1
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Guo Y, Chen Y, Wu Y, Zhu Y, Luo S, Shen J, Luo Y. Injectable pH-responsive polypeptide hydrogels for local delivery of doxorubicin. NANOSCALE ADVANCES 2024:d4na00719k. [PMID: 39502105 PMCID: PMC11533052 DOI: 10.1039/d4na00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024]
Abstract
Cancer, as a global health threat, is often treated with chemotherapy, but its effect is limited, especially the drugs such as doxorubicin (DOX) are limited by their non-specificity and side effects. This study focuses on developing a new drug delivery system to overcome these challenges. Based on the self-assembling peptide hemopressin (HP), we designed and screened FOK peptide, which serves as a pH-responsive carrier with excellent pH sensitivity and mechanical stability. At a concentration of 20 mg mL-1, FOK can spontaneously form a stable hydrogel, efficiently encapsulating DOX with an encapsulation rate exceeding 95%. This system can gradually release the drug in the tumor-specific mildly acidic environment, achieving precise delivery and sustained release of the drug. Rheological analysis revealed the superior mechanical and self-healing properties of FOK hydrogel, suitable for injection delivery with long-lasting stability. Mouse experiments showed that DOX/FOK hydrogel significantly inhibited tumor growth while greatly reducing toxicity. In conclusion, FOK hydrogel, as a delivery vehicle for DOX, not only optimizes the precise delivery and sustained release mechanism of DOX, but also reduces treatment side effects, opening up new avenues for the application of peptide hydrogels in cancer therapy and providing a scientific basis for designing efficient drug delivery systems.
Collapse
Affiliation(s)
- Yijun Guo
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yong Chen
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yiqun Wu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Shiyao Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Juan Shen
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Yongjun Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| |
Collapse
|
3
|
Cao C, Yu Q, Yu Z, Tang K, Gan N. Phage-Modified Clear Hydrogel for Simultaneous Detection of Multiple Bacteria. Anal Chem 2024; 96:16007-16016. [PMID: 39331836 DOI: 10.1021/acs.analchem.4c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The proliferation speed of live foodborne pathogens is fast. A small number of pathogens will have a great impact on food and the environment if positive samples are not detected timely. In this study, transparent porous hydrogel stir bars, modified by two different phages (corresponding to two different bacteria (Escherichia coli and Hafnia sp)), have been developed for rapid detection of foodborne bacteria. A large number of samples can be analyzed simultaneously with a small animal live imager device to screen out the positive samples, while an adenosine triphosphate (ATP) bioluminescence sensor can be used to quantify the number of bacteria in the positive samples. The phage has good specificity and capture ability to bacteria, which makes the method highly sensitive. In addition, the use of multiple phages also enables the method to detect multiple bacteria simultaneously. The three-dimensional structure of the hydrogel allows it to modify more phages, and its transparent nature also allows the inside bioluminescence to be detected. Both can enhance the sensitivity of the detection. Finally, the reagents needed for bioluminescence, such as d-luciferin, can also be preencapsulated in the hydrogel, thus simplifying the detection step. Under the best conditions, the detection range of the method is 102-108 CFU·mL-1, and the limit of detection is 30 CFU·mL-1 within 11 min. The test results of actual samples show that there is no difference between using the method developed through this study and the traditional plate counting method, but the detection time is greatly shortened.
Collapse
Affiliation(s)
- Cong Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qianfeng Yu
- School of Public Health, Ningbo Univesity, Ningbo 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Keqi Tang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510315, China
| |
Collapse
|
4
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
5
|
Kong RJ, Li YM, Huang JQ, Yan N, Wu YY, Cheng H. Self-Delivery Photodynamic Re-educator Enhanced Tumor Treatment by Inducing Immunogenic Cell Death and Improving Immunosuppressive Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59165-59174. [PMID: 38100370 DOI: 10.1021/acsami.3c13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Immunotherapy is known to be a promising strategy in the clinical treatment of malignant tumors, but it has received generally low response rates in various tumors because of the poor immunogenicity and multiple immunosuppressive microenvironments. A self-delivery photodynamic re-educator, denoted as CCXB, is synthesized through the self-assembly of chlorine e6 (Ce6) and celecoxib (CXB). As a carrier-free nanomedicine, CCXB shows a high drug loading rate, improved water stability, superior cellular uptake, and tumor accumulation capability. In comparison with free Ce6, CCXB triggers much stronger photodynamic therapy (PDT) to reduce the proliferation of breast cancer cells and activates robust immune responses via the induction of immunogenic cell death (ICD). Better yet, CXB-mediated cyclooxygenase 2 (COX-2) inhibition can decrease the level of synthesis of prostaglandin E2 (PGE2) to further improve immunosuppressive microenvironments. With the increase of cytotoxic T lymphocytes (CTLs) and decrease of regulatory T cells (Tregs) in tumor, in vivo antitumor immunity is significantly amplified to inhibit the metastasis of breast cancer. This study sheds light on developing drug codelivery systems with collaborative mechanisms for immunotherapy of metastatic tumors.
Collapse
Affiliation(s)
- Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
6
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Wang X, Zhao X, Zhong Y, Shen J, An W. Biomimetic Exosomes: A New Generation of Drug Delivery System. Front Bioeng Biotechnol 2022; 10:865682. [PMID: 35677298 PMCID: PMC9168598 DOI: 10.3389/fbioe.2022.865682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Most of the naked drugs, including small molecules, inorganic agents, and biomacromolecule agents, cannot be used directly for disease treatment because of their poor stability and undesirable pharmacokinetic behavior. Their shortcomings might seriously affect the exertion of their therapeutic effects. Recently, a variety of exogenous and endogenous nanomaterials have been developed as carriers for drug delivery. Among them, exosomes have attracted great attention due to their excellent biocompatibility, low immunogenicity, low toxicity, and ability to overcome biological barriers. However, exosomes used as drug delivery carriers have significant challenges, such as low yields, complex contents, and poor homogeneity, which limit their application. Engineered exosomes or biomimetic exosomes have been fabricated through a variety of approaches to tackle these drawbacks. We summarized recent advances in biomimetic exosomes over the past decades and addressed the opportunities and challenges of the next-generation drug delivery system.
Collapse
|
10
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
11
|
Liu Y, Ran Y, Ge Y, Raza F, Li S, Zafar H, Wu Y, Paiva-Santos AC, Yu C, Sun M, Zhu Y, Li F. pH-Sensitive Peptide Hydrogels as a Combination Drug Delivery System for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14030652. [PMID: 35336026 PMCID: PMC8948763 DOI: 10.3390/pharmaceutics14030652] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Conventional antitumor chemotherapeutics generally have shortcomings in terms of dissolubility, selectivity and drug action time, and it has been difficult to achieve high antitumor efficacy with single-drug therapy. At present, combination therapy with two or more drugs is widely used in the treatment of cancer, but a shortcoming is that the drugs do not reach the target at the same time, resulting in a reduction in efficacy. Therefore, it is necessary to design a carrier that can release two drugs at the same site. We designed an injectable pH-responsive OE peptide hydrogel as a carrier material for the antitumor drugs gemcitabine (GEM) and paclitaxel (PTX) that can release drugs at the tumor site simultaneously to achieve the antitumor effect. After determining the optimal gelation concentration of the OE polypeptide, we conducted an in vitro release study to prove its pH sensitivity. The release of PTX from the OE hydrogel in the medium at pH 5.8 and pH 7.4 was 96.90% and 38.98% in 7 days. The release of GEM from the OE hydrogel in media with pH of 5.8 and 7.4 was 99.99% and 99.63% in 3 days. Transmission electron microscopy (TEM) and circular dichroism (CD) experiments were used to observe the microstructure of the peptides. The circular dichroism of OE showed a single negative peak shape when under neutral conditions, indicating a β-folded structure, while under acidic conditions, it presented characteristics of a random coil. Rheological experiments were used to investigate the mechanical strength of this peptide hydrogel. Furthermore, the treatment effect of the drug-loaded peptide hydrogel was demonstrated through in vitro and in vivo experiments. The results show that the peptide hydrogels have different structures at different pH values and are highly sensitive to pH. They can reach the tumor site by injection and are induced by the tumor microenvironment to release antitumor drugs slowly and continuously. This biologically functional material has a promising future in drug delivery for combination drugs.
Collapse
Affiliation(s)
- Yuanfen Liu
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China;
| | - Yingchun Ran
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Emergency, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Yu Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| | - Shasha Li
- College of Pharmacy, Xinjiang Medical University, Ürümqi 830000, China;
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Yiqun Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Chenyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Meng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
| | - Ying Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (Y.G.); (Y.W.); (C.Y.); (M.S.)
- Correspondence: (F.R.); (Y.Z.); (F.L.)
| |
Collapse
|
12
|
Hiew SH, Wang JK, Koh K, Yang H, Bacha A, Lin J, Yip YS, Vos MIG, Chen L, Sobota RM, Tan NS, Tay CY, Miserez A. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomater 2021; 136:111-123. [PMID: 34551327 DOI: 10.1016/j.actbio.2021.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. STATEMENT OF SIGNIFICANCE: Supramolecular peptide hydrogels are a popular choice for protein-based macromolecular therapeutics delivery; however, despite the development of abundant hydrogel systems, several challenges limit their adaptability and practical applications. GV8 short peptide hydrogel circumvents these drawbacks and demonstrates the ability to function as a versatile growth factor (GF) encapsulant. It can encapsulate precise concentrations of complex adipose-derived mesenchymal stem cells secretome mixtures with a one-pot formulation approach and perform controlled release of GFs with preserved activity without compromising the self-assembly and mechanical properties of the hydrogel's supramolecular network. The significance of GV8 hydrogel lies in its gelation simplicity and versatility to encapsulate and deliver macromolecular therapeutics, thus representing a promising biomaterial for regenerative medicine applications.
Collapse
Affiliation(s)
- Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798.
| | - Jun Kit Wang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Kenrick Koh
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637335
| | - Haibo Yang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Abbas Bacha
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Junquan Lin
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
| | | | - Liyan Chen
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138673
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138673; Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138671
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
| | - Chor Yong Tay
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; School of Biological Sciences, Nanyang Technological University, Singapore, 637551; Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore, 637141.
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; School of Biological Sciences, Nanyang Technological University, Singapore, 637551.
| |
Collapse
|
13
|
Chen T, Lyu Y, Tan M, Yang C, Li Y, Shao C, Zhu Y, Shan A. Fabrication of Supramolecular Antibacterial Nanofibers with Membrane-Disruptive Mechanism. J Med Chem 2021; 64:16480-16496. [PMID: 34783241 DOI: 10.1021/acs.jmedchem.1c00829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By studying the principles of self-assembly and combining the structural parameters required for the asymmetric distribution of antimicrobial peptides (AMPs), we newly designed and screened the high-activity and low-toxicity AMP F2I-LL. This peptide can form a supramolecular hydrogel with a nanofiber microstructure in a simulated physiological environment (phosphate buffered saline), which exhibits broad-spectrum antibacterial activity. Compared with monomeric peptides, the introduction of a self-assembly strategy not only improved the bactericidal titer but also enhanced the serum stability of AMPs. Mechanistic studies showed that the positive charge enriched on the surface of the nanofiber was conducive to its rapid binding to the negatively charged part of the outer membrane of bacteria and further entered the inner membrane, increasing its permeability and ultimately leading to cell membrane rupture and death. This work provides insights into the design of nanopeptides with broad-spectrum antibacterial activity and provides new results for the development of biomedicine.
Collapse
Affiliation(s)
- Tingting Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Meishu Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Chengyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Ying Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, P. R. China
| |
Collapse
|
14
|
Song Y, Su Q, Song H, Shi X, Li M, Song N, Lou S, Wang W, Yu Z. Precisely Shaped Self-Adjuvanting Peptide Vaccines with Enhanced Immune Responses for HPV-Associated Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49737-49753. [PMID: 34648269 DOI: 10.1021/acsami.1c15361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peptide vaccines exhibit great potential in cancer therapy via eliciting antigen-specific host immune response and long-term immune memory to defend cancer cells. However, the low induced immune response of many developing vaccines implies the imperatives for understanding the favorable structural features of efficient cancer vaccines. Herein, we report on the two groups of self-adjuvanting peptide vaccines with distinct morphology and investigate the relationship between the morphology of peptide vaccines and the induced immune response. Two nanofibril peptide vaccines were created via co-assembly of a pentapeptide with a central 4-aminoproline residue, with its derivative functionalized with antigen epitopes derived from human papillomavirus E7 proteins, whereas utilization of a pentapeptide with a natural proline residue led to the formation of two nanoparticle peptide vaccines. The immunological results of dendritic cell (DCs) maturation and antigen presentation induced by the peptide assemblies implied the self-adjuvanting property of the resulting peptide vaccines. In particular, cellular uptake studies revealed the enhanced internalization and elongated retention of the nanofibril peptide vaccines in DCs, leading to their advanced performance in DC maturation, accumulation at lymph nodes, infiltration of cytotoxic T lymphocytes into tumor tissues, and eventually lysis of in vivo tumor cells, compared to the nanoparticle counterparts. The antitumor immune response caused by the nanofibril peptide vaccines was further augmented when simultaneously administrated with anti-PD-1 checkpoint blockades, suggesting the opportunity of the combinatorial immunotherapy by utilizing the nanofibril peptide vaccines. Our findings strongly demonstrate a robust relationship between the immune response of peptide vaccines and their morphology, thereby elucidating the critical role of morphological control in the design of efficient peptide vaccines and providing the guidance for the design of efficient peptide vaccines in the future.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Tianjin 300192, China
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shaofeng Lou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Tianjin 300192, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
15
|
Chen J. Advanced Electron Microscopy of Nanophased Synthetic Polymers and Soft Complexes for Energy and Medicine Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2405. [PMID: 34578720 PMCID: PMC8470047 DOI: 10.3390/nano11092405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
After decades of developments, electron microscopy has become a powerful and irreplaceable tool in understanding the ionic, electrical, mechanical, chemical, and other functional performances of next-generation polymers and soft complexes. The recent progress in electron microscopy of nanostructured polymers and soft assemblies is important for applications in many different fields, including, but not limited to, mesoporous and nanoporous materials, absorbents, membranes, solid electrolytes, battery electrodes, ion- and electron-transporting materials, organic semiconductors, soft robotics, optoelectronic devices, biomass, soft magnetic materials, and pharmaceutical drug design. For synthetic polymers and soft complexes, there are four main characteristics that differentiate them from their inorganic or biomacromolecular counterparts in electron microscopy studies: (1) lower contrast, (2) abundance of light elements, (3) polydispersity or nanomorphological variations, and (4) large changes induced by electron beams. Since 2011, the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory has been working with numerous facility users on nanostructured polymer composites, block copolymers, polymer brushes, conjugated molecules, organic-inorganic hybrid nanomaterials, organic-inorganic interfaces, organic crystals, and other soft complexes. This review crystalizes some of the essential challenges, successes, failures, and techniques during the process in the past ten years. It also presents some outlooks and future expectations on the basis of these works at the intersection of electron microscopy, soft matter, and artificial intelligence. Machine learning is expected to automate and facilitate image processing and information extraction of polymer and soft hybrid nanostructures in aspects such as dose-controlled imaging and structure analysis.
Collapse
Affiliation(s)
- Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
16
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
17
|
Galloway JM, Bray HEV, Shoemark DK, Hodgson LR, Coombs J, Mantell JM, Rose RS, Ross JF, Morris C, Harniman RL, Wood CW, Arthur C, Verkade P, Woolfson DN. De Novo Designed Peptide and Protein Hairpins Self-Assemble into Sheets and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100472. [PMID: 33590708 PMCID: PMC11475375 DOI: 10.1002/smll.202100472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.
Collapse
Affiliation(s)
- Johanna M. Galloway
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | | | - Deborah K. Shoemark
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
| | - Lorna R. Hodgson
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| | - Jennifer Coombs
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- Bristol Centre for Functional NanomaterialsSchool of PhysicsUniversity of BristolHH Wills Physics LaboratoryTyndall AvenueBristolBS8 1TLUK
| | - Judith M. Mantell
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
| | - Ruth S. Rose
- School of Biological and Chemical SciencesFogg BuildingQueen Mary University of LondonMile End RoadLondonE1 4QDUK
| | - James F. Ross
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Caroline Morris
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
- School of ChemistryUniversity of Glasgow0/1 125 Novar DriveGlasgowG12 9TAUK
| | | | - Christopher W. Wood
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
- School of Biological SciencesRoger Land Building, King's BuildingsEdinburghEH9 3JQUK
| | | | - Paul Verkade
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| | - Derek N. Woolfson
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
18
|
DuPai CD, Davies BW, Wilke CO. A systematic analysis of the beta hairpin motif in the Protein Data Bank. Protein Sci 2021; 30:613-623. [PMID: 33389765 DOI: 10.1002/pro.4020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
The beta hairpin motif is a ubiquitous protein structural motif that can be found in molecules across the tree of life. This motif, which is also popular in synthetically designed proteins and peptides, is known for its stability and adaptability to broad functions. Here, we systematically probe all 49,000 unique beta hairpin substructures contained within the Protein Data Bank (PDB) to uncover key characteristics correlated with stable beta hairpin structure, including amino acid biases and enriched interstrand contacts. We find that position specific amino acid preferences, while seen throughout the beta hairpin structure, are most evident within the turn region, where they depend on subtle turn dynamics associated with turn length and secondary structure. We also establish a set of broad design principles, such as the inclusion of aspartic acid residues at a specific position and the careful consideration of desired secondary structure when selecting residues for the turn region, that can be applied to the generation of libraries encoding proteins or peptides containing beta hairpin structures.
Collapse
Affiliation(s)
- Cory D DuPai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
19
|
Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Lin S, Tong Q, Jiang P, Li B, Li Y, Yang Y. Effect of C 12H 25O– substituent position on the self-assembly behaviour of C 6H 5COO–Ala–Ala dipeptide. NEW J CHEM 2021. [DOI: 10.1039/d1nj01148k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular hydrogen bonding and steric hindrance of side chain lead the different molecular packing of dipeptides and the morphological transformation of self-assemblies’ nanostructures.
Collapse
Affiliation(s)
- Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China
- School of Optoelectronics Science and Engineering
- Soochow University
- Suzhou 215123
- China
| | - Qiyun Tong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
21
|
Wang Y, Li Z, Shmidov Y, Carrazzone RJ, Bitton R, Matson JB. Crescent-Shaped Supramolecular Tetrapeptide Nanostructures. J Am Chem Soc 2020; 142:20058-20065. [PMID: 33186019 PMCID: PMC7702297 DOI: 10.1021/jacs.0c09399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
22
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Braun GA, Ary BE, Dear AJ, Rohn MCH, Payson AM, Lee DSM, Parry RC, Friedman C, Knowles TPJ, Linse S, Åkerfeldt KS. On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules 2020; 21:4781-4794. [PMID: 33170649 DOI: 10.1021/acs.biomac.0c00989] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Self-assembling peptide-based hydrogels are a class of tunable soft materials that have been shown to be highly useful for a number of biomedical applications. The dynamic formation of the supramolecular fibrils that compose these materials has heretofore remained poorly characterized. A better understanding of this process would provide important insights into the behavior of these systems and could aid in the rational design of new peptide hydrogels. Here, we report the determination of the microscopic steps that underpin the self-assembly of a hydrogel-forming peptide, SgI37-49. Using theoretical models of linear polymerization to analyze the kinetic self-assembly data, we show that SgI37-49 fibril formation is driven by fibril-catalyzed secondary nucleation and that all the microscopic processes involved in SgI37-49 self-assembly display an enzyme-like saturation behavior. Moreover, this analysis allows us to quantify the rates of the underlying processes at different peptide concentrations and to calculate the time evolution of these reaction rates over the time course of self-assembly. We demonstrate here a new mechanistic approach for the study of self-assembling hydrogel-forming peptides, which is complementary to commonly used materials science characterization techniques.
Collapse
Affiliation(s)
- Gabriel A Braun
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund SE-22100, Sweden
| | - Beatrice E Ary
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew C H Rohn
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Abigail M Payson
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - David S M Lee
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Robert C Parry
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Connie Friedman
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund SE-22100, Sweden
| | - Karin S Åkerfeldt
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| |
Collapse
|
24
|
Andrade D, Colherinhas G. The influence of polar and non-polar interactions on the self-assembly of peptide nanomembranes and their applications: An atomistic study using classical molecular dynamics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Abudula T, Bhatt K, Eggermont LJ, O'Hare N, Memic A, Bencherif SA. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front Chem 2020; 8:598160. [PMID: 33195107 PMCID: PMC7662149 DOI: 10.3389/fchem.2020.598160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the undeniable success of vaccination programs in preventing diseases, effective vaccines against several life-threatening infectious pathogens such as human immunodeficiency virus are still unavailable. Vaccines are designed to boost the body's natural ability to protect itself against foreign pathogens. To enhance vaccine-based immunotherapies to combat infections, cancer, and other conditions, biomaterials have been harnessed to improve vaccine safety and efficacy. Recently, peptides engineered to self-assemble into specific nanoarchitectures have shown great potential as advanced biomaterials for vaccine development. These supramolecular nanostructures (i.e., composed of many peptides) can be programmed to organize into various forms, including nanofibers, nanotubes, nanoribbons, and hydrogels. Additionally, they have been designed to be responsive upon exposure to various external stimuli, providing new innovations in the development of smart materials for vaccine delivery and immunostimulation. Specifically, self-assembled peptides can provide cell adhesion sites, epitope recognition, and antigen presentation, depending on their biochemical and structural characteristics. Furthermore, they have been tailored to form exquisite nanostructures that provide improved enzymatic stability and biocompatibility, in addition to the controlled release and targeted delivery of immunomodulatory factors (e.g., adjuvants). In this mini review, we first describe the different types of self-assembled peptides and resulting nanostructures that have recently been investigated. Then, we discuss the recent progress and development trends of self-assembled peptide-based vaccines, their challenges, and clinical translatability, as well as their future perspectives.
Collapse
Affiliation(s)
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Loek J Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Nick O'Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Bioengineering, Northeastern University, Boston, MA, United States.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.,Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
26
|
Wang Y, An Y, Shmidov Y, Bitton R, Deshmukh SA, Matson JB. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3022-3031. [PMID: 33163198 PMCID: PMC7643854 DOI: 10.1039/d0qm00369g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure K S XEK S , where KS= S-aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable KS units in the APAs indicated that the KS units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 102 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 102 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
27
|
Yang X, Niu L, Xia Z, Yan X, Bai G. Preparation of Ni/mSiO2 with the existence of hydrogelator: Insight into hydrogelator self-assembly on metal dispersion and catalytic performance in quinoline hydrogenation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
29
|
Wang Y, Yang X, Liu T, Li Z, Leskauskas D, Liu G, Matson JB. Molecular-Level Control over Plasmonic Properties in Silver Nanoparticle/Self-Assembling Peptide Hybrids. J Am Chem Soc 2020; 142:9158-9162. [PMID: 32392041 PMCID: PMC7657666 DOI: 10.1021/jacs.0c03672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The plasmonic properties of silver nanoparticle (AgNP) arrays are directly controlled by AgNP size, shape, and spatial arrangement. Reported here is a strategy to prepare chiral AgNP arrays templated by two constitutionally isomeric aromatic peptide amphiphiles (APAs), KSC'EKS and C'EKSKS (KS = S-aroylthiooxime-modified lysine, C' = citrulline, and E = glutamic acid). In phosphate buffer, both APAs initially self-assembled into nanoribbons with a similar geometry. However, in the presence of silver ions and poly(sodium 4-styrenesulfonate) (PSSS), one of the nanoribbons (KSC'EKS) turned into nanohelices with a regular twisting pitch, while the other (C'EKSKS) remained as nanoribbons. Both were used as templates for synthesis of arrays of ∼8 nm AgNPs to understand how small changes in molecular structure affect the plasmonic properties of these chiral AgNP/APA hybrids. Both hybrids showed improved colloidal stability compared to pure AgNPs, and both showed enhanced sensitivity as surface-enhanced Raman spectroscopy (SERS) substrates for model analytes, with nanohelices showing better SERS performance compared to their nanoribbon counterparts and pure AgNPs.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Tianyu Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - David Leskauskas
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
30
|
Yang Z, Xu H, Zhao X. Designer Self-Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903718. [PMID: 32382486 PMCID: PMC7201262 DOI: 10.1002/advs.201903718] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Indexed: 02/05/2023]
Abstract
Designer self-assembling peptides form the entangled nanofiber networks in hydrogels by ionic-complementary self-assembly. This type of hydrogel has realistic biological and physiochemical properties to serve as biomimetic extracellular matrix (ECM) for biomedical applications. The advantages and benefits are distinct from natural hydrogels and other synthetic or semisynthetic hydrogels. Designer peptides provide diverse alternatives of main building blocks to form various functional nanostructures. The entangled nanofiber networks permit essential compositional complexity and heterogeneity of engineering cell microenvironments in comparison with other hydrogels, which may reconstruct the tumor microenvironments (TMEs) in 3D cell cultures and tissue-specific modeling in vitro. Either ovarian cancer progression or recurrence and relapse are involved in the multifaceted TMEs in addition to mesothelial cells, fibroblasts, endothelial cells, pericytes, immune cells, adipocytes, and the ECM. Based on the progress in common hydrogel products, this work focuses on the diverse designer self-assembling peptide hydrogels for instructive cell constructs in tissue-specific modeling and the precise oncology remodeling for ovarian cancer, which are issued by several research aspects in a 3D context. The advantages and significance of designer peptide hydrogels are discussed, and some common approaches and coming challenges are also addressed in current complex tumor diseases.
Collapse
Affiliation(s)
- Zehong Yang
- West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduSichuan610041P. R. China
- Institute for Nanobiomedical Technology and Membrane BiologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hongyan Xu
- GL Biochem (Shanghai) Ltd.519 Ziyue Rd.Shanghai200241P. R. China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane BiologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Wenzhou InstituteUniversity of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering)WenzhouZhejiang325001P. R. China
| |
Collapse
|
31
|
|
32
|
Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. Biomaterials 2020; 238:119847. [DOI: 10.1016/j.biomaterials.2020.119847] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
|
33
|
Gong Z, Shi Y, Tan H, Wang L, Gao Z, Lian B, Wang G, Sun H, Sun P, Zhou B, Bai J. Plasma Amine Oxidase-Induced Nanoparticle-to-Nanofiber Geometric Transformation of an Amphiphilic Peptide for Drug Encapsulation and Enhanced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4323-4332. [PMID: 31899611 DOI: 10.1021/acsami.9b21296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with cancer have reduced immune function and are susceptible to bacterial infection after surgery, chemotherapy, or radiotherapy. Spherical nanoparticles formed by the self-assembled peptide V6K3 can be used as carriers for poorly soluble antitumor drugs to effectively deliver drugs into tumor cells. V6K3 was designed to achieve nanoparticle-to-nanofiber geometric transformation under induction by plasma amine oxidase (PAO). PAO is commercially available and functionally similar to lysyl oxidase (LO), which is widely present in serum. After the addition of fetal bovine serum (FBS) or PAO, the secondary structure of the peptide changed, while the spherical nanoparticles stretched and transformed into nanofibers. The conversion of the self-assembled morphology reveals the susceptibility of this amphiphilic peptide to subtle chemical modifications and may lead to promising strategies to control self-assembled architecture via enzyme induction. Enzymatically self-assembled V6K3 had bactericidal properties after PAO addition that were surprisingly superior to those before PAO addition, enabling this peptide to be used to prevent infection. The amphiphilic peptide V6K3 displayed antitumor properties and low toxicity in mammalian cells, demonstrating good biocompatibility, as well as bactericidal properties, to prevent bacterial contamination. These advantages indicate that enzymatically self-assembled V6K3 has great biomedical application potential in cancer therapy.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Yuanyuan Shi
- Medical College , Qingdao University , Qingdao 266021 , P. R. China
| | - Haining Tan
- National Glycoengineering Research Center , Shandong University , Jinan 250012 , P. R. China
| | - Lei Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects , Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Zhiqin Gao
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Bo Lian
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Gang Wang
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Hengyi Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Panpan Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Baolong Zhou
- School of Pharmacy , Weifang Medical University , Weifang 261042 , P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| |
Collapse
|
34
|
Zhu Y, Wang L, Li Y, Huang Z, Luo S, He Y, Han H, Raza F, Wu J, Ge L. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8:5415-5426. [DOI: 10.1039/d0bm01004a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual responsive and injectable peptide hydrogels that form gels in vitro control the release of antitumor drugs in vivo.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yiping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Zhewei Huang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Shiyao Luo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Yue He
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Han Han
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Faisal Raza
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Liang Ge
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
35
|
Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci 2019; 40:747-762. [DOI: 10.1016/j.tips.2019.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
36
|
Wang J, Zhang L, Yang J, Yan H, Li X, Wang C, Wang D, Sun Y, Xu H. Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5617-5625. [PMID: 30942585 DOI: 10.1021/acs.langmuir.9b00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructures and nanomaterials based on peptide self-assembly have attracted tremendous interests due to the functionalities of peptide molecules. Furthermore, the self-assembled peptide nanostructures are also adopted to fabricate nanomaterials and nanodevices. In this work, the intramolecular folding and self-assembly of a β-hairpin peptide CBHH were first studied under the regulation of platinum ion. And then, platinum nanostructures were synthesized through the reduction of platinum ions templated with peptide self-assemblies. The results of circular dichroism spectroscopy, UV-vis spectroscopy, isothermal titration calorimetry, and atomic force microscopy observation showed that platinum ions could promote the conversion of peptide CBHH secondary structure from a random coil to a β-sheet through coordination with histidine residues. Platinum nanostructures including nanorods and one dimensionally aligned nanorods were synthesized through in situ reduction with CBHH self-assembled nanofiber as the templates. And the synthesized platinum nanostructures showed excellent electrocatalytic activities.
Collapse
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Liyan Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Jingge Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Hongyu Yan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Xiran Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Chengdong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| |
Collapse
|
37
|
Applications of π-π stacking interactions in the design of drug-delivery systems. J Control Release 2019; 294:311-326. [DOI: 10.1016/j.jconrel.2018.12.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
|
38
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
39
|
Shu C, Li T, Li D, Zhu Y, Tang Y, Kong Y, Yang Z, Meiqi liu, Gu M, Ding L. Anticancer activity and pharmacokinetics of TanshinoneⅡA derivative supramolecular hydrogels. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nat Commun 2018; 9:5118. [PMID: 30504813 PMCID: PMC6269506 DOI: 10.1038/s41467-018-07583-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Peptide self-assembly is a hierarchical process, often starting with the formation of α-helices, β-sheets or β-hairpins. However, how the secondary structures undergo further assembly to form higher-order architectures remains largely unexplored. The polar zipper originally proposed by Perutz is formed between neighboring β-strands of poly-glutamine via their side-chain hydrogen bonding and helps to stabilize the sheet. By rational design of short amphiphilic peptides and their self-assembly, here we demonstrate the formation of polar zippers between neighboring β-sheets rather than between β-strands within a sheet, which in turn intermesh the β-sheets into wide and flat ribbons. Such a super-secondary structural template based on well-defined hydrogen bonds could offer an agile route for the construction of distinctive nanostructures and nanomaterials beyond β-sheets. Peptide self-assembly is a hierarchical process which includes forming β-sheets but the formation of high ordered structures remains largely unexplored. Here the authors report on a super-secondary structural template, based on well-defined hydrogen bonds by rational design and assembly of short peptides
Collapse
|
41
|
Wang Y, Kaur K, Scannelli SJ, Bitton R, Matson JB. Self-Assembled Nanostructures Regulate H 2S Release from Constitutionally Isomeric Peptides. J Am Chem Soc 2018; 140:14945-14951. [PMID: 30369241 PMCID: PMC6225339 DOI: 10.1021/jacs.8b09320] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/21/2022]
Abstract
We report here on three constitutionally isomeric peptides, each of which contains two glutamic acid residues and two lysine residues functionalized with S-aroylthiooximes (SATOs), termed peptide-H2S donor conjugates (PHDCs). SATOs decompose in the presence of cysteine to generate hydrogen sulfide (H2S), a biological signaling gas with therapeutic potential. The PHDCs self-assemble in aqueous solution into different morphologies, two into nanoribbons of different dimensions and one into a rigid nanocoil. The rate of H2S release from the PHDCs depends on the morphology, with the nanocoil-forming PHDC exhibiting a complex release profile driven by morphological changes promoted by SATO decomposition. The nanocoil-forming PHDC mitigated the cardiotoxicity of doxorubicin more effectively than its nanoribbon-forming constitutional isomers as well as common H2S donors. This strategy opens up new avenues to develop H2S-releasing biomaterials and highlights the interplay between structure and function from the molecular level to the nanoscale.
Collapse
Affiliation(s)
- Yin Wang
- Department
of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kuljeet Kaur
- Department
of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department
of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronit Bitton
- Department
of Chemical Engineering and the Ilze Kats Institute for Nanoscale
Science and Technology, Ben-Gurion University
of the Negev, Beer-Sheva 84105, Israel
| | - John B. Matson
- Department
of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
42
|
Liu S, Moore AC, Zerdoum AB, Zhang H, Scinto SL, Zhang H, Gong L, Burris DL, Rajasekaran AK, Fox JM, Jia X. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials 2018; 180:24-35. [PMID: 30014964 PMCID: PMC6091885 DOI: 10.1016/j.biomaterials.2018.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
Fibrous proteins found in the natural extracellular matrix (ECM) function as host substrates for migration and growth of endogenous cells during wound healing and tissue repair processes. Although various fibrous scaffolds have been developed to recapitulate the microstructures of the native ECM, facile synthesis of hydrogel microfibers that are mechanically robust and biologically active have been elusive. Described herein is the use of interfacial bioorthogonal polymerization to create hydrogel-based microfibrous scaffolds via tetrazine ligation. Combination of a trifunctional strained trans-cyclooctene monomer and a difunctional s-tetrazine monomer at the oil-water interface led to the formation of microfibers that were stable under cell culture conditions. The bioorthogonal nature of the synthesis allows for direct incorporation of tetrazine-conjugated peptides or proteins with site-selectively, genetically encoded tetrazines. The microfibers provide physical guidance and biochemical signals to promote the attachment, division and migration of fibroblasts. Mechanistic investigations revealed that fiber-guided cell migration was both F-actin and microtubule-dependent, confirming contact guidance by the microfibers. Prolonged culture of fibroblasts in the presence of an isolated microfiber resulted in the formation of a multilayered cell sheet wrapping around the fiber core. A fibrous mesh provided a 3D template to promote cell infiltration and tissue-like growth. Overall, the bioorthogonal approach led to the straightforward synthesis of crosslinked hydrogel microfibers that can potentially be used as instructive materials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Axel C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Han Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Liang Gong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
43
|
Betush RJ, Urban JM, Nilsson BL. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Biopolymers 2018; 110. [PMID: 29292825 DOI: 10.1002/bip.23099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023]
Abstract
Amphipathic peptides with alternating polar and nonpolar amino acid sequences efficiently self-assemble into functional β-sheet fibrils as long as the nonpolar residues have sufficient hydrophobicity. For example, the Ac-(FKFE)2 -NH2 peptide rapidly self-assembles into β-sheet bilayer nanoribbons, while Ac-(AKAE)2 -NH2 fails to self-assemble under similar conditions due to the significantly reduced hydrophobicity and β-sheet propensity of Ala relative to Phe. Herein, we systematically explore the effect of substituting only two of the four Ala residues at various positions in the Ac-(AKAE)2 -NH2 peptide with amino acids of increasing hydrophobicity, β-sheet potential, and surface area (including Phe, 1-naphthylalanine (1-Nal), 2-naphthylalanine (2-Nal), cyclohexylalanine (Cha), and pentafluorophenylalanine (F5 -Phe)) on the self-assembly propensity of the resulting sequences. It was found that double Phe variants, regardless of the position of substitution, failed to self-assemble under the conditions used in this study. In contrast, all double 1-Nal and 2-Nal variants readily self-assembled, albeit at differing rates depending on the substitution patterns. To determine whether this was due to hydrophobicity or side chain surface area, we also prepared double Cha and F5 -Phe variant peptides (both side chain groups are more hydrophobic than Phe). Each of these variants also underwent effective self-assembly, with the aromatic F5 -Phe peptides doing so with greater efficiency. These findings provide insight into the role of amino acid hydrophobicity and sequence pattern on self-assembly proclivity of amphipathic peptides and on how targeted substitutions of nonpolar residues in these sequences can be exploited to tune the characteristics of the resulting self-assembled materials.
Collapse
Affiliation(s)
- Ria J Betush
- Department of Chemistry, Gannon University, Erie, Pennsylvania
| | - Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York
| |
Collapse
|
44
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Li Y, Cao Y. The Physical Chemistry for the Self-assembly of Peptide Hydrogels. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2099-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
|
48
|
Sheikhi A, van de Ven TGM. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules. Chem Commun (Camb) 2017; 53:8747-8750. [DOI: 10.1039/c7cc02844j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule.
Collapse
Affiliation(s)
- A. Sheikhi
- Department of Chemistry
- Centre for Self-Assembled Chemical Structures
- Pulp and Paper Research Centre
- McGill University
- Montreal
| | - T. G. M. van de Ven
- Department of Chemistry
- Centre for Self-Assembled Chemical Structures
- Pulp and Paper Research Centre
- McGill University
- Montreal
| |
Collapse
|