1
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Solopov PA, Biancatelli RMLC, Day T, Dimitropoulou C, Catravas JD. A novel Non-rodent animal model of hydrochloric acid-induced acute and chronic lung injury. Respir Res 2024; 25:390. [PMID: 39472954 PMCID: PMC11520517 DOI: 10.1186/s12931-024-03022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrochloric acid is one of the most prevalent and hazardous chemicals. Accidental spills occur in industrial plants or during transportation. Exposure to HCl can induce severe health impairment, including acute and chronic pulmonary diseases. We have previously described the molecular, structural, and functional aspects of the development of chronic lung injury and pulmonary fibrosis caused by intratracheal instillation of HCl in mice. Although mouse models of human disease have many advantages, rodents are evolutionary far from human and exhibit significant anatomical and physiological differences. Genetic and anatomic similarities between rabbits and humans are significantly higher. Rabbit models of HCl-induced lung injury have been used sparsely to evaluate acute lung injury. In this study, for the first time, we utilized rabbits as a model of HCl-induced pulmonary fibrosis and chronic lung injury. We present molecular, histological, and functional evidence that demonstrate the utility of using this model for studying new pharmaceutics against pulmonary fibrosis.
Collapse
Affiliation(s)
- Pavel A Solopov
- Frank Reidy Research Center in Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | - Ruben Manuel Luciano Colunga Biancatelli
- Frank Reidy Research Center in Bioelectrics, Old Dominion University, Norfolk, VA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
| | - Tierney Day
- Frank Reidy Research Center in Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | - John D Catravas
- Frank Reidy Research Center in Bioelectrics, Old Dominion University, Norfolk, VA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA, USA
- School of Medical, Diagnostic & Translational Sciences, Ellmer College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
3
|
Marwitz F, Hädrich G, Redinger N, Besecke KFW, Li F, Aboutara N, Thomsen S, Cohrs M, Neumann PR, Lucas H, Kollan J, Hozsa C, Gieseler RK, Schwudke D, Furch M, Schaible U, Dailey LA. Intranasal Administration of Bedaquiline-Loaded Fucosylated Liposomes Provides Anti-Tubercular Activity while Reducing the Potential for Systemic Side Effects. ACS Infect Dis 2024; 10:3222-3232. [PMID: 39136125 PMCID: PMC11406518 DOI: 10.1021/acsinfecdis.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Liposomal formulations of antibiotics for inhalation offer the potential for the delivery of high drug doses, controlled drug release kinetics in the lung, and an excellent safety profile. In this study, we evaluated the in vivo performance of a liposomal formulation for the poorly soluble, antituberculosis agent, bedaquiline. Bedaquiline was encapsulated within monodisperse liposomes of ∼70 nm at a relatively high drug concentration (∼3.6 mg/mL). Formulations with or without fucose residues, which bind to C-type lectin receptors and mediate a preferential binding to macrophage mannose receptor, were prepared, and efficacy was assessed in an in vivo C3HeB/FeJ mouse model of tuberculosis infection (H37Rv strain). Seven intranasal instillations of 5 mg/kg bedaquiline formulations administered every second day resulted in a significant reduction in lung burden (∼0.4-0.6 Δlog10 CFU), although no differences between fucosylated and nonfucosylated formulations were observed. A pharmacokinetic study in healthy, noninfected Balb/c mice demonstrated that intranasal administration of a single dose of 2.5 mg/kg bedaquiline liposomal formulation (fucosylated) improved the lung bioavailability 6-fold compared to intravenous administration of the same formulation at the same dose. Importantly, intranasal administration reduced systemic concentrations of the primary metabolite, N-desmethyl-bedaquiline (M2), compared with both intravenous and oral administration. This is a clinically relevant finding as the M2 metabolite is associated with a higher risk of QT-prolongation in predisposed patients. The results clearly demonstrate that a bedaquiline liposomal inhalation suspension may show enhanced antitubercular activity in the lung while reducing systemic side effects, thus meriting further nonclinical investigation.
Collapse
Affiliation(s)
- Franziska Marwitz
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Gabriela Hädrich
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Natalja Redinger
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Karen F W Besecke
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
- Cardior Pharmaceuticals GmbH, Hollerithallee 20 ,Hannover 30419, Germany
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| | - Nadine Aboutara
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Simone Thomsen
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
| | - Michaela Cohrs
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460 ,Ghent 9000, Belgium
| | - Paul Robert Neumann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Julia Kollan
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
| | - Robert K Gieseler
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Department of Medicine, University Hospital, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25 ,Bochum 44892, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel 24118, Germany
| | - Marcus Furch
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Certmedica International GmbH, Magnolienweg 17 ,Aschaffenburg 63741, Germany
| | - Ulrich Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| |
Collapse
|
4
|
van der Zwaan I, Pilkington GA, Frenning G, Ekström M, Valetti S, Pitcairn GR, Feiler A. Influence of particle diameter on aerosolization performance and release of budesonide loaded mesoporous silica particles. Eur J Pharm Sci 2024; 200:106828. [PMID: 38862047 DOI: 10.1016/j.ejps.2024.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.
Collapse
Affiliation(s)
- Irès van der Zwaan
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Georgia A Pilkington
- Nanologica, Forskargatan 20 G, SE-151 36 Södertälje, Sweden; Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden.
| | | | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | | | - Adam Feiler
- Nanologica, Forskargatan 20 G, SE-151 36 Södertälje, Sweden; Surface and Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
5
|
Solopov PA, Biancatelli RMLC, Day T, Dimitropoulou C, Catravas JD. A Novel Non-Rodent Animal Model of Hydrochloric Acid-Induced acute and chronic lung injury. RESEARCH SQUARE 2024:rs.3.rs-4758497. [PMID: 39184076 PMCID: PMC11343285 DOI: 10.21203/rs.3.rs-4758497/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hydrochloric acid is one of the most prevalent and dangerous chemicals. Accidental spills occur in industrial plants or during transportation. Exposure to HCl can induce severe health impairment, including acute and chronic pulmonary diseases. We have previously described the molecular, structural, and functional aspects of the development of chronic lung injury and pulmonary fibrosis caused by intratracheal instillation of HCl in mice. Although mouse models of human disease have many advantages, rodents are evolutionary far from human and exhibit significant anatomical and physiological differences. Genetic and anatomic similarities between rabbits and humans are significantly higher. Rabbit models of HCl-induced lung injury have been used sparsely to evaluate acute lung injury. In this study, for the first time, we utilized rabbits as a model of HCl-induced pulmonary fibrosis and chronic lung injury. We present molecular, histological, and functional evidence that demonstrate the utility of using this model for studying new pharmaceutics against pulmonary fibrosis.
Collapse
|
6
|
Patterlini V, Guareschi F, D’Angelo D, Baldini S, Meto S, Mostafa Kamal D, Fabrizzi P, Buttini F, Mösges R, Sonvico F. Clinically Relevant Characterization and Comparison of Ryaltris and Other Anti-Allergic Nasal Sprays. Pharmaceutics 2024; 16:989. [PMID: 39204334 PMCID: PMC11357686 DOI: 10.3390/pharmaceutics16080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The deposition, residence time, and dissolution profile of nasal suspensions containing corticosteroids play a key role in their in vivo efficacy after administration. However, the conventional methods available to characterize nasal products appear to be unsuitable to exhaustively cover these aspects. The work aims to investigate technological aspects of Ryaltris (mometasone furoate and olopatadine hydrochloride nasal spray) compared to other commercial anti-allergic nasal products, namely, Dymista (azelastine hydrochloride and fluticasone propionate), Nasonex (mometasone furoate), and Avamys (fluticasone furoate). Innovative characterization methods were combined with more traditional approaches to investigate the anti-allergic nasal sprays. These methods applied together allowed to differentiate between the different products and provided a clear picture of the nasal product behavior in terms of drug dissolution and deposition. In particular, the dissolution tests were performed exploiting the Respicell® apparatus, an innovative technique that allows for the investigation of inhalation products. Then, formulation viscosities were considered along with a formulation flow test on an inclined plane. Finally, the intranasal deposition profile of the commercial formulations was determined using a silicon nasal cast. The results highlight in vitro significant differences in terms of viscosity as well as dissolution rate of the nasal products, with Ryaltris showing a higher viscosity and lower flow compared to other products, which, along with a corticosteroid faster dissolution rate than Dymista, suggest a potential advantage in terms of clinical behavior.
Collapse
Affiliation(s)
- Virginia Patterlini
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Fabiola Guareschi
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Davide D’Angelo
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Simone Baldini
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Suada Meto
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Dalia Mostafa Kamal
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Paolo Fabrizzi
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Francesca Buttini
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ralph Mösges
- Institute of Medical Statistics and Computational Biology (IMSB), Medical Faculty, University at Cologne, 50923 Cologne, Germany;
| | - Fabio Sonvico
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
7
|
Rastegar-Pouyani N, Dongsar TS, Ataei M, Hassani S, Gumpricht E, Kesharwani P, Sahebkar A. An overview of the efficacy of inhaled curcumin: a new mode of administration for an old molecule. Expert Opin Drug Deliv 2024. [PMID: 38771504 DOI: 10.1080/17425247.2024.2358880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahshid Ataei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Dong L, Zhuang X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. Int J Mol Sci 2024; 25:4671. [PMID: 38731891 PMCID: PMC11083391 DOI: 10.3390/ijms25094671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| |
Collapse
|
9
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
10
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Phillip J Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jonathan E Phillips
- Amgen, Inc., Inflammation Discovery Research, Thousand Oaks, California, USA
| | | |
Collapse
|
11
|
Floroiu A, Loretz B, Krämer J, Lehr CM. Drug solubility in biorelevant media in the context of an inhalation-based biopharmaceutics classification system (iBCS). Eur J Pharm Biopharm 2024; 197:114206. [PMID: 38316234 DOI: 10.1016/j.ejpb.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
An inhalation-based Biopharmaceutics Classification System for pulmonary drugs (iBCS) holds the perspective to allow for scientifically sound prediction of differences in the in vivo performance of orally inhaled drug products (OIDPs). A set of nine drug substances were selected, that are administered via both the oral and pulmonary routes. Their solubility was determined in media representative for the oral (Fasted State Simulated Intestinal Fluid (FaSSIF)) and pulmonary (Alveofact medium and Simulated Lung Fluid (SLF)) routes of administration to confirm the need for a novel approach for inhaled drugs. The complexity of these media was then stepwise reduced with the purpose of understanding the contribution of their components to the solubilizing capacity of the media. A second reason for varying the complexity was to identify a medium that would allow robust but accurate dissolution testing. Hence, Hank's balanced salt solution (HBSS) as a medium used in many in vitro biological tests, non-buffered saline solution, and water were included. For some drug substances (salbutamol sulfate, tobramycin, isoniazid, and tiotropium bromide), no significant differences were observed between the solubility in the media used. For other drugs, however, we observed either just small (rifampicin, budesonide, salmeterol) or unexpectedly large differences (beclomethasone dipropionate). Based on the minimum theoretical solubility required for their common pulmonary dose in 10 ml of lung lining fluid, drug solubility was classified as either high or low. Two high solubility and two low solubility compounds were then selected for refined solubility testing in pulmonary relevant media by varying their content of phospholipids, surfactant proteins and other proteins. The solubility of drug substances in simulated lung lining fluids was found to be dependent on the physicochemical properties of the drug substance and the composition of the media. While a pulmonary dissolution medium that would fit all drugs could not be established, our approach may provide guidance for finding the most suitable dissolution medium for a given drug substance and better designing in vitro tests for predicting the in vivo performance of inhalable drug products.
Collapse
Affiliation(s)
- Andreea Floroiu
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Eurofins PHAST Development GmbH & Co. KG, 78467 Konstanz, Germany.
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Miller NA. Modeling. J Aerosol Med Pulm Drug Deliv 2024; 37:41-49. [PMID: 38052057 DOI: 10.1089/jamp.2023.29100.nam] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Modeling is coming to the fore as it is now widely accepted and indeed expected during drug discovery and development. Modeling integrates knowledge, increases understanding and provides the ability to predict an outcome either before it occurs or when it is not possible to measure. This makes modeling an attractive option for inhaled drugs as it is not possible to routinely measure what is occurring to the drug (pharmacokinetics) and what effect the drug is having (pharmacodynamics) at local microscopic sites of such a diverse and complex organ as the lung. Many pieces of information (data and knowledge) exist like the pieces of a jigsaw puzzle and modeling brings the pieces together in a scientific and mechanistically coherent manner to increase understanding of both the efficacy and safety of inhaled drugs.
Collapse
|
13
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
14
|
Fan Q, Li Z, Yin J, Xie M, Cui M, Fan C, Wang L, Chao J. Inhalable pH-responsive DNA tetrahedron nanoplatform for boosting anti-tumor immune responses against metastatic lung cancer. Biomaterials 2023; 301:122283. [PMID: 37639977 DOI: 10.1016/j.biomaterials.2023.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Despite advancements in the treatment of pulmonary cancer, the existence of mucosal barriers in lung still hampered the penetration and diffusion of therapeutic agents and greatly limited the therapeutic benefits. In this work, we reported a novel inhalable pH-responsive tetrahedral DNA nanomachines with simultaneous delivery of immunomodulatory CpG oligonucleotide and PD-L1-targeting antagonistic DNA aptamer (CP@TDN) for efficient treatment of pulmonary metastatic cancer. By precisely controlling the ratios of CpG and PD-L1 aptamer, the obtained CP@TDN could specifically release PD-L1 aptamer to block PD-1/PD-L1 immune checkpoint axis in acidic tumor microenvironment, followed by endocytosis by antigen-presenting cells to generate anti-tumor immune activation and secretion of anti-tumor cytokines. Moreover, inhalation delivery of CP@TDN showed highly-efficient lung deposition with greatly enhanced intratumoral accumulation, ascribing to the DNA tetrahedron-mediated penetration of pulmonary mucosa. Resultantly, CP@TDN could significantly inhibit the growth of metastatic orthotopic lung tumors via the induction of robust antitumor responses. Therefore, our work presents an attractive approach by virtue of biocompatible DNA tetrahedron as the inhalation delivery system for effective treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Zhihao Li
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Jue Yin
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Mo Xie
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Meirong Cui
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China; Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210000, China.
| |
Collapse
|
15
|
Tundisi LL, Ataide JA, Costa JSR, Coêlho DDF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, Mazzola PG. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222:113043. [PMID: 36455361 DOI: 10.1016/j.colsurfb.2022.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.
Collapse
Affiliation(s)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Raquel Bester Liszbinski
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
16
|
Islam N, Cichero E, Rahman S, Ranasinghe I. Novel Pulmonary Delivery of Drugs for the Management of Atrial Fibrillation. Am J Cardiovasc Drugs 2023; 23:1-7. [PMID: 36255655 PMCID: PMC9845156 DOI: 10.1007/s40256-022-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 01/21/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting approximately 335 million patients worldwide. Comprehensive pharmacological treatment of AF includes medications for rate or rhythm control and anticoagulants to reduce the risk of thromboembolism; yet, these agents have significant limitations. Oral anti-arrhythmic agents have a slow onset of action, and rapid onset formulations require hospitalization for intravenous therapy. Orally administered drugs also require high doses to attain therapeutic levels, and thus dose-related severe adverse effects are often unavoidable. Given the therapeutic benefits of inhaled drug delivery, including rapid onset of action and very low doses to achieve therapeutic efficacy, this review will discuss the benefits of novel pulmonary delivery of drugs for the management of AF.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Emma Cichero
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, Avera Health and Science Center, South Dakota State University, 1055 Campanile Avenue, SAV 265, Brookings, SD 57007 USA
| | - Isuru Ranasinghe
- Department of Cardiology, The Prince Charles Hospital, Brisbane, Australia ,Northside Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Mairinger S, Hernández-Lozano I, Zeitlinger M, Ehrhardt C, Langer O. Nuclear medicine imaging methods as novel tools in the assessment of pulmonary drug disposition. Expert Opin Drug Deliv 2022; 19:1561-1575. [PMID: 36255136 DOI: 10.1080/17425247.2022.2137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Drugs for the treatment of respiratory diseases are commonly administered by oral inhalation. Yet surprisingly little is known about the pulmonary pharmacokinetics of inhaled molecules. Nuclear medicine imaging techniques (i.e. planar gamma scintigraphy, single-photon emission computed tomography [SPECT] and positron emission tomography [PET]) enable the noninvasive dynamic measurement of the lung concentrations of radiolabeled drugs or drug formulations. This review discusses the potential of nuclear medicine imaging techniques in inhalation biopharmaceutical research. AREAS COVERED (i) Planar gamma scintigraphy studies with radiolabeled inhalation formulations to assess initial pulmonary drug deposition; (ii) imaging studies with radiolabeled drugs to assess their intrapulmonary pharmacokinetics; (iii) receptor occupancy studies to quantify the pharmacodynamic effect of inhaled drugs. EXPERT OPINION Imaging techniques hold potential to bridge the knowledge gap between animal models and humans with respect to the pulmonary disposition of inhaled drugs. However, beyond the mere assessment of the initial lung deposition of inhaled formulations with planar gamma scintigraphy, imaging techniques have rarely been employed in pulmonary drug development. This may be related to several technical challenges encountered with such studies. Considering the wealth of information that can be obtained with imaging studies their use in inhalation biopharmaceutics should be further investigated.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Chu M, Fu G, Deng J, Wang R, Fan Q, Chen Z, Lu J, Liu XA. Evaluation of the inhalation toxicity of arecoline benzoate aerosol in rats. J Appl Toxicol 2022; 42:1396-1410. [PMID: 35170056 DOI: 10.1002/jat.4303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Arecoline is a pharmacologically active alkaloid isolated from Areca catechu. There are no published data available regarding the inhalation toxicity of arecoline in animals. This study aimed to evaluate the inhalation toxicity of arecoline in vitro and in vivo. For this purpose, arecoline benzoate (ABA) salt was prepared to stabilize arecoline in an aerosol. The MTT assay determined the half-maximal inhibitory concentration values of ABA and arecoline in A549 cell proliferation to be 832 μg/ml and 412 μg/ml, respectively. The toxicity of acute and subacute inhalation in Sprague-Dawley rats was evaluated using the guidelines of the Organization for Economic Cooperation and Development. For acute inhalation, the median lethal concentration value of ABA solvent was >5175 mg/m3 . After the exposure and during the recovery period, no treatment-related clinical signs were observed. In the 28-Day inhalation toxicity test, daily nose-only exposure to 2510 mg/m3 aerosol of the ABA solvent contained 75 mg/m3 ABA for male rats and 375 mg/m3 ABA for female rats, which caused no observed adverse effects, except for the decreased body weight gain in male rats exposed to 375 mg/m3 ABA. In this study, the no observed adverse effect level (NOAEL) for the 28-Day repeated dose inhalation of ABA aerosol was calculated to be around 13 mg/kg/day for male rats and 68.8 mg/kg/day for female rats, respectively.
Collapse
Affiliation(s)
- Ming Chu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Guofeng Fu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Laboratory of Life Sciences, Shenzhen Icybetel Biotechnology Co, Ltd, Shenzhen, China
| | - Jingjing Deng
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China
| | - Ruoxi Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Qiming Fan
- GuangdongZhongkeEnHealth Science and Technology Co., Ltd., Foshan, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jin Lu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Laboratory of Life Sciences, Shenzhen Icybetel Biotechnology Co, Ltd, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Concepts of advanced therapeutic delivery systems for the management of remodeling and inflammation in airway diseases. Future Med Chem 2022; 14:271-288. [PMID: 35019757 PMCID: PMC8890134 DOI: 10.4155/fmc-2021-0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory disorders affect millions of people worldwide. Pathophysiological changes to the normal airway wall structure, including changes in the composition and organization of its cellular and molecular constituents, are referred to as airway remodeling. The inadequacy of effective treatment strategies and scarcity of novel therapies available for the treatment and management of chronic respiratory diseases have given rise to a serious impediment in the clinical management of such diseases. The progress made in advanced drug delivery, has offered additional advantages to fight against the emerging complications of airway remodeling. This review aims to address the gaps in current knowledge about airway remodeling, the relationships between remodeling, inflammation, clinical phenotypes and the significance of using novel drug delivery methods.
Collapse
|
20
|
Pasqua E, Hamblin N, Edwards C, Baker-Glenn C, Hurley C. Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov Today 2021; 27:134-150. [PMID: 34547449 DOI: 10.1016/j.drudis.2021.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.
Collapse
Affiliation(s)
- Elisa Pasqua
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK.
| | - Nicole Hamblin
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK; Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Christine Edwards
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| | - Charles Baker-Glenn
- Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Chris Hurley
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| |
Collapse
|
21
|
Langston T, Randazzo J, Kogel U, Hoeng J, Martin F, Titz B, Guedj E, Schneider T, Prabhakar B, Zhang J, Oldham M, Lee KM. Thirteen-week nose-only inhalation exposures of propylene glycol aerosols in Sprague Dawley rats with a lung systems toxicology analysis. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/23978473211021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study were to increase PG exposure above concentrations tested by Suber et al. and use systems toxicology analysis of lung tissue to understand molecular events. Sprague Dawley rats were exposed to filtered air (sham), propylene glycol/water (PG/W; 90:10) or a propylene glycol/vegetable glycerin/water (PG/VG/W; 50:40:10) reference. The reference group was added at the high dose to observe any changes that might be associated with a carrier more in line with e-vapor products. Macroscopic examinations and terminal organ weights revealed no observations associated with exposure to PG/W or reference. Food consumption and body weights were unaffected by PG/W or reference when compared to sham. No exposure related alterations were observed in serum chemistry, hematology, coagulation, urinalysis or BALF cytology and clinical chemistry. Although clinical observations of dried red material around the nose in the high dose PG/W group were reported, histopathology showed no nasal hemorrhaging which was previously reported by Suber et al. Non-adverse PG/W and reference related findings of minimal mucous cell hyperplasia were noted in nasal cavity section II. No other exposure-related findings were noted in the primary or recovery necropsies. A systems toxicology analysis on lung tissue showed no statistically significant differentially expressed transcripts or proteins compared to the sham group. The endpoints measured from the PG/W high dose group did not differ significantly from those in the more common carrier PG/VG/W. As anticipated, exposure to PG aerosols was slightly irritating but well tolerated. Accordingly, the highest PG exposure (5 mg/L, 6 hrs/day) was regarded as the NOAEC, corresponding to a PG delivered dose of 1,152 mg/kg/day in rats.
Collapse
Affiliation(s)
- T Langston
- Altria Client Services LLC, Richmond, VA, USA
| | - J Randazzo
- Charles River Laboratories, Ashland, OH, USA
| | - U Kogel
- Phillip Morris International, Neuchatel CH, Switzerland
| | - J Hoeng
- Phillip Morris International, Neuchatel CH, Switzerland
| | - F Martin
- Phillip Morris International, Neuchatel CH, Switzerland
| | - B Titz
- Phillip Morris International, Neuchatel CH, Switzerland
| | - E Guedj
- Phillip Morris International, Neuchatel CH, Switzerland
| | - T Schneider
- Phillip Morris International, Neuchatel CH, Switzerland
| | - B Prabhakar
- Lancaster Laboratories, Inc., Lancaster, PA, USA
| | - J Zhang
- Altria Client Services LLC, Richmond, VA, USA
| | - M Oldham
- Oldham Associates LLC, Manakin Sabot, VA, USA
| | - KM Lee
- Altria Client Services LLC, Richmond, VA, USA
| |
Collapse
|
22
|
Sadiq MW, Holz O, Ellinghusen BD, Faulenbach C, Müller M, Badorrek P, Eriksson UG, Fridén M, Stomilovic S, Lundqvist AJ, Hohlfeld JM. Lung pharmacokinetics of inhaled and systemic drugs: A clinical evaluation. Br J Pharmacol 2021; 178:4440-4451. [PMID: 34250588 DOI: 10.1111/bph.15621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Human pharmacokinetic studies of lung-targeted drugs are typically limited to measurements of systemic plasma concentrations, which provide no direct information on lung target-site concentrations. We aimed to evaluate lung pharmacokinetics of commonly prescribed drugs by sampling different lung compartments after inhalation and oral administration. EXPERIMENTAL APPROACH Healthy volunteers received single, sequential doses of either inhaled salbutamol, salmeterol and fluticasone propionate (n = 12), or oral salbutamol and propranolol (n = 6). Each participant underwent bronchoscopies and gave breath samples for analysis of particles in exhaled air at two points after drug administration (1 and 6, 2 and 9, 3 and 12, or 4 and 18 h). Lung samples were taken via bronchosorption, bronchial brush, mucosal biopsy and bronchoalveolar lavage during each bronchoscopy. Blood samples were taken during the 24 h after administration. Pharmacokinetic profiles were generated by combining data from multiple individuals, covering all sample timings. KEY RESULTS Pharmacokinetic profiles were obtained for each drug in lung epithelial lining fluid, lung tissue and plasma. Inhalation of salbutamol resulted in approximately 100-fold higher concentrations in lung than in plasma. Salmeterol and fluticasone concentration ratios in lung versus plasma were higher still. Bronchosorption- and bronchoalveolar-lavage-generated profiles of inhaled drugs in epithelial lining fluid were comparable. For orally administered drugs, epithelial-lining-fluid concentrations were overestimated in bronchoalveolar-lavage-generated profiles. CONCLUSION AND IMPLICATIONS Combining pharmacokinetic data derived from several individuals and techniques sampling different lung compartments enabled generation of pharmacokinetic profiles for evaluation of lung targeting after inhaled and oral drug delivery.
Collapse
Affiliation(s)
- Muhammad Waqas Sadiq
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Olaf Holz
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Birthe D Ellinghusen
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Cornelia Faulenbach
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meike Müller
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Badorrek
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ulf G Eriksson
- Clinical and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden.,Clinical Pharmacology and Safety Sciences, AstraZeneca, Gothenburg, Sweden.,R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Fridén
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Uppsala University, Uppsala, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders J Lundqvist
- Drug Metabolism and Pharmacokinetics, AstraZeneca, Gothenburg, Sweden.,Research and Early Development, AstraZeneca, Gothenburg, Sweden.,Respiratory and Immunology, AstraZeneca, Gothenburg, Sweden.,BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jens M Hohlfeld
- Division of Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Bartels C, Jain M, Yu J, Tillmann HC, Vaidya S. Population Pharmacokinetic Analysis of Indacaterol/Glycopyrronium/Mometasone Furoate After Administration of Combination Therapies Using the Breezhaler ® Device in Patients with Asthma. Eur J Drug Metab Pharmacokinet 2021; 46:487-504. [PMID: 34024035 PMCID: PMC8298373 DOI: 10.1007/s13318-021-00689-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Clinical evidence suggests no clinically relevant pharmacokinetic interactions between indacaterol (IND), glycopyrronium (GLY) and mometasone furoate (MF). A population pharmacokinetic (popPK) analysis was conducted to identify structural models describing systemic pharmacokinetic profiles of IND, GLY and MF, and estimate the effect of covariates on their pharmacokinetics following inhalation as IND/GLY/MF. METHODS Pharmacokinetic data from 698 patients with asthma were pooled from two Phase III studies that evaluated IND/MF medium- (150/160 µg) and high-dose (150/320 µg), IND/GLY/MF medium- (150/50/80 μg) and high-dose (150/50/160 μg), and a device bridging Phase II study with MF. One popPK model was developed each for IND, GLY and MF using a nonlinear mixed-effect modelling approach. Maximal and trough plasma concentrations were compared across formulations and studies, including data for IND/GLY from chronic obstructive pulmonary disease (COPD) patients. The effect of predefined covariates on the pharmacokinetics of components was evaluated using a full covariate modelling approach. RESULTS The final pharmacokinetic models were two-compartment disposition models with first-order elimination and sequential zero-order/first-order absorption (IND), with bolus administration and first-order elimination (GLY), and with mixed zero-order/first-order absorption and first-order elimination (MF). All model parameters were estimated with good precision (% relative standard error: IND and MF ≤25%; GLY <10%). No clinically relevant covariate effect was observed on the pharmacokinetics of IND, GLY and MF. IND and GLY pharmacokinetic profiles were similar across different formulations. CONCLUSION Two-compartment popPK models adequately described the pharmacokinetics of IND, GLY and MF. The effect of covariates was not clinically relevant. The pharmacokinetic profiles of MF were comparable for combination products at corresponding medium- or high-dose inhaled corticosteroids. On a population level, the pharmacokinetics of IND and GLY were comparable between patients with asthma and COPD.
Collapse
Affiliation(s)
- Christian Bartels
- Biostatistics and Pharmacometrics, Novartis Pharma AG, WSJ-027.6.045.10, 4056, Basel, Switzerland.
| | - Monish Jain
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Cambridge, USA
| | - Jing Yu
- Biostatistics and Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, USA
| | | | - Soniya Vaidya
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Cambridge, USA
- Axcella Health Inc., Cambridge, MA, USA
| |
Collapse
|
24
|
Lee HJ, Kwon YB, Kang JH, Oh DW, Park ES, Rhee YS, Kim JY, Shin DH, Kim DW, Park CW. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J Control Release 2021; 329:468-481. [PMID: 32871206 DOI: 10.1016/j.jconrel.2020.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
The conventional treatment of pulmonary arterial hypertension (PAH) with oral bosentan hydrate has limitations related to the lack of pulmonary selectivity. In this study, we verified the hypothesis of the feasibility of dry powder inhalation of bosentan as an alternative to oral bosentan hydrate for the treatment of PAH. Inhalable bosentan microparticles with the capability of delivery to the peripheral region of the lungs and enhanced bioavailability have been formulated for PAH. The bosentan microparticles were prepared by the co-spray-drying method with bosentan hydrate and mannitol at different weight ratios. The bosentan microparticles were then characterized for their physicochemical properties, in vitro dissolution behavior, and in vitro aerodynamic performance. The in vivo pharmacokinetics and pathological characteristics were evaluated in a monocrotaline-induced rat model of PAH after intratracheal powder administration of bosentan microparticles, in comparison to orally administered bosentan hydrate. The highest performance bosentan microparticles, named SDBM 1:1, had irregular and porous shape. These microparticles had not only the significantly highest aerosol performance (MMAD of 1.91 μm and FPF of 51.68%) in the formulations, but also significantly increased dissolution rate, compared with the raw bosentan hydrate. This treatment to the lungs was also safe, as evidenced by the cytotoxicity assay. Intratracheally administered SDBM 1:1 elicited a significantly higher Cmax and AUC0-t that were over 10 times higher, compared with those of the raw bosentan hydrate administered orally in the same dose. It also exhibited ameliorative effects on monocrotaline-induced pulmonary arterial remodeling, and right ventricular hypertrophy. The survival rate of the group administrated SDBM1:1 intratracheally was 0.92 at the end of study (Positive control and orally administrated groups were 0.58 and 0.38, respectively). In conclusion, SDBM 1:1 showed promising in vitro and in vivo results with the dry powder inhalation. The inhaled bosentan microparticles can be considered as a potential alternative to oral bosentan hydrate for the treatment of PAH.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yong-Bin Kwon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Won Oh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun-Seok Rhee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Republic of Korea
| | - Dae-Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea.
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
25
|
Melillo N, Grandoni S, Cesari N, Brogin G, Puccini P, Magni P. Inter-compound and Intra-compound Global Sensitivity Analysis of a Physiological Model for Pulmonary Absorption of Inhaled Compounds. AAPS J 2020; 22:116. [PMID: 32862303 PMCID: PMC7456635 DOI: 10.1208/s12248-020-00499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
In recent years, global sensitivity analysis (GSA) has gained interest in physiologically based pharmacokinetics (PBPK) modelling and simulation from pharmaceutical industry, regulatory authorities, and academia. With the case study of an in-house PBPK model for inhaled compounds in rats, the aim of this work is to show how GSA can contribute in PBPK model development and daily use. We identified two types of GSA that differ in the aims and, thus, in the parameter variability: inter-compound and intra-compound GSA. The inter-compound GSA aims to understand which are the parameters that mostly influence the variability of the metrics of interest in the whole space of the drugs' properties, and thus, it is useful during the model development. On the other hand, the intra-compound GSA aims to highlight how much the uncertainty associated with the parameters of a given drug impacts the uncertainty in the model prediction and so, it is useful during routine PBPK use. In this work, inter-compound GSA highlighted that dissolution- and formulation-related parameters were mostly important for the prediction of the fraction absorbed, while the permeability is the most important parameter for lung AUC and MRT. Intra-compound GSA highlighted that, for all the considered compounds, the permeability was one of the most important parameters for lung AUC, MRT and plasma MRT, while the extraction ratio and the dose for the plasma AUC. GSA is a crucial instrument for the quality assessment of model-based inference; for this reason, we suggest its use during both PBPK model development and use.
Collapse
Affiliation(s)
- Nicola Melillo
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di Pavia, Via Ferrata 5, I-27100, Pavia, Italy
| | - Silvia Grandoni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di Pavia, Via Ferrata 5, I-27100, Pavia, Italy
| | - Nicola Cesari
- Pharmacokinetics, Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Giandomenico Brogin
- Pharmacokinetics, Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Paola Puccini
- Pharmacokinetics, Biochemistry and Metabolism Department, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di Pavia, Via Ferrata 5, I-27100, Pavia, Italy.
| |
Collapse
|
26
|
Solopov P, Marinova M, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Development of chronic lung injury and pulmonary fibrosis in mice following acute exposure to nitrogen mustard. Inhal Toxicol 2020; 32:141-154. [PMID: 32362214 DOI: 10.1080/08958378.2020.1757791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Sulfur mustards are toxic agents used as a chemical warfare in the twentieth century. Exposure to nitrogen mustards (NM), their more water-soluble analogs, is associated with respiratory, dermatological, neurological, and systemic symptoms whose severity depends on dose and length of contact. Long-term effects of acute inhalation have been related to the development of chronic lung injury and pulmonary fibrosis whose precise mechanisms and potential antidotes are yet to be discovered.Materials and methods: We have developed a model of NM-induced pulmonary fibrosis by intratracheally instilling mechlorethamine hydrochloride into C57Bl/6J male mice.Results and Discussion: Following mechlorethamine exposure, strong early and milder late inflammatory responses were observed. Initially, the number of white blood cells and levels of protein and pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) increased, followed by increases in the number of macrophages and the levels of transforming growth factor-β (TGF-β), a pro-fibrotic mediator. Analysis of lung homogenates revealed increased phosphorylation of pro-fibrotic biomarkers, serine/threonine-selective protein kinases (p-ERK), and heat shock protein 90 (P-HSP90) at 10 and 30 days after exposure. Total collagen expression and deposition of extracellular matrix proteins also increased. Lung function measurements demonstrated the presence of both obstructive and restrictive disease in agreement with evidence of increased lower airway peribronchial collagen deposition and parenchymal fibrosis.Conclusions: We conclude that the mouse represents a useful model of NM-induced acute lung injury and chronic pulmonary fibrosis, the latter driven by the overexpression of TGF-β, p-ERK, and P-HSP90. This model may prove useful in the pre-clinical development of antidotes and other countermeasures.
Collapse
Affiliation(s)
- Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Margarita Marinova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | - Ruben M L Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,Policlinico Umberto I, La Sapienza Università di Roma, Rome, Italy
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
27
|
Marenghi G, Clementino AR, Fioni A, Buttini F, Sonvico F. Pulmonary delivery of a p38 α/β MAP kinase inhibitor: bioanalytical method validation and biodistribution in rat plasma and respiratory tissues. Eur J Pharm Sci 2020; 149:105341. [PMID: 32305320 DOI: 10.1016/j.ejps.2020.105341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
PF-03715455, an inhaled p38 α/β mitogen-activated protein (MAP) kinase inhibitor (MAPK), has being identified as an agent with potential therapeutic action on lung diseases such as COPD and severe asthma. However, little is known about this MAPKs local and systemic pharmacokinetics after pulmonary delivery. Consequently, the aim of the present work was to develop and validate a method of extraction and quantification of PF-03715455 in rat plasma and lung tissues and to determine the drug biodistribution in plasma and respiratory tissues after intratracheal administration of the drug solution in rats. The method was validated in rat plasma samples and resulted selective and linear in the concentration range of 0.08-100 ng/ml. Then a partial validation was carried out on samples obtained by the extraction and quantification of PF-03715455 from rat lung homogenate in order to ascertain method applicability on lung tissue samples. The intratracheal administration of drug in solution to rats evidenced a rapid elimination from the plasma, while on the contrary a prolonged residence time in lung tissue was evidenced. In conclusion, a linear, accurate, precise and reproducible method has been developed and validated according to FDA and EMA guidelines to quantify plasmatic and tissue-associated concentrations of PF-03715455 in order to investigate this compound in pharmacokinetics pre-clinical studies in rats. The administration of drug solution evidenced a prolonged permanence of the drug in the lungs that could be related to a slow absorption/poor permeability of the drug across airways epithelia.
Collapse
Affiliation(s)
| | - Adryana Rocha Clementino
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy
| | | | - Francesca Buttini
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy; Biopharmanet-TEC, University of Parma, Parma, Italy.
| |
Collapse
|
28
|
Forbes B, Bommer R, Goole J, Hellfritzsch M, De Kruijf W, Lambert P, Caivano G, Regard A, Schiaretti F, Trenkel M, Vecellio L, Williams G, Sonvico F, Scherließ R. A consensus research agenda for optimising nasal drug delivery. Expert Opin Drug Deliv 2020; 17:127-132. [PMID: 31928241 DOI: 10.1080/17425247.2020.1714589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors.
Collapse
Affiliation(s)
- Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London, UK
| | | | - Jonathan Goole
- TIPs department, CP 165/67, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Marie Hellfritzsch
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | | | - Pierre Lambert
- TIPs department, CP 165/67, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Grazia Caivano
- Chiesi Farmaceutici S.p.A., Largo Francesco Belloli 11/A, Parma, Italy
| | - Alain Regard
- Nemera Insight Innovation Center, La Verpilière, France
| | | | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Laurent Vecellio
- Nemera Insight Innovation Center, La Verpilière, France.,Centre d'étude des pathologies respiratoires (CEPR), UMR, Université de Tours, INSERM, Tours, France
| | | | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| |
Collapse
|
29
|
Kolli AR, Kuczaj AK, Martin F, Hayes AW, Peitsch MC, Hoeng J. Bridging inhaled aerosol dosimetry to physiologically based pharmacokinetic modeling for toxicological assessment: nicotine delivery systems and beyond. Crit Rev Toxicol 2020; 49:725-741. [PMID: 31903848 DOI: 10.1080/10408444.2019.1692780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the challenges for toxicological assessment of inhaled aerosols is to accurately predict their deposited and absorbed dose. Transport, evolution, and deposition of liquid aerosols are driven by complex processes dominated by convection-diffusion that depend on various factors related to physics and chemistry. These factors include the physicochemical properties of the pure substance of interest and associated mixtures, the physical and chemical properties of the aerosols generated, the interplay between different factors during transportation and deposition, and the subject-specific inhalation topography. Several inhalation-based physiologically based pharmacokinetic (PBPK) models have been developed, but the applicability of these models for aerosols has yet to be verified. Nicotine is among several substances that are often delivered via the pulmonary route, with varied kinetics depending upon the route of exposure. This was used as an opportunity to review and discuss the current knowledge and state-of-the-art tools combining aerosol dosimetry predictions with PBPK modeling efforts. A validated tool could then be used to perform for toxicological assessment of other inhaled therapeutic substances. The Science Panel from the Alliance of Risk Assessment have convened at the "Beyond Science and Decisions: From Problem Formulation to Dose-Response Assessment" workshop to evaluate modeling approaches and address derivation of exposure-internal dose estimations for inhaled aerosols containing nicotine or other substances. The discussion involved PBPK model evaluation criteria, challenges, and choices that arise in such a model design, development, and application as a computational tool for use in human toxicological assessments.
Collapse
Affiliation(s)
- A R Kolli
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland
| | - A K Kuczaj
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland.,Department of Applied Mathematics, Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - F Martin
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland
| | - A W Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - M C Peitsch
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland
| | - J Hoeng
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland
| |
Collapse
|
30
|
Fröhlich E, Öhlinger K, Meindl C, Corzo C, Lochmann D, Reyer S, Salar-Behzadi S. In vitro toxicity screening of polyglycerol esters of fatty acids as excipients for pulmonary formulations. Toxicol Appl Pharmacol 2020; 386:114833. [PMID: 31756429 DOI: 10.1016/j.taap.2019.114833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022]
Abstract
One of the main problems for the development of pulmonary formulations is the low availability of approved excipients. Polyglycerol esters of fatty acids (PGFA) are promising molecules for acting as excipient for formulation development and drug delivery to the lung. However, their biocompatibility in the deep lung has not been studied so far. Main exposed cells include alveolar epithelial cells and alveolar macrophages. Due to the poor water-solubility of PGFAs, the exposure of alveolar macrophages is expected to be much higher than that of epithelial cells. In this study, two PGFAs and their mixture were tested regarding cytotoxicity to epithelial cells and cytotoxicity and functional impairment of macrophages. Cytotoxicity was assessed by dehydrogenase activity and lactate dehydrogenase release. Lysosome function, phospholipid accumulation, phagocytosis, nitric oxide production, and cytokine release were used to evaluate macrophage function. Cytotoxicity was increased with the increased polarity of PGFA molecules. At concentrations above 1 mg/ml accumulation in lysosomes, impairment of phagocytosis, secretion of nitric oxide, and increased release of cytokines were noted. The investigated PGFAs in concentrations up to 1 mg/ml can be considered as uncritical and are promising for advanced pulmonary delivery of high powder doses and drug targeting to alveolar macrophages.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Kristin Öhlinger
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Claudia Meindl
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria.
| |
Collapse
|
31
|
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019; 11:pharmaceutics11120687. [PMID: 31861138 PMCID: PMC6969914 DOI: 10.3390/pharmaceutics11120687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Correspondence:
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Edyta Pesta
- Department of Pharmaceutical Analysis, Research Network Łukasiewicz—Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Elżbieta Menaszek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
32
|
Radivojev S, Pinto JT, Fröhlich E, Paudel A. Insights into DPI sensitivity to humidity: An integrated in-vitro-in-silico risk-assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. Eur J Pharm Biopharm 2019; 141:210-220. [DOI: 10.1016/j.ejpb.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023]
|
34
|
Patel A, Hoffman E, Ball D, Klapwijk J, Steven RT, Dexter A, Bunch J, Baker D, Murnane D, Hutter V, Page C, Dailey LA, Forbes B. Comparison of Oral, Intranasal and Aerosol Administration of Amiodarone in Rats as a Model of Pulmonary Phospholipidosis. Pharmaceutics 2019; 11:pharmaceutics11070345. [PMID: 31319538 PMCID: PMC6680908 DOI: 10.3390/pharmaceutics11070345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022] Open
Abstract
‘Foamy’ alveolar macrophages (FAM) observed in nonclinical toxicology studies during inhaled drug development may indicate drug-induced phospholipidosis, but can also derive from adaptive non-adverse mechanisms. Orally administered amiodarone is currently used as a model of pulmonary phospholipidosis and it was hypothesized that aerosol administration would produce phospholipidosis-induced FAM that could be characterized and used in comparative inhalation toxicology. Han-Wistar rats were given amiodarone via (1) intranasal administration (6.25 mg/kg) on two days, (2) aerosol administration (3 mg/kg) on two days, (3) aerosol administration (10 mg/kg) followed by three days of 30 mg/kg or (4) oral administration (100 mg/kg) for 7 days. Alveolar macrophages in bronchoalveolar lavage were evaluated by differential cell counting and high content fluorescence imaging. Histopathology and mass-spectrometry imaging (MSI) were performed on lung slices. The higher dose aerosolised amiodarone caused transient pulmonary inflammation (p < 0.05), but only oral amiodarone resulted in FAM (p < 0.001). MSI of the lungs of orally treated rats revealed a homogenous distribution of amiodarone and a putative phospholipidosis marker, di-22:6 bis-monoacylglycerol, throughout lung tissue whereas aerosol administration resulted in localization of both compounds around the airway lumen. Thus, unlike oral administration, aerosolised amiodarone failed to produce the expected FAM responses.
Collapse
Affiliation(s)
- Aateka Patel
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Ewelina Hoffman
- Centre for Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Pharmacy Faculty, Medical University of Lodz, 90-151 Lodz, Poland
| | - Doug Ball
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Gunnelswood Road, Stevenage, Herts SG1 2NY, UK
| | - Jan Klapwijk
- Translational Medicine and Comparative Pathobiology, GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Rory T Steven
- National Physical Laboratory, Teddington, London TW11 0LW, UK
| | - Alex Dexter
- National Physical Laboratory, Teddington, London TW11 0LW, UK
| | - Josephine Bunch
- National Physical Laboratory, Teddington, London TW11 0LW, UK
| | - Daniel Baker
- Centre for Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Darragh Murnane
- Centre for Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Victoria Hutter
- Centre for Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Lea Ann Dailey
- Institute of Pharmaceutical Technology and Biopharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06108 Halle (Saale), Germany.
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
35
|
Marinova M, Solopov P, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal Toxicol 2019; 31:147-160. [PMID: 31232121 DOI: 10.1080/08958378.2019.1624895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFβ. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.
Collapse
Affiliation(s)
- Margarita Marinova
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | - Pavel Solopov
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | | | - Ruben M L Colunga Biancatelli
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,b Policlinico Umberto I, La Sapienza University of Rome , Rome , Italy
| | - John D Catravas
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,c School of Medical Diagnostic & Translational Sciences , College of Health Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
36
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
37
|
Biddiscombe MF, Usmani OS. Is there room for further innovation in inhaled therapy for airways disease? Breathe (Sheff) 2018; 14:216-224. [PMID: 30186519 PMCID: PMC6118889 DOI: 10.1183/20734735.020318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhaled medication is the cornerstone in the treatment of patients across a spectrum of respiratory diseases including asthma and chronic obstructive pulmonary disease. The benefits of inhaled therapy have long been recognised but the most important innovations have occurred over the past 60 years, beginning with the invention of the pressurised metered dose inhaler. However, despite over 230 different device and drug combinations currently being available, disease control is far from perfect. Here we look at how innovation in inhaler design may improve treatments for respiratory diseases and how new formulations may lead to treatments for diseases beyond the lungs. We look at the three main areas where innovation in inhaled therapy is most likely to occur: 1) device engineering and design; 2) chemistry and formulations; and 3) digital technology associated with inhalers. Inhaler design has improved significantly but considerable challenges still remain in order to continually innovate and improve targeted drug delivery to the lungs. Healthcare professionals want see innovations that motivate their patients to achieve their goal of improving their health, through better adherence to treatment. Patients want devices that are easy to use and to see that their efforts are rewarded by improvements in their condition. KEY POINTS The dictionary definition of innovation is the introduction of new things, ideas or ways of doing something. We show how this definition can be applied to inhaled therapy.We take a look at the past to see what drove innovation in inhaler design and how this has led to the current devices.We look at the current drivers of innovation in engineering, chemistry and digital technology and predict how this may translate to new devices.Can innovation help the healthcare professional manage their patients better?What does the patient expect from innovation in their device? EDUCATIONAL AIMS To understand the importance of inhaled medication in the treatment of lung diseases.To understand how innovation has helped advance some of the devices patients use today from basic and inefficient designs.To understand the obstacles that prevent patients from receiving optimal treatment from their inhalers.To understand how innovation in inhaler design can lead to improved treatment for patients and widen the range of diseases that can be treated via the inhaled route.
Collapse
Affiliation(s)
- Martyn F. Biddiscombe
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, Airways Disease Section, London, UK
| | | |
Collapse
|
38
|
Zelikin AN, Ehrhardt C, Healy AM. Materials and methods for delivery of biological drugs. Nat Chem 2018; 8:997-1007. [PMID: 27768097 DOI: 10.1038/nchem.2629] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
Abstract
Biological drugs generated via recombinant techniques are uniquely positioned due to their high potency and high selectivity of action. The major drawback of this class of therapeutics, however, is their poor stability upon oral administration and during subsequent circulation. As a result, biological drugs have very low bioavailability and short therapeutic half-lives. Fortunately, tools of chemistry and biotechnology have been developed into an elaborate arsenal, which can be applied to improve the pharmacokinetics of biological drugs. Depot-type release systems are available to achieve sustained release of drugs over time. Conjugation to synthetic or biological polymers affords long circulating formulations. Administration of biological drugs through non-parenteral routes shows excellent performance and the first products have reached the market. This Review presents the main accomplishments in this field and illustrates the materials and methods behind existing and upcoming successful formulations and delivery strategies for biological drugs.
Collapse
Affiliation(s)
- Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark.,iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
39
|
Abstract
Aerosols are dynamic systems, responding to variations in the surrounding environmental conditions by changing in size, composition and phase. Although, widely used in inhalation therapies, details of the processes occurring on aerosol generation and during inhalation have received little attention. Instead, research has focused on improvements to the formulation of the drug prior to aerosolization and the resulting clinical efficacy of the treatment. Here, we highlight the processes that occur during aerosol generation and inhalation, affecting aerosol disposition when deposited and, potentially, impacting total and regional doses. In particular, we examine the response of aerosol particles to the humid environment of the respiratory tract, considering both the capacity of particles to grow by absorbing moisture and the timescale for condensation to occur. [Formula: see text].
Collapse
|
40
|
Inhaled formulation and device selection: bridging the gap between preclinical species and first-in-human studies. Ther Deliv 2018; 9:387-404. [DOI: 10.4155/tde-2000-0000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The factors that influence inhaled first-in-human (FIH) device and formulation selection often differ significantly from the factors that have influenced the preceding preclinical experiments and inhalation toxicology work. In order to minimize the risk of delivery issues negatively impacting a respiratory pipeline program, the preclinical and FIH delivery systems must be considered holistically. This topic will be covered in more detail in this paper. Several examples will be presented that highlight how appropriate scientific strategy can help bridge the gap between delivering to preclinical species and human. Considerations for the FIH device selection (metered dose inhaler, dry powder inhaler and nebulizer) and formulation optimization for small molecules will be discussed in context with the preclinical delivery systems.
Collapse
|
41
|
Berg T, Hegelund-Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann-Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19:68. [PMID: 29678179 PMCID: PMC5910606 DOI: 10.1186/s12931-018-0760-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 02/03/2023] Open
Abstract
Background Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. Methods Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. Results We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. Conclusions We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12931-018-0760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Hegelund-Myrbäck
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden.
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hong Zhou
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Marie Brännström
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Werkström
- Respiratory GMed, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Janeric Seidegård
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nord
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Global Patient Safety, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Lena Gustavsson
- Department of Drug Metabolism, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
42
|
Coelho LS, Correa-Netto NF, Masukawa MY, Lima AC, Maluf S, Linardi A, Santos-Junior JG. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:34-41. [PMID: 29288824 DOI: 10.1016/j.jep.2017.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety.
Collapse
Affiliation(s)
- Laura Segismundo Coelho
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Marcia Yuriko Masukawa
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ariadiny Caetano Lima
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | - Samia Maluf
- Samia Maluf Aromatherapy Institute, São Paulo, SP, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, São Paulo, SP, Brazil
| | | |
Collapse
|
43
|
Abstract
Pulmonary delivery in animal models can be performed using either direct administration methods or by passive inhalation. Direct pulmonary delivery requires the animal to be endotracheally intubated, whereas passive delivery uses a nose-only or a whole-body chamber. Endotracheal delivery of therapeutics and vaccines allows investigators to deliver the payload directly into the lung without the limitations associated with passive pulmonary administration methods. Additionally, endotracheal delivery can achieve deep lung delivery without the involvement of other exposure routes and is more reproducible and quantitative than passive pulmonary delivery in terms of accurate dosing. Here we describe the endotracheal delivery of both liquids and dry powders for preclinical models of treatment and exposure.
Collapse
|
44
|
Bzdek BR, Reid JP. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols. J Chem Phys 2017; 147:220901. [DOI: 10.1063/1.5002641] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Bryan R. Bzdek
- School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| | - Jonathan P. Reid
- School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| |
Collapse
|
45
|
Price DF, Luscombe CN, Eddershaw PJ, Edwards CD, Gumbleton M. The Differential Absorption of a Series of P-Glycoprotein Substrates in Isolated Perfused Lungs from Mdr1a/1b Genetic Knockout Mice can be Attributed to Distinct Physico-Chemical Properties: an Insight into Predicting Transporter-Mediated, Pulmonary Specific Disposition. Pharm Res 2017; 34:2498-2516. [PMID: 28702798 PMCID: PMC5736782 DOI: 10.1007/s11095-017-2220-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE To examine if pulmonary P-glycoprotein (P-gp) is functional in an intact lung; impeding the pulmonary absorption and increasing lung retention of P-gp substrates administered into the airways. Using calculated physico-chemical properties alone build a predictive Quantitative Structure-Activity Relationship (QSAR) model distinguishing whether a substrate's pulmonary absorption would be limited by P-gp or not. METHODS A panel of 18 P-gp substrates were administered into the airways of an isolated perfused mouse lung (IPML) model derived from Mdr1a/Mdr1b knockout mice. Parallel intestinal absorption studies were performed. Substrate physico-chemical profiling was undertaken. Using multivariate analysis a QSAR model was established. RESULTS A subset of P-gp substrates (10/18) displayed pulmonary kinetics influenced by lung P-gp. These substrates possessed distinct physico-chemical properties to those P-gp substrates unaffected by P-gp (8/18). Differential outcomes were not related to different intrinsic P-gp transporter kinetics. In the lung, in contrast to intestine, a higher degree of non-polar character is required of a P-gp substrate before the net effects of efflux become evident. The QSAR predictive model was applied to 129 substrates including eight marketed inhaled drugs, all these inhaled drugs were predicted to display P-gp dependent pulmonary disposition. CONCLUSIONS Lung P-gp can affect the pulmonary kinetics of a subset of P-gp substrates. Physico-chemical relationships determining the significance of P-gp to absorption in the lung are different to those operative in the intestine. Our QSAR framework may assist profiling of inhaled drug discovery candidates that are also P-gp substrates. The potential for P-gp mediated pulmonary disposition exists in the clinic.
Collapse
Affiliation(s)
- Daniel F Price
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Chris N Luscombe
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Peter J Eddershaw
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Chris D Edwards
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Mark Gumbleton
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
46
|
Bäckman P, Arora S, Couet W, Forbes B, de Kruijf W, Paudel A. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci 2017; 113:41-52. [PMID: 29079338 DOI: 10.1016/j.ejps.2017.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
Abstract
Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.
Collapse
Affiliation(s)
| | - Sumit Arora
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - William Couet
- School of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | | | | | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
47
|
Effect of the pulmonary deposition and in vitro permeability on the prediction of plasma levels of inhaled budesonide formulation. Int J Pharm 2017; 532:337-344. [DOI: 10.1016/j.ijpharm.2017.08.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
|
48
|
Bosquillon C, Madlova M, Patel N, Clear N, Forbes B. A Comparison of Drug Transport in Pulmonary Absorption Models: Isolated Perfused rat Lungs, Respiratory Epithelial Cell Lines and Primary Cell Culture. Pharm Res 2017; 34:2532-2540. [PMID: 28924829 PMCID: PMC5736767 DOI: 10.1007/s11095-017-2251-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the ability of human airway epithelial cell layers and a simple rat isolated perfused lung (IPL) model to predict pulmonary drug absorption in rats in vivo. METHOD The permeability of seven compounds selected to possess a range of lipophilicity was measured in two airway cell lines (Calu-3 and 16HBE14o-), in normal human bronchial epithelial (NHBE) cells and using a simple isolated perfused lungs (IPL) technique. Data from the cell layers and ex vivo lungs were compared to published absorption rates from rat lungs measured in vivo. RESULTS A strong relationship was observed between the logarithm of the in vivo absorption half-life and the absorption half-life in the IPL (r = 0.97; excluding formoterol). Good log-linear relationships were also found between the apparent first-order absorption rate in vivo and cell layer permeability with correlation coefficients of 0.92, 0.93, 0.91 in Calu-3, 16HBE14o- and NHBE cells, respectively. CONCLUSION The simple IPL technique provided a good prediction of drug absorption from the lungs, making it a useful method for empirical screening of drug absorption in the lungs. Permeability measurements were similar in all the respiratory epithelial cell models evaluated, with Calu-3 having the advantage for routine permeability screening purposes of being readily availability, robust and easy to culture.
Collapse
Affiliation(s)
- Cynthia Bosquillon
- School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Michaela Madlova
- King's College London, Pharmaceutical Science Division, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.,Faculty of Pharmacy, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Nilesh Patel
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | | | - Ben Forbes
- King's College London, Pharmaceutical Science Division, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
49
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
50
|
de Kruijf W, Ehrhardt C. Inhalation delivery of complex drugs-the next steps. Curr Opin Pharmacol 2017; 36:52-57. [PMID: 28846876 DOI: 10.1016/j.coph.2017.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022]
Abstract
Oral inhalation offers the opportunity of targeting drugs locally to different regions of the respiratory tract or alternatively, using the high surface area of the alveoli for systemic delivery. Pulmozyme and the inhaled insulins (i.e. Exubera and Afrezza) are examples of the scope of pulmonary drug delivery of biopharmaceuticals-albeit with strikingly different commercial success. Particularly, the failure of Exubera and the subsequent overreactions (e.g. the unsubstantiated lung cancer fear), lastingly stunned the field of systemically inhaled protein and peptide drugs. Building on the lessons learned from these early products, a new wave of inhaled biomolecules has recently entered clinical trials. Moreover, oral inhalation has become an attractive alternative for the delivery of small molecules with difficult oral pharmacokinetics and/or extensive liver first-pass metabolism. Advances in inhaler design and our increased understanding of lung physiology continue to make oral inhalation of complex drugs an attractive therapeutic option.
Collapse
Affiliation(s)
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|