1
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Yang G, Liu L, Xiao L, Ke S, Yang H, Lu Q. Accelerated scarless wound healing by dynamical regulation of angiogenesis and inflammation with immobilized asiaticoside and magnesium ions in silk nanofiber hydrogels. J Mater Chem B 2024; 12:11670-11684. [PMID: 39380345 DOI: 10.1039/d4tb01584c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It remains a challenge to effectively regulate the complicated microenvironment during the wound healing process. The optimization of synergistic action of angiogenesis and inflammation is considered critical for quicker scarless wound regeneration. Here, the silk nanofiber (SNF) acts as a multifunctional carrier to load hydrophobic asiaticoside (AC) and hydrophilic Mg2+, and also serves as an element to assemble injectable hydrogels, forming a bioactive matrix with improved angiogenic and anti-inflammatory capacities (SNF-AC-Mg). Mg2+ and AC distributed homogeneously inside the silk nanofiber hydrogels without compromising the mechanical performance. Both Mg2+ and AC released slowly to continuously tune both angiogenic and inflammatory behaviors. The hydrogels exhibited good biocompatibility, inflammation inhibition, and pro-angiogenic properties in vitro, suggesting the synergistic bioactivity of AC and Mg2+. In vivo analysis revealed that the synergistic action of AC and Mg2+ resulted in better M2-type polarization of macrophages and angiogenesis during the inflammatory phase, while effectively achieving the inhibition of excessive accumulation of collagen and scar formation during the remodeling phases. The quicker scarless regeneration of the defects treated with SNF-AC-Mg implies the priority of SNFs in designing bioactive niches with complicated cues, which will favor the functional recovery of different tissues in the future.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lutong Liu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
3
|
Wang HJ, Sin CH, Yang SH, Hsueh HM, Lo WY. miR-200b-3p accelerates diabetic wound healing through anti-inflammatory and pro-angiogenic effects. Biochem Biophys Res Commun 2024; 731:150388. [PMID: 39024974 DOI: 10.1016/j.bbrc.2024.150388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The poor healing characteristics of diabetic foot ulcers are partially attributed to diabetes-induced pro-inflammatory wounds. Our previous study reported that both miR-146a-5p and miR-200b-3p decrease endothelial inflammation in human aortic endothelial cells and db/db diabetic mice. Although miR-146a-5p has been reported to improve diabetic wound healing, the role of miR-200b-3p is not clear. This study compared the roles of these miRNAs in diabetic wound healing. Two 8-mm full-thickness wounds were created in 12-week-old male db/db mice on the left and right back. After surgery, 100 ng miR-146a-5p, miR-200b-3p, or miR-negative control (NC) was injected in each wound. Full-thickness skin samples were harvested from mice at the 14th day for real-time polymerase chain reaction and immunohistochemistry analyses. At the 14th day, the miR-200b-3p group showed better wound healing and greater granulation tissue thickness than the miR-146a-5p group. The miR-200b-3p group showed a significant decrease of IL-6 and IL-1β gene expression and a significant increase of Col3α1 gene expression compared to those in the miR-NC group. The miR-200b-3p group had the lowest gene expression of TGF-β1, followed by the miR-146a-5p and miR-NC groups. Our findings suggest that the miR-200b-3p group had better healing characteristics than the other two groups. Immunohistochemical staining revealed that CD68 immunoreactivity was significantly decreased in both the miR-146a-5p and miR-200b-3p groups compared with that in the miR-NC group. In addition, CD31 immunoreactivity was significantly higher in the miR-200b-3p group than in the miR-146a-5p group. In conclusion, these results suggest that miR-200b-3p is more effective than miR-146a-5p in promoting diabetic wound healing through its anti-inflammatory and pro-angiogenic effects.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Wound Healing/genetics
- Male
- Mice
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Diabetic Foot/genetics
- Diabetic Foot/metabolism
- Diabetic Foot/pathology
- Neovascularization, Physiologic/genetics
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Skin/metabolism
- Skin/pathology
- Inflammation/genetics
- Inflammation/pathology
- Inflammation/metabolism
- Mice, Inbred C57BL
- CD68 Molecule
Collapse
Affiliation(s)
- Huang-Joe Wang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan; School of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City 404328, Taiwan
| | - Cian-Huei Sin
- Department of Life Science, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan
| | - Shang-Hsuan Yang
- Shiny Brands Group, 7F, No. 311, Fuxing N. Rd., Songshan Dist., Taipei, 10544, Taiwan
| | - Hsiang-Ming Hsueh
- Shiny Brands Group, 7F, No. 311, Fuxing N. Rd., Songshan Dist., Taipei, 10544, Taiwan
| | - Wan-Yu Lo
- Cardiovascular & Translational Medicine Laboratory, Department of Food Science and Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Blvd., Shalu Dist., Taichung City 43302, Taiwan.
| |
Collapse
|
4
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
5
|
Liu Z, Song H, Lin G, Zhong W, Zhang Y, Yang A, Liu Y, Duan J, Zhou Y, Jiao K, Ding D, Feng Y, Yue J, Zhao W, Lin X. Wireless Intelligent Patch for Closed-loop In Situ Wound Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400451. [PMID: 38828672 PMCID: PMC11304288 DOI: 10.1002/advs.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Wound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery. In this study, a smart wound patch system (SWPS) designed for wireless closed-loop and in-situ wound management is presented. The SWPS integrates a microfluidic structure, an organic electrochemical transistor (OECT) based sensor, an electrical stimulation module, and a miniaturized flexible printed circuit board (FPCB). The OECT incorporates a bacteria-responsive DNA hydrogel-coated gate for continuous monitoring of bacterial virulence at wound sites. Real-time detection of OECT readings and on-demand delivery of electrical cues to accelerate wound healing is facilitated by a mobile phone application linked with an FPCB containing low-power electronics equipped with parallel sensing and stimulation circuitry. In this proof-of-concept study, the functionality of the SWPS is validated and its application both in vitro and in vivo is demonstrated. This proposed system expands the arsenal of tools available for effective wound management and enables personalized treatment.
Collapse
Affiliation(s)
- Zijian Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Hao Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guanming Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yang Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Anqi Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Junhan Duan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yajing Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Kangjian Jiao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Donghai Ding
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yanwen Feng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jun Yue
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518000China
| |
Collapse
|
6
|
Lyu S, Liu Q, Yuen HY, Xie H, Yang Y, Yeung KWK, Tang CY, Wang S, Liu Y, Li B, He Y, Zhao X. A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. MATERIALS HORIZONS 2024; 11:2667-2684. [PMID: 38669042 DOI: 10.1039/d3mh01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microneedles for skin regeneration are conventionally restricted by uncontrollable multi-drug release, limited types of drugs, and poor wound adhesion. Here, a novel core-shell microneedle patch is developed for scarless skin repair, where the shell is composed of hydrophilic gelatin methacryloyl (GelMA) loaded with mangiferin, an anti-inflammatory small molecule, and the core is composed of hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylates (PGLADMA) loaded with bioactive macromolecule and human mesenchymal stromal cell (hMSC)-derived exosomes. This material choice provides several benefits: the GelMA shell provides a swelling interface for tissue interlocking and rapid release of mangiferin at an early wound healing stage for anti-inflammation, whereas the PGLADMA core offers long-term encapsulation and release of exosomes (30% release in 3 weeks), promoting sustained angiogenesis and anti-inflammation. Our results demonstrate that the core-shell microneedle possesses anti-inflammatory properties and can induce angiogenesis both in vitro in terms of macrophage polarization and tube formation of human umbilical vein endothelial cells (HUVECs), and in vivo in terms of anti-inflammation, re-epithelization, and vessel formation. Importantly, we also observe reduced scar formation in vivo. Altogether, the degradation dynamics of our hydrophilic/hydrophobic materials enable the design of a core-shell microneedle for differential and prolonged release, promoting scarless skin regeneration, with potential for other therapies of long-term exosome release.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Qi Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Chak-Yin Tang
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Shuqi Wang
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong 528000, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
7
|
López Lasaosa F, Zhou Y, Song J, He Y, Cui Y, Bolea Bailo RM, Gu Z. Nature-Inspired Scarless Healing: Guiding Biomaterials Design for Advanced Therapies. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:371-384. [PMID: 38019051 DOI: 10.1089/ten.teb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The use of biomaterials in the treatment of skin wounds has been steadily increasing over the last two decades. The key to the successful application of biomaterials in scar reduction is the up-to-date knowledge of the actors involved in accelerated healing and the cellular factors that can be implemented in bioinspired materials. Natural models of scarless healing such as oral mucosa, fetal skin and the skin of amphibians, fish, and reptiles are a great source of information. By investigating their microenvironments, cellular factors, and inflammatory self-regulatory systems, a general model of scarless healing can be defined. This review introduces the basic and current concepts of skin wound healing and focuses on providing a detailed overview of the main processes of accelerated healing without scarring. The article outlines the common features and key points that develop and promote scar-free healing. The tissues and healing processes of the selected natural models are described individually (tissue organization, structural components, ratios of cellular factors such as Collagen and transforming growth factor and their mechanisms of regulation of inflammation and scar overgrowth). A comparative work of each natural model concerning healing in human skin is included in the discussion. Finally, the patterns identified through the analysis of each model and their differences from normal healing are presented to facilitate the knowledge for the implementation of new treatments.
Collapse
Affiliation(s)
- Fernando López Lasaosa
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Department of Animal Pathology, Veterinary Faculty, Aragón Agricultural Institute (IA2), University of Zaragoza (CITA), Zaragoza, Spain
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
- Research and Development Department, Fertinagro Biotech, Teruel, Spain
| | - Yin Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
| | - Jiliang Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
| | - Yuwen Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Department of Animal Pathology, Veterinary Faculty, Aragón Agricultural Institute (IA2), University of Zaragoza (CITA), Zaragoza, Spain
| | - Rosa María Bolea Bailo
- Department of Animal Pathology, Veterinary Faculty, Aragón Agricultural Institute (IA2), University of Zaragoza (CITA), Zaragoza, Spain
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, PR China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, PR China
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
8
|
Liu X, Teng Y, Li H, Luo D, Li H, Shen J, Du S, Zhang Y, Wang D, Jing J. Identification of IGF2 promotes skin wound healing by co-expression analysis. Int Wound J 2024; 21:e14862. [PMID: 38572823 PMCID: PMC10993366 DOI: 10.1111/iwj.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.
Collapse
Affiliation(s)
- Xingyan Liu
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ying Teng
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Huan Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Ding Luo
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Hongkun Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jinghan Shen
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Simin Du
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yuyue Zhang
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Dali Wang
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jie Jing
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| |
Collapse
|
9
|
Sui H, Dou J, Shi B, Cheng X. The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Front Physiol 2024; 15:1349253. [PMID: 38505709 PMCID: PMC10949226 DOI: 10.3389/fphys.2024.1349253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | | | - Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
11
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
12
|
Toledano-Macías E, Martínez-Pascual MA, Hernández-Bule ML. Electric currents of 448 kHz upregulate anti-senescence pathways in human dermal fibroblasts. J Cosmet Dermatol 2024; 23:687-700. [PMID: 37945550 DOI: 10.1111/jocd.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Currently, finding new therapeutic strategies that reduce skin aging is a challenge for dermatologists and aesthetic doctors. In recent years, physical therapies have been included in the options for antiaging treatments; however, the biological bases of such treatments have scarcely been studied. One of these physical therapies is capacitive-resistive electric transfer (CRET) therapy. Previous studies have shown that subthermal treatment with CRET promotes the proliferation and migration of various cell types involved in skin regeneration, such as human ADSC (stem cells), fibroblasts, or keratinocytes. OBJECTIVE This study investigates the effects of in vitro treatment with CRET-Std (standard, non-modulated signal) or CRET-Mod (modulated signal) on cell proliferation and migration, markers of aging, and extracellular matrix production. METHODS Three types of human dermal fibroblasts were used: neonatal fibroblasts (HFn), replicative senescent fibroblasts (HFs), and adult fibroblasts (HFa). The effects of electric stimulation on cell proliferation and migration were studied through XTT and wound closure assays, respectively. The expression of the aging marker β-galactosidase was assessed using a colorimetric assay, whereas immunoblot, immunofluorescence, and ELISAs were carried out to analyze the expression levels of migration, aging, and extracellular matrix proteins. RESULTS The treatment with CRET-Std increased HFn and HFa proliferation, as well as migration in the three types of fibroblasts studied compared to those of the controls. Conversely, CRET-Mod did not modify either of these two processes with respect to the controls. Additionally, CRET-Std also reduced the cellular senescence markers β-gal, vimentin, p53, and p21 in all three types of human skin fibroblasts. In addition, the application of CRET-Std also induced fibronectin production in HFn and was able to stimulate ECM neocollagenesis. CONCLUSION CRET treatment improves a number of functions related to migration and proliferation, and it reduces age-related cellular changes in human dermal fibroblasts. Therefore, the use of this CRET therapy to reduce the signs of dermal aging and to promote tissue regeneration could be of interest.
Collapse
Affiliation(s)
- Elena Toledano-Macías
- Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - María Luisa Hernández-Bule
- Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
13
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Li J, Su J, Liang J, Zhang K, Xie M, Cai B, Li J. A hyaluronic acid / chitosan composite functionalized hydrogel based on enzyme-catalyzed and Schiff base reaction for promoting wound healing. Int J Biol Macromol 2024; 255:128284. [PMID: 37992934 DOI: 10.1016/j.ijbiomac.2023.128284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The healing of full-thickness skin defect has been a clinical challenge. Hydrogels with multiple functions inspired by extracellular matrix are expected to be used as wound dressing. In this paper, dopamine-grafted oxidized hyaluronic acid was blended with quaternary ammonium chitosan to form a composite functionalized hydrogel by enzyme-catalyzed cross-linking and Schiff base reaction. The hydrogel has convenient preparation, good biocompatibility, antibacterial and antioxidant, high adhesion and self-healing properties. The results in vivo show that the hydrogel can effectively close the wound and accelerate the speed of wound healing by up-regulating the expression of angiogenic protein and promoting the distribution of collagen deposition more uniform and regular. It is expected that this composite functionalized hydrogel dressing has great potential in wound regeneration.
Collapse
Affiliation(s)
- Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Zhao Q, Wang J, Qu S, Gong Z, Duan Y, Han L, Wang J, Wang C, Tan J, Yuan Q, Zhang Y. Neuro-Inspired Biomimetic Microreactor for Sensory Recovery and Hair Follicle Neogenesis under Skin Burns. ACS NANO 2023; 17:23115-23131. [PMID: 37934769 DOI: 10.1021/acsnano.3c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Deep burns are one of the most severe skin wounds, with typical symptoms being a contradiction between initial severe pain and a subsequent loss of sensation. Although it has long been known that sensory nerves promote skin regeneration and modulate skin function, no proven burn management strategies target sensory nerves. Here, a neuro-inspired biomimetic microreactor is designed based on the immune escape outer membrane of neuroblastoma cells and neural-associated intracellular proteins. The microreactor is constructed on a metal-organic framework (MOF) with a neuroblastoma membrane coating the surface and intracellular proteins loaded inside, called Neuro-MOF. It is loaded into a therapeutic hydrogel and triggers the release of its content proteins upon excitation by near-infrared light. The proteins compensate the skin microenvironment for permanent neurological damage after burns to initiate peripheral nerve regeneration and hair follicle niche formation. In addition, the neuroblastoma cell membrane is displayed on the surface of the Neuro-MOF microreactor, decreasing its immunogenicity and suppressing local inflammation. In a mouse model of deep skin burns, the Neuro-MOF microreactor exhibited significant functional skin regeneration effects, particularly sensory recovery and hair follicle neogenesis.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinyang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zijian Gong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jiaolong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Si L, Guo X, Bera H, Chen Y, Xiu F, Liu P, Zhao C, Abbasi YF, Tang X, Foderà V, Cun D, Yang M. Unleashing the healing potential: Exploring next-generation regenerative protein nanoscaffolds for burn wound recovery. Asian J Pharm Sci 2023; 18:100856. [PMID: 38204470 PMCID: PMC10777420 DOI: 10.1016/j.ajps.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 01/12/2024] Open
Abstract
Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management. In this study, a greater efficacy in burn wound healing and the associated mechanisms of α-lactalbumin (ALA) based electrospun nanofibrous scaffolds (ENs) as compared to other regenerative protein scaffolds were established. Bovine serum albumin (BSA), collagen type I (COL), lysozyme (LZM) and ALA were separately blended with poly(ε-caprolactone) (PCL) to fabricate four different composite ENs (LZM/PCL, BSA/PCL, COL/PCL and ALA/PCL ENs). The hydrophilic composite scaffolds exhibited an enhanced wettability and variable mechanical properties. The ALA/PCL ENs demonstrated higher levels of fibroblast proliferation and adhesion than the other composite ENs. As compared to PCL ENs and other composite scaffolds, the ALA/PCL ENs also promoted a better maturity of the regenerative skin tissues and showed a comparable wound healing effect to Collagen spongeⓇ on third-degree burn model. The enhanced wound healing activity of ALA/PCL ENs compared to other ENs could be attributed to their ability to promote serotonin production at wound sites. Collectively, this investigation demonstrated that ALA is a unique protein with a greater potential for burn wound healing as compared to other regenerative proteins when loaded in the nanofibrous scaffolds.
Collapse
Affiliation(s)
- Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
17
|
Nguyen ED, Fard VN, Kim BY, Collins S, Galey M, Nelson BR, Wakenight P, Gable SM, McKenna A, Bammler TK, MacDonald J, Okamura DM, Shendure J, Beier DR, Ramirez JM, Majesky MW, Millen KJ, Tollis M, Miller DE. Genome Report: chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus). G3 (BETHESDA, MD.) 2023; 13:jkad177. [PMID: 37552705 PMCID: PMC10542272 DOI: 10.1093/g3journal/jkad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023]
Abstract
There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from 4 different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.
Collapse
Affiliation(s)
- Elizabeth Dong Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sarah Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH 03755, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jim MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daryl M Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David R Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Mark W Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kathleen J Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Knoedler S, Broichhausen S, Guo R, Dai R, Knoedler L, Kauke-Navarro M, Diatta F, Pomahac B, Machens HG, Jiang D, Rinkevich Y. Fibroblasts - the cellular choreographers of wound healing. Front Immunol 2023; 14:1233800. [PMID: 37646029 PMCID: PMC10461395 DOI: 10.3389/fimmu.2023.1233800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Injuries to our skin trigger a cascade of spatially- and temporally-synchronized healing processes. During such endogenous wound repair, the role of fibroblasts is multifaceted, ranging from the activation and recruitment of innate immune cells through the synthesis and deposition of scar tissue to the conveyor belt-like transport of fascial connective tissue into wounds. A comprehensive understanding of fibroblast diversity and versatility in the healing machinery may help to decipher wound pathologies whilst laying the foundation for novel treatment modalities. In this review, we portray the diversity of fibroblasts and delineate their unique wound healing functions. In addition, we discuss future directions through a clinical-translational lens.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Broichhausen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ruiji Guo
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Hans-Guenther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
19
|
Yu Y, Xiao H, Tang G, Wang H, Shen J, Sun Y, Wang S, Kong W, Chai Y, Liu X, Wang X, Wen G. Biomimetic hydrogel derived from decellularized dermal matrix facilitates skin wounds healing. Mater Today Bio 2023; 21:100725. [PMID: 37483381 PMCID: PMC10359665 DOI: 10.1016/j.mtbio.2023.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Cutaneous wound healing affecting millions of people worldwide represents an unsolvable clinical issue that is frequently challenged by scar formation with dramatical pain, impaired mobility and disfigurement. Herein, we prepared a kind of light-sensitive decellularized dermal extracellular matrix-derived hydrogel with fast gelling performance, biomimetic porous microstructure and abundant bioactive functions. On account of its excellent cell biocompatibility, this ECM-derived hydrogel could induce a marked cellular infiltration and enhance the tube formation of HUVECs. In vivo experiments based upon excisional wound splinting model showed that the hydrogel prominently imparted skin wound healing, as evidenced by notably increased skin appendages and well-organized collagen expression, coupled with significantly enhanced angiogenesis. Moreover, the skin regeneration mediated by this bioactive hydrogel was promoted by an accelerated M1-to-M2 macrophage phenotype transition. Consequently, the decellularized dermal matrix-derived bioactive hydrogel orchestrates the entire skin healing microenvironment to promote wound healing and will be of high value in treatment of cutaneous wound healing. As such, this biomimetic ddECMMA hydrogel provides a promising versatile opinion for the clinical translation.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Hongshu Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
20
|
Okamura DM, Nguyen ED, Collins SJ, Yoon K, Gere JB, Weiser-Evans MCM, Beier DR, Majesky MW. Mammalian organ regeneration in spiny mice. J Muscle Res Cell Motil 2023; 44:39-52. [PMID: 36131170 DOI: 10.1007/s10974-022-09631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.
Collapse
Affiliation(s)
- Daryl M Okamura
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth D Nguyen
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Kevin Yoon
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Joshua B Gere
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases & Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David R Beier
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
21
|
Alves-Silva JM, Pedreiro S, Cavaleiro C, Cruz MT, Figueirinha A, Salgueiro L. Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration. Nutrients 2023; 15:nu15081930. [PMID: 37111149 PMCID: PMC10146686 DOI: 10.3390/nu15081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1β protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1β. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Institute for Clinical and Biomedical Research, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
22
|
Nguyen ED, Fard VN, Kim BY, Collins S, Galey M, Nelson BR, Wakenight P, Gable SM, McKenna A, Bammler TK, MacDonald J, Okamura DM, Shendure J, Beier DR, Ramirez JM, Majesky MW, Millen KJ, Tollis M, Miller DE. GENOME REPORT: Chromosome-scale genome assembly of the African spiny mouse ( Acomys cahirinus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535372. [PMID: 37066261 PMCID: PMC10103962 DOI: 10.1101/2023.04.03.535372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is increasing interest in the African spiny mouse ( Acomys cahirinus ) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from four different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.
Collapse
Affiliation(s)
- Elizabeth Dong Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA
| | - Sarah Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | - Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Simone M. Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH
| | - Theo K. Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Jim MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Daryl M. Okamura
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA
| | - David R. Beier
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Neurological Surgery, University of Washington, Seattle WA
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Kathleen J. Millen
- Department of Pediatrics, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
24
|
Yuan T, Tan M, Xu Y, Xiao Q, Wang H, Wu C, Li F, Peng L. All-in-one smart dressing for simultaneous angiogenesis and neural regeneration. J Nanobiotechnology 2023; 21:38. [PMID: 36737778 PMCID: PMC9896818 DOI: 10.1186/s12951-023-01787-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
Wound repair, along with skin appendage regeneration, is challenged by insufficient angiogenesis and neural regeneration. Therefore, promoting both proangiogenic and neuro-regenerative therapeutic effects is essential for effective wound repair. However, most therapeutic systems apply these strategies separately or ineffectively. This study investigates the performance of an all-in-one smart dressing (ASD) that integrates angiogenic functional materials and multiple biological factors within a light crosslinked hydrogel, forming a multi-functional dressing capable of facilitating simultaneous micro-vascularization and neural regeneration. The ASD uses a zeolite-imidazolate framework 67 with anchored vanadium oxide (VO2@ZIF-67) that allows for the on-demand release of Co2+ with fluctuations in pH at the wound site to stimulate angiogenesis. It can simultaneously release CXCL12, ligustroflavone, and ginsenoside Rg1 in a sustained manner to enhance the recruitment of endogenous mesenchymal stem cells, inhibit senescence, and induce neural differentiation to achieve in situ nerve regeneration. The ASD can stimulate rapid angiogenesis and nerve regeneration within 17 days through multiple angiogenic and neuro-regenerative cues within one dressing. This study provides a proof-of-concept for integrating functional nanomaterials and multiple complementary drugs within a smart dressing for simultaneous angiogenesis and neural regeneration.
Collapse
Affiliation(s)
- Tiejun Yuan
- grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Minhong Tan
- grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China ,grid.13402.340000 0004 1759 700XCollege of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yang Xu
- grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Qiyao Xiao
- grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Hui Wang
- grid.13402.340000 0004 1759 700XCollege of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Chen Wu
- grid.13402.340000 0004 1759 700XCollege of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Fulun Li
- grid.412540.60000 0001 2372 7462Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Lihua Peng
- grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
25
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Wang Y, Gao B, He B. Toward Efficient Wound Management: Bioinspired Microfluidic and Microneedle Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206270. [PMID: 36464498 DOI: 10.1002/smll.202206270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Microneedle (MN) patches hold demonstrated prospects in intelligent wound management. Herein, inspired by the highly folded structure of insect wings, a three-dimensional (3D) origami MN patch with superfine miniature needle structures, microfluidic channels, and multiple functions was reported to detect biomarkers, release drugs controllably and monitor motions to facilitate wound healing. By simply replicating the pre-stretched silicone rubber (Ecoflex) molds patterned by a laser engraving machine, the superfine structure MN patch with microfluidic channels was obtained from the restored molds. The bioinspired origami structure endows the MN patch with a high degree of functional integration, including microfluidic channels and electrocircuits. The microfluidic channels combined with the pH value and glucose concentration indicators enable the patch with the capability of biomarker sensing detection. Porous structures, a temperature-responsive hydrogel, and a photothermal-sensitive agent are utilized to form a controllable drug release system on the MN patch. Meanwhile, MXene electrocircuits were printed on the MN patch for motion sensing. In addition, the ability of the MN patch to accelerate wound healing was demonstrated by a mouse model experiment with full-thickness skin wounds. These results indicate that the multifunctional 3D origami MN patch is a valuable intelligent strategy for wound management.
Collapse
Affiliation(s)
- Yuqiu Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
27
|
Blokland KEC, Nizamoglu M, Habibie H, Borghuis T, Schuliga M, Melgert BN, Knight DA, Brandsma CA, Pouwels SD, Burgess JK. Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts. Front Pharmacol 2022; 13:989169. [PMID: 36408252 PMCID: PMC9673045 DOI: 10.3389/fphar.2022.989169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-β1 (TGF-β1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response.
Collapse
Affiliation(s)
- Kaj E. C. Blokland
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Habibie Habibie
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
- Hasanuddin University, Faculty of Pharmacy, Makassar, Indonesia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- *Correspondence: Janette K. Burgess,
| |
Collapse
|
28
|
Sudhakar K, Ji SM, Kummara MR, Han SS. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics 2022; 14:2235. [PMID: 36297670 PMCID: PMC9609759 DOI: 10.3390/pharmaceutics14102235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor, which combine to accelerate the healing process. In this review, we focus on the use of HA-based nanocomposites for wound healing applications and we describe the importance of HA for the wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation, and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with HA nanocomposite are used for wound healing applications. Insights into important antibacterial mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing applications. In addition, HA derivatives are discussed and used in combination with the other polymers of the composite for the wound healing process, as is the role of the polymer in wound healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are presented for wound healing applications.
Collapse
Affiliation(s)
- Kuncham Sudhakar
- Correspondence: (K.S.); (S.S.H.); Tel.: +8253-810-2773 (S.S.H.); Fax: +8253-810-4686 (S.S.H.)
| | | | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
29
|
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plast Reconstr Surg 2022; 150:4S-11S. [PMID: 36170430 PMCID: PMC9529244 DOI: 10.1097/prs.0000000000009667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Society and our healthcare system are facing unprecedented challenges due to the expansion of the older population. As plastic surgeons, we can improve care of our older patients through understanding the mechanisms of aging that inevitably impact their outcomes and well-being. One of the major hallmarks of aging, cellular senescence, has recently become the focus of vigorous research in academia and industry. Senescent cells, which are metabolically active but in a state of stable cell cycle arrest, are implicated in causing aging and numerous age-related diseases. Further characterization of the biology of senescence revealed that it can be both detrimental and beneficial to organisms depending on tissue context and senescence chronicity. Here, we review the role of cellular senescence in aging, wound healing, tissue regeneration, and other domains relevant to plastic surgery. We also review the current state of research on therapeutics that modulate senescence to improve conditions of aging.
Collapse
Affiliation(s)
- Maria Shvedova
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Elizabeth L Thompson
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Laura J Niedernhofer
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Daniel S Roh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| |
Collapse
|
30
|
Yang L, Guo J, He J, Shao J. Skin grafting treatment of adolescent lower limb avulsion injury. Front Surg 2022; 9:953038. [PMID: 36189402 PMCID: PMC9521200 DOI: 10.3389/fsurg.2022.953038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Under the influence of various factors, the number of lower extremity avulsion injuries in adolescents is increasing year by year. The main modality of treatment is skin grafting. There are many types of skin grafting. Although many studies on skin grafting after avulsion injuries have been published in the past few decades, there are differences in the treatment options for adolescents with post avulsion injuries. Main body Thorough debridement and appropriate skin grafts are essential for the surgical management of avulsion injuries for optimal prognosis. In the acquisition of grafts, progress has been made in equipment for how to obtain different depths of skin. The severity of the avulsion injury varies among patients on admission, and therefore the manner and type of skin grafting will vary. Especially in adolescents, graft survival and functional recovery are of great concern to both patients and physicians. Therefore, many efforts have been made to improve survival rate and activity. Conclusion This review summarizes the principles of treatment of avulsion injuries, the historical development of skin grafts, and the selection of skin grafts, hoping to be helpful for future research.
Collapse
|
31
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
32
|
Teng YY, Zou ML, Liu SY, Jia Y, Zhang KW, Yuan ZD, Wu JJ, Ye JX, Yu S, Li X, Zhou XJ, Yuan FL. Dual-Action Icariin-Containing Thermosensitive Hydrogel for Wound Macrophage Polarization and Hair-Follicle Neogenesis. Front Bioeng Biotechnol 2022; 10:902894. [PMID: 35832407 PMCID: PMC9272914 DOI: 10.3389/fbioe.2022.902894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic protein (BMP) pathway is essential for M2 macrophage polarization and hair-follicle neogenesis. Icariin, a flavonoid derived from Epimedium, is a mediator of the BMP pathway. Here, we develop a hydrogel formulation functionalized with icariin for regulation of macrophage polarization to accelerate wound healing and hair-follicle neogenesis. Compared to skin defects without icariin treatment, those treated with icariin+PEG hydrogel healed faster and had new hair follicles. Results in vivo showed that icariin+PEG hydrogel induced a higher level of M2 phenotypic transformation of macrophages. Moreover, icariin+PEG hydrogel significantly accelerated wound-repair process by reducing the invasion of inflammation, excessive deposition of collagen, immoderate activation of myofibroblasts, and increasing the regeneration of hair follicles. Furthermore, studies in vitro demonstrated that the icariin+PEG hydrogel induced macrophages to polarize to the M2 phenotype and dermal papilla cell to hair follicles. Finally, molecular analysis demonstrated that the icariin+PEG hydrogel increased the expression of BMP4 and Smad1/5 phosphorylation in skin wounds. These results demonstrate the therapeutic potential of icariin-containing thermosensitive hydrogels for inducing M2 macrophage polarization to accelerate wound healing and promote hair-follicle neogenesis by regulating the BMP pathway.
Collapse
Affiliation(s)
- Ying-Ying Teng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Shun Yu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xiao-Jin Zhou
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
33
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
34
|
Zhang W, Lan X, Zhu J, Zhang C, Huang Y, Mo K, Tan J, Guo H, Huang H, Li M, Ouyang H, Wang L. Healing Ability of Central Corneal Epithelium in Rabbit Ocular Surface Injury Models. Transl Vis Sci Technol 2022; 11:28. [PMID: 35771535 PMCID: PMC9251814 DOI: 10.1167/tvst.11.6.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Wound healing of the corneal epithelium mainly involves two types of cells: limbal stem/progenitor cells (LSCs) and differentiated central corneal epithelial cells (CECs). The healing ability of CECs is still debatable, and its correlated transcriptomic alterations during wound healing are yet to be elucidated. This study aimed to determine the healing ability and mechanisms underlying the actions of CECs using rabbit ocular surface injury models. Methods A central corneal ring-like residual epithelium model was used to investigate the healing ability of CECs. Uninjured and injury-stimulated LSCs and CECs were collected for transcriptomic analysis. The analysis results were verified by quantitative reverse transcriptase polymerase chain reaction, immunofluorescence staining, and two types of rabbit corneal injury models. Results During wound healing, the upregulated genes in LSCs were mostly enriched in the mitotic cell cycle–related processes, but those in CECs were mostly enriched in cell adhesion and migration. CECs could repair the epithelial defects successfully at one-time injuries. However, after repetitive injuries, the CECs repaired notably slower and failed to completely heal the defect, but the LSCs repaired even faster than the one-time injury. Conclusions Our results indicated rabbit CECs repair the epithelial defect mainly depending on migration and its proliferative ability is limited, and LSCs are the main source of regenerative epithelial cells. Translational Relevance This study provides information on gene expression in the corneal epithelium during wound healing, indicating that regulation of the cell cycle, cell adhesion, and migration may be the basis for future treatment strategies for corneal wound healing.
Collapse
Affiliation(s)
- Wang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
35
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Fibroblasts in Scar Formation: Biology and Clinical Translation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4586569. [PMID: 35602101 PMCID: PMC9119755 DOI: 10.1155/2022/4586569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Scarring, which develops due to fibroblast activation and excessive extracellular matrix deposition, can cause physical, psychological, and cosmetic problems. Fibroblasts are the main type of connective tissue cells and play important roles in wound healing. However, the underlying mechanisms of fibroblast in reaching scarless wound healing require more exploration. Herein, we systematically reviewed how fibroblasts behave in response to skin injuries, as well as their functions in regeneration and scar formation. Several biocompatible materials, including hydrogels and nanoparticles, were also suggested. Moreover, factors that concern transformation from fibroblasts into cancer-associated fibroblasts are mentioned due to a tight association between scar formation and primary skin cancers. These findings will help us better understand skin fibrotic pathogenesis, as well as provide potential targets for scarless wound healing therapies.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affifiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China
| |
Collapse
|
36
|
Kassab A, Rizk N, Prakash S. The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. Int J Mol Sci 2022; 23:ijms23084338. [PMID: 35457154 PMCID: PMC9025381 DOI: 10.3390/ijms23084338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in aging studies brought about by heterochronic parabiosis suggest that aging might be a reversable process that is affected by changes in the systemic milieu of organs and cells. Given the broadness of such a systemic approach, research to date has mainly questioned the involvement of “shared organs” versus “circulating factors”. However, in the absence of a clear understanding of the chronological development of aging and a unified platform to evaluate the successes claimed by specific rejuvenation methods, current literature on this topic remains scattered. Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via a juxtaposition between biological and mechanical systems. Such a simplification provides a general framework for future research in the field and examines the involvement of various factors in aging. Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the first time, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies to untangle the extent of its involvement and its possible role as a potentiator in aging. Based on these findings, the review concludes with potential translatable and long-term therapeutics for aging while offering a critical view of rejuvenation methods proposed to date.
Collapse
Affiliation(s)
- Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences-QU-Health, Qatar University, Doha 2713, Qatar
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| |
Collapse
|
37
|
Elevated skin senescence in young mice causes delayed wound healing. GeroScience 2022; 44:1871-1878. [DOI: 10.1007/s11357-022-00551-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
|
38
|
The Origin and Development of Interrupted Subcuticular Suture: An Important Technique for Achieving Optimum Wound Closure. Dermatol Surg 2022; 48:619-624. [PMID: 35315801 PMCID: PMC9154294 DOI: 10.1097/dss.0000000000003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subcuticular suture is an important technique for achieving optimum wound closure, and there has been no comprehensive summary of subcuticular sutures to date. OBJECTIVE To summarize the origin and development of interrupted subcuticular suture to help clinicians improve their wound closure skills. MATERIALS AND METHODS A comprehensive review of subcuticular suture techniques was conducted in PubMed to summarize the advantages and disadvantages of various methods and clinical indications. RESULTS Buried suture is the oldest subcuticular suture technique, followed by buried vertical mattress suture, intracutaneous butterfly suture, modified/variant buried vertical mattress suture, intradermal buried vertical mattress suture, buried horizontal mattress suture, wedge-section and modified buried vertical mattress suture, set-back suture, and modified buried horizontal mattress suture, which have gradually been applied in clinical practice. Buried vertical mattress suture is currently the most widely used subcuticular suture technique. CONCLUSION Patients can certainly benefit from the appropriate application of subcuticular suture. There is also no single ideal method for achieving optimal results in all cases. Fully understanding the history of subcuticular suture can help doctors improve their wound closure technique.
Collapse
|
39
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
40
|
Cheng X, Huang Y, Liu Y, Dou J, Zhao N, Li J, Shi B. Head muscle fibro-adipogenic progenitors account for the tilted regeneration towards fibrosis. Biochem Biophys Res Commun 2022; 589:131-138. [PMID: 34915407 DOI: 10.1016/j.bbrc.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
Branchiomeric head muscle is ontogenetically and phylogenetically distinct from somitic limb muscle, and they exhibit different regenerative capacity. Unique satellite cell property of head muscle could explain the impaired myofiber formation, but the underlying mechanism for fibrosis is still elusive. In this work, we first established a freezing-induced skeletal muscle regeneration model and made comparisons between the regeneration characteristics in tibialis anterior (TA) muscle and masseter (MAS) muscle. The process of myogenesis and fibrogenesis were investigated by histological, immunohistochemical and cellular analysis, to characterize the role of muscle satellite cell (MuSCs) and fibro-adipogenic progenitors (FAPs) in TA and MAS muscle regeneration. Our results revealed that FAPs infiltrated the fibrotic area during MAS muscle regeneration. In contrast to the rapid rise and fall of FAPs number at the early regeneration stages in TA muscle, the number of MAS FAPs increased to a plateau without descending till 14 days after injury. It is the first time that the pivotal role of FAPs in head muscle regeneration was characterized. The persistence of FAPs without timely clearance in the first two weeks of regeneration could be accountable for the head muscle fibrosis.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Yingmeng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Jinfeng Dou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Ning Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China.
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China.
| |
Collapse
|
41
|
Okamura DM, Nguyen ED, Beier DR, Majesky MW. Wound healing and regeneration in spiny mice (Acomys cahirinus). Curr Top Dev Biol 2022; 148:139-164. [DOI: 10.1016/bs.ctdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Wang Y, Lu H, Guo M, Chu J, Gao B, He B. Personalized and Programmable Microneedle Dressing for Promoting Wound Healing. Adv Healthc Mater 2022; 11:e2101659. [PMID: 34699675 DOI: 10.1002/adhm.202101659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Microneedle (MN) dressings, with the ability of transdermal drug delivery, have played an essential role in the field of wound healing. However, patients may still feel uncomfortable when sensitive unhealing wounds are pieced by strong needles. Here, inspired by the structure of mosquito mouthparts, which possess a fixation part and a liquid-transferring part, we present a novel MN wound dressing with superfine needle tips, personalized pattern design, programmable needle length, and multiple mechanical strengths for intelligent and painless drug delivery. By simply stretching the silicone rubber (Ecoflex) molds before engraving, superfine MNs can be formed in the restored molds. Meanwhile, by utilizing intelligent image recognition, precise treatment for irregular wounds is achieved. Notably, combined with temperature-responsive N-isopropylacrylamide (NIPAM) hydrogel and inverse opal (IO) photonic crystals (PCs), a controllable drug release system has been achieved on MN dressings. Moreover, the performance of the MN dressing in facilitating wound recovery has been demonstrated by full-thickness skin wounds of a mouse model. These results indicate that novel personalized and programmable MN wound dressings are of considerable value in the field of wound management.
Collapse
Affiliation(s)
- Yuqiu Wang
- College of Biotechnology and Pharmaceutical Engineering and School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| | - Huihui Lu
- School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| | - Maoze Guo
- School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| | - Jianlin Chu
- School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| | - Bingbing Gao
- School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering and School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
- School of Pharmaceutical Sciences Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
43
|
Cui X, Huang X, Huang M, Zhou S, Guo L, Yu W, Duan M, Jiang B, Zeng J, Zhou J, Huang X, Liang P, Zhang P. miR-24-3p obstructs the proliferation and migration of HSFs after thermal injury by targeting PPAR-β and positively regulated by NF-κB. Exp Dermatol 2021; 31:841-853. [PMID: 34932851 DOI: 10.1111/exd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Thermal injury repair is a complex process during which the maintenance of the proliferation and migration of human skin fibroblasts (HSFs) exert a crucial role. MicroRNAs have been proven to exert an essential function in repairing skin burns. This study delves into the regulatory effects of miR-24-3p on the migration and proliferation of HSFs that have sustained a thermal injury; thereby, providing deeper insight into thermal injury repair pathogenesis. The PPAR-β protein expression level progressively increased in a time-dependent manner on the 12th , 24th , and 48th hour following the thermal injury of the HSFs. The knockdown of PPAR-β markedly suppressed the proliferation of and migration of HSF. Following thermal injury, the knockdown also promoted the inflammatory cytokine IL-6, TNF-, PTGS-2, and P65 expression. PPAR-β contrastingly exhibited an opposite trend. A targeted relationship between PPAR-β and miR-24-3p was predicted and verified. miR-24-3p inhibited thermal injured-HSFs proliferation and migration and facilitated inflammatory cytokine expression through the regulation of PPAR-β. p65 directly targeted the transcriptional precursor of miR-24 and promoted miR-24 expression. A negative correlation between miR-24-3p expression level and PPAR-β expression level in rats burnt dermal tissues was observed. Our findings reveal that miR-24-3p is conducive to rehabilitating the denatured dermis, which may be beneficial in providing effective therapy of skin burns.
Collapse
Affiliation(s)
- Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
44
|
Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, Farr JN, Khosla S. Modulation of fracture healing by the transient accumulation of senescent cells. eLife 2021; 10:69958. [PMID: 34617510 PMCID: PMC8526061 DOI: 10.7554/elife.69958] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage; the specific identity of these cells, however, requires further characterization. Then, using a genetic mouse model (Cdkn2aLUC) containing a Cdkn2aInk4a-driven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells (‘senolytics’, Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather improves fracture healing.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Rowsey
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States
| | - Stephanie J Vos
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| |
Collapse
|
45
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
46
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
47
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
48
|
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci 2021; 9:5227-5236. [PMID: 34190240 PMCID: PMC8319114 DOI: 10.1039/d1bm00904d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.
Collapse
Affiliation(s)
- Lutong Liu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Yan Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
49
|
Yannas IV, Tzeranis DS. Mammals fail to regenerate organs when wound contraction drives scar formation. NPJ Regen Med 2021; 6:39. [PMID: 34294726 PMCID: PMC8298605 DOI: 10.1038/s41536-021-00149-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
To understand why mammals generally do not regenerate injured organs, we considered the exceptional case of spontaneous skin regeneration in the early lamb fetus. Whereas during the early fetal stage skin wounds heal by regeneration, in the late fetal stage, and after birth, skin wounds close instead by scar formation. We review independent evidence that this switch in wound healing response coincides with the onset of wound contraction, which is also enabled during late fetal gestation. The crucial role of wound contraction in determining the wound healing outcome in adults has been demonstrated in three mammalian models of severe injury (excised guinea pig skin, transected rat sciatic nerve, excised rabbit conjunctival stroma) where grafting the injury with DRT, a contraction-blocking scaffold of highly-specific structure, altered significantly the wound healing outcome. While spontaneous healing resulted in scar formation in these animal models, DRT grafting significantly reduced the extent of wound contraction, prevented scar synthesis, and resulted in partial regeneration. These findings, as well as independent data from species that heal spontaneously via regeneration, point to a striking hypothesis: The process of regeneration lies dormant in mammals until appropriately activated by injury. In spontaneous wound healing of the late fetus and in adult mammals, wound contraction impedes such endogenous regeneration mechanisms. However, engineered treatments, such as DRT, that block wound contraction can cancel its effects and favor wound healing by regeneration instead of scar formation.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dimitrios S Tzeranis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
50
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|