1
|
Begovic M, Schneider L, Zhou X, Hamdani N, Akin I, El-Battrawy I. The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies. Int J Mol Sci 2024; 25:12034. [PMID: 39596103 PMCID: PMC11593457 DOI: 10.3390/ijms252212034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiac channelopathies are inherited diseases that increase the risk of sudden cardiac death. While different genes have been associated with inherited channelopathies, there are still subtypes, e.g., catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome, where the genetic cause remains unknown. Various models, including animal models, heterologous expression systems, and the human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSCs-CMs) model, have been used to study the pathophysiological mechanisms of channelopathies. Recently, researchers have focused on using hiPSCs-CMs to understand the genotype-phenotype correlation and screen drugs. By combining innovative techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9)-mediated genome editing, and three-dimensional (3D) engineered heart tissues, we can gain new insights into the pathophysiological mechanisms of channelopathies. This approach holds promise for improving personalized drug treatment. This review highlights the role of hiPSCs-CMs in understanding the pathomechanism of Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia and how these models can be utilized for drug screening.
Collapse
Affiliation(s)
- Merima Begovic
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, University Maastricht, 6229HX Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, 1089 Budapest, Hungary
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany; (M.B.); (L.S.); (N.H.)
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Rhythmology, St. Josef Hospital, Ruhr University, 44791 Bochum, Germany
| |
Collapse
|
2
|
Yildirim Y, Degener L, Reuter L, Petersen J, Gabel L, Sommer A, Pahrmann C, Reichenspurner H, Pecha S. Evaluation of cell survival in different 3D-printed geometric shapes of human iPSC-derived engineered heart tissue. Artif Organs 2024; 48:1251-1263. [PMID: 39041632 DOI: 10.1111/aor.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVES Engineered Heart Tissue (EHT) is a promising tool to repair heart muscle defects and can additionally be used for drug testing. Due to the absence of an in vitro vascularization, EHT geometry crucially impacts nutrient and oxygen supply by diffusion capacity. We analyzed cardiomyocyte survival in different EHT geometries. METHODS Different geometries with varying surface-area-to-volume-ratios were calculated (structure A (Ring) AS/V = 58.47 mm2/440 μL3, structure B (Infinity) 25.86 mm2/440 μL3). EHTs were generated from hiPSC-derived cardiomyocytes (4 × 106) and a fibrin/thrombin hydrogel. Cell viability was evaluated by RT-PCR, cytometric studies, and Bioluminescence imaging. RESULTS Using 3D-printed casting molds, spontaneously beating EHTs can be generated in various geometric forms. At day 7, the RT-PCR analyses showed a significantly higher Troponin-T value in ring EHTs, compared to infinity EHTs. In cytometric studies, we evaluated 15% more Troponin-T positive cells in ring (73% ± 12%), compared to infinity EHTs (58% ± 11%, p = 0.04). BLI visualized significantly higher cell survival in ring EHTs (ROI = A: 1.14 × 106 p/s and B: 8.47 × 105 p/s, p < 0.001) compared to infinity EHTs during longitudinal cultivation process. CONCLUSION Use of 3D-printing allows the creation of EHTs in all desired geometric shapes. The geometry with an optimized surface-area-to-volume-ratio (ring EHT) demonstrated a significantly higher cell survival measured by RT-PCR, Bioluminescence imaging, and cytometric studies using FACS analysis.
Collapse
Affiliation(s)
- Yalin Yildirim
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Louisa Degener
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Lukas Reuter
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lilian Gabel
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Annika Sommer
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Christiane Pahrmann
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
3
|
Mondejar-Parreño G, Sanchez-Perez P, Cruz FM, Jalife J. Promising tools for future drug discovery and development in antiarrhythmic therapy. Pharmacol Rev 2024; 77:PHARMREV-AR-2024-001297. [PMID: 39406505 DOI: 10.1124/pharmrev.124.001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Arrhythmia refers to irregularities in the rate and rhythm of the heart, with symptoms spanning from mild palpitations to life-threatening arrhythmias and sudden cardiac death (SCD). The complex molecular nature of arrhythmias complicates the selection of appropriate treatment. Current therapies involve the use of antiarrhythmic drugs (class I-IV) with limited efficacy and dangerous side effects and implantable pacemakers and cardioverter-defibrillators with hardware-related complications and inappropriate shocks. The number of novel antiarrhythmic drug in the development pipeline has decreased substantially during the last decade and underscores uncertainties regarding future developments in this field. Consequently, arrhythmia treatment poses significant challenges, prompting the need for alternative approaches. Remarkably, innovative drug discovery and development technologies show promise in helping advance antiarrhythmic therapies. Here, we review unique characteristics and the transformative potential of emerging technologies that offer unprecedented opportunities for transitioning from traditional antiarrhythmics to next-generation therapies. We assess stem cell technology, emphasizing the utility of innovative cell profiling using multi-omics, high-throughput screening, and advanced computational modeling in developing treatments tailored precisely to individual genetic and physiological profiles. We offer insights into gene therapy, peptide and peptibody approaches for drug delivery. We finally discuss potential strengths and weaknesses of such techniques in reducing adverse effects and enhancing overall treatment outcomes, leading to more effective, specific, and safer therapies. Altogether, this comprehensive overview introduces innovative avenues for personalized rhythm therapy, with particular emphasis on drug discovery, aiming to advance the arrhythmia treatment landscape and the prevention of SCD. Significance Statement Arrhythmias and sudden cardiac death account for 15-20% of deaths worldwide. However, current antiarrhythmic therapies are ineffective and with dangerous side effects. Here, we review the field of arrhythmia treatment underscoring the slow progress in advancing the cardiac rhythm therapy pipeline and the uncertainties regarding evolution of this field. We provide information on how emerging technological and experimental tools can help accelerate progress and address the limitations of antiarrhythmic drug discovery.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Cardiac Arrhythmia Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain
| | - Patricia Sanchez-Perez
- Cardiac Arrhythmia Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain
| | - Francisco Miguel Cruz
- Cardiac Arrhythmia Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain
| | - Jose Jalife
- Arrhythmia Research, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain
| |
Collapse
|
4
|
Vuorenpää H, Valtonen J, Penttinen K, Koskimäki S, Hovinen E, Ahola A, Gering C, Parraga J, Kelloniemi M, Hyttinen J, Kellomäki M, Aalto-Setälä K, Miettinen S, Pekkanen-Mattila M. Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes. Cytotechnology 2024; 76:483-502. [PMID: 38933872 PMCID: PMC11196475 DOI: 10.1007/s10616-024-00630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00630-5.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Joona Valtonen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Penttinen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Koskimäki
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Hovinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christine Gering
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Nappi F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int J Mol Sci 2024; 25:3630. [PMID: 38612441 PMCID: PMC11011542 DOI: 10.3390/ijms25073630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The use of non-coding RNAs (ncRNAs) as drug targets is being researched due to their discovery and their role in disease. Targeting ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is an attractive approach for treating various diseases, such as cardiovascular disease and cancer. This seminar discusses the current status of ncRNAs as therapeutic targets in different pathological conditions. Regarding miRNA-based drugs, this approach has made significant progress in preclinical and clinical testing for cardiovascular diseases, where the limitations of conventional pharmacotherapy are evident. The challenges of miRNA-based drugs, including specificity, delivery, and tolerability, will be discussed. New approaches to improve their success will be explored. Furthermore, it extensively discusses the potential development of targeted therapies for cardiovascular disease. Finally, this document reports on the recent advances in identifying and characterizing microRNAs, manipulating them, and translating them into clinical applications. It also addresses the challenges and perspectives towards clinical application.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
7
|
Yang Y, Yang H, Kiskin FN, Zhang JZ. The new era of cardiovascular research: revolutionizing cardiovascular research with 3D models in a dish. MEDICAL REVIEW (2021) 2024; 4:68-85. [PMID: 38515776 PMCID: PMC10954298 DOI: 10.1515/mr-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Fedir N. Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Joe Z. Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Finkel S, Sweet S, Locke T, Smith S, Wang Z, Sandini C, Imredy J, He Y, Durante M, Lagrutta A, Feinberg A, Lee A. FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology. APL Bioeng 2023; 7:046113. [PMID: 38046544 PMCID: PMC10693443 DOI: 10.1063/5.0163363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
There is critical need for a predictive model of human cardiac physiology in drug development to assess compound effects on human tissues. In vitro two-dimensional monolayer cultures of cardiomyocytes provide biochemical and cellular readouts, and in vivo animal models provide information on systemic cardiovascular response. However, there remains a significant gap in these models due to their incomplete recapitulation of adult human cardiovascular physiology. Recent efforts in developing in vitro models from engineered heart tissues have demonstrated potential for bridging this gap using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in three-dimensional tissue structure. Here, we advance this paradigm by implementing FRESH™ 3D bioprinting to build human cardiac tissues in a medium throughput, well-plate format with controlled tissue architecture, tailored cellular composition, and native-like physiological function, specifically in its drug response. We combined hiPSC-CMs, endothelial cells, and fibroblasts in a cellular bioink and FRESH™ 3D bioprinted this mixture in the format of a thin tissue strip stabilized on a tissue fixture. We show that cardiac tissues could be fabricated directly in a 24-well plate format were composed of dense and highly aligned hiPSC-CMs at >600 million cells/mL and, within 14 days, demonstrated reproducible calcium transients and a fast conduction velocity of ∼16 cm/s. Interrogation of these cardiac tissues with the β-adrenergic receptor agonist isoproterenol showed responses consistent with positive chronotropy and inotropy. Treatment with calcium channel blocker verapamil demonstrated responses expected of hiPSC-CM derived cardiac tissues. These results confirm that FRESH™ 3D bioprinted cardiac tissues represent an in vitro platform that provides data on human physiological response.
Collapse
Affiliation(s)
| | | | - Tyler Locke
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Sydney Smith
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Zhefan Wang
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | | | - John Imredy
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Yufang He
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Marc Durante
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Armando Lagrutta
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | | | - Andrew Lee
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| |
Collapse
|
10
|
Windt LM, Wiendels M, Dostanić M, Bellin M, Sarro PM, Mastrangeli M, Mummery CL, van Meer BJ. Miniaturized engineered heart tissues from hiPSC-derived triple cell type co-cultures to study human cardiac function. Biochem Biophys Res Commun 2023; 681:200-211. [PMID: 37783118 DOI: 10.1016/j.bbrc.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less than 5000 cells and are used to measure contraction kinetics although not contraction force. By contrast, engineered heart tissues (EHTs) formed around two flexible pillars, can measure contraction force but conventional EHTs often require between 0.5 and 2 million cells. This makes large-scale screening of many EHTs costly. Our goals here were (i) to create a physiologically relevant model that required fewer cells than standard EHTs making them less expensive, and (ii) to ensure that this miniaturized model retained correct functionality. We demonstrated that fully functional EHTs could be generated from physiologically relevant combinations of hiPSC-derived cardiomyocytes (70%), cardiac fibroblasts (15%) and cardiac endothelial cells (15%), using as few as 1.6 × 104 cells. Our results showed that these EHTs were viable and functional up to 14 days after formation. The EHTs could be electrically paced in the frequency range between 0.6 and 3 Hz, with the optimum between 0.6 and 2 Hz. This was consistent across three downscaled EHT sizes tested. These findings suggest that miniaturized EHTs could represent a cost-effective microphysiological system for disease modelling and examining drug responses particularly in secondary screens for drug discovery.
Collapse
Affiliation(s)
- L M Windt
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands
| | - M Wiendels
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands
| | - M Dostanić
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands; Microelectronics, TU Delft, Delft, the Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands; Department of Biology, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy
| | - P M Sarro
- Microelectronics, TU Delft, Delft, the Netherlands
| | | | - C L Mummery
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands
| | - B J van Meer
- Department of Anatomy and Embryology, LUMC, Leiden, the Netherlands; Sync Biosystems, Leiden, the Netherlands.
| |
Collapse
|
11
|
Fischer B, Gwinner F, Gepp MM, Schulz A, Danz K, Dehne A, Katsen-Globa A, Neubauer JC, Gentile L, Zimmermann H. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A 2023; 111:1600-1615. [PMID: 37317666 DOI: 10.1002/jbm.a.37558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a valuable tool for in vitro modeling of the cardiac niche and possess great potential in tissue engineering applications. However, conventional polystyrene-based cell culture substrates have adverse effects on cardiomyocytes in vitro due to the stress applied by a stiff substrate on contractile cells. Ultra-high viscosity alginates offer a unique versatility as tunable substrates for cardiac cell cultures due to their biocompatibility, flexible biofunctionalization, and stability. In this work, we analyzed the effect of alginate substrates on hPSC-CM maturity and functionality. Alginate substrates in high-throughput compatible culture formats fostered a more mature gene expression and enabled the simultaneous assessment of chronotropic and inotropic effects upon beta-adrenergic stimulation. Furthermore, we produced 3D-printed alginate scaffolds with differing mechanical properties and plated hPSC-CMs on the surface of these to create Heart Patches for tissue engineering applications. These exhibited synchronous macro-contractions in concert with more mature gene expression patterns and extensive intracellular alignment of sarcomeric structures. In conclusion, the combination of biofunctionalized alginates and human cardiomyocytes represents a valuable tool for both in vitro modeling and regenerative medicine, due to its beneficial effects on cardiomyocyte physiology, the possibility to analyze cardiac contractility, and its applicability as Heart Patches.
Collapse
Affiliation(s)
- B Fischer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - F Gwinner
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - M M Gepp
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - A Schulz
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - K Danz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Dehne
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Katsen-Globa
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - J C Neubauer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - L Gentile
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - H Zimmermann
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Gebäude A, Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
12
|
Baena-Montes JM, Kraśny MJ, O’Halloran M, Dunne E, Quinlan LR. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation. J Pers Med 2023; 13:1237. [PMID: 37623487 PMCID: PMC10455620 DOI: 10.3390/jpm13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application.
Collapse
Affiliation(s)
- Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Marcin J. Kraśny
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, School of Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
- CÚRAM SFI Centre for Research in Medical Devices, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
13
|
Tani H, Kobayashi E, Yagi S, Tanaka K, Kameda-Haga K, Shibata S, Moritoki N, Takatsuna K, Moriwaki T, Sekine O, Umei TC, Morita Y, Soma Y, Kishino Y, Kanazawa H, Fujita J, Hattori S, Fukuda K, Tohyama S. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 2023; 299:122174. [PMID: 37285642 DOI: 10.1016/j.biomaterials.2023.122174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Japan; Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shinomi Yagi
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | | | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | - Yuika Morita
- Department of Cardiology, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki, Kanagawa, Japan
| | | | | | | | - Jun Fujita
- Department of Cardiology, Japan; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Shunji Hattori
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Cheng Z, Yang Y, Jiang K, Nie H, Yang X, Tu Z, Liang J, Xiang Y. Quantification of Cardiomyocyte Contraction In Vitro and Drug Screening by MyocytoBeats. J Cardiovasc Transl Res 2023; 16:758-767. [PMID: 36715820 DOI: 10.1007/s12265-023-10357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Cardiomyocyte contractility is the crucial feature of heart function. Quantifying cardiomyocyte contraction in vitro is essential for disease phenotype characterization, mechanism illumination, and drug screening. Although many experimental methods have been employed to determine contraction dynamics in vitro, a time-saving and easy-to-use software is still needed to be developed. We presented a reliable tool, named MyocytoBeats, to measure cardiomyocyte contraction by processing recorded videos. Analysis results by MyocytoBeats of various experimental models have shown a significant linear relationship with another validated software. We also performed pharmacology screen in the platform, and astragaloside IV was identified to stabilize the frequency and amplitude of cardiomyocyte in the arrhythmia model. MyocytoBeats is a high-performance tool for generating cardiomyocyte contraction data of vitro study and shows a great potential in cardiac pharmacology study.
Collapse
Affiliation(s)
- Zhiyang Cheng
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuxin Yang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kai Jiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hongyi Nie
- School of Mechanical Engineering and the School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
| | - Xingbo Yang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zizhuo Tu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiayi Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Yaozu Xiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Life and Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
16
|
Rivera‐Arbeláez JM, Keekstra D, Cofiño‐Fabres C, Boonen T, Dostanic M, ten Den SA, Vermeul K, Mastrangeli M, van den Berg A, Segerink LI, Ribeiro MC, Strisciuglio N, Passier R. Automated assessment of human engineered heart tissues using deep learning and template matching for segmentation and tracking. Bioeng Transl Med 2023; 8:e10513. [PMID: 37206226 PMCID: PMC10189437 DOI: 10.1002/btm2.10513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the evaluation of the efficacy and toxicity of compounds at the early phase in the drug development pipeline. Consequently, the EHT contractile properties are highly relevant parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal measurements of cardiac function over time. In this study, we developed and validated the software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which automatically analyzes contractile properties of EHTs by segmenting and tracking brightfield videos, using deep learning and template matching with sub-pixel precision. We demonstrate the robustness, accuracy, and computational efficiency of the software by comparing it to the state-of-the-art method (MUSCLEMOTION), and by testing it with a data set of EHTs from three different hPSC lines. HAARTA will facilitate standardized analysis of contractile properties of EHTs, which will be beneficial for in vitro drug screening and longitudinal measurements of cardiac function.
Collapse
Affiliation(s)
- José M. Rivera‐Arbeláez
- Department of Applied Stem Cell Technologies, TechMed CentreUniversity of TwenteEnschedethe Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, TechMed Centre, Max Planck Institute for Complex Fluid DynamicsUniversity of TwenteEnschedethe Netherlands
| | - Danjel Keekstra
- Data Management & Biometrics (DMB) GroupUniversity of TwenteEnschedethe Netherlands
| | - Carla Cofiño‐Fabres
- Department of Applied Stem Cell Technologies, TechMed CentreUniversity of TwenteEnschedethe Netherlands
| | | | | | - Simone A. ten Den
- Department of Applied Stem Cell Technologies, TechMed CentreUniversity of TwenteEnschedethe Netherlands
| | - Kim Vermeul
- Department of Applied Stem Cell Technologies, TechMed CentreUniversity of TwenteEnschedethe Netherlands
| | | | - Albert van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, TechMed Centre, Max Planck Institute for Complex Fluid DynamicsUniversity of TwenteEnschedethe Netherlands
| | - Loes I. Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, TechMed Centre, Max Planck Institute for Complex Fluid DynamicsUniversity of TwenteEnschedethe Netherlands
| | | | - Nicola Strisciuglio
- Data Management & Biometrics (DMB) GroupUniversity of TwenteEnschedethe Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed CentreUniversity of TwenteEnschedethe Netherlands
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeidenthe Netherlands
| |
Collapse
|
17
|
Singh BN, Yucel D, Garay BI, Tolkacheva EG, Kyba M, Perlingeiro RCR, van Berlo JH, Ogle BM. Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circ Res 2023; 132:519-540. [PMID: 36795845 PMCID: PMC9943541 DOI: 10.1161/circresaha.122.321770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
| | - Dogacan Yucel
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Bayardo I. Garay
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School, MN, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Rita C. R. Perlingeiro
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Jop H. van Berlo
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Brenda M. Ogle
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
- Masonic Cancer Center, University of Minnesota, MN, USA
| |
Collapse
|
18
|
An efficient human stem cells derived cardiotoxicity testing platform for testing oncotherapeutic analogues of quercetin and cinnamic acid. Sci Rep 2022; 12:21362. [PMID: 36494370 PMCID: PMC9734143 DOI: 10.1038/s41598-022-21721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Oncotherapeutics research is progressing at a rapid pace, however, not many drugs complete the successful clinical trial because of severe off-target toxicity to cardiomyocytes which ultimately leads to cardiac dysfunction. It is thus important to emphasize the need for early testing for possible cardiotoxicity of emerging oncotherapeutics. In this study, we assessed a novel stem cell-derived cardiac model for testing for cardiotoxicity of novel oncotherapeutics. We evaluated the cardiotoxic effect of synthesized derivatives of oncotherapeutics, quercetin (QMJ-2, -5, and -6) and cinnamic acid (NMJ-1, -2, and -3) using human Wharton's jelly mesenchymal stem cells-derived cardiomyocytes (WJCM) against known cardiotoxic oncologic drugs, doxorubicin, 5-fluorouracil, cisplatin. QMJ-6, NMJ-2, and NMJ-3 were not cardiotoxic and had minimum cardiac side effects. They did not show any effect on cardiomyocyte viability, caused low LDH release, and intracellular ROS production kept the calcium flux minimal and protected the active mitochondrial status in cardiomyocytes. They persevered cardiac-specific gene expression as well. However, compounds QMJ-2, QMJ-5, and NMJ-1 were cardiotoxic and the concentration needs to be reduced to prevent toxic effects on cardiomyocytes. Significantly, we were able to demonstrate that WJCM is an efficient cardiac testing model to analyze the cardiotoxicity of drugs in a human context.
Collapse
|
19
|
Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering approaches for cardiac organoid formation and their characterization. Transl Res 2022; 250:46-67. [PMID: 35995380 PMCID: PMC10370285 DOI: 10.1016/j.trsl.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Cardiac organoids are 3-dimensional (3D) structures composed of tissue or niche-specific cells, obtained from diverse sources, encapsulated in either a naturally derived or synthetic, extracellular matrix scaffold, and include exogenous biochemical signals such as essential growth factors. The overarching goal of developing cardiac organoid models is to establish a functional integration of cardiomyocytes with physiologically relevant cells, tissues, and structures like capillary-like networks composed of endothelial cells. These organoids used to model human heart anatomy, physiology, and disease pathologies in vitro have the potential to solve many issues related to cardiovascular drug discovery and fundamental research. The advent of patient-specific human-induced pluripotent stem cell-derived cardiovascular cells provide a unique, single-source approach to study the complex process of cardiovascular disease progression through organoid formation and incorporation into relevant, controlled microenvironments such as microfluidic devices. Strategies that aim to accomplish such a feat include microfluidic technology-based approaches, microphysiological systems, microwells, microarray-based platforms, 3D bioprinted models, and electrospun fiber mat-based scaffolds. This article discusses the engineering or technology-driven practices for making cardiac organoid models in comparison with self-assembled or scaffold-free methods to generate organoids. We further discuss emerging strategies for characterization of the bio-assembled cardiac organoids including electrophysiology and machine-learning and conclude with prospective points of interest for engineering cardiac tissues in vitro.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
| | - Sylvia L Natividad-Diaz
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Andie E Padilla
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Aibhlin A Esparza
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | | | | |
Collapse
|
20
|
Lin WH, Zhu Z, Ravikumar V, Sharma V, Tolkacheva EG, McAlpine MC, Ogle BM. A Bionic Testbed for Cardiac Ablation Tools. Int J Mol Sci 2022; 23:ijms232214444. [PMID: 36430922 PMCID: PMC9692733 DOI: 10.3390/ijms232214444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Bionic-engineered tissues have been proposed for testing the performance of cardiovascular medical devices and predicting clinical outcomes ex vivo. Progress has been made in the development of compliant electronics that are capable of monitoring treatment parameters and being coupled to engineered tissues; however, the scale of most engineered tissues is too small to accommodate the size of clinical-grade medical devices. Here, we show substantial progress toward bionic tissues for evaluating cardiac ablation tools by generating a centimeter-scale human cardiac disk and coupling it to a hydrogel-based soft-pressure sensor. The cardiac tissue with contiguous electromechanical function was made possible by our recently established method to 3D bioprint human pluripotent stem cells in an extracellular matrix-based bioink that allows for in situ cell expansion prior to cardiac differentiation. The pressure sensor described here utilized electrical impedance tomography to enable the real-time spatiotemporal mapping of pressure distribution. A cryoablation tip catheter was applied to the composite bionic tissues with varied pressure. We found a close correlation between the cell response to ablation and the applied pressure. Under some conditions, cardiomyocytes could survive in the ablated region with more rounded morphology compared to the unablated controls, and connectivity was disrupted. This is the first known functional characterization of living human cardiomyocytes following an ablation procedure that suggests several mechanisms by which arrhythmia might redevelop following an ablation. Thus, bionic-engineered testbeds of this type can be indicators of tissue health and function and provide unique insight into human cell responses to ablative interventions.
Collapse
Affiliation(s)
- Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Zhijie Zhu
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Vasanth Ravikumar
- Department of Electrical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Vinod Sharma
- Cardiac Rhythm and Heart Failure Division, Medtronic Inc., Minneapolis, MN 55432, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Correspondence: (M.C.M.); (B.M.O.)
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Correspondence: (M.C.M.); (B.M.O.)
| |
Collapse
|
21
|
King O, Cruz-Moreira D, Sayed A, Kermani F, Kit-Anan W, Sunyovszki I, Wang BX, Downing B, Fourre J, Hachim D, Randi AM, Stevens MM, Rasponi M, Terracciano CM. Functional microvascularization of human myocardium in vitro. CELL REPORTS METHODS 2022; 2:100280. [PMID: 36160044 PMCID: PMC9499876 DOI: 10.1016/j.crmeth.2022.100280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.
Collapse
Affiliation(s)
- Oisín King
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniela Cruz-Moreira
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | - Alaa Sayed
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Fatemeh Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ilona Sunyovszki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian X. Wang
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | - Barrett Downing
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jerome Fourre
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Hachim
- Department of Materials, Imperial College London, London, UK
| | - Anna M. Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Marco Rasponi
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | | |
Collapse
|
22
|
Mohr E, Thum T, Bär C. Accelerating Cardiovascular Research: Recent Advances in Translational 2D and 3D Heart Models. Eur J Heart Fail 2022; 24:1778-1791. [PMID: 35867781 DOI: 10.1002/ejhf.2631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
In vitro modelling the complex (patho-) physiological conditions of the heart is a major challenge in cardiovascular research. In recent years, methods based on three-dimensional (3D) cultivation approaches have steadily evolved to overcome the major limitations of conventional adherent monolayer cultivation (2D). These 3D approaches aim to study, reproduce or modify fundamental native features of the heart such as tissue organization and cardiovascular microenvironment. Therefore, these systems have great potential for (patient-specific) disease research, for the development of new drug screening platforms, and for the use in regenerative and replacement therapy applications. Consequently, continuous improvement and adaptation is required with respect to fundamental limitations such as cardiomyocyte maturation, scalability, heterogeneity, vascularization, and reproduction of native properties. In this review, 2D monolayer culturing and the 3D in vitro systems of cardiac spheroids, organoids, engineered cardiac microtissue and bioprinting as well as the ex vivo technique of myocardial slicing are introduced with their basic concepts, advantages, and limitations. Furthermore, recent advances of various new approaches aiming to extend as well as to optimize these in vitro and ex vivo systems are presented. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
23
|
Pivato R, Klimovic S, Kabanov D, Sverák F, Pesl M, Pribyl J, Rotrekl V. hESC derived cardiomyocyte biosensor to detect the different types of arrhythmogenic properties of drugs. Anal Chim Acta 2022; 1216:339959. [PMID: 35691674 DOI: 10.1016/j.aca.2022.339959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we introduce a new cell-based biosensor for detecting arrhythmias based on a novel utilization of the combination of the Atomic Force Microscope (AFM) lateral force measurement as a nanosensor with a dual 3D cardiomyocyte syncytium. Two spontaneously coupled clusters of cardiomyocytes form this. The syncytium's functional contraction behavior was assessed using video sequences analyzed with Musclemotion ImageJ/Fiji software, and immunocytochemistry evaluated phenotype composition. The application of caffeine solution induced arrhythmia as a model drug, and its spontaneous resolution was monitored by AFM lateral force recording and interpretation and calcium fluorescence imaging as a reference method describing non-synchronized contractions of cardiomyocytes. The phenotypic analysis revealed the syncytium as a functional contractile and conduction cardiac behavior model. Calcium fluorescence imaging was used to validate that AFM fully enabled to discriminate cardiac arrhythmias in this in vitro cellular model. The described novel 3D hESCs-based cellular biosensor is suitable to detect arrhythmic events on the level of cardiac contractile and conduction tissue cellular model. The resulting biosensor allows for screening of arrhythmogenic properties of tailored drugs enabling its use in precision medicine.
Collapse
Affiliation(s)
- Roberto Pivato
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Simon Klimovic
- International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Filip Sverák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; First Department of Internal Medicine - Cardioangiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic.
| |
Collapse
|
24
|
Mousavi A, Stefanek E, Jafari A, Ajji Z, Naghieh S, Akbari M, Savoji H. Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. BIOMATERIALS ADVANCES 2022; 138:212916. [PMID: 35913255 DOI: 10.1016/j.bioadv.2022.212916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Current drug screening approaches are incapable of fully detecting and characterizing drug effectiveness and toxicity of human cardiomyocytes. The pharmaceutical industry uses mathematical models, cell lines, and in vivo models. Many promising drugs are abandoned early in development, and some cardiotoxic drugs reach humans leading to drug recalls. Therefore, there is an unmet need to have more reliable and predictive tools for drug discovery and screening applications. Biofabrication of functional cardiac tissues holds great promise for developing a faithful 3D in vitro disease model, optimizing drug screening efficiencies enabling precision medicine. Different fabrication techniques including molding, pull spinning and 3D bioprinting were used to develop tissue-engineered heart chambers. The big challenge is to effectively organize cells into tissue with structural and physiological features resembling native tissues. Some advancements have been made in engineering miniaturized heart chambers that resemble a living pump for drug screening and disease modeling applications. Here, we review the currently developed tissue-engineered heart chambers and discuss challenges and prospects.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Evan Stefanek
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada; Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
25
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
26
|
Abstract
The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.
Collapse
Affiliation(s)
- Bernhard Laggerbauer
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
27
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
28
|
Polonchuk L, Gentile C. Current state and future of 3D bioprinted models for cardiovascular research and drug development. ADMET AND DMPK 2022; 9:231-242. [PMID: 35300373 PMCID: PMC8920100 DOI: 10.5599/admet.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
In the last decade, 3D bioprinting technology has emerged as an innovative tissue engineering approach for regenerative medicine and drug development. This article aims at providing an overview about the most commonly used bioengineered tissues, focusing on 3D bioprinted cardiac cells and how they have been utilized for drug discovery and development. The review describes that, while this field is still developing, cardiovascular research may benefit from laboratory-engineered heart tissues built of specific cell types with precise 3D architecture mimicking the native cardiac microenvironment. It also describes the role played by regulatory agencies and potential commercialization pathways for direct translation from the bench to the bedside of studies using 3D bioprinted cardiac tissues.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Carmine Gentile
- Sydney Medical School, The University of Sydney, Australia.,School of Biomedical Engineering, University of Technology Sydney, Australia
| |
Collapse
|
29
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
30
|
Ribeiro MC, Rivera-Arbeláez JM, Cofiño-Fabres C, Schwach V, Slaats RH, ten Den SA, Vermeul K, van den Berg A, Pérez-Pomares JM, Segerink LI, Guadix JA, Passier R. A New Versatile Platform for Assessment of Improved Cardiac Performance in Human-Engineered Heart Tissues. J Pers Med 2022; 12:jpm12020214. [PMID: 35207702 PMCID: PMC8877418 DOI: 10.3390/jpm12020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great potential as human in vitro models for studying heart disease and for drug safety screening. Nevertheless, their associated immaturity relative to the adult myocardium limits their utility in cardiac research. In this study, we describe the development of a platform for generating three-dimensional engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechanical and electrical stimulation. The modular and versatile EHT platform presented here allows for the formation of three tissues per well in a 12-well plate format, resulting in 36 tissues per plate. We compared the functional performance of EHTs and their histology in three different media and demonstrated that tissues cultured and maintained in maturation medium, containing triiodothyronine (T3), dexamethasone, and insulin-like growth factor-1 (TDI), resulted in a higher force of contraction, sarcomeric organization and alignment, and a higher and lower inotropic response to isoproterenol and nifedipine, respectively. Moreover, in this study, we highlight the importance of integrating a serum-free maturation medium in the EHT platform, making it a suitable tool for cardiovascular research, disease modeling, and preclinical drug testing.
Collapse
Affiliation(s)
- Marcelo C. Ribeiro
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
- River BioMedics, 7522 NB Enschede, The Netherlands
| | - José M. Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands; (A.v.d.B.); (L.I.S.)
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
| | - Rolf H. Slaats
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
| | - Simone A. ten Den
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
| | - Kim Vermeul
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands; (A.v.d.B.); (L.I.S.)
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Malaga, Spain; (J.M.P.-P.); (J.A.G.)
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), 29071 Malaga, Spain
| | - Loes I. Segerink
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands; (A.v.d.B.); (L.I.S.)
| | - Juan A. Guadix
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Malaga, Spain; (J.M.P.-P.); (J.A.G.)
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), 29071 Malaga, Spain
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands; (M.C.R.); (J.M.R.-A.); (C.C.-F.); (V.S.); (R.H.S.); (S.A.t.D.); (K.V.)
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
31
|
Rhoden A, Schulze T, Pietsch N, Christ T, Hansen A, Eschenhagen T. Comprehensive analyses of the inotropic compound omecamtiv mecarbil in rat and human cardiac preparations. Am J Physiol Heart Circ Physiol 2022; 322:H373-H385. [PMID: 35030072 DOI: 10.1152/ajpheart.00534.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Omecamtiv mecarbil (OM), a myosin activator, was reported to induce complex concentration- and species-dependent effects on contractile function and clinical studies indicated a low therapeutic index with diastolic dysfunction at concentrations above 1 µM. To further characterize effects of OM in a human context and under different preload conditions, we constructed a setup that allows isometric contractility analyses of human induced pluripotent stem cell (hiPSC)-derived engineered heart tissues (EHTs). The results were compared to effects of OM on the very same EHTs measured under auxotonic conditions. OM induced a sustained, concentration-dependent increase in time-to-peak under all conditions (maximally 2-3 fold). Peak force, in contrast, was increased by OM only in human, but not rat EHTs and only under isometric conditions, varied between hiPSC lines and showed a biphasic concentration-dependency with maximal effects at 1 µM. Relaxation time tended to fall under auxotonic and strongly increase under isometric conditions, again with biphasic concentration-dependency. Diastolic tension concentration-dependently increased under all conditions. The latter was reduced by an inhibitor of the mitochondrial sodium calcium exchanger (CGP-37157). OM induced increases in mitochondrial oxidation in isolated cardiomyocytes, indicating that OM, an inotrope that does not increase intracellular and mitochondrial Ca2+, can induce mismatch between an increase in ATP and ROS production and unstimulated mitochondrial redox capacity. Taken together, we developed a novel setup well suitable for isometric measurements of EHTs. The effects of OM on contractility and diastolic tension are complex with concentration-, time-, species- and loading-dependent differences. Effects on mitochondrial function require further studies.
Collapse
Affiliation(s)
- Alexandra Rhoden
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Krause J, Lemme M, Mannhardt I, Eder A, Ulmer B, Eschenhagen T, Stenzig J. Human-Engineered Atrial Tissue for Studying Atrial Fibrillation. Methods Mol Biol 2022; 2485:159-173. [PMID: 35618905 DOI: 10.1007/978-1-0716-2261-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter details the generation of atrial fibrin-based engineered heart tissue (EHT) in standard 24-well format as a 3D model for the human atrium. Compared to 2D cultivation, human-induced pluripotent stem cells (hiPSCs)-derived atrial cardiomyocytes demonstrated a higher degree of maturation in 3D format. Furthermore, we have demonstrated in previous work that the model displayed atrial characteristics in terms of contraction and gene expression patterns, electrophysiology, and pharmacological response. Here, we describe how to embed atrial cardiomyocytes differentiated from hiPSCs in a fibrin hydrogel to form atrial EHT attached to elastic silicone posts, allowing auxotonic contraction. In addition, we describe how force and other contractility parameters can be derived from these beating atrial EHTs by video-optical monitoring. The presented atrial EHT model is suitable to study chamber-specific mechanisms, drug effects and to serve for disease modeling.
Collapse
Affiliation(s)
- Julia Krause
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| | - Marta Lemme
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| | - Bärbel Ulmer
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany.
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
33
|
Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. MICROMACHINES 2021; 13:mi13010075. [PMID: 35056239 PMCID: PMC8780533 DOI: 10.3390/mi13010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
Tissue engineering provides a powerful solution for current organ shortages, and researchers have cultured blood vessels, heart tissues, and bone tissues in vitro. However, traditional top-down tissue engineering has suffered two challenges: vascularization and reconfigurability of functional units. With the continuous development of micro-nano technology and biomaterial technology, bottom-up tissue engineering as a promising approach for organ and tissue modular reconstruction has gradually developed. In this article, relevant advances in living blocks fabrication and assembly techniques for creation of higher-order bioarchitectures are described. After a critical overview of this technology, a discussion of practical challenges is provided, and future development prospects are proposed.
Collapse
|
34
|
Zhou Z, Cong L, Cong X. Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Front Oncol 2021; 11:762184. [PMID: 35036354 PMCID: PMC8755639 DOI: 10.3389/fonc.2021.762184] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are in vitro self-assembling, organ-like, three-dimensional cellular structures that stably retain key characteristics of the respective organs. Organoids can be generated from healthy or pathological tissues derived from patients. Cancer organoid culture platforms have several advantages, including conservation of the cellular composition that captures the heterogeneity and pharmacotypic signatures of the parental tumor. This platform has provided new opportunities to fill the gap between cancer research and clinical outcomes. Clinical trials have been performed using patient-derived organoids (PDO) as a tool for personalized medical decisions to predict patients' responses to therapeutic regimens and potentially improve treatment outcomes. Living organoid biobanks encompassing several cancer types have been established, providing a representative collection of well-characterized models that will facilitate drug development. In this review, we highlight recent developments in the generation of organoid cultures and PDO biobanks, in preclinical drug discovery, and methods to design a functional organoid-on-a-chip combined with microfluidic. In addition, we discuss the advantages as well as limitations of human organoids in patient-specific therapy and highlight possible future directions.
Collapse
Affiliation(s)
- Zilong Zhou
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Pang JKS, Ho BX, Chan WK, Soh BS. Insights to Heart Development and Cardiac Disease Models Using Pluripotent Stem Cell Derived 3D Organoids. Front Cell Dev Biol 2021; 9:788955. [PMID: 34926467 PMCID: PMC8675211 DOI: 10.3389/fcell.2021.788955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Medical research in the recent years has achieved significant progress due to the increasing prominence of organoid technology. Various developed tissue organoids bridge the limitations of conventional 2D cell culture and animal models by recapitulating in vivo cellular complexity. Current 3D cardiac organoid cultures have shown their utility in modelling key developmental hallmarks of heart organogenesis, but the complexity of the organ demands a more versatile model that can investigate more fundamental parameters, such as structure, organization and compartmentalization of a functioning heart. This review will cover the prominence of cardiac organoids in recent research, unpack current in vitro 3D models of the developing heart and look into the prospect of developing physiologically appropriate cardiac organoids with translational applicability. In addition, we discuss some of the limitations of existing cardiac organoid models in modelling embryonic development of the heart and manifestation of cardiac diseases.
Collapse
Affiliation(s)
- Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Woon-Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Llucià-Valldeperas A, Smal R, Bekedam FT, Cé M, Pan X, Manz XD, Wijnker PJM, Vonk-Noordegraaf A, Bogaard HJ, Goumans MJ, de Man FS. Development of a 3-Dimensional Model to Study Right Heart Dysfunction in Pulmonary Arterial Hypertension: First Observations. Cells 2021; 10:3595. [PMID: 34944102 PMCID: PMC8700676 DOI: 10.3390/cells10123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) patients eventually die of right heart failure (RHF). Currently, there is no suitable pre-clinical model to study PAH. Therefore, we aim to develop a right heart dysfunction (RHD) model using the 3-dimensional engineered heart tissue (EHT) approach and cardiomyocytes derived from patient-induced pluripotent stem cells (iPSCs) to unravel the mechanisms that determine the fate of a pressure-overloaded right ventricle. iPSCs from PAH and healthy control subjects were differentiated into cardiomyocytes (iPSC-CMs), incorporated into the EHT, and maintained for 28 days. In comparison with control iPSC-CMs, PAH-derived iPSC-CMs exhibited decreased beating frequency and increased contraction and relaxation times. iPSC-CM alignment within the EHT was observed. PAH-derived EHTs exhibited higher force, and contraction and relaxation times compared with control EHTs. Increased afterload was induced using 2× stiffer posts from day 0. Due to high variability, there were no functional differences between normal and stiffer EHTs, and no differences in the hypertrophic gene expression. In conclusion, under baseline spontaneous conditions, PAH-derived iPSC-CMs and EHTs show prolonged contraction compared with controls, as observed clinically in PAH patients. Further optimization of the hypertrophic model and profound characterization may provide a platform for disease modelling and drug screening.
Collapse
Affiliation(s)
- Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Rowan Smal
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Fjodor T. Bekedam
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Margaux Cé
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Xiaoke Pan
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Xue D. Manz
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Paul J. M. Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands;
| | - Anton Vonk-Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Harm J. Bogaard
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| | - Marie-Jose Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, The Netherlands;
| | - Frances S. de Man
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HZ Amsterdam, The Netherlands; (A.L.-V.); (R.S.); (F.T.B.); (M.C.); (X.P.); (X.D.M.); (A.V.-N.); (H.J.B.)
| |
Collapse
|
37
|
From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int J Mol Sci 2021; 22:ijms222413180. [PMID: 34947977 PMCID: PMC8708686 DOI: 10.3390/ijms222413180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.
Collapse
|
38
|
Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M. Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Front Cell Dev Biol 2021; 9:696668. [PMID: 34631696 PMCID: PMC8495170 DOI: 10.3389/fcell.2021.696668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials are bestowed with certain inherent physicochemical properties unlike their parent materials, rendering them suitable for the multifaceted needs of state-of-the-art biomedical, and pharmaceutical applications. The log-phase development of nano-science along with improved "bench to beside" conversion carries an enhanced probability of human exposure with numerous nanoparticles. Thus, toxicity assessment of these novel nanoscale materials holds a key to ensuring the safety aspects or else the global biome will certainly face a debacle. The toxicity may span from health hazards due to direct exposure to indirect means through food chain contamination or environmental pollution, even causing genotoxicity. Multiple ways of nanotoxicity evaluation include several in vitro and in vivo methods, with in vitro methods occupying the bulk of the "experimental space." The underlying reason may be multiple, but ethical constraints in in vivo animal experiments are a significant one. Two-dimensional (2D) monoculture is undoubtedly the most exploited in vitro method providing advantages in terms of cost-effectiveness, high throughput, and reproducibility. However, it often fails to mimic a tissue or organ which possesses a defined three-dimensional structure (3D) along with intercellular communication machinery. Instead, microtissues such as spheroids or organoids having a precise 3D architecture and proximate in vivo tissue-like behavior can provide a more realistic evaluation than 2D monocultures. Recent developments in microfluidics and bioreactor-based organoid synthesis have eased the difficulties to prosper nano-toxicological analysis in organoid models surpassing the obstacle of ethical issues. The present review will enlighten applications of organoids in nanotoxicological evaluation, their advantages, and prospects toward securing commonplace nano-interventions.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | | | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Varanasi, India
| |
Collapse
|
39
|
Photobiomodulation therapy preconditioning modifies nitric oxide pathway and oxidative stress in human-induced pluripotent stem cell-derived ventricular cardiomyocytes treated with doxorubicin. Lasers Med Sci 2021; 37:1667-1675. [PMID: 34536182 DOI: 10.1007/s10103-021-03416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that exhibits high heart toxicity. Human-induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) are important in vitro models for testing drug cardiotoxicity. Photobiomodulation therapy (PBMT) is a non-invasive therapy that stimulates cells growth and self-repair using light irradiation. This study aimed to investigate the in vitro effects of PBMT preconditioning on cardiotoxicity induced by DOX. HiPSC-vCMs were treated with PBMT for 500 s, followed by the addition of 2 μM DOX. LED irradiation preconditioning parameters were at 660 nm with an irradiance of 10 mW/cm2, performing 5 J/cm2, followed by 24-h DOX exposure (2 μM). Human iPSC-vCMs treated with 2 μM DOX or irradiated with PBMT composed the second and third groups, respectively. The control group did neither receive PBMT preconditioning nor DOX and was irradiated with a white standard lamp. Cells from all groups were collected to perform mRNA and miRNA expressions quantification. PBMT, when applied before the DOX challenge, restored the viability of hiPSC-vCMs and reduced ROS levels. Although downregulated by DOX, myocardial UCP2 mRNA expression presented marked upregulation after PBMT preconditioning. Expression of eNOS and UCP2 mRNA and NO production were decreased after DOX exposure, and PBMT preconditioning before the DOX challenge reversed these changes. Moreover, our data indicated that PBMT preconditioning lowered the miR-24 expression. Our data suggested that PBMT preconditioning ameliorated in vitro DOX-induced cardiotoxicity on transcription level, restoring NO levels and reducing oxidative stress.
Collapse
|
40
|
Stein JM, Mummery CL, Bellin M. Engineered models of the human heart: Directions and challenges. Stem Cell Reports 2021; 16:2049-2057. [PMID: 33338434 PMCID: PMC8452488 DOI: 10.1016/j.stemcr.2020.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human heart (patho)physiology is now widely studied using human pluripotent stem cells, but the immaturity of derivative cardiomyocytes has largely limited disease modeling to conditions associated with mutations in cardiac ion channel genes. Recent advances in tissue engineering and organoids have, however, created new opportunities to study diseases beyond "channelopathies." These synthetic cardiac structures allow quantitative measurement of contraction, force, and other biophysical parameters in three-dimensional configurations, in which the cardiomyocytes in addition become more mature. Multiple cardiac-relevant cell types are also often combined to form organized cardiac tissue mimetic constructs, where cell-cell, cell-extracellular matrix, and paracrine interactions can be mimicked. In this review, we provide an overview of some of the most promising technologies being implemented specifically in personalized heart-on-a-chip models and explore their applications, drawbacks, and potential for future development.
Collapse
Affiliation(s)
- Jeroen M Stein
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, Enschede 7500AE, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Biology, University of Padua, Padua 35131, Italy; Veneto Institute of Molecular Medicine, Padua 35129, Italy.
| |
Collapse
|
41
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
42
|
Salem T, Frankman Z, Churko J. Tissue engineering techniques for iPSC derived three-dimensional cardiac constructs. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:891-911. [PMID: 34476988 PMCID: PMC9419978 DOI: 10.1089/ten.teb.2021.0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent developments in applied developmental physiology have provided well-defined methodologies for producing human stem cell derived cardiomyocytes. Cardiomyocytes produced in this way have become commonplace as cardiac physiology research models. This accessibility has also allowed for the development of tissue engineered human heart constructs for drug screening, surgical intervention, and investigating cardiac pathogenesis. However, cardiac tissue engineering is an interdisciplinary field that involves complex engineering and physiological concepts, which limits its accessibility. This review provides a readable, broad reaching, and thorough discussion of major factors to consider for the development of cardiovascular tissues from stem cell derived cardiomyocytes. This review will examine important considerations in undertaking a cardiovascular tissue engineering project, and will present, interpret, and summarize some of the recent advancements in this field. This includes reviewing different forms of tissue engineered constructs, a discussion on cardiomyocyte sources, and an in-depth discussion of the fabrication and maturation procedures for tissue engineered heart constructs.
Collapse
Affiliation(s)
- Tori Salem
- University of Arizona Medical Center - University Campus, 22165, Cellular and Molecular Medicine, Tucson, Arizona, United States;
| | - Zachary Frankman
- University of Arizona Medical Center - University Campus, 22165, Biomedical Engineering, Tucson, Arizona, United States;
| | - Jared Churko
- University of Arizona Medical Center - University Campus, 22165, 1501 N Campbell RD, SHC 6143, Tucson, Arizona, United States, 85724-5128;
| |
Collapse
|
43
|
Urbaniak A, Reed MR, Fil D, Moorjani A, Heflin S, Antoszczak M, Sulik M, Huczyński A, Kupsik M, Eoff RL, MacNicol MC, Chambers TC, MacNicol AM. Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomed Pharmacother 2021; 141:111815. [PMID: 34130123 PMCID: PMC8429223 DOI: 10.1016/j.biopha.2021.111815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer remains one of the leading cancers among women. Cancer stem cells (CSCs) are tumor-initiating cells which drive progression, metastasis, and reoccurrence of the disease. CSCs are resistant to conventional chemo- and radio-therapies and their ability to survive such treatment enables tumor reestablishment. Metastasis is the main cause of mortality in women with breast cancer, thus advances in treatment will depend on therapeutic strategies targeting CSCs. Salinomycin (SAL) is a naturally occurring polyether ionophore antibiotic known for its anticancer activity towards several types of tumor cells. In the present work, a library of 17 C1-single and C1/C20-double modified SAL analogs was screened to identify compounds with improved activity against breast CSCs. Six single- and two double-modified analogs were more potent (IC50 range of 1.1 ± 0.1-1.4 ± 0.2 µM) toward the breast cancer cell line MDA-MB-231 compared to SAL (IC50 of 4.9 ± 1.6 µM). Double-modified compound 17 was found to be more efficacious than SAL against the majority of cancer cell lines in the NCI-60 Human Tumor Cell Line Panel. Compound 17 was more potent than SAL in inhibiting cell migration and cell renewal properties of MDA-MB-231 cells, as well as inducing selective loss of the CD44+/CD24/low stem-cell-like subpopulation in both monolayer (2D) and organoid (3D) culture. The present findings highlight the therapeutic potential of SAL analogs towards breast CSCs and identify select compounds that merit further study and clinical development.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel Fil
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sarah Heflin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
44
|
Abstract
Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
45
|
Piyawajanusorn C, Nguyen LC, Ghislat G, Ballester PJ. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling. Brief Bioinform 2021; 22:6343527. [PMID: 34368843 DOI: 10.1093/bib/bbab312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Collapse
Affiliation(s)
- Chayanit Piyawajanusorn
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Linh C Nguyen
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ghita Ghislat
- U1104, CNRS UMR7280, Centre d'Immunologie de Marseille-Luminy, Inserm, Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France
| |
Collapse
|
46
|
He C, Wei X, Liang T, Liu M, Jiang D, Zhuang L, Wang P. Quantifying the Compressive Force of 3D Cardiac Tissues via Calculating the Volumetric Deformation of Built-In Elastic Gelatin Microspheres. Adv Healthc Mater 2021; 10:e2001716. [PMID: 34197053 DOI: 10.1002/adhm.202001716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Indexed: 01/28/2023]
Abstract
Quantifying cardiac contractile force is of paramount important in studying mechanical heart failure and screening therapeutic drugs. However, most existing methods can only measure the in-plane component of twitch force of cardiomyocytes, such that mismatching the centripetal compressive stress of heart beating in physiology. Here, a non-destructive method is developed for quantifying the compressive stress and mapping the distribution of the local stress within the 3D cardiac tissues. In detail, elastic gelatin microspheres labeled with fluorescence beads are fabricated by microfluidic chips with high throughput, and they serve as built-in pressure sensors which are wrapped by cardiomyocytes in 3D tissues. The deformation of microspheres and the displacements of fluorescent beads induced by the contraction of cardiomyocytes are demonstrated to characterize the amount and distribution of the centripetal compressive stress. Further, the method shows a potent capability to locally quantify contractile force variation of 3D cardiac tissues, which is induced by agonist (norepinephrine) and inhibitor (blebbistatin). On the whole, the method significantly improves the 3D measurement of mechanical force in vitro and provides a solution for locally quantifying the compressive stress within engineered cardiac tissues.
Collapse
Affiliation(s)
- Chuanjiang He
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Xinwei Wei
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Tao Liang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Mengxue Liu
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Deming Jiang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Liujing Zhuang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Ping Wang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
47
|
Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication 2021; 13. [PMID: 34233316 DOI: 10.1088/1758-5090/ac1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
The safety and therapeutic efficacy of new drugs are tested in experimental animals. However, besides being a laborious, costly process, differences in drug responses between humans and other animals and potential cardiac adverse effects lead to the discontinued development of new drugs. Thus, alternative approaches to animal tests are needed. Cardiotoxicity and responses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to drugs are conventionally evaluated by cell seeding and two-dimensional (2D) culture, which allows measurements of field potential duration and the action potentials of CMs using multielectrode arrays. However, 2D-cultured hiPSC-CMs lack 3D spatial adhesion, and have fewer intercellular and extracellular matrix interactions, as well as different contractile behavior from CMsin vivo. This issue has been addressed using tissue engineering to fabricate three-dimensional (3D) cardiac constructs from hiPSC-CMs culturedin vitro. Tissue engineering can be categorized as scaffold-based and scaffold-free. In scaffold-based tissue engineering, collagen and fibrin gel scaffolds comprise a 3D culture environment in which seeded cells exhibit cardiac-specific functions and drug responses, whereas 3D cardiac constructs fabricated by tissue engineering without a scaffold have high cell density and form intercellular interactions. This review summarizes the characteristics of scaffold-based and scaffold-free cardiac tissue engineering and discusses the applications of fabricated cardiac constructs to drug screening.
Collapse
Affiliation(s)
- Kenichi Arai
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takahiro Kitsuka
- Department of Cardiovascular Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
48
|
Transcending toward Advanced 3D-Cell Culture Modalities: A Review about an Emerging Paradigm in Translational Oncology. Cells 2021; 10:cells10071657. [PMID: 34359827 PMCID: PMC8304089 DOI: 10.3390/cells10071657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disorder characterized by an uncontrollable overgrowth and a fast-moving spread of cells from a localized tissue to multiple organs of the body, reaching a metastatic state. Throughout years, complexity of cancer progression and invasion, high prevalence and incidence, as well as the high rise in treatment failure cases leading to a poor patient prognosis accounted for continuous experimental investigations on animals and cellular models, mainly with 2D- and 3D-cell culture. Nowadays, these research models are considered a main asset to reflect the physiological events in many cancer types in terms of cellular characteristics and features, replication and metastatic mechanisms, metabolic pathways, biomarkers expression, and chemotherapeutic agent resistance. In practice, based on research perspective and hypothesis, scientists aim to choose the best model to approach their understanding and to prove their hypothesis. Recently, 3D-cell models are seen to be highly incorporated as a crucial tool for reflecting the true cancer cell microenvironment in pharmacokinetic and pharmacodynamics studies, in addition to the intensity of anticancer drug response in pharmacogenomics trials. Hence, in this review, we shed light on the unique characteristics of 3D cells favoring its promising usage through a comparative approach with other research models, specifically 2D-cell culture. Plus, we will discuss the importance of 3D models as a direct reflector of the intrinsic cancer cell environment with the newest multiple methods and types available for 3D-cells implementation.
Collapse
|
49
|
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473:1061-1085. [PMID: 33629131 PMCID: PMC8245367 DOI: 10.1007/s00424-021-02536-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
50
|
Xia T, Du W, Chen X, Zhang Y. Organoid models of the tumor microenvironment and their applications. J Cell Mol Med 2021; 25:5829-5841. [PMID: 34033245 PMCID: PMC8256354 DOI: 10.1111/jcmm.16578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Wen‐Lin Du
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiao‐Yi Chen
- Clinical Research InstituteZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - You‐Ni Zhang
- Department of Laboratory MedicineTiantai People's HospitalTaizhouChina
| |
Collapse
|