNITED ARAB EMIRATES
| | - Rodrigo Ferreira
- New York University - Abu Dhabi Campus, Science, UNITED ARAB EMIRATES
| | | | | | - Pance Naumov
- New York University Abu Dhabi, Division of Science and Mathematics, Saadiyat Island, 00000, Abu Dhabi, UNITED ARAB EMIRATES
| |
Collapse
|
18
|
Yan W, Renteria C, Huang Y, Arola DD. A machine learning approach to investigate the materials science of enamel aging. Dent Mater 2021; 37:1761-1771. [PMID: 34625295 DOI: 10.1016/j.dental.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Understanding aging of tooth tissues is critical to the development of patient-centric oral healthcare. Yet, the traditional methods for analyzing the composition-structure-property relationships of hard tissues have limitations when considering aging and other factors. OBJECTIVE To apply unsupervised machine learning tools to pursue an understanding of relationships between the composition and mechanical behavior of aging enamel. METHODS Molar teeth were collected from primary (age ≤ 8), young adult (24 ≤ age ≤ 46) and old adult (55 ≤ age) donors. The hardness and elastic modulus were quantified using nanoindentation as a function of distance from the Dentin Enamel Junction (DEJ) within the cervical, cuspal and inter-cuspal regions of the enamel crown. Similarly, a co-located analysis of the chemical composition and structure was performed using Raman spectroscopy. A Self-Organizing Maps (SOMs) algorithm was implemented to identify multi-dimensional composition-property relationships. RESULTS The hardness and elastic modulus are positively correlated to crystallinity and negatively correlated with carbonate substitution. Furthermore, the effects from fluoridation on the age-dependent properties of enamel is non-linear and depends on its location. The contributions of fluoridation to the enamel properties are different in the cervical and non-cervical regions and appear to be unique within primary and senior adult teeth. SIGNIFICANCE Based on the findings, unsupervised learning methods can reveal complicated non-linear structure-property relationships in tooth tissues and help to understand the materials science of aging and its consequences.
Collapse
Affiliation(s)
- W Yan
- Department of Materials Science and Engineering, University of Washington, United States
| | - C Renteria
- Department of Materials Science and Engineering, University of Washington, United States
| | - Y Huang
- Department of Materials Science and Engineering, University of Washington, United States
| | - Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington, United States; Department of Restorative Dentistry, School of Dentistry, University of Washington, United States; Department of Oral Health Sciences, School of Dentistry, University of Washington, United States.
| |
Collapse
|
19
|
Indermaur M, Casari D, Kochetkova T, Peruzzi C, Zimmermann E, Rauch F, Willie B, Michler J, Schwiedrzik J, Zysset P. Compressive Strength of Iliac Bone ECM Is Not Reduced in Osteogenesis Imperfecta and Increases With Mineralization. J Bone Miner Res 2021; 36:1364-1375. [PMID: 33740286 PMCID: PMC8359849 DOI: 10.1002/jbmr.4286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Osteogenesis imperfecta (OI) is an inheritable, genetic, and collagen-related disorder leading to an increase in bone fragility, but the origin of its "brittle behavior" is unclear. Because of its complex hierarchical structure, bone behaves differently at various length scales. This study aims to compare mechanical properties of human OI bone with healthy control bone at the extracellular matrix (ECM) level and to quantify the influence of the degree of mineralization. Degree of mineralization and mechanical properties were analyzed under dry conditions in 12 fixed and embedded transiliac crest biopsies (control n = 6, OI type I n = 3, OI type IV n = 2, and OI type III n = 1). Mean degree of mineralization was measured by microcomputed tomography at the biopsy level and the mineral-to-matrix ratio was assessed by Raman spectroscopy at the ECM level. Both methods revealed that the degree of mineralization is higher for OI bone compared with healthy control. Micropillar compression is a novel technique for quantifying post-yield properties of bone at the ECM level. Micropillars (d = 5 μm, h = 10 μm) were fabricated using focused ion beam milling and quasi-statically compressed to capture key post-yield properties such as ultimate strength. The qualitative inspection of the stress-strain curves showed that both OI and healthy control bone have a ductile response at the ECM level. The quantitative results showed that compressive strength is not reduced in OI bone and is increasing with OI severity. Nanoindentation measurements revealed that OI bone tends to have a higher Young's modulus, hardness, and dissipated energy compared with healthy bone. Micropillar strength and indentation modulus increased linearly and significantly (p < .0001) with mineral-to-matrix ratio. In conclusion, this study indicates that compressive mechanical properties of dry OI bone at the iliac crest are not inferior to healthy control at the ECM level and increase with mineralization. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Cinzia Peruzzi
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | | | - Frank Rauch
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Bettina Willie
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
20
|
Shelef Y, Uzan AY, Braunshtein O, Bar-On B. Assessing the Interfacial Dynamic Modulus of Biological Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3428. [PMID: 34205605 PMCID: PMC8234923 DOI: 10.3390/ma14123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
Biological composites (biocomposites) possess ultra-thin, irregular-shaped, energy dissipating interfacial regions that grant them crucial mechanical capabilities. Identifying the dynamic (viscoelastic) modulus of these interfacial regions is considered to be the key toward understanding the underlying structure-function relationships in various load-bearing biological materials including mollusk shells, arthropod cuticles, and plant parts. However, due to the submicron dimensions and the confined locations of these interfacial regions within the biocomposite, assessing their mechanical characteristics directly with experiments is nearly impossible. Here, we employ composite-mechanics modeling, analytical formulations, and numerical simulations to establish a theoretical framework that links the interfacial dynamic modulus of a biocomposite to the extrinsic characteristics of a larger-scale biocomposite segment. Accordingly, we introduce a methodology that enables back-calculating (via simple linear scaling) of the interfacial dynamic modulus of biocomposites from their far-field dynamic mechanical analysis. We demonstrate its usage on zigzag-shaped interfaces that are abundant in biocomposites. Our theoretical framework and methodological approach are applicable to the vast range of biocomposites in natural materials; its essence can be directly employed or generally adapted into analogous composite systems, such as architected nanocomposites, biomedical composites, and bioinspired materials.
Collapse
Affiliation(s)
- Yaniv Shelef
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.S.); (A.Y.U.); (O.B.)
| | - Avihai Yosef Uzan
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.S.); (A.Y.U.); (O.B.)
| | - Ofer Braunshtein
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.S.); (A.Y.U.); (O.B.)
- Nuclear Research Center-Negev, P.O. Box 9001, Beer-Sheva 84190, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (Y.S.); (A.Y.U.); (O.B.)
| |
Collapse
|
21
|
Blickhan R, Weihmann T, Barth FG. Measuring strain in the exoskeleton of spiders-virtues and caveats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:191-204. [PMID: 33459819 PMCID: PMC8046692 DOI: 10.1007/s00359-020-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
The measurement of cuticular strain during locomotion using foil strain gauges provides information both on the loads of the exoskeleton bears and the adaptive value of the specific location of natural strain detectors (slit sense organs). Here, we critically review available literature. In tethered animals, by applying loads to the metatarsus tip, strain and mechanical sensitivity (S = strain/load) induced at various sites in the tibia were determined. The loci of the lyriform organs close to the tibia-metatarsus joint did not stand out by high strain. The strains induced at various sites during free locomotion can be interpreted based on S and, beyond the joint region, on beam theory. Spiders avoided laterad loading of the tibia-metatarsus joint during slow locomotion. Balancing body weight, joint flexors caused compressive strain at the posterior and dorsal tibia. While climbing upside down strain measurements indicate strong flexor activity. In future studies, a precise calculation and quantitative determination of strain at the sites of the lyriform organs will profit from more detailed data on the overall strain distribution, morphology, and material properties. The values and caveats of the strain gauge technology, the only one applicable to freely moving spiders, are discussed.
Collapse
Affiliation(s)
- Reinhard Blickhan
- Science of Motion, Friedrich Schiller-University, Seidelstr. 20, 00749 Jena, Germany
| | - Tom Weihmann
- Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Friedrich G. Barth
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstr. 14, 1090 Wien, Austria
| |
Collapse
|
22
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
23
|
Ibrahim A, Magliulo N, Groben J, Padilla A, Akbik F, Abdel Hamid Z. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. J Funct Biomater 2020; 11:jfb11040085. [PMID: 33271801 PMCID: PMC7712352 DOI: 10.3390/jfb11040085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Bone is a nanocomposite material where the hard inorganic (hydroxyapatite crystallites) and organic (collagen fibrils) components are hierarchically arranged in the nanometer scale. Bone quality is dependent on the spatial distributions in the shape, size and composition of bone constituents (mineral, collagen and water). Bone hardness is an important property of bone, which includes both elastic and plastic deformation. In this study, a microhardness test was performed on a deer bone samples. The deer tibia shaft (diaphysis) was divided into several cross-sections of equal thickness; samples were prepared in untreated, boiled water treatment (100 °C for 30 min) and sodium hypochlorite (NaOCl) treatment conditions. Microhardness tests were performed on various regions of the tibial diaphysis to study the heterogeneous characteristics of bone microhardness and highlight the role of the organic matrix in bone hardness. The results indicated that boiled water treatment has a strong negative correlation with bone hardness. The untreated bone was significantly (+20%) harder than the boiled-water-treated bone. In general, the hardness values near the periosteal surface was significantly (23 to 45%) higher than the ones near the endosteal surface. Samples treated with NaOCl showed a significant reduction in hardness.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
- Correspondence:
| | - Nicole Magliulo
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - James Groben
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - Ashley Padilla
- Biology Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA;
| | - Firas Akbik
- Chemistry Department, Hofstra University, Hempstead, NY 11549, USA;
| | - Z. Abdel Hamid
- Central Metallurgical Research and Development Institute, Helwan 11421, Egypt;
| |
Collapse
|
24
|
Shelef Y, Bar-On B. Interfacial indentations in biological composites. J Mech Behav Biomed Mater 2020; 114:104209. [PMID: 33309000 DOI: 10.1016/j.jmbbm.2020.104209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Biocomposites comprise highly stiff reinforcement elements connected by a compliant matrix material. While the interfacial elastic properties of these biocomposites play a key role in determining the mechanical properties of the entire biocomposite, these properties cannot be measured directly from standard nanomechanical experiments. Developing a method for extracting the interfacial elastic properties in biocomposites is, therefore, a major objective of cutting-edge biomaterials science. Here, using mechanical modeling and Finite-Element simulations, we analyze the interfacial force-depth relationships, stress distribution, and indentation modulus of standard nanoindentation testing in biocomposites, and we establish an analytical framework that connects these results to the elastic properties of the underlying matrix and reinforcement components. The resulting analytical framework is general and holds for a broad range of biocomposites, thus enabling a deeper understanding of the mechanical characteristics of functional interfaces in various biomaterials. Moreover, this framework can be adapted to account for synthetic, microscale, and nanoscale composite materials, and thereby promotes the development of advanced interfacial configurations with specialized mechanical capabilities.
Collapse
Affiliation(s)
- Yaniv Shelef
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
25
|
Affiliation(s)
- Irit Rosenhek‐Goldian
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| | - Sidney R. Cohen
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| |
Collapse
|
26
|
Mekonnen TH, Behabtu N, Lenges C. Enzymatic polymerization derived engineered polysaccharides as reinforcing fillers of ethylene vinyl acetate composites. Carbohydr Polym 2020; 241:116252. [DOI: 10.1016/j.carbpol.2020.116252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
|
27
|
Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Mahmoud Halabi J, Al-Handawi MB, Li L. The Rise of the Dynamic Crystals. J Am Chem Soc 2020; 142:13256-13272. [DOI: 10.1021/jacs.0c05440] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Panče Naumov
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Radcliffe Institute for Advanced Study, Harvard University, 10 Garden Street, Cambridge, Massachusetts 02138, United States
| | | | - Ejaz Ahmed
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Luca Catalano
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jad Mahmoud Halabi
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | | | - Liang Li
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Nosrati H, Sarraf-Mamoory R, Le DQS, Ahmadi AH, Canillas Perez M, Bünger CE. Investigating the mechanical behavior of hydroxyapatite-reduced graphene oxide nanocomposite under different loading rates. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab98e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
In this study, the hydroxyapatite (HA)-reduced graphene oxide (rGO) nanocomposite was investigated for its mechanical properties. The nanocomposite used in this study was made in two stages. The HA-rGO powders were first synthesized by hydrogen gas injected hydrothermal method, and then consolidated by spark plasma sintering. HA-rGO nanocomposite was subjected to Vickers indentation experiments with different loading rates. Various analyzes have been used in this study, including x-rays diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, fast fourier transform, and inverse fast fourier transform. The findings of this study showed that the HA in this nanocomposite was reinforced with rGO sheets coated with HA. As the loading rate increased, the slope of the curves in the elastic region was increased, indicating that the elastic modulus was increased. Also, the contact depth at higher loading rates was increased. Plastic deformation was higher at higher loading rates and the hardness had increased. As the loading rate increased from 300 mN to 1 N, the hardness and elastic modulus increased with more slope than when the loading rate changed from 1 N to 2 N. The presence of rGO sheets had partially controlled the HA brittleness.
Collapse
|
29
|
Troncoso OP, Torres FG, Arroyo J, Gonzales KN, Fernández-García M, López D. Mechanical properties of calcite- and aragonite-based structures by nanoindentation tests. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nacre has been considered as one of the most important models for the development of hard bioinspired materials. This aragonite-based layered structure has been extensively studied because of its excellent mechanical properties, superior to those of monolithic aragonite. Calcite-based seashells have received less attention, as they display lower hardness and Young’s modulus. However, layered calcitic structures also have a superior fracture toughness value compared with monolithic calcite. In this paper, seashells of six species were studied by correlating the mechanical properties of the calcite- and aragonite-based layers with their mineral building blocks. Morphological studies revealed nacreous and fibrous prismatic microstructures for aragonite-based layers, whereas calcite-based layers have prismatic and foliated microstructures. The hardness and stiffness of the aragonitic structures were slightly higher than those of calcite. A toughening factor was calculated comparing the fracture toughness of the aragonitic and calcitic layers with the toughness of monolithic aragonite and calcite. The toughening factors of calcitic and aragonitic structures were in the same range (1.6–9.2).
Collapse
Affiliation(s)
- Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Junior Arroyo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
30
|
Rajabi H, Dirks JH, Gorb SN. Insect wing damage: causes, consequences and compensatory mechanisms. J Exp Biol 2020; 223:223/9/jeb215194. [DOI: 10.1242/jeb.215194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACT
The evolution of wings has played a key role in the success of insect species, allowing them to diversify to fill many niches. Insect wings are complex multifunctional structures, which not only have to withstand aerodynamic forces but also need to resist excessive stresses caused by accidental collisions. This Commentary provides a summary of the literature on damage-reducing morphological adaptations in wings, covering natural causes of wing collisions, their impact on the structural integrity of wings and associated consequences for both insect flight performance and life expectancy. Data from the literature and our own observations suggest that insects have evolved strategies that (i) reduce the likelihood of wing damage and (ii) allow them to cope with damage when it occurs: damage-related fractures are minimized because wings evolved to be damage tolerant and, in the case of wing damage, insects compensate for the reduced aerodynamic efficiency with dedicated changes in flight kinematics.
Collapse
Affiliation(s)
- Hamed Rajabi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Jan-Henning Dirks
- Biomimetics-Innovation-Centre, Hochschule Bremen–City University of Applied Sciences, 28199 Bremen, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
31
|
Kui H, Liu X, Liu J, Liang W, Zhang S, Qian Z, Ren L. The Passive Contact Stability of Blue Sheep Hoof Based on Structure, Mechanical Properties, and Surface Morphology. Front Bioeng Biotechnol 2020; 8:363. [PMID: 32426345 PMCID: PMC7212375 DOI: 10.3389/fbioe.2020.00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
As the only component that contacts the ground and rock, the hooves of blue sheep may play a crucial role in their excellent climbing abilities. In this study, we used a combination of techniques, including scanning electron microscopy, infrared spectroscopy and nanoindentation, to characterize the surface morphology, structure, material composition, and mechanical properties of blue sheep hoof and investigate the potential contributions of these properties to the establishment of passive contact stability. Straight and curled microscopic lamellar morphology were found on the hoof surfaces. The cross section of the hoof revealed four layers, and each layer had a unique structure. Finite element analysis was employed to verify that the surface morphology and microstructure effectively contributed to the slip resistance and impact cushioning, respectively. Analyses of the energy and infrared spectra showed that the organic and inorganic substances in different regions of the hoof had similar components but different contents of those components. The hoof was mainly composed of keratin. From the outside to the inside, gradients in both the modulus and hardness were observed. These factors help the hoof alleviate high impact strengths and increase contact stability. These findings further our understanding of the unique mechanism of blue sheep hoof and may help in the development of novel biomimetic materials and mechanical components with enhanced friction and contact stability properties.
Collapse
Affiliation(s)
- Hailin Kui
- College of Transportation, Jilin University, Changchun, China
| | - Xiangyu Liu
- College of Transportation, Jilin University, Changchun, China
| | - Jing Liu
- Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Wei Liang
- Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Jilin University, Changchun, China.,School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Lemanis R, Stier D, Zlotnikov I, Zaslansky P, Fuchs D. The role of mural mechanics on cephalopod palaeoecology. J R Soc Interface 2020; 17:20200009. [PMID: 32183639 DOI: 10.1098/rsif.2020.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cephalopods transformed the molluscan shell into a buoyancy device that must be strong enough to resist external water pressure. Historically, unique features of the shell have been interpreted on the basis that the strength of the shell presents a hard limit on maximum habitat depth. One such feature is the mural flap, which is a semi-prismatic layer deposited on the inner surface of some coleoid septa that has been suggested to strengthen the shell and permit colonization of deeper waters. We test this hypothesis by constructing finite-element models that show how mural modifications affect the response of the shell to hydrostatic pressure. The mural flaps are found to have no notable structural function. Another mural modification discovered here is the adapical ridge flap that initially seemed to have a potential function in shifting peak stress away from the attachment site of the septum; however, the irregular distribution of this feature casts any functional interpretation in doubt. Ecological separation of belemnites and decabrachians is likely not mediated by the presence/absence of mural flaps. This work illustrates a potential caveat that not all unique septal features formed in response to increasing hydrostatic pressure and deeper habitats.
Collapse
Affiliation(s)
- Robert Lemanis
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Deborah Stier
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Fuchs
- Bayerische Staatssammlung für Paläntologie und Geologie, Munich, Germany
| |
Collapse
|
33
|
Correlation between theoretical and experimental hardness, elastic modulus of discarded aluminium piston reinforced with zirconium diboride and snail shells. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Hou X, Yu H, Hou Z, Li J, Chen Y, Luo L, Chen X, Li W, Yang H, Zeng W. Structural and mechanical evolution of Tridacna gigas during permineralization. J Mech Behav Biomed Mater 2020; 103:103609. [PMID: 32090936 DOI: 10.1016/j.jmbbm.2019.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Mollusk shells have highly complex hierarchical structures and unique mechanical properties, which have been widely studied, especially in fresh shells. However, few studies have revealed differences in the structure-property correlations of shells during the permineralization process, which occurs after organism death. To better understand the effect of permineralization on the microstructure and mechanical properties of shells, this study investigated and compared the compositions, microstructures, and mechanical properties of Tridacna gigas and permineralized J-Tridacna gigas. The results showed that permineralized J-Tridacna gigas possessed coarsened aragonite minerals, less anisotropy and organic matter, and higher hardness and strength than Tridacna gigas. The toughening mechanisms of Tridacna gigas, including crack deflection, aragonite platelet pull-out, and mineral bridges, were discovered during Vickers hardness tests. Moreover, the permineralization mechanism comprised three main steps: organic matter dissolution, aragonite plate compaction, and recrystallization. This work further elaborates the permineralization mechanism, which can help increase the crystal size and improve the strength and hardness of materials. Moreover, this study provides valuable insights into the design of bioinspired advanced materials with outstanding hardness and strength.
Collapse
Affiliation(s)
- Xue Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Hui Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Zhenhao Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Jianbao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China.
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China.
| | - Lijie Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Xianzhi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China
| | - Wei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Huan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Life Sciences & Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science & Engineering, Hainan University, Haikou, 570228, China
| | - Wei Zeng
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, 22911, USA
| |
Collapse
|
35
|
Abstract
An analysis of compiled literature nanoindentation contact hardness (Hc) and elastic modulus (E) values of molecular crystals revealed a wide range of mechanical properties (0.001–1.80 GPa for Hc and 0.27–46.8 GPa for E).
Collapse
Affiliation(s)
- Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory
- Department of Pharmaceutics, College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory
- Department of Pharmaceutics, College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
36
|
Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate. Sci Rep 2019; 9:14721. [PMID: 31604977 PMCID: PMC6789151 DOI: 10.1038/s41598-019-51133-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
We demonstrate for the first time that the morphology and nanomechanical properties of calcium carbonate (CaCO3) can be tailored by modulating the precipitation kinetics of ureolytic microorganisms through genetic engineering. Many engineering applications employ microorganisms to produce CaCO3. However, control over bacterial calcite morphology and material properties has not been demonstrated. We hypothesized that microorganisms genetically engineered for low urease activity would achieve larger calcite crystals with higher moduli. We compared precipitation kinetics, morphology, and nanomechanical properties for biogenic CaCO3 produced by two Escherichia coli (E. coli) strains that were engineered to display either high or low urease activity and the native producer Sporosarcina pasteurii. While all three microorganisms produced calcite, lower urease activity was associated with both slower initial calcium depletion rate and increased average calcite crystal size. Both calcite crystal size and nanoindentation moduli were also significantly higher for the low-urease activity E. coli compared with the high-urease activity E. coli. The relative resistance to inelastic deformation, measured via the ratio of nanoindentation hardness to modulus, was similar across microorganisms. These findings may enable design of novel advanced engineering materials where modulus is tailored to the application while resistance to irreversible deformation is not compromised.
Collapse
|
37
|
Mechanical properties of stingray tesserae: High-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage. Acta Biomater 2019; 96:421-435. [PMID: 31254686 DOI: 10.1016/j.actbio.2019.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022]
Abstract
Skeletal tissues are built and shaped through complex, interacting active and passive processes. These spatial and temporal variabilities make interpreting growth mechanisms from morphology difficult, particularly in bone, where the remodeling process erases and rewrites local structural records of growth throughout life. In contrast to the majority of bony vertebrates, the elasmobranch fishes (sharks, rays, and their relatives) have skeletons made of cartilage, reinforced by an outer layer of mineralized tiles (tesserae), which are believed to grow only by deposition, without remodeling. We exploit this structural permanence, performing the first fine-scale correlation of structure and material properties in an elasmobranch skeleton. Our characterization across an age series of stingray tesserae allows unique insight into the growth processes and mechanical influences shaping the skeleton. Correlated quantitative backscattered electron imaging (qBEI) and nanoindentation measurements show a positive relationship between mineral density and tissue stiffness/hardness. Although tessellated cartilage as a whole (tesserae plus unmineralized cartilage) is considerably less dense than bone, we demonstrate that tesserae have exceptional local material properties, exceeding those of (mammal) bone and calcified cartilage. We show that the finescale ultrastructures recently described in tesserae have characteristic material properties suggesting distinct mechanical roles and that regions of high mineral density/stiffness in tesserae are confined predominantly to regions expected to bear high loads. In particular, tesseral spokes (laminated structures flanking joints) exhibit particularly high mineral densities and tissue material properties, more akin to teeth than bone or calcified cartilage. We conclude that these spokes toughen tesserae and reinforce points of contact between them. These toughening and reinforcing functions are supported by finite element simulations incorporating our material data. The high stresses predicted for spokes, and evidence we provide that new spoke laminae are deposited according to their local mechanical environment, suggest tessellated cartilage is both mutable and responsive, despite lacking remodeling capability. STATEMENT OF SIGNIFICANCE: The study of vertebrate skeletal materials is heavily biased toward mammal bone, despite evidence that bone and cartilage are extremely diverse. We broaden the perspective on vertebrate skeleton materials and evolution in an investigation of stingray tessellated cartilage, a curious type of unmineralized cartilage with a shell of mineralized tiles (tesserae). Combining high-resolution imaging and material testing, we demonstrate that tesserae have impressive local material properties for a vertebrate skeletal tissue, arguing for unique tissue organization relative to mammalian calcified cartilage and bone. Incorporating our materials data into mechanical models, we show that finescale material arrangements allow this cartilage to act as a functional and responsive alternative to bone, despite lacking bone's ability to remodel. These results are relevant to a diversity of researchers, from skeletal, developmental, and evolutionary biologists, to materials scientists interested in high-performance, low-density composites.
Collapse
|
38
|
Huang W, Yaraghi NA, Yang W, Velazquez-Olivera A, Li Z, Ritchie RO, Kisailus D, Stover SM, McKittrick J. A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomater 2019; 90:267-277. [PMID: 30951896 DOI: 10.1016/j.actbio.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 01/14/2023]
Abstract
The equine hoof has been considered as an efficient energy absorption layer that protects the skeletal elements from impact when galloping. In the present study, the hierarchical structure of a fresh equine hoof wall and the energy absorption mechanisms are investigated. Tubules are found embedded in the intertubular matrix forming the hoof wall at the microscale. Both tubules and intertubular areas consist of keratin cells, in which keratin crystalline intermediate filaments (IFs) and amorphous keratin fill the cytoskeletons. Cell sizes, shapes and IF fractions are different between tubular and intertubular regions. The structural differences between tubular and intertubular areas are correlated to the mechanical behavior of this material tested in dry, fresh and fully hydrated conditions. The stiffness and hardness in the tubule areas are higher than that in the intertubular areas in the dry and fresh samples when loaded along the hoof wall; however, once the samples are fully hydrated, the intertubular areas become stiffer than the tubular areas due to higher water absorption in these regions. The compression behavior of hoof in different loading speed and directions are also examined, with the isotropy and strain-rate dependence of mechanical properties documented. In the hoof walls, mechanistically the tubules serve as a reinforcement, which act to support the entire wall and prevent catastrophic failure under compression and impact loading. Elastic buckling and cracking of the tubules are observed after compression along the hoof wall, and no shear-banding or severe cracks are found in the intertubular areas even after 60% compression, indicating the highly efficient energy absorption properties, without failure, of the hoof wall structure. STATEMENT OF SIGNIFICANCE: The equine hoof wall is found to be an efficient energy absorbent natural polymer composite. Previous studies showed the microstructure and mechanical properties of the hoof wall in some perspective. However, the hierarchical structure of equine hoof wall from nano- to macro-scale as well as the energy absorption mechanisms at different strain rates and loading orientations remains unclear. The current study provides a thorough characterization of the hierarchical structure as well as the correlation between structure and mechanical behaviors. Energy dissipation mechanisms are also identified. The findings in the current research could provide inspirations on the designs of impact resistant and energy absorbent materials.
Collapse
Affiliation(s)
- Wei Huang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, United States
| | - Nicholas A Yaraghi
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, United States
| | - Wen Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, United States
| | - Alexis Velazquez-Olivera
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Zezhou Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, United States
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, United States
| | - David Kisailus
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, United States; Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Susan M Stover
- School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, United States; Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
39
|
Wei Y, Wang C, Jiang B, Sun CC, Middaugh CR. Developing Biologics Tablets: The Effects of Compression on the Structure and Stability of Bovine Serum Albumin and Lysozyme. Mol Pharm 2019; 16:1119-1131. [PMID: 30698973 DOI: 10.1021/acs.molpharmaceut.8b01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral administration is advantageous compared to the commonly used parenteral administration for local therapeutic uses of biologics or mucosal vaccines, since it can specifically target the gastrointestinal (GI) tract. It offers better patient compliance, even though the general use of such a delivery route is often limited by potential drug degradation in the GI tract and poor absorption. Using bovine serum albumin (BSA) and lysozyme as two model proteins, we studied their solid-state properties, mechanical properties, and tabletability as well as effects of compaction pressure, particle size, and humidity on protein degradation. It was found that BSA and lysozyme are highly hygroscopic, and their tablet manufacturability (powder caking, punch sticking, and tablet lamination) is sensitive to the humidity. BSA and lysozyme exhibited high plasticity and excellent tabletability and remained amorphous at high pressure and humidity. As for protein stability, lysozyme was resistant to high pressure (up to 300 MPa) and high humidity (up to 93%). In contrast, BSA underwent aggregation upon compression, an effect that was more pronounced for smaller BSA particles. High humidity accelerated the aggregation of BSA during incubation, but it did not further synergize with mechanical stress to induce protein degradation. Thus, compression can potentially induce protein aggregation, but this effect is protein-dependent. Therefore, strategies (e.g., the use of excipients, optimized manufacturing processes) to inhibit protein degradation should be explored before their tablet dosage form development.
Collapse
Affiliation(s)
- Yangjie Wei
- Department of Pharmaceutical Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Bowen Jiang
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| |
Collapse
|
40
|
Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation. ARCHITECTURED MATERIALS IN NATURE AND ENGINEERING 2019. [DOI: 10.1007/978-3-030-11942-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Tanimoto Y, Nagakura M. Effects of polishing on surface roughness and hardness of glass-fiber-reinforced polypropylene. Dent Mater J 2018; 37:1017-1022. [PMID: 30135340 DOI: 10.4012/dmj.2018-012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Removable partial dentures (RPDs) with resin-clasp retentive parts, which are known as non-metal-clasp dentures (NMCDs), have been used as alternatives for conventional RPDs with metal clasp, in case of aesthetic prosthodontic treatments. In this study, a profilometer and dynamic micro-indentation tests were used to investigate the effects of polishing on the surface properties such as surface roughness (Ra), dynamic hardness, and elastic modulus of high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) composed of E-glass fibers and polypropylene for NMCDs. The Ra values of the GFRTPs after polishing were significantly lower than those before polishing. The values were close to the Ra threshold level of 0.2, which corresponds to an acceptable surface smoothness for denture base materials. Polishing did not significantly change the dynamic hardnesses and elastic moduli of the GFRTPs. The fiber loading did not greatly affect the micromechanical properties of the GFRTPs because the glass-fiber reinforcement is embedded in the polypropylene matrix.
Collapse
Affiliation(s)
- Yasuhiro Tanimoto
- Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo
| | - Manamu Nagakura
- Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
42
|
Liu Z, Weng Z, Zhai ZF, Huang N, Zhang ZJ, Tan J, Jiang C, Jiao D, Tan G, Zhang J, Jiang X, Zhang Z, Ritchie RO. Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomater 2018; 81:267-277. [PMID: 30273740 DOI: 10.1016/j.actbio.2018.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
The tooth enamel of vertebrates comprises a hyper-mineralized bioceramic, but is distinguished by an exceptional durability to resist impact and wear throughout the lifetime of organisms; however, enamels exhibit a low resistance to the initiation of large-scale cracks comparable to that of geological minerals based on fracture mechanics. Here we reveal that the tooth enamel, specifically from the giant panda, is capable of developing durability through counteracting the early stage of damage by partially recovering its innate geometry and structure at nano- to micro- length-scales autonomously. Such an attribute results essentially from the unique architecture of tooth enamel, specifically the vertical alignment of nano-scale mineral fibers and micro-scale prisms within a water-responsive organic-rich matrix, and can lead to a decrease in the dimension of indent damage in enamel introduced by indentation. Hydration plays an effective role in promoting the recovery process and improving the indentation fracture toughness of enamel (by ∼73%), at a minor cost of micro-hardness (by ∼5%), as compared to the dehydrated state. The nano-scale mechanisms that are responsible for the recovery deformation, specifically the reorientation and rearrangement of mineral fragments and the inter- and intra-prismatic sliding between constituents that are closely related to the viscoelasticity of organic matrix, are examined and analyzed with respect to the structure of tooth enamel. Our study sheds new light on the strategies underlying Nature's design of durable ceramics which could be translated into man-made systems in developing high-performance ceramic materials. STATEMENT OF SIGNIFICANCE: Tooth enamel plays a critical role in the function of teeth by providing a hard surface layer to resist wear/impact throughout the lifetime of organisms; however, such enamel exhibits a remarkably low resistance to the initiation of large-scale cracks, of hundreds of micrometers or more, comparable to that of geological minerals. Here we reveal that tooth enamel, specifically that of the giant panda, is capable of partially recovering its geometry and structure to counteract the early stages of damage at nano- to micro-scale dimensions autonomously. Such an attribute results essentially from the architecture of enamel but is markedly enhanced by hydration. Our work discerns a series of mechanisms that lead to the deformation and recovery of enamel and identifies a unique source of durability in the enamel to accomplish this function. The ingenious design of tooth enamel may inspire the development of new durable ceramic materials in man-made systems.
Collapse
Affiliation(s)
- Zengqian Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zhaoyong Weng
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhao-Feng Zhai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Nan Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhen-Jun Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jun Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chuanbin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Da Jiao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guoqi Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; State Key Laboratory of Advanced Non-ferrous Materials, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Jiang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhefeng Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Tadayon M, Amini S, Wang Z, Miserez A. Biomechanical Design of the Mantis Shrimp Saddle: A Biomineralized Spring Used for Rapid Raptorial Strikes. iScience 2018; 8:271-282. [PMID: 30344051 PMCID: PMC6204534 DOI: 10.1016/j.isci.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/02/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022] Open
Abstract
Stomatopods deliver one of the fastest strikes in the animal kingdom using their powerful “dactyl clubs.” This kinematic performance is enabled by a power amplification device whereby elastic energy is stored in a saddle-shape mineralized bilayer structure. We combined a set of comprehensive micro-mechanical measurements with finite element modeling (FEM) to quantitatively elucidate the saddle biomechanical design. Dynamic nano-scale testing reveals that viscoelastic dissipation is minimized in the highly mineralized layer, whereas micro-bending experiments on miniature cantilevers highlight the critical role of the bilayer arrangement in optimizing storage of elastic energy. FEM shows that the saddle shape prevents stress concentration and the stresses remain well within the elastic range during loading, while the neutral surface coincides with the bilayer interface to prevent interfacial delamination. The study unveils the multi-scale design behind the intriguing ability of the saddle to store a high density of elastic energy using stiff but intrinsically brittle materials. Video Abstract
Mantis shrimp delivers one of the most powerful strikes in the animal kingdom During a strike, the elastic energy is stored in a saddle-shaped mineralized spring The saddle is a bilayer structure with optimized distribution of components The biomechanical design of the saddle ensures efficient storage of elastic energy
Collapse
Affiliation(s)
- Maryam Tadayon
- Biological and Biomimetic Materials Laboratory, School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore
| | - Shahrouz Amini
- Biological and Biomimetic Materials Laboratory, School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore
| | - Zhongke Wang
- Singapore Institute of Manufacturing Technology (SIMTECH), Agency for Science, Technology, and Research (A*Star), Singapore 638075, Singapore
| | - Ali Miserez
- Biological and Biomimetic Materials Laboratory, School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
44
|
Mu G, Duan F, Zhang G, Li X, Ding X, Zhang L. Microstructure and mechanical property of Ruditapes philippinarum shell. J Mech Behav Biomed Mater 2018; 85:209-217. [PMID: 29909145 DOI: 10.1016/j.jmbbm.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
In order to provide reference for the development of relevant dredging and processing machinery of the manila clam (Ruditapes philippinarum), the clam shell´s microstructure, phase composition, microhardness, nanoindentation hardness and elastic modulus were investigated, the quasi static compression and orthogonal compression tests of live clams were carried out as well. The shell consists of the outer, middle, and inner layer, which correspond with the composite prismatic structure, crossed-lamellar structure, and homogeneous structure, respectively. X-ray diffraction (XRD) results indicated that all the three layers are made up of pure aragonite phase, the outer layer of the shell displays greater intensity and more diffraction peaks than the middle and inner layer. The microhardness of the inner layer, ~ 3.00 GPa, is harder than the middle and outer layer. Both in the middle and outer layers, the microhardnesses of the vertical section perpendicular to the growth lines are obviously higher than that of the cross section parallel to the growth lines. The similar trend was observed in nanoindentation hardness (H) and elastic modulus (E), but the H/E ratios between three layers and two sections are close to 0.05. The quasi static compressive strengths of live clams with loading along the X (beak horizontal), Y (beak upward and umbo downward), and Z (beak vertical) orientations were tested, and the differences were identified. The lowest strength was found with loading orientation Z, the Weibull strength at 50% probabilities of fracture force is just 153 N. The results of the orthogonal compression tests demonstrated that the fracture force of clams varies from approximately 100 N to 400 N, the effect of the clams´ age on fracture force is more significant (p < 0.01) than loading orientation and loading speed. Therefore, the clams´ age and ultimate load of fracture should be taken into account during clam production mechanization, for the purpose of maintaining the clams´ integrity and survival prior to sale.
Collapse
Affiliation(s)
- Gang Mu
- School of Mechanical Engineering, Dalian University of Technology, Linggong Road 2, 116024 Dalian, China; School of Mechanical and Power Engineering, Dalian Ocean University, Heishijiao Street 52, 116023 Dalian, China; R&D Center of Fisheries Equipment and Engineering of Liaoning Province, Heishijiao Street 52, 116023 Dalian, China
| | - Fuhai Duan
- School of Mechanical Engineering, Dalian University of Technology, Linggong Road 2, 116024 Dalian, China.
| | - Guochen Zhang
- School of Mechanical and Power Engineering, Dalian Ocean University, Heishijiao Street 52, 116023 Dalian, China; R&D Center of Fisheries Equipment and Engineering of Liaoning Province, Heishijiao Street 52, 116023 Dalian, China
| | - Xiuchen Li
- School of Mechanical and Power Engineering, Dalian Ocean University, Heishijiao Street 52, 116023 Dalian, China; R&D Center of Fisheries Equipment and Engineering of Liaoning Province, Heishijiao Street 52, 116023 Dalian, China
| | - Xiaofei Ding
- School of Mechanical and Power Engineering, Dalian Ocean University, Heishijiao Street 52, 116023 Dalian, China; R&D Center of Fisheries Equipment and Engineering of Liaoning Province, Heishijiao Street 52, 116023 Dalian, China
| | - Lei Zhang
- School of Mechanical and Power Engineering, Dalian Ocean University, Heishijiao Street 52, 116023 Dalian, China
| |
Collapse
|
45
|
Seyedmahmoud R, McGuire JD, Wang Y, Thiagarajan G, Walker MP. The interrelationship of microstructure and hardness of human coronal dentin using reference point indentation technique and micro-Raman spectroscopy. Dent Mater 2017; 33:1069-1074. [PMID: 28751072 DOI: 10.1016/j.dental.2017.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this paper is to determine the interrelationship between the microstructure - in terms of chemical composition and crystallinity - to the microhardness of coronal dentin. METHODS Dentin microhardness was tested by a novel reference point indenter and compared to the traditional Knoop hardness method. Micro-Raman spectroscopy was used to determine the chemical composition and crystallinity of dentin. RESULTS From the occlusal groove to the border of the coronal pulp chamber, dentin hardness decreased from superficial dentin (SD) to deep dentin (DD). Mineral/organic matrix ratios (phosphate/CH and phosphate/amide I) also decreased from SD to DD; however, this change was significant (P<0.05) in the phosphate/amide I ratio only. The phosphate/carbonate ratio decreased significantly by varying position from SD to DD. The degree of the crystallinity, as measured by the full width at half maximum (FWHM) of the peak at 960cm-1, decreased significantly going from superficial to deep dentin. SIGNIFICANCE For the first time, the interrelationship between the microstructure and the mechanical properties of coronal dentin was determined by using the novel reference point indentation technique and micro-Raman spectroscopy. We hypothesize that the decrease in hardness from superficial to deep dentin can potentially be explained by decreased mineral content and increased carbonate content, which is also associated with decreased crystallinity. Collectively, there is a positive association between dentin hardness and mineral content and a negative association between dentin hardness and carbonate content.
Collapse
Affiliation(s)
- Rasoul Seyedmahmoud
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States
| | - Jacob D McGuire
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States; Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, MO, United States.
| | - Ganesh Thiagarajan
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, MO, United States
| | - Mary P Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States; Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, MO, United States.
| |
Collapse
|