1
|
Zhang L, Wang D, Zhang LZ, Yang WH, Yu C, Qin J, Feng LZ, Liu Z, Teng GJ. Pickering emulsion with tumor vascular destruction and microenvironment modulation for transarterial embolization therapy. Biomaterials 2025; 316:123018. [PMID: 39709852 DOI: 10.1016/j.biomaterials.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
In the clinic, Lipiodol chemotherapeutic emulsions remain a main choice for patients diagnosed with hepatocellular carcinoma (HCC) via the mini-invasive transarterial chemoembolization (TACE) therapy. However, the poor stability of conventional Lipiodol chemotherapeutic emulsions would result in the fast drug diffusion and incomplete embolization, inducing systemic toxicity and impairing the efficacy of TACE therapy. Therefore, it is of great importance to construct alternative formulations based on commercial Lipiodol to achieve the improved efficacy and safety of HCC treatment. Herein, calcium phosphate (CaP) nanoparticles-stabilized Lipiodol Pickering emulsion (CaP-LPE) with improved stability and pH-responsiveness is prepared and utilized for the encapsulation of combretastatin A4-phosphate (CA4P), a clinically approved vascular disrupting agent. The obtained CA4P-loaded CaP-LPE (CCaP-LPE) was shown to be enhanced stability compared to conventional Lipiodol emulsion and pH-responsive release of the encapsulated drugs. On one hand, the released CA4P could disrupt tumor vascular and cut off the blood supplying of tumor cells, thus starving cancer cells. Moreover, it was revealed that CCaP-LPE could reverse immunosuppressive tumor microenvironment (TME) by neutralizing tumor acidity, leading to the increased infiltration of CD8+ T cells and the decreased percentages of immunosuppressive cells. As the result, such CCaP-LPE could effectively shrink orthotopic N1S1 HCC tumors in rats by eliciting a potent antitumor immune response. Therefore, this study highlights a simple strategy to construct a novel LPE with the potencies of tumor vascular disruption and TME modulation, holding a great promise for TAE therapy of HCC.
Collapse
Affiliation(s)
- Lei Zhang
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Duo Wang
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Lin-Zhu Zhang
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Wei-Hao Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chao Yu
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Juan Qin
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Liang-Zhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Xia X, Li Y, Huang R, Wang Y, Xiong W, Zhou H, Li M, Lin X, Tang Y, Zhang B. A Lipiodol Pickering Emulsion Stabilized by Iron-Doped Carbon Nanozymes for Liver Transarterial Chemoembolization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410873. [PMID: 39656891 PMCID: PMC11791992 DOI: 10.1002/advs.202410873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Transarterial chemoembolization (TACE) utilizing a water-in-oil lipiodol emulsion is a preferable therapeutic strategy for advanced liver cancer in clinical practice. However, the low stability of the lipiodol emulsion and poor efficacy of chemotherapeutic drug seriously undermine the efficiency of TACE. Herein, a novel lobaplatin-loaded lipiodol emulsion (denoted as ICN-LPE) is developed by constructing a lipiodol Pickering emulsion (LPE) stabilized with iron-doped carbon nanozymes (ICN) to mitigate the issue of lipiodol-water separation. This novel emulsion not only solves the instability of conventional lipiodol emulsions, but also facilitates the sustained release of lobaplatin. More importantly, upon entry into tumor cells, ICN catalyze the generation of reactive oxygen species via the Fenton-like reaction while simultaneously consuming intracellular glutathione, thereby inducing tumor cell death via chemodynamic therapy. By integrating chemotherapy and chemodynamic therapy, ICN-LPE demonstrates a synergistic antitumor effect and effectively inhibits tumor growth in a rabbit liver tumor model. Therefore, our ICN-LPE shows an appealing clinical application prospect for TACE.
Collapse
Affiliation(s)
- Xiancheng Xia
- Department of Interventional CenterBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510655P. R. China
| | - Yang Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510655P. R. China
| | - Yuanbin Wang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510655P. R. China
| | - Wenxuan Xiong
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510655P. R. China
| | - Hui Zhou
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Min Li
- Department of Gastrointestinal SurgeryThe Affiliated Dongguan Songshan Lake Central HospitalGuangdong Medical UniversityDongguan523326P. R. China
| | - Xidong Lin
- Future Technology SchoolShenzhen Technology UniversityShenzhen518118P. R. China
| | - Youchen Tang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Bo Zhang
- Department of Interventional CenterBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
3
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Li Z, Huang M, Li Y, Wang Y, Ma Y, Ma L, Jiang H, Ngai T, Tang J, Guo Q. Emulsion-Based Multi-Phase Integrated Microbeads with Inner Multi-Interface Structure Enable Dual-Modal Imaging for Precision Endovascular Embolization. Adv Healthc Mater 2024; 13:e2400281. [PMID: 39081117 DOI: 10.1002/adhm.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/16/2024] [Indexed: 10/30/2024]
Abstract
Microsphere-based embolic agents have gained prominence in transarterial embolization (TAE) treatment, a critical minimally invasive therapy widely applied for a variety of diseases such as hypervascular tumors and acute bleeding. However, the development of microspheres with long-term, real-time, and repeated X-ray imaging as well as ultrasound imaging remains challenging. In this study, emulsion-based dual-modal imaging microbeads with a unique internal multi-interface structure is developed for TAE treatment. The embolic microbeads are fabricated from a solidified oil-in-water (O/W) emulsion composed of crosslinked CaAlg-based aqueous matrix and dispersed radiopaque iodinated oil (IO) droplets through a droplet-based microfluidic fabrication method. The CaAlg-IO microbeads exhibit superior X-ray imaging visibility due to the incorporation of exceptionally high iodine level up to 221 mgI mL-1, excellent ultrasound imaging capability attributed to the multi-interface structure of the O/W emulsion, great microcatheter deliverability thanks to their appropriate biomechanical properties and optimal microbead density, and extended drug release behavior owing to the biodegradation nature of the embolics. Such an embolic agent presents a promising emulsion-based platform to utilize multi-phased structures for improving endovascular embolization performance and assessment capabilities.
Collapse
Affiliation(s)
- Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Man Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yingnan Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongchao Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - To Ngai
- Department of Chemistry, Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, P. R. China
| | - Jianbo Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Liu M, Sun Y, Zhou Y, Chen Y, Yu M, Li L, Yan L, Yuan Y, Chen J, Zhou K, Shan H, Peng X. A Novel Coacervate Embolic Agent for Tumor Chemoembolization. Adv Healthc Mater 2024; 13:e2304488. [PMID: 38588047 DOI: 10.1002/adhm.202304488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Transcatheter arterial chemoembolization (TACE) has proven effective in blocking tumor-supplied arteries and delivering localized chemotherapeutic treatment to combat tumors. However, traditional embolic TACE agents exhibit certain limitations, including insufficient chemotherapeutic drug-loading and sustained-release capabilities, non-biodegradability, susceptibility to aggregation, and unstable mechanical properties. This study introduces a novel approach to address these shortcomings by utilizing a complex coacervate as a liquid embolic agent for tumor chemoembolization. By mixing oppositely charged quaternized chitosan (QCS) and gum arabic (GA), a QCS/GA polymer complex coacervate with shear-thinning property is obtained. Furthermore, the incorporation of the contrast agent Iohexol (I) and the chemotherapeutic doxorubicin (DOX) into the coacervate leads to the development of an X-ray-opaque QCS/GA/I/DOX coacervate embolic agent capable of carrying drugs. This innovative formulation effectively embolizes the renal arteries without recanalization. More importantly, the QCS/GA/I/DOX coacervate can successfully embolize the supplying arteries of the VX2 tumors in rabbit ear and liver. Coacervates can locally release DOX to enhance its therapeutic effects, resulting in excellent antitumor efficacy. This coacervate embolic agent exhibits substantial potential for tumor chemoembolization due to its shear-thinning performance, excellent drug-loading and sustained-release capabilities, good biocompatibility, thrombogenicity, biodegradability, safe and effective embolic performance, and user-friendly application.
Collapse
Affiliation(s)
- Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yang Sun
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitong Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Meng Yu
- Department of Neonatology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Leye Yan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yajun Yuan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiayao Chen
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
6
|
Li Z, Liu X, Xiao J, Jiang H, Ma L, Luo Y, Wang M, Zhu Y, Jiang H, Yao H, Ngai T, Guo Q. Ultrastable Iodinated Oil-Based Pickering Emulsion Enables Locoregional Sustained Codelivery of Hypoxia Inducible Factor-1 Inhibitor and Anticancer Drugs for Tumor Combination Chemotherapy. ACS Biomater Sci Eng 2024; 10:2270-2281. [PMID: 38536862 DOI: 10.1021/acsbiomaterials.3c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tumor hypoxia-associated drug resistance presents a major challenge for cancer chemotherapy. However, sustained delivery systems with a high loading capability of hypoxia-inducible factor-1 (HIF-1) inhibitors are still limited. Here, we developed an ultrastable iodinated oil-based Pickering emulsion (PE) to achieve locally sustained codelivery of a HIF-1 inhibitor of acriflavine and an anticancer drug of doxorubicin for tumor synergistic chemotherapy. The PE exhibited facile injectability for intratumoral administration, great radiopacity for in vivo examination, excellent physical stability (>1 mo), and long-term sustained release capability of both hydrophilic drugs (i.e., acriflavine and doxorubicin). We found that the codelivery of acriflavine and doxorubicin from the PE promoted the local accumulation and retention of both drugs using an acellular liver organ model and demonstrated significant inhibition of tumor growth in a 4T1 tumor-bearing mouse model, improving the chemotherapeutic efficacy through the synergistic effects of direct cytotoxicity with the functional suppression of HIF-1 pathways of tumor cells. Such an iodinated oil-based PE provides a great injectable sustained delivery platform of hydrophilic drugs for locoregional chemotherapy.
Collapse
Affiliation(s)
- Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, PR China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanyang Yao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, PR China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Wang M, Gao Y, Liu X, Li Z, Xiao J, Gao X, Gibson MI, Guo Q. Cirrhotic hepatocellular carcinoma-based decellularized liver cancer model for local chemoembolization evaluation. Acta Biomater 2024; 176:144-155. [PMID: 38244660 DOI: 10.1016/j.actbio.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Transarterial chemoembolization (TACE) is a common treatment for unresectable intermediate stage hepatocellular carcinoma (HCC) and involves the combination of chemotherapy agents and embolic materials to target and block the blood supply to the tumor, leading to localized treatment. However, the selection of clinical chemoembolization agents remains limited, and the effectiveness of various agents is still under investigation. Meanwhile, replicating the complex vasculature and extracellular matrix (ECM) circumstances of HCC in in vitro models for evaluating embolic agents proves to be challenging. Herein, we developed a decellularized cancerous liver model with translucent appearance, a complicated hepatic vascular system and tissue-specific ECM for the evaluation of embolic agents. Inkpad oil and microparticles were used to illustrate different systems of vascular structures between healthy and HCC rats' livers. Quantitative analysis with AngioTool revealed significant differences in vessel density and lacunarity between the two groups. Proteomics showed higher secretion of collagens in the HCC rat liver models than in healthy livers. Utilizing this in vitro model, we investigated the impact of tumor-specific vascular structure and ECM composition on chemoembolization performance, the two key factors inaccessible by currently available drug release testing platforms. Our findings revealed that the presence of an aberrant vascular system and the distorted ECM within the model led to drug retention. This preclinical model holds great promise as a valuable tool for evaluating embolic agents and studying their performance in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: Transarterial chemoembolization (TACE), which employs drug-eluting embolic agents to obstruct the tumor-feeding vessels while locally releasing chemotherapeutic drugs into the tumor, has become the first-line treatment of unresectable liver cancer over past two decades. Nevertheless, the advancement of effective drug-eluting embolic agents has been retarded due to the lack of appropriate in vitro models for assessing the local embolization and chemotherapy performances in TACE. Here we developed a cirrhotic hepatocellular carcinoma-based decellularized liver cancer model, which preserves the aberrant vasculatures and tumor-specific extracellular matrix of liver cancer, for TACE evaluation. This model incorporates a blood flow simulation component to assess the dynamics of drug release behaviors of chemoembolic agents within tumor-mimicking conditions, more accurately replicating the in vivo environment for the locoregional assessments as compared to conventional in vitro models.
Collapse
Affiliation(s)
- Meijuan Wang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Xiaoya Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhihua Li
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I Gibson
- Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Qiongyu Guo
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Wang C, Zhang L, Yang Z, Zhao D, Deng Z, Xu J, Wu Y, Hao Y, Dong Z, Feng L, Liu Z. Self-fueling ferroptosis-inducing microreactors based on pH-responsive Lipiodol Pickering emulsions enable transarterial ferro-embolization therapy. Natl Sci Rev 2024; 11:nwad257. [PMID: 38116090 PMCID: PMC10727844 DOI: 10.1093/nsr/nwad257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 12/21/2023] Open
Abstract
Lipiodol chemotherapeutic emulsions remain one of the main choices for the treatment of unresectable hepatocellular carcinoma (HCC) via transarterial chemoembolization (TACE). However, the limited stability of Lipiodol chemotherapeutic emulsions would lead to rapid drug diffusion, which would reduce the therapeutic benefit and cause systemic toxicity of administrated chemotherapeutics. Therefore, the development of enhanced Lipiodol-based formulations is of great significance to enable effective and safe TACE treatment. Herein, a stable water-in-oil Lipiodol Pickering emulsion (LPE) stabilized by pH-dissociable calcium carbonate nanoparticles and hemin is prepared and utilized for efficient encapsulation of lipoxygenase (LOX). The obtained LOX-loaded CaCO3&hemin-stabilized LPE (LHCa-LPE) showing greatly improved emulsion stability could work as a pH-responsive and self-fueling microreactor to convert polyunsaturated fatty acids (PUFAs), a main component of Lipiodol, to cytotoxic lipid radicals through the cascading catalytic reaction driven by LOX and hemin, thus inducing ferroptosis of cancer cells. As a result, such LHCa-LPE upon transcatheter embolization can effectively suppress the progression of orthotopic N1S1 HCC in rats. This study highlights a concise strategy to prepare pH-responsive and stable LPE-based self-fueling microreactors, which could serve as bifunctional embolic and ferroptosis-inducing agents to enable proof-of-concept transarterial ferro-embolization therapy of HCC.
Collapse
Affiliation(s)
- Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zheng Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yumin Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
10
|
Tao S, Lin B, Zhou H, Sha S, Hao X, Wang X, Chen J, Zhang Y, Pan J, Xu J, Zeng J, Wang Y, He X, Huang J, Zhao W, Fan JB. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat Commun 2023; 14:5575. [PMID: 37696820 PMCID: PMC10495453 DOI: 10.1038/s41467-023-41322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.
Collapse
Affiliation(s)
- Sijian Tao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Suinan Sha
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jianping Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China.
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, P. R. China.
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China.
| | - Jun-Bing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
11
|
Zhang Q, Zhao Q, Zhu B, Chen R, Zhou Y, Pei X, Zhou H, An H, Tan Y, Chen C. Acetalized starch-based nanoparticles stabilized acid-sensitive Pickering emulsion as a potential antitumor drug carrier. Int J Biol Macromol 2023:125393. [PMID: 37331543 DOI: 10.1016/j.ijbiomac.2023.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Pickering emulsions are attracting increased attention owing to their therapeutic applications. However, the slow-release property of Pickering emulsions and the in vivo solid particle accumulation caused by the solid particle stabilizer film limit their applications in therapeutic delivery. In this study, drug-loaded, acid-sensitive Pickering emulsions were prepared using acetal-modified starch-based nanoparticles as stabilizers. The acetalized starch-based nanoparticles (Ace-SNPs) not only act as a solid-particle emulsifier to stabilize Pickering emulsions but also exhibit acid sensitivity and degradability, conducive to the destabilization of Pickering emulsions to release the drug and reduce the effect of particle accumulation in an acidic therapeutic environment. In vitro drug release profiles show that 50 % of curcumin was released in 12 h in an acidic medium (pH 5.4), whereas only 14 % of curcumin was released in 12 h at higher pH (7.4), indicating that the Ace-SNP stabilized Pickering emulsion possess good acid-responsive release characteristics in acidic environments. Moreover, acetalized starch-based nanoparticles and their degradation products showed good biocompatibility, and the resulting curcumin-loaded Pickering emulsions exhibited significant anticancer activity. These features suggest that the acetalized starch-based nanoparticle-stabilized Pickering emulsion has the potential for application as an antitumor drug carrier to enhance therapeutic effects.
Collapse
Affiliation(s)
- Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qifan Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Rong Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yating Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiaopeng Pei
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Huiyong An
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chengshui Chen
- Department of Puelmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China; Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
12
|
Liu X, Wang X, Luo Y, Wang M, Chen Z, Han X, Zhou S, Wang J, Kong J, Yu H, Wang X, Tang X, Guo Q. A 3D Tumor-Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learning-Based Quantitative Analyses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206195. [PMID: 36793129 PMCID: PMC10104640 DOI: 10.1002/advs.202206195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Primary liver cancer, with the predominant form as hepatocellular carcinoma (HCC), remains a worldwide health problem due to its aggressive and lethal nature. Transarterial chemoembolization, the first-line treatment option of unresectable HCC that employs drug-loaded embolic agents to occlude tumor-feeding arteries and concomitantly delivers chemotherapeutic drugs into the tumor, is still under fierce debate in terms of the treatment parameters. The models that can produce in-depth knowledge of the overall intratumoral drug release behavior are lacking. This study engineers a 3D tumor-mimicking drug release model, which successfully overcomes the substantial limitations of conventional in vitro models through utilizing decellularized liver organ as a drug-testing platform that uniquely incorporates three key features, i.e., complex vasculature systems, drug-diffusible electronegative extracellular matrix, and controlled drug depletion. This drug release model combining with deep learning-based computational analyses for the first time permits quantitative evaluation of all important parameters associated with locoregional drug release, including endovascular embolization distribution, intravascular drug retention, and extravascular drug diffusion, and establishes long-term in vitro-in vivo correlations with in-human results up to 80 d. This model offers a versatile platform incorporating both tumor-specific drug diffusion and elimination settings for quantitative evaluation of spatiotemporal drug release kinetics within solid tumors.
Collapse
Affiliation(s)
- Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Department of PharmacyShenzhen Children's HospitalShenzhenGuangdong518026P. R. China
| | - Xueying Wang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Xiaoyu Han
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Sijia Zhou
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Jiahao Wang
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| | - Jian Kong
- Department of Interventional RadiologyFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhen People's HospitalShenzhenGuangdong518020P. R. China
| | - Hanry Yu
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
- Department of PhysiologyInstitute of Digital Medicineand Mechanobiology InstituteNational University of SingaporeSingapore117593Singapore
| | - Xiaobo Wang
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Xiaoying Tang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Jiaxing Research InstituteSouthern University of Science and TechnologyJiaxingZhejiang314000P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
13
|
Beladjine M, Albert C, Sintès M, Mekhloufi G, Gueutin C, Nicolas V, Canette A, Trichet M, Tsapis N, Michel L, Agnely F, Huang N. Pickering Emulsions Stabilized With Biodegradable Nanoparticles For The Co-Encapsulation Of Two Active Pharmaceutical Ingredients. Int J Pharm 2023; 637:122870. [PMID: 36948471 DOI: 10.1016/j.ijpharm.2023.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Innovative Pickering emulsions co-encapsulating two active pharmaceutical ingredients (API) were formulated for a topical use. An immunosuppressive agent, either cyclosporine A (CysA) or tacrolimus (TAC), was encapsulated at high drug loading in biodegradable and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). These NP stabilized the oil droplets (Miglyol) containing an anti-inflammatory drug, calcitriol (CAL). The influence of the API on the physico-chemical properties of these emulsions were studied. Emulsions formulated with or without API had a similar macroscopic and microscopic structure, as well as interfacial properties, and they exhibited a good stability for at least 55 days. The emulsions did not alter the viability of human keratinocytes (HaCaT cell line) after 2 and 5 days of exposure to NP concentrations equivalent to efficient API dosages. Thus, these new Pickering emulsions appear as a promising multidrug delivery system for the treatment of chronical inflammatory skin diseases.
Collapse
Affiliation(s)
- Mohamed Beladjine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Claire Albert
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Maxime Sintès
- Université Paris-Cité, Inserm, UMR-S 976 HIPI, Service de Dermatologie, Hôpital Saint Louis, 75010, Paris, France
| | - Ghozlene Mekhloufi
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Claire Gueutin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Valérie Nicolas
- Université Paris-Saclay, SFR-UMS-IPSIT, Plateforme d'imagerie cellulaire MIPSIT, 91400, Orsay, France
| | - Alexis Canette
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de microscopie électronique (IBPS-SME), F-75005, Paris
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de microscopie électronique (IBPS-SME), F-75005, Paris
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laurence Michel
- Université Paris-Cité, Inserm, UMR-S 976 HIPI, Service de Dermatologie, Hôpital Saint Louis, 75010, Paris, France
| | - Florence Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Nicolas Huang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
14
|
Yuan G, Xu Y, Bai X, Wang W, Wu X, Chen J, Li J, Jia X, Gu Z, Zhang X, Hu W, Wang J, Liu Y, Zhu XM. Autophagy-Targeted Calcium Phosphate Nanoparticles Enable Transarterial Chemoembolization for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11431-11443. [PMID: 36848495 DOI: 10.1021/acsami.2c18267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transarterial chemoembolization (TACE) is commonly used for treating advanced hepatocellular carcinoma (HCC). However, the instability of lipiodol-drug emulsion and the altered tumor microenvironment (TME, such as hypoxia-induced autophagy) postembolization are responsible for the unsatisfactory therapeutic outcomes. Herein, pH-responsive poly(acrylic acid)/calcium phosphate nanoparticles (PAA/CaP NPs) were synthesized and used as the carrier of epirubicin (EPI) to enhance the efficacy of TACE therapy through autophagy inhibition. PAA/CaP NPs have a high loading capacity of EPI and a sensitive drug release behavior under acidic conditions. Moreover, PAA/CaP NPs block autophagy through the dramatic increase of intracellular Ca2+ content, which synergistically enhances the toxicity of EPI. TACE with EPI-loaded PAA/CaP NPs dispersed in lipiodol shows an obvious enhanced therapeutic outcome compared to the treatment with EPI-lipiodol emulsion in an orthotopic rabbit liver cancer model. This study not only develops a new delivery system for TACE but also provides a promising strategy targeting autophagy inhibition to improve the therapeutic effect of TACE for the HCC treatment.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Yanneng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jianli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xiaohui Jia
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Zeyun Gu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xun Zhang
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Wei Hu
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
15
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Deng Y, Zhu C, Fu T, Ma Y. Coalescence dynamics of nanofluid droplets in T-junction microchannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Wei C, Wu C, Jin X, Yin P, Yu X, Wang C, Zhang W. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization. Acta Biomater 2022; 153:453-464. [PMID: 36167241 DOI: 10.1016/j.actbio.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
The embolic microspheres containing magnetic nanoparticles and anti-tumor drugs have been proposed for transcatheter arterial chemoembolization (TACE). However, this technique still suffers the poor control of hyperthermia temperature and drug release behavior. Herein, the magnetic microspheres based on low Curie temperature superparamagnetic iron oxide nanoparticles are developed by emulsification cross-linking of gelatin, genipin, and sodium alginate. The magnetic microspheres can self-regulate the hyperthermia temperature at around 50°C, un-necessitating any temperature control facilities. The magnetic microspheres can load doxorubicin hydrochloride and the loaded drug can be released in a controllable way by using an alternating magnetic field. Cytocompatibility and hemolysis evaluations confirm the non-cytotoxicity and negligible hemolysis of magnetic microspheres. The embolization model on rabbit auricular artery demonstrates that the magnetic microspheres can occlude the targeted blood vessel and are visualized under CT/MR imaging. All these findings suggest that the prepared magnetic microspheres could be used as the embolic agent in TACE. STATEMENT OF SIGNIFICANCE: The existing magnetic embolic microspheres suffer the poor control of hyperthermia temperature and drug release behavior in TACE. In this work, we developed the magnetic embolic microspheres based on superparamagnetic iron oxide nanoparticles with a low Curie temperature. Upon the application of alternating magnetic field, the embolic microspheres can self-regulate the hyperthermia temperature at around 50°C and the drug loaded in the microspheres can be released in a somewhat controllable manner. The embolic microspheres are also detectable to both CT and MR. These characteristics enable the developed microspheres to simultaneously realize self-regulating temperature hyperthermia, on-demand drug release, embolism, and CT/MR imaging.
Collapse
Affiliation(s)
- Chengxiong Wei
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xin Jin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Peinan Yin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xiaogang Yu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chao Wang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Liu J, Zhang L, Zhao D, Yue S, Sun H, Ni C, Zhong Z. Polymersome-stabilized doxorubicin-lipiodol emulsions for high-efficacy chemoembolization therapy. J Control Release 2022; 350:122-131. [PMID: 35973474 DOI: 10.1016/j.jconrel.2022.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Transarterial chemoembolization (TACE) with free doxorubicin-lipiodol emulsions (free DOX/L) is a favored clinical treatment for advanced hepatocellular carcinoma (HCC) patients ineligible for radical therapies; however, its inferior colloidal stability not only greatly reduces its tumor retention but also hastens drug release into blood circulation, leading to suboptimal clinical outcomes. Here, we find that disulfide-crosslinked polymersomes carrying doxorubicin (Ps-DOX) form super-stable and homogenous water-in-oil microemulsions with lipiodol (Ps-DOX/L). Ps-DOX/L microemulsions had tunable sizes ranging from 14 to 44 μm depending on the amount of Ps-DOX, were stable over 2 months storage as well as centrifugation, and exhibited nearly zero-order DOX release within 15 days. Of note, Ps-DOX induced 2.3-13.4 fold better inhibitory activity in all tested rat, murine and human liver tumor cells than free DOX likely due to its efficient redox-triggered intracellular drug release. Interestingly, transarterial administration of Ps-DOX/L microemulsions in orthotopic rat N1S1 syngeneic HCC model showed minimal systemic DOX exposure, high and long hepatic DOX retention, complete tumor elimination, effective inhibition of angiogenesis, and depleted adverse effects, significantly outperforming clinically used free DOX/L emulsions. This smart polymersome stabilization of doxorubicin-lipiodol microemulsions provides a novel TACE strategy for advanced tumors.
Collapse
Affiliation(s)
- Jingyi Liu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China
| | - Shujing Yue
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
19
|
Lin C, Pan P, Shan G, Du M. Microstructurally tunable pickering emulsions stabilized by poly(ethylene glycol)-b-poly(ε-caprolactone) diblock biodegradable copolymer micelles with predesigned polymer architecture. Food Chem 2022; 374:131827. [PMID: 35021583 DOI: 10.1016/j.foodchem.2021.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
Poly(ethylene glycol)-b-poly(ε-caprolactone) diblock copolymers (PEG-b-PCL) with predesigned hydrophilic/hydrophobic block length ratios have been synthesized and self-assembled to form micelles, then used to emulsify medium-chain triglycerides with an aqueous phase. The morphologies and sizes of PEG-b-PCL copolymer micelles have been characterized by transmission electron microscopy and dynamic light scattering. Interfacial tension testing between micellar dispersions and oil, combined with water contact angle measurements, have been performed to assess the ability of these micelles to adjust interfacial tension and micellar hydrophobicity, respectively. Relationship between the wettability of PEG-b-PCL copolymer micelles and their emulsification properties has been proved through phase diagram, optical microscopic observation, droplet sizes evolution and phase separation behavior of Pickering emulsion samples. Results show that both oil-in-water and water-in-oil Pickering emulsions, as well as water-in-oil-in-water (W/O/W) double-Pickering emulsions, may be controllably prepared through one-step homogenization. Double microstructure of W/O/W Pickering emulsion has proved to be extremely stable during long-term storage.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| | - Miao Du
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Gao X, Chen Z, Chen Z, Liu X, Luo Y, Xiao J, Gao Y, Ma Y, Liu C, Leo HL, Yu H, Guo Q. Visualization and Evaluation of Chemoembolization on a 3D Decellularized Organ Scaffold. ACS Biomater Sci Eng 2021; 7:5642-5653. [PMID: 34735119 DOI: 10.1021/acsbiomaterials.1c01005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transarterial chemoembolization (TACE) has emerged as the mainstay treatment for patients suffering from unresectable intermediate hepatocellular carcinoma and also holds the potential to treat other types of hypervascular cancers such as renal cell carcinoma. However, an in vitro model for evaluating both embolic performance and drug-release kinetics of the TACE embolic agents is still lacking since the current models greatly simplified the in vivo vascular systems as well as the extracellular matrices (ECM) in the organs. Here, we developed a decellularized organ model with preserved ECM and vasculatures as well as a translucent appearance to investigate chemoembolization performances of a clinically widely used embolic agent, i.e., a doxorubicin-loaded ethiodised oil (EO)-based emulsion. We, for the first time, utilized an ex vivo model to evaluate the liquid-based embolic agent in two organs, i.e., liver and kidneys. We found that the EO-based emulsion with enhanced stability by incorporating an emulsifier, i.e., hydrogenated castor oil-40 (HCO), showed an enhanced occlusion level and presented sustained drug release in the ex vivo liver model, suggesting an advantageous therapeutic effect for TACE treatment of hepatocellular carcinoma. In contrast, we observed that drug-release burst happened when applying the same therapy in the kidney model even with the HCO emulsifier, which may be explained by the presence of the specific renal vasculature and calyceal systems, indicating an unfavorable effect in the renal tumor treatment. Such an ex vivo model presents a promising template for chemoembolization evaluation before in vivo experiments for the development of novel embolic agents.
Collapse
Affiliation(s)
- Xu Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, 117583 Singapore
| | - Zhengchang Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuang Liu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, 117583 Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, 117411 Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, 138669 Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593 Singapore.,Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Boas FE, Kemeny NE, Sofocleous CT, Yeh R, Thompson VR, Hsu M, Moskowitz CS, Ziv E, Yarmohammadi H, Bendet A, Solomon SB. Bronchial or Pulmonary Artery Chemoembolization for Unresectable and Unablatable Lung Metastases: A Phase I Clinical Trial. Radiology 2021; 301:474-484. [PMID: 34463550 DOI: 10.1148/radiol.2021210213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Lung chemoembolization is an emerging treatment option for lung tumors, but the optimal embolic, drug, and technique are unknown. Purpose To determine the technical success rate and safety of bronchial or pulmonary artery chemoembolization of lung metastases using ethiodized oil, mitomycin, and microspheres. Materials and Methods Patients with unresectable and unablatable lung, endobronchial, or mediastinal metastases, who failed systemic chemotherapy, were enrolled in this prospective, single-center, single-arm, phase I clinical trial (December 2019-September 2020). Pulmonary and bronchial angiography was performed to determine the blood supply to the lung metastases. Based on the angiographic findings, bronchial or pulmonary artery chemoembolization was performed using an ethiodized oil and mitomycin emulsion, followed by microspheres. The primary objectives were technical success rate and safety, according to the National Cancer Institute Common Terminology Criteria for Adverse Events. CIs of proportions were estimated with the equal-tailed Jeffreys prior interval, and correlations were evaluated with the Spearman test. Results Ten participants (median age, 60 years; interquartile range, 52-70 years; six women) were evaluated. Nine of the 10 participants (90%) had lung metastases supplied by the bronchial artery, and one of the 10 participants (10%) had lung metastases supplied by the pulmonary artery. The technical success rate of intratumoral drug delivery was 10 of 10 (100%) (95% CI: 78, 100). There were no severe adverse events (95% CI: 0, 22). The response rate of treated tumors was one of 10 (10%) according to the Response Evaluation Criteria in Solid Tumors and four of 10 (40%) according to the PET Response Criteria in Solid Tumors. Ethiodized oil retention at 4-6 weeks was correlated with reduced tumor size (ρ = -0.83, P = .003) and metabolic activity (ρ = -0.71, P = .03). Pharmacokinetics showed that 45% of the mitomycin dose underwent burst release in 2 minutes, and 55% of the dose was retained intratumorally with a half-life of more than 5 hours. The initial tumor-to-plasma ratio of mitomycin concentration was 380. Conclusion Lung chemoembolization was technically successful for the treatment of lung, mediastinal, and endobronchial metastases, with no severe adverse events. Clinical trial registration no. NCT04200417 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Georgiades et al in this issue.
Collapse
Affiliation(s)
- F Edward Boas
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Nancy E Kemeny
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Constantinos T Sofocleous
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Randy Yeh
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Vanessa R Thompson
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Meier Hsu
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Chaya S Moskowitz
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Etay Ziv
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Hooman Yarmohammadi
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Achiude Bendet
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| | - Stephen B Solomon
- From the Department of Radiology, City of Hope Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010 (F.E.B.); Interventional Radiology Service, Department of Radiology (F.E.B., C.T.S., E.Z., H.Y., A.B., S.B.S.), Department of Medicine (N.E.K.), Molecular Imaging and Therapy Service (R.Y.), and Department of Epidemiology and Biostatistics (M.H., C.S.M.), Memorial Sloan-Kettering Cancer Center, New York, NY; and Antitumor Assessment Core Facility, Sloan Kettering Institute, New York, NY (V.R.T.)
| |
Collapse
|
22
|
Li X, Yuan H, Tian X, Tang J, Liu L, Liu F. Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma. Mater Today Bio 2021; 12:100128. [PMID: 34632360 PMCID: PMC8487074 DOI: 10.1016/j.mtbio.2021.100128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
Transcatheter arterial embolization has been considered as a promising targeted delivery approach for hepatocellular carcinoma (HCC). Currently, chemoembolization was the main treatment for unresectable HCC. However, the traditional chemoembolization treatment suffers from undesirable therapeutic effects and serious side-effects. In this study, the doxorubicin (DOX)-encapsulated and near-infrared (NIR)-responsible copper sulfide (CuS)-based nanotherapeutics was developed for magnetic resonance imaging (MRI)-guided chemo-photothermal therapy of HCC tumor in rats. The DOX-loaded CuS nanocomposites (DOX@BSA-CuS) demonstrated distinct NIR-triggered drug release behavior and high photothermal effect. In an orthotopic HCC rat model, DOX@BSA-CuS nanocomposites were selectively delivered to the tumor site via the intra-arterial transcatheter. The proposed DOX@BSA-CuS nanocomposites plus NIR laser irradiation exhibited significant tumor growth suppression performance. Moreover, the treatment progress can be monitored by MRI images. Finally, the preliminary toxicity estimate suggested the negligible side-effect of DOX@BSA-CuS nanocomposites during the therapeutic process. These results suggest the clinical translational potential possibility for imaging-guided arterial embolization with DOX@BSA-CuS nanocomposites for the treatment of HCC.
Collapse
Affiliation(s)
- X. Li
- Department of Interventional Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - H.J. Yuan
- Department of Interventional Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - X.M. Tian
- Department of Interventional Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - J. Tang
- Department of Interventional Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| | - L.F. Liu
- Department of Gerontology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, PR China
| | - F.Y. Liu
- Department of Interventional Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, PR China
| |
Collapse
|
23
|
Tselikas L, de Baere T, Isoardo T, Susini S, Ser-Le Roux K, Polrot M, Adam J, Rouanne M, Zitvogel L, Moine L, Deschamps F, Marabelle A. Pickering emulsions with ethiodized oil and nanoparticles for slow release of intratumoral anti-CTLA4 immune checkpoint antibodies. J Immunother Cancer 2021; 8:jitc-2020-000579. [PMID: 32571995 PMCID: PMC7307549 DOI: 10.1136/jitc-2020-000579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Intratumorous immunotherapy for cancer is currently thriving. The aim of such local strategy is to improve the therapeutic index of these treatments, for higher on-target/on-tumor activity and less on-target/off-tumor adverse events. Strategies allowing for slow release of anti-CTLA4 in the tumor microenvironment could improve their clinical efficacy.The purpose of the study was to develop a radiopaque delivery platform to improve the targeting and exposure of intratumorous anti-CTLA4 antibodies for cancer immunotherapy. METHODS Pickering emulsions of anti-CTLA4 antibodies were formulated with radiopaque ethiodized oil and poly-lactic-co-glycolic acid (PLGA) nanoparticles. We characterized the microscopic aspect and stability of such emulsions using Turbiscan. We monitored the release of anti-CTLA4 over time from these emulsions and evaluated their structure using mass spectrometry. We then tested the functionality of the released antibodies by preforming ex vivo competitive binding assays. Finally, we assessed the in vivo efficacy of intratumorous anti-CTLA4 Pickering emulsions. RESULTS Pickering emulsions of ethiodized oil and PLGA nanoparticles (PEEPs) resulted in a radiopaque water-in-oil emulsion with average internal phase droplet size of 42±5 µm at day 7. Confocal microscopy showed that anti-CTLA4 antibodies were effectively encapsulated by ethiodized oil with PLGA nanoparticles located at the interface between the aqueous and the oily phase. Turbiscan analysis showed that emulsions were stable with continuous and progressive release of anti-CTLA4 antibodies reaching 70% at 3 weeks. Structural and functional analysis of the released antibodies did not show significant differences with native anti-CTLA4 antibodies. Finally, intratumorous anti-CTLA4 PEEPs were able to eradicate tumors and cure mice in a syngeneic immunocompetent preclinical tumor model. CONCLUSION Pickering emulsions of ethiodized oil and PLGA is an innovative radiopaque delivery platform that does not alter the functionality of anti-CTLA4 immune checkpoint antibodies. Beyond local anti-CTLA4 applications, these emulsions might be used with other therapeutic molecules for optimal intratumorous or intra-arterial delivery of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Lambros Tselikas
- Interventional Radiology, Gustave Roussy, Villejuif, France .,Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
| | | | - Thomas Isoardo
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
| | - Sandrine Susini
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
| | - Karine Ser-Le Roux
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/US23, Gustave Roussy, Villejuif, France
| | - Mélanie Polrot
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/US23, Gustave Roussy, Villejuif, France
| | - Julien Adam
- Pathology Department, Gustave Roussy, Villejuif, France
| | - Mathieu Rouanne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France
| | | | - Laurence Moine
- Institut Galien, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | | | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Drug Development Unit, Gustave Roussy, Villejuif, France
| |
Collapse
|
24
|
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage. Polymers (Basel) 2021; 13:polym13132047. [PMID: 34206674 PMCID: PMC8271558 DOI: 10.3390/polym13132047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR–ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25–40 nm range. FTIR chemical characterization showed specific interactions of protein–doxorubicin–enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.
Collapse
|
25
|
Cheng J, Fu S, Qin Z, Han Y, Yang X. Self-assembled natural small molecule diterpene acids with favorable anticancer activity and biosafety for synergistically enhanced antitumor chemotherapy. J Mater Chem B 2021; 9:2674-2687. [PMID: 33662091 DOI: 10.1039/d0tb02995e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural biocompatible materials such as self-assembled natural small molecule products (NSMP) with anticancer activity are of increasing interest for synergistic biomedical applications. Herein, we discovered and developed four new self-assembled tricyclic diterpene acids NSMP with favorable anticancer activity for synergistic and safe antitumor chemotherapy, including dehydroabietic acid, 15-hydroxy-dehydroabietic acid, abietic acid, and 12-hydroxyabietic acid. The self-assembled performance and mechanism of these four compounds with different morphologies were explored in detail by molecular dynamics simulation, and revealed the coplanarity and orderliness of molecular arrangements which are speculated to be responsible for the self-assembly into spheres or rods. The screened and optimized abietic acid (AA) was chosen to prepare the synergistic antitumor drug AA-PTX NPs by co-administration with paclitaxel through multiple hydrogen bonds. The resulting nanodrugs were internalized into cells through a lysosome acidification uptake pathway. The improved water-solubility, significantly enhanced in vitro cytotoxicity, and excellent biosafety, lead to a highly efficient and safe in vivo anticancer efficacy of 81.2% inhibition rate with only three doses. This work provides new insights to explore the self-assembly behavior of small molecules and broadens the types of self-assembled active NSMP, providing a promising perspective for the fabrication of active NSMP mediated medical agents for multiple synergistic therapies.
Collapse
Affiliation(s)
- Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang, China.
| | | | | | | | | |
Collapse
|
26
|
Deschamps F, Tselikas L, Tasaki M, Motoyama S, Isoardo T, Ducreux M, Paunovic D, Moine L, de Baere T. Sustained-hepatic arterial infusion of oxaliplatin: pharmacokinetic advantages over hepatic arterial infusion using a preclinical animal tumour model. Drug Deliv Transl Res 2021; 11:2144-2150. [PMID: 33432522 DOI: 10.1007/s13346-020-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 11/28/2022]
Abstract
Hepatic arterial infusion (HAI) of oxaliplatin allows greater liver tumour drug exposure compared to systemic infusion. However, the therapeutic index of HAI oxaliplatin remains poor. Using Pickering emulsion technology, we developed a platform able to provide sustained releases of oxaliplatin. The goal of this study was to evaluate the pharmacokinetic advantages of sustained-HAI oxaliplatin over HAI using a preclinical animal tumour model. Injections of 0.6 mg oxaliplatin in 20 min were selectively done in left hepatic arteries of 20 rabbits bearing a VX2 liver tumour in the middle left-lobe, using HAI (n = 10) or sustained-HAI (n = 10). In each group, half of the rabbits were sacrificed at 24 h and half at 72 h. Mass spectrometry was used to quantify drug pharmacokinetics in blood and oxaliplatin concentrations in tumour tissues, right- and middle left-liver lobes, spleen and lung. Compared to HAI, sustained-HAI of oxaliplatin resulted in lower plasmatic peak (Cmax: 275 ± 41 vs. 416 ± 133 ng/mL, p = 0.02) and higher concentration in the tumour at 24 h (2118 ± 2107 vs. 210 ± 93 ng/g, p = 0.008). After HAI, oxaliplatin concentration in tumours was significantly higher than in lung at 24 h (p = 0.03) but no other difference was found between oxaliplatin concentrations in tumours and in liver lobes, spleen or lung, neither at 24 h nor at 72 h. On the opposite, sustained-HAI resulted in higher concentrations of oxaliplatin in tumour compared to oxaliplatin concentrations in the middle left lobe (163 ± 86 ng/g at 24 h, p = 0.01, and 90 ± 15 ng/g at 72 h, p = 0.04), right lobe (174 ± 112 ng/g at 24 h, p = 0.01, and 112 ± 35 ng/g, p = 0.04 at 72 h), spleen (142 ± 21 ng/g at 24 h, p = 0.01, and 98 ± 12 ng/g at 72 h, p = 0.04), and lung (85 ± 11 ng/g at 24 h, p = 0.01, and 52 ± 4 ng/g at 72 h, p = 0.03). Sustained-HAI improves the therapeutic index of HAI oxaliplatin and offers a great potential for patients suffering from unresectable colorectal liver metastases or hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Lambros Tselikas
- Interventional Radiology Department, Gustave Roussy, Villejuif, France.,Laboratory of Translational Research in Immunology (LTRI), UMR 1015, Gustave Roussy, Villejuif, France
| | | | | | - Thomas Isoardo
- Interventional Radiology Department, Gustave Roussy, Villejuif, France.,Laboratory of Translational Research in Immunology (LTRI), UMR 1015, Gustave Roussy, Villejuif, France
| | - Michel Ducreux
- Oncology department, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Dragica Paunovic
- Global Medical Affairs, Terumo Corporation, Interventional Systems, Tokyo, Japan
| | - Laurence Moine
- Institut Galien, CNRS. Paris-Sud University, Châtenay-Malabry, France
| | - Thierry de Baere
- Interventional Radiology Department, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
27
|
Chen H, Cheng H, Wu W, Li D, Mao J, Chu C, Liu G. The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Albert C, Beladjine M, Tsapis N, Fattal E, Agnely F, Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J Control Release 2019; 309:302-332. [DOI: 10.1016/j.jconrel.2019.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
|