1
|
Mladineo I, Hrabar J. Seventy years of coexistence: Parasites and Mediterranean fish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110355. [PMID: 40254086 DOI: 10.1016/j.fsi.2025.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
What can be regarded as a seedling of the contemporary aquaculture in the Mediterranean began back in the 1950s. The development of the industry did not always align with the development of ichthyopathology, a veterinary discipline aimed at identifying and combating fish diseases. Therefore, and due to the lack of published data, we are not always able to pinpoint the first outbreaks that accompanied the increase in aquaculture production. Nonetheless, fish pathogens, and parasites in particular, have shown diversity related to host species, their farming conditions and geography. Two parasite species currently regarded as dominant in Mediterranean aquaculture are the histozoic myxozoan Enteromyxum leei and the haematophagous polyopisthocotylean Sparicotyle chrysophrii, both of which infect gilthead seabream (Sparus aurata). The interactions between parasite and host with regard to the immune activity of both have been well studied using conventional immunology and omics approaches. For the remaining parasite-fish systems, our understanding of host responses and parasite mitigation mechanisms is still vague and mostly transposed from what we know of other systems. This review compiles the knowledge on fish response to the most frequent and economically important parasites in Mediterranean aquaculture, highlights the gaps and suggests further directions.
Collapse
Affiliation(s)
- Ivona Mladineo
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, 7053, TAS, Australia; Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, 37005, Czechia.
| | - Jerko Hrabar
- Institute of Oceanography and Fisheries, Split, 21000, Croatia
| |
Collapse
|
2
|
Basili M, Randazzo B, Caccamo L, Guicciardi O Guizzardi S, Meola M, Perdichizzi A, Quero GM, Maricchiolo G. Effect of graded inclusion of black soldier fly (Hermetia illucens, Linnaeus, 1758) pre-pupae meal in diets for gilthead seabream (Sparus aurata, Linnaeus, 1758) on gut microbiome and liver morphology. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:85. [PMID: 40261569 PMCID: PMC12014712 DOI: 10.1007/s10695-025-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Over the last decades, an insect meal has received great attention for finfish diets, due to its nutritional composition and low ecological footprint. In the present study, we assessed the response of gut microbiota composition and liver histology of gilthead seabream (Sparus aurata) fed four experimental diets including the black soldier fly (Hermetia illucens) meal (HI) used to replace 0 (HI0), 25 (HI25), 35 (HI35) and 50 (HI50) percent of fish meal in a 131-day feeding trial. At the end of the experiment, a remarkable change in gut microbiota composition related to HI inclusion was observed, with a preponderance of Cyanobacteriain the control and low HI groups (HI0, HI25) while Chloroflexi became prevalent in the higher HI inclusion groups (HI35, HI50). Predictive analysis on bacterial metabolic pathways showed a clear separation between HI0-HI25 and HI35-HI50 groups. The microbiota shifts observed suggest a pivotal role of HI in inducing a bacterial-mediated physiological response in this fish species, probably due to chitin content and the fatty acid profile of this ingredient. Liver histology showed a higher hepatocyte size in fish from the HI50 group, suggesting lipid dysmetabolism due to the HI meal fatty acid profile, while a marginal adaptive response was observed in the HI25 group. In conclusion, while up to 25% inclusion of black soldier fly meal showed limited adverse effects, 50% HI dietary inclusion is not recommended in gilthead seabream diet, since possible alteration in lipid deposition, particularly at hepatic level, were highlighted in this fish species.
Collapse
Affiliation(s)
- Marco Basili
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Piazza di Porta S. Donato 1, 40126, Bologna, Italy
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Largo Fiera Della Pesca 1, 60125, Ancona, AN, Italy
| | - Basilio Randazzo
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Letteria Caccamo
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Stefano Guicciardi O Guizzardi
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Largo Fiera Della Pesca 1, 60125, Ancona, AN, Italy
| | - Martina Meola
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Piazza di Porta S. Donato 1, 40126, Bologna, Italy
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Anna Perdichizzi
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Grazia Marina Quero
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Largo Fiera Della Pesca 1, 60125, Ancona, AN, Italy.
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy.
| | - Giulia Maricchiolo
- IRBIM-Institute for Marine Biological Resources and Biotechnologies, CNR-National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
3
|
Akram N, El-Matbouli M, Saleh M. The Immune Response to the Myxozoan Parasite Myxobolus cerebralis in Salmonids: A Review on Whirling Disease. Int J Mol Sci 2023; 24:17392. [PMID: 38139218 PMCID: PMC10743445 DOI: 10.3390/ijms242417392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly susceptible host. Upon entering to the host's body, the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several efforts have been undertaken to investigate the role of various immune modulatory molecules and immune regulatory genes using advanced molecular methods including flow cytometry and transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins (Nramp) in WD have significantly contributed to our understanding of the immune regulation mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research and discusses potential future directions for understanding the molecular immune response of salmonids and the possible development of prophylactic approaches against WD.
Collapse
Affiliation(s)
| | | | - Mona Saleh
- Division of Fish Health, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (N.A.)
| |
Collapse
|
4
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
5
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
6
|
Campos-Sánchez JC, Vitarelli E, Guardiola FA, Ceballos-Francisco D, García Beltrán JM, Ieni A, Esteban MÁ. Implication of mucus-secreting cells, acidophilic granulocytes and monocytes/macrophages in the resolution of skin inflammation caused by subcutaneous injection of λ/κ-carrageenin to gilthead seabream (Sparus aurata) specimens. JOURNAL OF FISH DISEASES 2022; 45:19-33. [PMID: 34549432 DOI: 10.1111/jfd.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
To date, the mechanisms of inflammation have been poorly studied in fish of commercial interest, due to the lack of development of appropriate experimental models. The current study evaluated a local inflammation triggered by a polymeric carrageenin mixture (a mucopolysaccharide derived from the red seaweed Chondrus crispus) in the skin of gilthead seabream (Sparus aurata). Fish were injected subcutaneously with phosphate-buffered saline (as control) or λ/κ-carrageenin (1%), and skin samples from the injection sites were collected 1.5, 3 and 6 hr post-injection, processed for inclusion in paraplast and stained with haematoxylin-eosin, Alcian blue or periodic acid-Schiff. Furthermore, immunohistochemistry and expression analyses of several cells' markers and proinflammatory genes were also analysed in samples of the injected sites. Microscopic results indicated an increased number of skin mucus-secreting cells and acidophilic granulocytes in the skin of fish studied at 1.5 hr and 3 hr post-injection with carrageenin, respectively, with respect to the data obtained in control fish. Otherwise, both the gene expression of the non-specific cytotoxic cell marker (granzyme B, grb) and the proinflammatory cytokine (interleukin-1β, il-1β) were up-regulated at 1.5 hr in the skin of fish injected with carrageenin compared with the control fish, whilst the gene expression of acidophilic granulocyte markers (NADPH oxidase subunit Phox22 and Phox40, phox22 and phox40) was up-regulated at 3 and 6 hr in the carrageenin group, compared with the control group. In addition, the gene expression of myeloperoxidase (mpo) was also up-regulated at 6 hr in the skin of fish injected with carrageenin in comparison with control samples. The present results indicate the chronological participation of two important immune cells involved in the resolution of the inflammation in the skin of gilthead seabream.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Enrica Vitarelli
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - Francisco A Guardiola
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - María Ángeles Esteban
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Nikolić D, Skorić S, Poleksić V, Rašković B. Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from Garaši reservoir (Serbia) with human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53700-53711. [PMID: 34032951 DOI: 10.1007/s11356-021-14526-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Accumulation of 26 elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, and Zn) was analyzed in the gills, liver, and muscle of pikeperch males and females from Garaši reservoir using inductively coupled plasma optical emission spectrometry (ICP-OES). Histopathological (HP) changes in the gills and liver, and human health risk were also analyzed. The gills were most affected by metal pollution in both sexes. The concentrations of Hg in muscle tissue of four males, and Cd in two females and two males exceeded the maximum allowed concentrations. Statistical tests only revealed significant differences regarding the concentrations of Mg, K, and S in the muscle (higher in males) and Al, Ag, and Mn in the liver (higher in females) of individuals between sexes. Low to moderate levels of pathological changes were recorded for the gills and liver in both sexes. Significant differences between sexes were observed for inflammatory index of gills (IGI) and HP index of gills (IG), males had higher values compared to females, and for liver necrosis, where females had higher values compared to males. Gills were less affected by HP changes compared to the liver. There was no significant non-cancerogenic and cancerogenic health risk due to the consumption of pikeperch meat from the Garaši reservoir. However, women are under greater risk by consuming the meat of both male and female individuals, probably due to a longer lifetime and lesser body weight compared to the men.
Collapse
Affiliation(s)
- Dušan Nikolić
- Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia.
| | - Stefan Skorić
- Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Vesna Poleksić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080, Serbia
| | - Božidar Rašković
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Belgrade, 11080, Serbia
| |
Collapse
|
8
|
Keil Stietz KP, Kennedy CL, Sethi S, Valenzuela A, Nunez A, Wang K, Wang Z, Wang P, Spiegelhoff A, Puschner B, Bjorling DE, Lein PJ. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol 2021; 2:1-18. [PMID: 34337439 PMCID: PMC8317607 DOI: 10.1016/j.crtox.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.
Collapse
Affiliation(s)
- Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA,Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA,Corresponding author at: Department of Comparative Biosciences University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Conner L. Kennedy
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Alexandra Nunez
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
9
|
Pergolizzi S, Marino A, Capillo G, Aragona M, Marconi P, Lauriano ER. Expression of Langerin/CD 207 and α-smooth muscle actin in ex vivo rabbit corneal keratitis model. Tissue Cell 2020; 66:101384. [PMID: 32933707 DOI: 10.1016/j.tice.2020.101384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
The constant exposure of ocular surface to external environment and then to several microbial agents is often related to the pathogenesis of various inflammatory eye disorders. In the present study α-Smooth Muscle Actin (α-SMA) and Langerin CD/207 expression and function was investigated in a rabbit corneal keratitis. The inflammation was induced by the secreted form of glycoprotein B (gB1s) of HSV-1, in an ex vivo rabbit corneal model. α-SMA is often used as a marker for myofibroblasts. In this study, for the first time, we show α-SMA positive corneal epithelial cells, during HSV-1 cornea inflammation, demonstrating a crucial role in wound healing, especially during remodeling phase. Furthermore, we show the presence of Dendritic Cells Langerin CD/207 positive, located mainly in the basal epithelial layer and in corneal stroma during the inflammatory processes. Our result validating the ex vivo organotypic rabbit corneal model, for the study about pathogenesis of HSV-1 ocular infection.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168, Messina, Italy.
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168, Messina, Italy
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, Via Fossato di Mortara 64/A, 44121, Ferrara, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| |
Collapse
|
10
|
Ogbeide O, Uhunamure G, Uwagboe L, Osakpamwan T, Glory M, Chukwuka A. Comparative gill and liver pathology of Tilapia zilli, Clarias gariepinus and Neochanna diversus in owan river (Nigeria): Relative ecological risks of species in a pesticide-impacted river. CHEMOSPHERE 2019; 234:1-13. [PMID: 31200248 DOI: 10.1016/j.chemosphere.2019.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
The dissimilar ecological behavior of species including, extent of mobility and feeding strategies, may predispose them to greater toxic effects. This hypothesis was tested by histological-based assessment of gills and liver of pelagic (Tilapia zilli) and benthic (Clarias gariepinus and Neochanna diversus) fish species of River Owan. The fish species were sampled monthly across seasons from river sites where they were observed to be most abundant. The pathologies were examined from light micrographs, and severity was evaluated by semi-quantitative analyses. Gill pathology of Tilapiazilli showed a moderate occurrence of shortened secondary lamellae, compared with Clarias gariepinus and Neochanna diversus which showed a high incidence of very distinct structural disruptions including epithelial lifting, collapsed secondary lamella structure due to pilaster disruption. Although hepatocellular damage, fibrotic biliary disruptions and parasite incidence were the most evident pathological features in liver of all species, parasite variety and lesion severity differed across species. Principal component analysis (PCA) associated benthic species with more severe gills and liver pathologies, indicating that, benthic species in the Owan riverscape were more at risks compared to pelagic species. As such, we successfully demonstrate that relative ecological risks and potential adverse health effects on fish species could be dependent on ecological behavior and preferences. Conservation efforts particularly for endangered species could be better developed if relative risks and vulnerability of species are understood.
Collapse
Affiliation(s)
- Ozekeke Ogbeide
- Ecotoxicology Unit, Department of Entomology and Zoology, Afromountane Unit, University of the Free State, Qwa Qwa, Free State, South Africa; Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Grace Uhunamure
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Lancelot Uwagboe
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Tray Osakpamwan
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Mfon Glory
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Azubuike Chukwuka
- Department of Environmental Quality Control (EQC), Conservation Unit, National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria.
| |
Collapse
|
11
|
Skrzynska AK, Martínez-Rodríguez G, Gozdowska M, Kulczykowska E, Mancera JM, Martos-Sitcha JA. Aroclor 1254 inhibits vasotocinergic pathways related to osmoregulatory and stress functions in the gilthead sea bream (Sparus aurata, Linnaeus 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:98-109. [PMID: 31082703 DOI: 10.1016/j.aquatox.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/01/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses the response of vasotocinergic system in the gilthead sea bream (Sparus aurata) after administering two doses of the polychlorinated biphenyl Aroclor 1254 (15 or 50 μg g-1 fresh body mass). Seven days post-administration, eight fish of each experimental group were sampled, and the remaining animals were challenged with a hyperosmotic stress by being transferred from seawater (36 ppt) to high salinity water (55 ppt) and being sampled 3 days post-transfer. Aroclor 1254 affected gene expression of avt, together with Avt concentrations in pituitary and plasma, inhibiting the stimulation observed in vasotocinergic system after hyperosmotic challenge. This was noted by the accumulation of Avt at hypophyseal level as well as by its undetectable values in plasma. Hyperosmotic transfer significantly changed branchial avtrv1a, avtrv2, atp1a and cftr mRNA expression levels in control fish, while in Aroclor 1254-treated fish they remained mostly unchanged. This desensitization also occurred for avtrs in hypothalamus, caudal kidney and liver. In addition, an enhancement in plasma cortisol concentration, together with the orchestration of several players of the Hypothalamic-Pituitary-Interrenal axis (crh, crhbp, trh, star), was also observed mostly at the highest dose used (50 μg g-1 body mass), affecting plasma and hepatic metabolites. Our results demonstrated that Aroclor 1254 compromises the hypoosmoregulatory function of vasotocinergic system in S. aurata, also inducing a concomitant stress response. In summary, this study demonstrates that Aroclor 1254 can be considered an important endocrine disruptor in relation with the correct arrangement of vasotocinergic, metabolic and stress pathways after their stimulation by transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), E-11519, Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
12
|
Rodrigues S, Antunes SC, Nunes B, Correia AT. Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15481-15495. [PMID: 30937749 DOI: 10.1007/s11356-019-04954-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/21/2019] [Indexed: 05/17/2023]
Abstract
Due to their worldwide use and environmental persistence, antibiotics are frequently detected in various aquatic compartments. Their toxic properties raise environmental concerns to non-target organisms. Histopathology data is frequently applied in ecotoxicology studies to assess the effects of different classes of environmental stressors in fish, including antibiotics. Tissue alterations in gills and liver of gilthead seabream (Sparus aurata) individuals acutely (96 h) and chronically (28 days) exposed to environmentally relevant concentrations of the antibiotics erythromycin (ERY: 0.0002-200 μg/L) and oxytetracycline (OTC: 0.0004-400 μg/L), including a control non-exposed group, were evaluated. Several disorders (circulatory, regressive, progressive, and inflammatory) were observed in both organs of all exposed animals. The hereby obtained data showed a higher and significant increase in gill histopathological index of organisms acutely exposed to ERY and of those chronically exposed to OTC. In terms of categorical lesions, only a significant increase of regressive and progressive alterations occurred in gills after chronic exposure to OTC. For the liver, a significant increase in pathological index was also detected, as well as regressive changes, after chronic exposure to OTC. Furthermore, the present study indicates that most of the changes observed in gills and liver were of mild to moderate severity, which might be adaptive or protective, non-specific, and mostly reversible. Despite being observed, irreversible lesions were not significant in any of the fish organs analyzed. Although there were histological changes, gill apparatus was considered still functionally normal, as well as liver tissue, not supporting the occurrence of severe toxicity. In general, the observed histological changes were not stressor-specific, and toxicological mechanistic explanations for the alterations observed in gills and liver are presented. The obtained data showed that histopathological biomarkers can be successfully applied in ecotoxicological studies, evidencing their relevance, responsivity, and complementarity to other biochemical biomarker-based approaches.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal.
| |
Collapse
|
13
|
Pergolizzi S, D’Angelo V, Aragona M, Dugo P, Cacciola F, Capillo G, Dugo G, Lauriano ER. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin. Nat Prod Res 2018; 34:1535-1541. [DOI: 10.1080/14786419.2018.1523161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Valeria D’Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Marialuisa Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
- Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Fanali LZ, Franco-Belussi L, Bonini-Domingos CR, de Oliveira C. Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:93-102. [PMID: 29477119 DOI: 10.1016/j.envpol.2018.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 02/09/2018] [Indexed: 05/14/2023]
Abstract
Benzo[a]pyrene (BaP) is a bio-accumulative toxic compound found in the atmosphere, water, and soil that may affect the life cycle of amphibians. In this study, a few contamination biomarkers, such as hepatic melanomacrophages (MMs), mast cells, erythrocyte micronuclei (MN) and white blood cells were used to determine how BaP acts in these cells in the anurans Physalaemus cuvieri and Leptodactylus fuscus. Animals of both species were divided into three treatment groups: 1 day, 7 days and 13 days, subcutaneously injected 2 mg/kg BaP diluted in mineral oil and control group with only mineral oil. After 7 days, BaP caused the frequency of MN to increase in both species while reducing melanin area. The micronucleus frequency increased due to the genotoxicity of BaP, while the decreasing melanin area may be related to the inhibition of tyrosinase activity, an enzyme responsible for regulating melanogenesis, decreasing the synthesis of melanin. The mast cell density increased in all groups and in both species as a response to the inflammatory action of BaP. These cells respond to nonspecific inflammatory effects leading, therefore, to this response in all treatments. The percentage of leukocytes remained unchanged probably due to great intraspecific variability. Additionally, the leukocyte profiles of both species were characterized and the differences were attributed to extrinsic factors. In short, BaP can affect the integrity of several organs and tissues, and cell functions leading to the conclusion that this compound is hepatotoxic, genotoxic and immunotoxic for anurans.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil; Graduate Program in Biotechnology and Environmental monitoring, CCTS, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil
| | | | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
15
|
Lo Cascio P, Calabrò C, Bertuccio C, Iaria C, Marino F, Denaro MG. Immunohistochemical Characterization of PepT1 and Ghrelin in Gastrointestinal Tract of Zebrafish: Effects of Spirulina Vegetarian Diet on the Neuroendocrine System Cells After Alimentary Stress. Front Physiol 2018; 9:614. [PMID: 29881359 PMCID: PMC5976732 DOI: 10.3389/fphys.2018.00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
Gastrointestinal function in vertebrates is influenced by stressors, such as fasting and refeeding, different types of diet and hormonal factors. The aim of this paper was to analyze the effect of a Spirulina (Arthrospira platensis) diet, a microalga known for its nutraceutical properties, on the gastrointestinal tract of zebrafish (Danio rerio) regarding expression of oligopeptide transporter 1 (PepT1) and ghrelin (GHR). Food deprivation and refeeding was investigated to elucidate expression of PepT1 and GHR at a gastrointestinal level and the zebrafish compensatory mechanism. PepT1 is responsible for absorbing di- and tripeptides through a brush border membrane of intestinal mucosa. GHR is a brain-gut peptide in fish and mammals, stimulating growth hormone secretion and regulating appetite. Samples were taken after 2 and 5 days of specimen fasting, and 2 and 5 days of refeeding with Sera Spirulina tabs, in which the major constituent is Spirulina sp. (50.2% protein). Morphological and immunohistochemical analysis of PepT1 and GHR were carried out. Control specimen intestinal tract showed normal morphology of the digestive tract. Fasting caused fold structural changes and intestinal lumen constriction. Immunohistochemical analysis showed a PepT1 level reduction after fasting and an increase after refeeding, reaching very high levels after 5 days, compared to controls. GHR levels increased after food deprivation and gradually decreased after refeeding. Increased expression of PepT1 in refeeding fish suggests a compensatory physiological mechanism, as does the increase in GHR levels in fasting fish followed by a reduction after refeeding. A compensatory mechanism may be induced by fasting and refeeding and by a higher protein Spirulina diet. The microalga, for its nutraceutical properties, is an excellent candidate for animal breeding and human diet.
Collapse
Affiliation(s)
- Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Clara Bertuccio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabio Marino
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria G Denaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Speciale A, Zena R, Calabrò C, Bertuccio C, Aragona M, Saija A, Trombetta D, Cimino F, Lo Cascio P. Experimental exposure of blue mussels (Mytilus galloprovincialis) to high levels of benzo[a]pyrene and possible implications for human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:96-103. [PMID: 29268120 DOI: 10.1016/j.ecoenv.2017.12.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are lipophilic compounds able to accumulate in the food chain. Mussels showed to bioaccumulate contaminants, such as PAHs, so that recurrent consumption of such contaminated food represents a risk for human health. This study was aimed to elucidate if acute exposure of Mediterranean blue mussel (Mytilus galloprovincialis), a bivalve of great economic importance in several countries, to a PAH, benzo[a]pyrene (B[a]P), at doses able to induce cytochrome P450 1A (CYP1A) and pathological changes in mussel gills, can produce accumulation in soft tissue. We explored the cytotoxic effects (cell viability, DNA laddering, and glutathione levels) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from blue mussels previously exposed for 12 and 72h via water to B[a]P (0.5-1mg/L). In our experimental conditions, B[a]P induced CYP1A induction and morphological changes in mussel gills and a significant B[a]P accumulation in soft tissue. Conversely, exposing PBMCs to organic extracts obtained from contaminated mussels, resulted in a significant reduction of cell viability and cell glutathione content, and in an increase in DNA laddering. This confirms that consumption of mussels from B[a]P polluted waters might affect human health. Our data lead us to suggest that CYP1A activity in mussel gills may be useful (more than the amount of detected PAHs in the mussel edible tissue) as a marker in assessment of risk for health of consumers exposed to PAHs through ingestion of shellfish.
Collapse
Affiliation(s)
- A Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - R Zena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - C Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - C Bertuccio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - M Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - A Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - F Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - P Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
17
|
Licata P, Tardugno R, Pergolizzi S, Capillo G, Aragona M, Colombo A, Gervasi T, Pellizzeri V, Cicero N, Calò M. In vivo effects of PCB-126 and genistein on vitellogenin expression in zebrafish. Nat Prod Res 2018; 33:2507-2514. [PMID: 29607746 DOI: 10.1080/14786419.2018.1455048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, the vitellogenin (Vtg) modulation by genistein and polychlorinated biphenyl-126 (PCB-126) exposure in zebrafishes has been investigated. Both PCB-126 and genistein have been identified as aquatic pollutants and can further increase estrogenicity of waterways. Vtg is egg yolk precursor protein release by the hepatocytes during vitellogenesis. This process occurs normally in the hepatocytes in response to the activation with the estrogens such as 17-β-estradiol. Our immunohistochemical findings showed a Vtg expression that increases at 12 h and at 72 h in the liver of treated fishes with both PCB-126 and genistein, individually and in combination. Furthermore, for the first time, also hepatic stellate cells (HSC) in the liver parenchyma were strongly positive for vitellogenin.
Collapse
Affiliation(s)
- Patrizia Licata
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| | - Roberta Tardugno
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Simona Pergolizzi
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Gioele Capillo
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Marialuisa Aragona
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Antonio Colombo
- d Azienda Sanitaria Provinciale Messina (ASP) , Messina , Italy
| | - Teresa Gervasi
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Vito Pellizzeri
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Nicola Cicero
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy.,e Science4Life s.r.l., A Spin-off of the University of Messina , Messina , Italy
| | - Margherita Calò
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| |
Collapse
|
18
|
Gómez González NE, Cabas I, Rodenas MC, Arizcun M, Mulero V, García Ayala A. 17α-Ethynylestradiol alters the peritoneal immune response of gilthead seabream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:143-149. [PMID: 28595972 DOI: 10.1016/j.dci.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
17α-Ethynylestradiol (EE2), a synthetic estrogen used in most oral contraceptives pills and hormone replacement therapies, is found in many water bodies, where it can modulate the fish immune response. EE2 acts as an endocrine disruptor in gilthead seabream, Sparus aurata L., a marine teleost fish of great economic value in Mediterranean aquaculture, as it induces hepatic vitellogenin gene (vtg) expression. Moreover, EE2 also alters the capacity of gilthead seabream to appropriately respond to infection although it does not behave as an immunosuppressor. Nevertheless, these previous studies have mainly focused on the head kidney leukocytes and no information exists on peritoneal leukocytes, including mast cells. In the present work, juvenile gilthead seabream fish were fed a pellet diet supplemented with EE2 for 76 days and intraperitoneally injected with hemocyanin plus imject alum adjuvant at the end of EE2 treatment and 92 days later, and the peritoneal immune response was analyzed. EE2 supplementation induced vtg expression but returned to basal levels by 3 months post-treatment. Interestingly, gilthead seabream peritoneal leukocytes express the genes encoding for the nuclear estrogen receptor α and the G protein-coupled estrogen receptor 1 and the dietary intake of EE2 induced these expression. Moreover, EE2 induced an inflammatory response in the peritoneal cavity in unvaccinated fish, which was largely maintained for several months after the cessation of the treatment. However, the impact of EE2 in vaccinated fish was rather minor and transient. Taken together, the study provides fresh information about endocrine immune disruption, focusing on peritoneal leukocytes.
Collapse
Affiliation(s)
- N E Gómez González
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - I Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - M C Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - M Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - A García Ayala
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
19
|
Calò M, Bitto A, Lo Cascio P, Giarratana F, Altavilla D, Gervasi T, Campone L, Cicero N, Licata P. PCB-126 effects on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in a fish product (Sparus aurata L.). Nat Prod Res 2017; 32:1136-1144. [DOI: 10.1080/14786419.2017.1320794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Luca Campone
- Department of Pharmacy, University of Salerno, Fisciano SA, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Lo Cascio P, Calabrò C, Bertuccio C, Paterniti I, Palombieri D, Calò M, Albergamo A, Salvo A, Gabriella Denaro M. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source. Nat Prod Res 2017; 31:1478-1485. [DOI: 10.1080/14786419.2016.1274893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Clara Bertuccio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Palombieri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Margherita Calò
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Andrea Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Maria Gabriella Denaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
21
|
da Silva WF, Simões MJ, Gutierre RC, Egami MI, Santos AA, Antoniazzi MM, Sasso GR, Ranzani-Paiva MJT. Special dyeing, histochemistry, immunohistochemistry and ultrastructure: A study of mast cells/eosinophilic granules cells (MCs/EGC) from Centropomus parallelus intestine. FISH & SHELLFISH IMMUNOLOGY 2017; 60:502-508. [PMID: 27840170 DOI: 10.1016/j.fsi.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Intestine mast cells/eosinophilic granule cells (MCs/EGC) of the marine species Centropomus parallelus (fat snook) were first studied using light and electron microscopy techniques. Mast cells are cells from the connective tissue found in almost all organs and tissues of vertebrates. In fish, they appear in greater numbers in parts of their bodies that are exposed to their environment, such as skin, gills and intestine. The granules in fat snook's mast cell contain a variety of substances, such as histamine, heparin, chondroitin sulfate, serotonin, proteases and cytokines. The present study of intestine MCs/EGC was carried out in 20 specimens of fat snook. Samples of tissue were fixed in Bouin solution and in buffered formalin. Ferric hematoxylin - Congo red, pH6 acridine orange, pH2.5 and pH0,5 Alcian Blue (AB), toluidine blue, PAS, AB + PAS and immunohistochemistry protocols were used. In the mucosa and submucosa layers, MCs/EGCs granules with basic contents were evidenced by Congo red staining, and with acid contents granules were identified through pH 2.5 and 0,5 AB, and acridine orange. Basic and acid contents were simultaneously evidenced using ferric hematoxylin - Congo red stain. Metachromasia was observed in both mucosal and submucosal mast cells. Neutral glycoproteins were evidenced by using PAS protocol, glycosaminoglycan through AB and both simultaneously through AB + PAS. In immunohistochemistry assays, MCs/EGC were positive for tryptase, chymase and serotonin. As in mammals, the study of samples fixed in modified Karnovsky for transmission electron microscopy evidenced that most of the MCs granules were spherical and showed varying electron density, as described in previous reports on other teleost fish species. The metachromasia observed and the identification of tryptase, chymase and serotonin suggest a great similarity between fat snook's MCs/EGC and those described in the mucosa of mammals.
Collapse
Affiliation(s)
- Wémeson F da Silva
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil; Morphology Department, Adventist University Center of São Paulo, São Paulo, SP, Brazil.
| | - Manuel J Simões
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Robson C Gutierre
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Neurology and Neurosurgery, Laboratory of Neurophysiology and Exercise Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mizue I Egami
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Antenor A Santos
- Morphology Department, Adventist University Center of São Paulo, São Paulo, SP, Brazil
| | | | - Gisela R Sasso
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
22
|
Galindo-Villegas J, Garcia-Garcia E, Mulero V. Role of histamine in the regulation of intestinal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:178-186. [PMID: 26872545 DOI: 10.1016/j.dci.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In mammals, during the acute inflammatory response, the complex interrelationship and cross-talk among histamine and the immune system has been fairly well characterized. There is a substantial body of information on its structure, metabolism, receptors, signal transduction, physiologic and pathologic effects. However, for early vertebrates, there is little such knowledge. In the case of teleost fish, this lack of knowledge has been due to the widely held belief that histamine is not present in this phylogenetic group. However, it has been recently demonstrated, that granules of mast cells in perciforms contain biologically active histamine. More importantly, the inflammatory response was clearly demonstrated to be regulated by the direct action of histamine on professional phagocytes. Nevertheless, the molecular basis and exact role of this biogenic amine in perciforms is still a matter of speculation. Therefore, this review intends to summarize recent experimental evidence regarding fish mast cells and correlate the same with their mammalian counterparts to establish the possible role of histamine in the fish intestinal inflammatory response.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
23
|
Zena R, Speciale A, Calabrò C, Calò M, Palombieri D, Saija A, Cimino F, Trombetta D, Lo Cascio P. Exposure of sea bream (Sparus aurata) to toxic concentrations of benzo[a]pyrene: possible human health effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:116-125. [PMID: 26232038 DOI: 10.1016/j.ecoenv.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can accumulate in the food chain, due to their lipophilic properties. Fish can accumulate contaminants including PAHs and frequent consumption of such contaminated fish can pose risk to human health. The aim of this study was to clarify if acute exposure of sea bream (Sparus aurata, a fish species of great economic importance in the Atlantic and Mediterranean areas) to a PAH, benzo[a]pyrene (B[a]P), at a dose that can induce CYP1A and pathological changes in fish gills, liver and muscle, can induce accumulation in muscle. We investigated the cytotoxic effects (as changes in cell viability, DNA laddering and glutathione content) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from muscle of sea breams previously exposed via water to B[a]P (2mg/l, for 12, 24 and 72 h). At this level of exposure, B[a]P caused morphological changes, inflammatory response and CYP1A induction not only in sea bream gills and liver but also in muscle; furthermore, in fish muscle we observed a substantial B[a]P accumulation, which may be associated with the increased CYP1A activity in liver and especially in muscle. However, when PBMCs were exposed to organic extracts obtained from sea bream muscle contaminated with B[a]P, a toxic, although modest effect was revealed, consisting in a significant decrease in cell glutathione levels without alterations in cell viability and DNA laddering. This suggests that consumption of sea breams from B[a]P contaminated waters might represent a risk for human health.
Collapse
Affiliation(s)
- R Zena
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - A Speciale
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - C Calabrò
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - M Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - D Palombieri
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - A Saija
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - F Cimino
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - D Trombetta
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy.
| | - P Lo Cascio
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| |
Collapse
|
24
|
Santos D, Falcão A, Luzio A, Fontaínhas-Fernandes A, Monteiro SM. Neuroendocrine and Eosinophilic Granule Cells in the Gills of Tilapia, Oreochromis niloticus: Effects of Waterborne Copper Exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:566-576. [PMID: 26054594 DOI: 10.1007/s00244-015-0170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The contamination of aquatic ecosystems with copper (Cu) poses a serious threat to aquatic organisms. Although the histopathological changes caused by Cu in fish gills are well documented, knowledge about the impact of this metal in gill specific cell types, such as neuroendocrine cells (NECs) and eosinophilic granule cells (EGCs), is still limited. In the present work, Nile tilapia (Oreochromis niloticus) were exposed for 21 days to nominal concentrations of Cu (40 and 400 µg L(-1)). Stereological methods were used to estimate the volumetric density of both NECs and EGCs in fish gill filament after 3, 7, 14, and 21 days of exposure. The results showed that Cu significantly increased the relative volume of NECs, whereas the relative volume of EGCs decreased. NECs were more affected by Cu in the first 7 days of exposure, during which a greater increase in their relative volume was observed. The Cu exposure induced a progressive decrease in the relative volume of EGCs, which reached statistical significance after 14 days of exposure. An exception was observed in subepithelial EGCs with a slight increase in their relative volume after 3 days of exposure. Our findings confirm that Cu can modulate both neuroendocrine and immune systems and becomes immunotoxic after a prolonged exposure.
Collapse
Affiliation(s)
- Dércia Santos
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Falcão
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Luzio
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - António Fontaínhas-Fernandes
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Sandra Mariza Monteiro
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
25
|
Ameur WB, El Megdiche Y, de Lapuente J, Barhoumi B, Trabelsi S, Ennaceur S, Camps L, Serret J, Ramos-López D, Gonzalez-Linares J, Touil S, Driss MR, Borràs M. Oxidative stress, genotoxicity and histopathology biomarker responses in Mugil cephalus and Dicentrarchus labrax gill exposed to persistent pollutants. A field study in the Bizerte Lagoon: Tunisia. CHEMOSPHERE 2015; 135:67-74. [PMID: 25912422 DOI: 10.1016/j.chemosphere.2015.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The use of biomarkers has become an important tool for modern environmental assessment as they can help to predict pollutants involved in the monitoring program. Despite the importance of fish gill in several functions (gaseous exchange, osmotic and ionic regulation, acid-base balance and nitrogenous waste) its use in coastal water biomonitoring focusing on protection and damage is scarce. This field study investigates biochemical (catalase, superoxide dismutase, lipid peroxidation), molecular (DNA integrity) and morphological (histology) parameters in gill of mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) and originating from Bizerte lagoon (a coastal lagoon impacted by different anthropogenic activities) and from the Mediterranean Sea (a reference site). Remarkable alterations in the activities of oxidative stress enzymes and DNA integrity in the tissue of the two studied fish species were detected in Bizerte Lagoon. The study of histopathological alterations of gills in both two fish species from Bizerte Lagoon suggest thickening of primary lamellae, cellular hyperplasia, aneurism, curving, shortening and fusion of secondary lamellae. The adopted approach, considering simultaneously protection responses and damaging effects, revealed its usefulness on the pollution assessment.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Joaquin de Lapuente
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain.
| | - Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Souad Trabelsi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Soukaina Ennaceur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Lydia Camps
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Joan Serret
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - David Ramos-López
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Javier Gonzalez-Linares
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Miquel Borràs
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Sfacteria A, Brines M, Blank U. The mast cell plays a central role in the immune system of teleost fish. Mol Immunol 2015; 63:3-8. [DOI: 10.1016/j.molimm.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
27
|
Immunohistochemical localization of Toll-like receptor 2 in skin Langerhans’ cells of striped dolphin (Stenella coeruleoalba). Tissue Cell 2014; 46:113-21. [DOI: 10.1016/j.tice.2013.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/05/2013] [Accepted: 12/08/2013] [Indexed: 11/23/2022]
|
28
|
Madureira TV, Santos C, Velhote S, Cruzeiro C, Rocha E, Rocha MJ. Contamination levels of polychlorinated biphenyls in wild versus cultivated samples of female and male mussels (Mytilus sp.) from the Northwest Coast of Iberian Peninsula--new application for QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1528-1540. [PMID: 23942999 DOI: 10.1007/s11356-013-2017-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
A newly analytical method based on QuEChERS extraction followed by gas chromatography with mass spectrometry (GC-MS) analysis was developed and validated for the quantification of 18 PCBs in wild (from Matosinhos Beach, Portugal) and cultivated (from Ria de Arousa, Spain) mussel samples, pooled by sex. Wild animals showed higher PCB levels than cultivated mussels, with males from both origins, presenting an upper contamination profile comparing with females. This fact seems to be correlated with few biometric parameters, but other interdependencies, not addressed herein, such as distinct lipid contents between sexes, as a consequence of the gametogenic stage, may also explain this data. Overall, data reiterate the importance of investigating the presence of PCBs in marine biological samples, which can act both as bioindicators of environmental contamination, either as food quality controls for human health.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, U. Porto-University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Oporto, Portugal,
| | | | | | | | | | | |
Collapse
|
29
|
Brum A, Dotta G, Roumbedakis K, Gonçalves ELT, Garcia LP, Garcia P, Scussel VM, Martins ML. Hematological and histopathological changes in silver catfish Rhamdia quelen (Siluriformes) exposed to clomazone herbicide in the Madre River, Santa Catarina State, Southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:169-175. [PMID: 24380617 DOI: 10.1080/03601234.2014.858007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study evaluated the influence of the clomazone herbicide (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone) contamination on the hematological parameters and histological changes in gills and liver of silver catfish (Rhamdia quelen) from Madre River, Santa Catarina State, Southern Brazil. Fish were collected between March 2010 and January 2012 at two different sites of the Madre River, one site receiving residual water (contaminated site) from rice culture (n=49) and another that do not receive residual water (reference site) (n=48). The herbicide clomazone analysis detected 3.40±1.70 μg/L in the contaminated site and 1.1±0.33 μg/L in the reference site. Fish from contaminated site showed increased (P<0.05) number of monocytes suggesting the possible defense response as a result of chronic exposure to clomazone. On the other hand, no difference was found in the hematocrit percentage, red blood cell count, total thrombocyte number, white blood cell count, lymphocytes, and neutrophils number. Fish from both sites showed histopathological changes in gills and liver, possibly caused by chronic exposure to contamination. The influence of herbicide sub doses on fish health is also discussed.
Collapse
Affiliation(s)
- Aline Brum
- a AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department , Federal University of Santa Catarina (UFSC) , Florianópolis , Santa Catarina , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lympho-granulocytic tissue associated with the wall of the spiral valve in the African lungfish Protopterus annectens. Cell Tissue Res 2013; 355:397-407. [PMID: 24253466 DOI: 10.1007/s00441-013-1746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
We describe the structure of the lympho-granulocytic tissue associated with the wall of the spiral valve of the African lungfish Protopterus annectens. The study was performed under freshwater conditions and after 6 months of aestivation. The lympho-granulocytic tissue consists of nodes surrounded by reticular tissue. The nodes are formed by an outer and an inner component separated by a thin collagenous layer. The outer component is a reticular-like tissue that contains two types of granulocytes, developing and mature plasma cells and melanomacrophage centres (MMCs). The inner component, the parenchyma, contains a meshwork of trabeculae and vascular sinusoids and shows dark and pale areas. The dark areas contain diffuse lymphoid tissue, with a large number of mitoses and plasma cell clusters. The pale areas contain a small number of macrophages and lymphocytes. Macrophages and sinus endothelial cells are filled with haemosiderin granules and appear to form part of the reticuloendothelial system of the lungfish. The reticular tissue houses granulocytes, plasma cells and MMCs and might serve for the housing and maturation of cells of the white series. After aestivation, the nodes undergo lymphocyte depletion, the suppression of mitosis, granulocyte invasion and the occurrence of cell death. By contrast, few histological changes occur in the reticular tissue. Whereas the nodes appear to be involved in lymphocyte proliferation and plasma cell maturation, the function of the reticular tissue remains obscure.
Collapse
|
31
|
Acidophilic granulocytes in the gills of gilthead seabream Sparus aurata: evidence for their responses to a natural infection by a copepod ectoparasite. Cell Tissue Res 2013; 353:465-72. [DOI: 10.1007/s00441-013-1627-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022]
|
32
|
Abstract
The vertebrate immune system is comprised of numerous distinct and interdependent components. Every component has its own inherent protective value, and the final combination of them is likely to be related to an animal’s immunological history and evolutionary development. Vertebrate immune system consists of both systemic and mucosal immune compartments, but it is the mucosal immune system which protects the body from the first encounter of pathogens. According to anatomical location, the mucosa-associated lymphoid tissue, in teleost fish is subdivided into gut-, skin-, and gill-associated lymphoid tissue and most available studies focus on gut. The purpose of this paper is to summarise the current knowledge of the immunological defences present in skin mucosa as a very important part of the fish immune system, serving as an anatomical and physiological barrier against external hazards. Interest in defence mechanism of fish arises from a need to develop health management tools to support a growing finfish aquaculture industry, while at the same time addressing questions concerning origins and evolution of immunity in vertebrates. Increased knowledge of fish mucosal immune system will facilitate the development of novel vaccination strategies in fish.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
33
|
The spleen of the African lungfish Protopterus annectens: freshwater and aestivation. Cell Tissue Res 2012; 350:143-56. [DOI: 10.1007/s00441-012-1462-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|