1
|
Kayembe LK, Fischer LS, Adhikari BB, Knapp JK, Khan EB, Greening BR, Papania M, Meltzer MI. Estimates of Potential Demand for Measles and Rubella Microarray Patches. Vaccines (Basel) 2024; 12:1083. [PMID: 39340113 PMCID: PMC11436147 DOI: 10.3390/vaccines12091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Global measles vaccine coverage has stagnated at approximately 85% for over a decade. By simplifying vaccine logistics and administration, the measles and rubella microarray patch (MR-MAP) may improve coverage. Clinical trials have demonstrated similar safety and immunogenicity in 9-month-old infants for MR-MAPs compared with syringe-and-needle vaccination. To aid commercialization, we present estimates of MR-MAP demand. We created a spreadsheet-based tool to estimate demand for MR-MAPs using data from 180 WHO countries during 2000-2016. Five immunization scenarios were analyzed: (1a) Supplementary Immunization Activities (SIAs) in Gavi, the Vaccine Alliance (Gavi)-eligible countries and (1b) WHO countries where preventive SIAs are routinely conducted; (2) SIAs and outbreak response immunization in all WHO countries; (3) routine immunization (RI) and SIAs in six high-burden measles countries (the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, and Pakistan); (4) RI and SIAs in six high-burden countries and Gavi-eligible countries; and (5) hard-to-reach populations. MR-MAP demand varied greatly across scenarios. Forecasts for 2025-2034 estimate from 137 million doses in hard-to-reach populations (scenario 5) to 2.587 billion doses for RI and SIAs in six high-burden countries and Gavi-eligible countries (scenario 4). When policymakers and manufacturers assess MR-MAP demand, they may consider multiple scenarios to allow for a complete consideration of potential markets and public health needs.
Collapse
Affiliation(s)
- Lidia K Kayembe
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Leah S Fischer
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Bishwa B Adhikari
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Jennifer K Knapp
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Emily B Khan
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Bradford R Greening
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Mark Papania
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Martin I Meltzer
- The U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Zheng Y, Li Z, Li S, Zhao P, Wang X, Lu S, Shi Y, Chang H. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater 2024; 185:203-214. [PMID: 39053817 DOI: 10.1016/j.actbio.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Vaccines play a critical role in combating infectious diseases and cancers, yet improving their efficacy remains challenging. Here, we introduce a separable nanocomposite hydrogel microneedle (NHMN) patch designed for intradermal and sustained delivery of ovalbumin (OVA), a model antigen, to enhance adaptive immune responses. The NHMN patch consists of an array of OVA-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite (LAP), supported by a hyaluronic acid backing. The incorporation of LAP not only enhances the mechanical strength of the pure hydrogel microneedles but also significantly prolongs OVA release. Furthermore, in vitro cell experiments demonstrate that NHMNs effectively activate dendritic cells without compromising cell viability. Upon skin penetration, NHMNs detach from the backing as the hyaluronic acid rapidly dissolves upon contact with the skin interstitial fluid, thereby acting as antigen reservoirs to release antigens to abundant skin dendritic cells. NHMNs containing 0.5% w/v LAP achieved a 15-day OVA release in vivo. Immunization studies demonstrate that the intradermal and sustained release of OVA via NHMNs elicited stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. Given its easy to use, painless and minimally invasive features, the NHMN patch shows promise in improving vaccination accessibility and efficacy against a range of diseases. STATEMENT OF SIGNIFICANCE: The study introduces a separable nanocomposite hydrogel microneedle (NHMN) patch. This patch consists of an array of ovalbumin (OVA, a model antigen)-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite, with a hyaluronic acid backing, designed for intradermal and sustained delivery of antigens. This patch addresses several key challenges in traditional vaccination methods, including poor antigen uptake and presentation, and rapid systematic clearance. The incorporation of laponite enhances mechanical strength of microneedles, promotes dendritic cell activation, and significantly slows down antigen release. NHMN-based vaccination elicits stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. This NHMN patch holds great potential for improving the efficacy, accessibility, and patient comfort of vaccinations against a range of diseases.
Collapse
Affiliation(s)
- Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China
| | - Shaohua Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
3
|
Gromer DJ, Plikaytis BD, McCullough MP, Wimalasena ST, Rouphael N. The Relationship between Immunogenicity and Reactogenicity of Seasonal Influenza Vaccine Using Different Delivery Methods. Vaccines (Basel) 2024; 12:809. [PMID: 39066447 PMCID: PMC11281354 DOI: 10.3390/vaccines12070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccine immunogenicity and reactogenicity depend on recipient and vaccine characteristics. We hypothesized that healthy adults reporting higher reactogenicity from seasonal inactivated influenza vaccine (IIV) developed higher antibody titers compared with those reporting lower reactogenicity. We performed a secondary analysis of a randomized phase 1 trial of a trivalent IIV delivered by microneedle patch (MNP) or intramuscular (IM) injection. We created composite reactogenicity scores as exposure variables and used hemagglutination inhibition (HAI) titers as outcome variables. We used mixed-model analysis of variance to estimate geometric mean titers (GMTs) and titer fold change and modified Poisson generalized estimating equations to estimate risk ratios of seroprotection and seroconversion. Estimates of H3N2 GMTs were associated with the Systemic and Local scores among the IM group. Within the IM group, those with high reaction scores had lower baseline H3N2 GMTs and twice the titer fold change by day 28. Those with high Local scores had a greater probability of seroconversion. These results suggest that heightened reactogenicity to IM IIV is related to low baseline humoral immunity to an included antigen. Participants with greater reactogenicity developed greater titer fold change after 4 weeks, although the response magnitude was similar or lower compared with low-reactogenicity participants.
Collapse
Affiliation(s)
- Daniel J. Gromer
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
- Laney Graduate School, Emory University, Atlanta, GA 30307, USA
| | | | - Michele P. McCullough
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Sonia Tandon Wimalasena
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| |
Collapse
|
4
|
Berger MN, Davies C, Mathieu E, Shaban RZ, Bag S, Skinner SR. Developing and validating a scale to measure the perceptions of safety, usability and acceptability of microarray patches for vaccination: a study protocol. Ther Adv Vaccines Immunother 2024; 12:25151355241263560. [PMID: 39044997 PMCID: PMC11265248 DOI: 10.1177/25151355241263560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Background Vaccination is a fundamental tenet of public and population health. Several barriers to vaccine uptake exist, exacerbated post-COVID-19, including misconceptions about vaccine efficacy and safety, vaccine hesitancy, vaccine inequity, costs, religious beliefs, and insufficient education and guidance for healthcare professionals. Vaccine uptake may be aided using microarray patches (MAPs) due to reduced pain, no hypodermic needle, enhanced thermostability, and potential for self and lay administration. Objectives This protocol outlines the development of a scale that aims to accurately measure the perceived safety, usability, and acceptability of MAPs for vaccination among laypeople, MAP recipients, clinicians, and parents or guardians of children. Methods and analysis This study will follow three phases of scale development and validation, including (1) item development, (2) scale development, and (3) scale evaluation. Inductive (interviews) and deductive methods (literature searches) will be used to develop scale items, which experts from target populations will assess through an online survey. Cognitive interviews will be conducted to observe their processes of answering the draft survey. Thematic analysis will be conducted to analyse qualitative data. Lastly, four surveys will be administered online to our target populations over two time points to determine their repeatability. Exploratory and confirmatory factor analyses, Cronbach's alpha, and construct validity will be performed. Ethics This study was approved by Metro South Health (HREC/2021/QMS/81653) and Western Sydney Local Health District (2023/ETH00705) Human Research Ethics Committees. Discussion The scale will support a standardised approach to assessing the social and behavioural aspects of MAP vaccines, enabling comparison of outcomes across studies. Once validated, this scale will assist vaccination programmes in developing effective strategies for integrating MAPs and overcoming barriers to vaccination. This includes improving vaccine equity and accessibility, especially in lower- and middle-income countries and rural or remote locations.
Collapse
Affiliation(s)
- Matthew N. Berger
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Centre for Population Health, Western Sydney Local Health District, Gungurra, Building 68, Cumberland Hospital Campus, Fleet Street, North Parramatta, NSW 2151, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Cristyn Davies
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Erin Mathieu
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ramon Z. Shaban
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- New South Wales Biocontainment Centre, Western Sydney Local Health District and New South Wales Health, Camperdown, NSW, Australia
| | - Shopna Bag
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S. Rachel Skinner
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Kids Research, Children’s Hospital Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
| |
Collapse
|
5
|
Wang Y, Qu J, Xiong C, Chen B, Xie K, Wang M, Liu Z, Yue Z, Liang Z, Wang F, Zhang T, Zhu G, Kuang YB, Shi P. Transdermal microarrayed electroporation for enhanced cancer immunotherapy based on DNA vaccination. Proc Natl Acad Sci U S A 2024; 121:e2322264121. [PMID: 38865265 PMCID: PMC11194603 DOI: 10.1073/pnas.2322264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (μEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The μEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the μEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Mingxue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Tianlong Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Yi Becki Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Special Administrative Region999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen518000, China
| |
Collapse
|
6
|
El-Sahn M, Elliott R, El-Sahn M, Lucas J, Wood Santos T. End-user research into understanding perceptions of and reactions to a microarray patch (MAP) for contraception among women in Ghana, Kenya and Uganda. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1351692. [PMID: 38515793 PMCID: PMC10954799 DOI: 10.3389/frph.2024.1351692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Many organizations are developing new contraceptive products and approaches that promote self-care including a microarray patch (MAP) that has the potential for self-administration with appropriate training. We studied women's perceptions of the MAP technology with the primary goal of providing feedback on product attributes to inform early technical design decisions regarding various MAP contraceptive products in development by MAP developers. Methods Our study consisted of a qualitative phase with in-person In-Depth Interviews (IDIs) with a total of 60 women of reproductive age (WRA) and quantitative surveys, via face-to-face computer-assisted interviews of a total of 927 women in Ghana, Kenya and Uganda. Women's perceptions on 12 attributes of the MAP were assessed through written descriptions, a profile, and visual stimuli such as graphics and images. Results Overall, the most widely preferred attribute set included: a hand-applied MAP, utilizing one circular patch, with a sticky backing, no larger than 2 cm diameter in size, applied by self, to the arm, offering sensory feedback (clicking sound and/or color change signals) to confirm enough pressure, successful application and removal, lasting 6 months with up to 12 months return to natural state of fertility. There is space to allow for variation in MAP designs (including the use of an applicator or provider administered MAP) if the design promotes and reflects the needs and expectations of users and providers. Discussion The contraceptive MAP had a high and broad level of appeal amongst all groups of women who participated in the study and has a strong value proposition around important contraceptive needs such as ease of use, convenience, and discretion.
Collapse
|
7
|
Zheng Y, Ling Z, Li Z, Zhao P, Wen X, Qu F, Yu H, Chang H. A Rapidly Dissolvable Microneedle Patch with Tip-Accumulated Antigens for Efficient Transdermal Vaccination. Macromol Biosci 2023; 23:e2300253. [PMID: 37552862 DOI: 10.1002/mabi.202300253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Dissolvable microneedles (DMNs) are an attractive alternative for vaccine delivery due to their user-friendly, skin-targeted, and minimally invasive features. However, vaccine waste and inaccurate dosage remain significant issues faced by DMNs, as the skin's elasticity makes it difficult to insert MNs completely. Here, a simple and reliable fabrication method are introduced based on two-casting micromolding with centrifugal drying to create a rapidly DMN patch made of hyaluronic acid. Ovalbumin (OVA), as the model antigens, is concentrated in the tip parts of the DMNs (60% of the needle height) to prevent antigen waste caused by skin elasticity. The time and temperature of the initial centrifugal drying significantly affect antigen distribution within the needle tips, with lower temperature facilitating antigen accumulation. The resulting DMN patch is able to penetrate the skin with enough mechanical strength and quickly release antigens into the skin tissue within 3 min. The in vivo study demonstrates that immunization of OVA with DMNs outperforms conventional vaccination routes, including subcutaneous and intramuscular injections, in eliciting both humoral and cellular immunity. This biocompatible DMN patch offers a promising and effective strategy for efficient and safe vaccination.
Collapse
Affiliation(s)
- Yanting Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhixin Ling
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhiming Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haining Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hao Chang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
8
|
Berger MN, Mowbray ES, Farag MWA, Mathieu E, Davies C, Thomas C, Booy R, Forster AH, Skinner SR. Immunogenicity, safety, usability and acceptability of microarray patches for vaccination: a systematic review and meta-analysis. BMJ Glob Health 2023; 8:e012247. [PMID: 37827725 PMCID: PMC10583062 DOI: 10.1136/bmjgh-2023-012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Microarray patches (MAPs) deliver vaccines to the epidermis and the upper dermis, where abundant immune cells reside. There are several potential benefits to using MAPs, including reduced sharps risk, thermostability, no need for reconstitution, tolerability and self-administration. We aimed to explore and evaluate the immunogenicity, safety, usability and acceptability of MAPs for vaccination. METHODS We searched CINAHL, Cochrane Library, Ovid Embase, Ovid MEDLINE and Web of Science from inception to January 2023. Eligibility criteria included all research studies in any language, which examined microarrays or microneedles intended or used for vaccination and explored immunogenicity, safety, usability or acceptability in their findings. Two reviewers conducted title and abstract screening, full-text reviewing and data extraction. RESULTS Twenty-two studies were included (quantitative=15, qualitative=2 and mixed methods=5). The risk of bias was mostly low, with two studies at high risk of bias. Four clinical trials were included, three using influenza antigens and one with Japanese encephalitis delivered by MAP. A meta-analysis indicated similar or higher immunogenicity in influenza MAPs compared with needle and syringe (N&S) (standardised mean difference=10.80, 95% CI: 3.51 to 18.08, p<0.00001). There were no significant differences in immune cell function between MAPs and N&S. No serious adverse events were reported in MAPs. Erythema was more common after MAP application than N&S but was brief and well tolerated. Lower pain scores were usually reported after MAP application than N&S. Most studies found MAPs easy to use and highly acceptable among healthcare professionals, laypeople and parents. CONCLUSION MAPs for vaccination were safe and well tolerated and evoked similar or enhanced immunogenicity than N&S, but further research is needed. Vaccine uptake may be increased using MAPs due to less pain, enhanced thermostability, layperson and self-administration. MAPs could benefit at-risk groups and low and middle-income countries. PROSPERO REGISTRATION NUMBER CRD42022323026.
Collapse
Affiliation(s)
- Matthew N Berger
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellen S Mowbray
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Marian W A Farag
- Hillarys Plaza Medical Centre, Perth, Western Australia, Australia
| | - Erin Mathieu
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cristyn Davies
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Thomas
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, New South Wales, Australia
| | - Robert Booy
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | | | - S Rachel Skinner
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
10
|
Ismail A, Magni S, Katahoire A, Ayebare F, Siu G, Semitala F, Kyambadde P, Friedland B, Jarrahian C, Kilbourne-Brook M. Exploring user and stakeholder perspectives from South Africa and Uganda to refine microarray patch development for HIV PrEP delivery and as a multipurpose prevention technology. PLoS One 2023; 18:e0290568. [PMID: 37651432 PMCID: PMC10470907 DOI: 10.1371/journal.pone.0290568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Oral HIV pre-exposure prophylaxis (PrEP) is highly effective, but alternative delivery options are needed to reach more users. Microarray patches (MAPs), a novel drug-delivery system containing micron-scale projections or "microneedles" that deliver drugs via skin, are being developed to deliver long-acting HIV PrEP and as a multipurpose prevention technology to protect from HIV and unintended pregnancy. We explored whether MAP technology could meet user and health system needs in two African countries. METHODS Researchers in South Africa and Uganda conducted 27 focus group discussions, 76 mock-use exercises, and 31 key informant interviews to explore perceptions about MAPs and specific features such as MAP size, duration of protection, delivery indicator, and health system fit. Participants included young women and men from key populations and vulnerable groups at high risk of HIV and/or unintended pregnancy, including adolescent girls and young women; female sex workers and men who have sex with these women; and men who have sex with men. In Uganda, researchers also recruited young women and men from universities and the community as vulnerable groups. Key stakeholders included health care providers, sexual and reproductive health experts, policymakers, and youth activists. Qualitative data were transcribed, translated, coded, and analyzed to explore perspectives and preferences about MAPs. Survey responses after mock-use in Uganda were tabulated to assess satisfaction with MAP features and highlight areas for additional refinement. RESULTS All groups expressed interest in MAP technology, reporting perceived advantages over other methods. Most participants preferred the smallest MAP size for ease of use and discreetness. Some would accept a larger MAP if it provided longer protection. Most preferred a protection duration of 1 to 3 months or longer; others preferred 1-week protection. Upper arm and thigh were the most preferred application sites. Up to 30 minutes of wear time was considered acceptable; some wanted longer to ensure the drug was fully delivered. Self-administration was valued by all groups; most preferred initial training by a provider. CONCLUSIONS Potential users and stakeholders showed strong interest in/acceptance of MAP technology, and their feedback identified key improvements for MAP design. If a MAP containing a high-potency antiretroviral or a MAP containing both an antiretroviral and hormonal contraceptive is developed, these products could improve acceptability/uptake of protection options in sub-Saharan Africa.
Collapse
Affiliation(s)
| | - Sarah Magni
- Genesis Analytics, Johannesburg, South Africa
| | - Anne Katahoire
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Florence Ayebare
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Godfrey Siu
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | | | - Peter Kyambadde
- Department of Internal Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | |
Collapse
|
11
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Ahmad N, Jalil NA, Ahmad Z. Improved Transdermal Delivery of Rabies Vaccine using Iontophoresis Coupled Microneedle Approach. Pharm Res 2023; 40:2039-2049. [PMID: 37186072 DOI: 10.1007/s11095-023-03521-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
AIM This study was aimed to develop rabies vaccine incorporated microneedle (MN) patches and evaluate the immunogenicity of prepared formulations in combination with iontophoresis. METHODS Patches comprising of polyvinyl pyrrolidone, hyaluronic acid and polyethylene glycol 400 were engineered by vacuum micromolding technique. Physical evaluation of patches included determination of folding endurance, % swelling and morphological features. In vitro release study was performed in skin simulant agarose gel using model drug (methylene blue) loaded patches. In vitro insertion ability was assessed using stratum corneum simulant parafilm. In vivo insertion study was performed in rats. Immunogenicity was evaluated in dogs by determining immunoglobulin G (IgG) and rabies virus neutralizing antibodies (RVNA) titer. RESULTS Patches displayed uniformly distributed microprojections with pointed tips and smooth surface, ~ 70% swelling, remained intact for ~ 200 foldings and successfully penetrated the parafilm. The area covered by model drug across agarose gel was almost double following treatment with MN-iontophoresis combination (MNdi) compared to MN alone (MNdo). Histological examination of rat skin treated with vaccine laden MN (MNvo) and MN-iontophoresis combination (MNvi) confirmed the formation of grooves in epidermis without any damage to the deep vasculature. A ~ 73% and ~ 206% increase (compared to untreated counterpart) was observed in the IgG titer of MNvo and MNvi treated dogs, respectively. The RVNA titer was increased by ~ 1.2 and ~ 2.2 times (compared to threshold value) after MNvo and MNvi treatment, respectively. CONCLUSION MN-iontophoresis combination provided relatively potent immunogenic response over the conventional intramuscular injection, hence, can be used for administering vaccines transcutaneously.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadia Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
12
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Guillot AJ, Martínez-Navarrete M, Zinchuk-Mironova V, Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1884. [PMID: 37041036 DOI: 10.1002/wnan.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Valeria Zinchuk-Mironova
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| |
Collapse
|
14
|
Uddin S, Islam MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Modification with Conventional Surfactants to Improve a Lipid-Based Ionic-Liquid-Associated Transcutaneous Anticancer Vaccine. Molecules 2023; 28:molecules28072969. [PMID: 37049732 PMCID: PMC10095727 DOI: 10.3390/molecules28072969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Transcutaneous vaccination is one of the successful, affordable, and patient-friendly advanced immunization approaches because of the presence of multiple immune-responsive cell types in the skin. However, in the absence of a preferable facilitator, the skin’s outer layer is a strong impediment to delivering biologically active foreign particles. Lipid-based biocompatible ionic-liquid-mediated nanodrug carriers represent an expedient and distinct strategy to permit transdermal drug delivery; with acceptable surfactants, the performance of drug formulations might be further enhanced. For this purpose, we formulated a lipid-based nanovaccine using a conventional (cationic/anionic/nonionic) surfactant loaded with an antigenic protein and immunomodulator in its core to promote drug delivery by penetrating the skin and boosting drug delivery and immunogenic cell activity. In a follow-up investigation, a freeze–dry emulsification process was used to prepare the nanovaccine, and its transdermal delivery, pharmacokinetic parameters, and ability to activate autoimmune cells in the tumor microenvironment were studied in a tumor-budding C57BL/6N mouse model. These analyses were performed using ELISA, nuclei and HE staining, flow cytometry, and other biological techniques. The immunomodulator-containing nanovaccine significantly (p < 0.001) increased transdermal drug delivery and anticancer immune responses (IgG, IgG1, IgG2, CD8+, CD207+, and CD103+ expression) without causing cellular or biological toxicity. Using a nanovaccination approach, it is possible to create a more targeted and efficient delivery system for cancer antigens, thereby stimulating a stronger immune response compared with conventional aqueous formulations. This might lead to more effective therapeutic and preventative outcomes for patients with cancer.
Collapse
|
15
|
Scarnà T, Menozzi-Arnaud M, Friede M, DeMarco K, Plopper G, Hamer M, Chakrabarti A, Gilbert PA, Jarrahian C, Mistilis J, Hesselink R, Gandrup-Marino K, Amorij JP, Giersing B. Accelerating the development of vaccine microarray patches for epidemic response and equitable immunization coverage requires investment in microarray patch manufacturing facilities. Expert Opin Drug Deliv 2023; 20:315-322. [PMID: 36649573 DOI: 10.1080/17425247.2023.2168641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION There is a need for investment in manufacturing for vaccine microarray patches (vMAPs) to accelerate vMAP development and access. vMAPs could transform vaccines deployment and reach to everyone, everywhere. AREAS COVERED We outline vMAPs' potential benefits for epidemic preparedness and for outreach in low- and lower-middle-income countries (LMICs), share lessons learned from pandemic response, and highlight that investment in manufacturing-at-risk could accelerate vMAP development. EXPERT OPINION Pilot manufacturing capabilities are needed to produce clinical trial material and enable emergency response. Funding vMAP manufacturing scale-up in parallel to clinical proof-of-concept studies could accelerate vMAP approval and availability. Incentives could mitigate the risks of establishing multi-vMAP manufacturing facilities early.
Collapse
Affiliation(s)
| | | | | | - Kerry DeMarco
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - George Plopper
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - Melinda Hamer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland, USA.,Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Seattle, Washington DC, USA.,Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | | | | | | | | | - Renske Hesselink
- Coalition for Epidemics Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Arshad MS, Gulfam S, Zafar S, Jalil NA, Ahmad N, Qutachi O, Chang MW, Singh N, Ahmad Z. Engineering of tetanus toxoid-loaded polymeric microneedle patches. Drug Deliv Transl Res 2023; 13:852-861. [PMID: 36253518 PMCID: PMC9576317 DOI: 10.1007/s13346-022-01249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/08/2023]
Abstract
This study is aimed to fabricate tetanus toxoid laden microneedle patches by using a polymeric blend comprising of polyvinyl pyrrolidone and sodium carboxymethyl cellulose as base materials and sorbitol as a plasticizer. The tetanus toxoid was mixed with polymeric blend and patches were prepared by using vacuum micromolding technique. Microneedle patches were evaluated for physical attributes such as uniformity of thickness, folding endurance, and swelling profile. Morphological features were assessed by optical and scanning electron microscopy. In vitro performance of fabricated patches was studied by using bicinchoninic acid assay (BCA). Insertion ability of microstructures was studied in vitro on model skin parafilm and in vivo in albino rat. In vivo immunogenic activity of the formulation was assessed by recording immunoglobulin G (IgG) levels, interferon gamma (IFN-γ) levels, and T-cell (CD4+ and CD8+) count following the application of dosage forms. Prepared patches, displaying sharp-tipped and smooth-surfaced microstructures, remained intact after 350 ± 36 foldings. Optimized microneedle patch formulation showed ~ 74% swelling and ~ 85.6% vaccine release within an hour. The microneedles successfully pierced parafilm. Histological examination of microneedle-treated rat skin confirmed disruption of epidermis without damaging the underneath vasculature. A significant increase in IgG levels (~ 21%), IFN-γ levels (~ 30%), CD4+ (~ 41.5%), and CD8+ (~ 48.5%) cell count was observed in tetanus vaccine-loaded microneedle patches treated albino rats with respect to control (untreated) group at 42nd day of immunization. In conclusion, tetanus toxoid-loaded microneedle patches can be considered as an efficient choice for transdermal delivery of vaccine without inducing pain commonly experienced with hypodermic needles.
Collapse
Affiliation(s)
| | - Shafaq Gulfam
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Nadia Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Omar Qutachi
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Northern Ireland, UK
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
17
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
19
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Manatunga D, Jayasinghe JAB, Sandaruwan C, De Silva RM, De Silva KMN. Enhancement of Release and Solubility of Curcumin from Electrospun PEO-EC-PVP Tripolymer-Based Nanofibers: A Study on the Effect of Hydrogenated Castor Oil. ACS OMEGA 2022; 7:37264-37278. [PMID: 36312427 PMCID: PMC9608420 DOI: 10.1021/acsomega.2c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 05/15/2023]
Abstract
This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.
Collapse
Affiliation(s)
- Danushika.
C. Manatunga
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Department
of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama10206, Sri Lanka
| | - J. Asanka Bandara Jayasinghe
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Chanaka Sandaruwan
- Sri
Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama10206, Sri Lanka
| | - Rohini M. De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| | - K. M. Nalin De Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo00300, Sri Lanka
| |
Collapse
|
21
|
Balmert SC, Ghozloujeh ZG, Carey CD, Williams LH, Zhang J, Shahi P, Amer M, Sumpter TL, Erdos G, Korkmaz E, Falo LD. A microarray patch SARS-CoV-2 vaccine induces sustained antibody responses and polyfunctional cellular immunity. iScience 2022; 25:105045. [PMID: 36062075 PMCID: PMC9425707 DOI: 10.1016/j.isci.2022.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Sustainable global immunization campaigns against COVID-19 and other emerging infectious diseases require effective, broadly deployable vaccines. Here, we report a dissolvable microarray patch (MAP) SARS-CoV-2 vaccine that targets the immunoresponsive skin microenvironment, enabling efficacious needle-free immunization. Multicomponent MAPs delivering both SARS-CoV-2 S1 subunit antigen and the TLR3 agonist Poly(I:C) induce robust antibody and cellular immune responses systemically and in the respiratory mucosa. MAP vaccine-induced antibodies bind S1 and the SARS-CoV-2 receptor-binding domain, efficiently neutralize the virus, and persist at high levels for more than a year. The MAP platform reduces systemic toxicity of the delivered adjuvant and maintains vaccine stability without refrigeration. When applied to human skin, MAP vaccines activate skin-derived migratory antigen-presenting cells, supporting the feasibility of human translation. Ultimately, this shelf-stable MAP vaccine improves immunogenicity and safety compared to traditional intramuscular vaccines and offers an attractive alternative for global immunization efforts against a range of infectious pathogens.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li’an H. Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Preeti Shahi
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
22
|
Singh S, Singh M, Gaur S. Probiotics as multifaceted oral vaccines against colon cancer: A review. Front Immunol 2022; 13:1002674. [PMID: 36263037 PMCID: PMC9573965 DOI: 10.3389/fimmu.2022.1002674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms that, upon adequate administration, elicit a health beneficial response inside the host. The probiotics are known as immunomodulators and exhibit anti-tumor properties. Advanced research has explored the potential use of probiotics as the oral vaccines without the latent risks of pathogenicity. Probiotic-based oral vaccines are known to induce mucosal immunity that prevents the host from several enteric infections. Probiotic bacteria have the ability to produce metabolites in the form of anti-inflammatory cytokines, which play an important role in the prevention of carcinogenesis and in the activation of the phagocytes that eliminate the preliminary stage cancer cells. This review discusses the advantages and disadvantages of using the oral probiotic vaccines as well as the mechanism of action of probiotics in colon cancer therapy. This review also employs the use of “PROBIO” database for selecting certain probiotics with immunomodulatory properties. Furthermore, the use of several probiotic bacteria as anti-colon cancer adjuvants has also been discussed in detail. Because the current studies and trials are more focused on using the attenuated pathogens instead of using the probiotic-based vaccines, future studies must involve the advanced research in exploiting the potential of several probiotic strains as adjuvants in cancer therapies.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Smriti Gaur,
| |
Collapse
|
23
|
Liu M, Li Y. Advances in COVID-19 Vaccines and New Coronavirus Variants. Front Med (Lausanne) 2022; 9:888631. [PMID: 35872788 PMCID: PMC9305707 DOI: 10.3389/fmed.2022.888631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
With the successful development of the Corona Virus Disease 2019 (COVID-19) vaccines and increased vaccination coverage, great progress in global outbreak control has been made in several countries. However, new coronavirus variants emerge and their rapid spread, causing a new wave of economic and social upheaval worldwide. The spread of new coronavirus variants poses a new and enormous challenge to vaccination and pandemic control, so further studies to explore and develop vaccines for the prevention and control virus infection are warranted. In this review, we provide an overview of the most prevalent variants including Omicron, and explore the effectiveness of COVID-19 vaccines against related variants to better understand existing vaccines and to facilitate improved research into new vaccines. In addition, this review discusses existing strategies to increase vaccine efficacy and introduces novel vaccines by the non-injection route.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Khan MS, Kim E, McPherson A, Weisel FJ, Huang S, Kenniston TW, Percivalle E, Cassaniti I, Baldanti F, Meisel M, Gambotto A. Adenovirus-vectored SARS-CoV-2 vaccine expressing S1-N fusion protein. Antib Ther 2022; 5:177-191. [PMID: 35967905 PMCID: PMC9372896 DOI: 10.1093/abt/tbac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Additional COVID-19 vaccines that are safe and immunogenic are needed for global vaccine equity. Here, we developed a recombinant type 5 adenovirus vector encoding for the SARS-CoV-2 S1 subunit antigen and nucleocapsid as a fusion protein (Ad5.SARS-CoV-2-S1N). A single subcutaneous immunization with Ad5.SARS-CoV-2-S1N induced a similar humoral response, along with a significantly higher S1-specific cellular response, as a recombinant type 5 adenovirus vector encoding for S1 alone (Ad5.SARS-CoV-2-S1). Immunogenicity was improved by homologous prime-boost vaccination, and further improved through intramuscular heterologous prime-boost vaccination using subunit recombinant S1 protein. Priming with low dose (1 × 1010 v.p.) of Ad5.SARS-CoV-2-S1N and boosting with either wild-type recombinant rS1 or B.1.351 recombinant rS1 induced a robust neutralizing response, which was sustained against Beta and Gamma SARS-CoV-2 variants. This novel Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity in mice and supports the further development of COVID-19-based vaccines incorporating the nucleoprotein as a target antigen.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alex McPherson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Florian J Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Li Q, Xu R, Fan H, Xu J, Xu Y, Cao P, Zhang Y, Liang T, Zhang Y, Chen W, Wang Z, Wang L, Chen X. Smart Mushroom-Inspired Imprintable and Lightly Detachable (MILD) Microneedle Patterns for Effective COVID-19 Vaccination and Decentralized Information Storage. ACS NANO 2022; 16:7512-7524. [PMID: 35451839 PMCID: PMC9045675 DOI: 10.1021/acsnano.1c10718] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 05/20/2023]
Abstract
The key to controlling the spread of the coronavirus disease 2019 (COVID-19) and reducing mortality is highly dependent on the safe and effective use of vaccines for the general population. Current COVID-19 vaccination practices (intramuscular injection of solution-based vaccines) are limited by heavy reliance on medical professionals, poor compliance, and laborious vaccination recording procedures, resulting in a waste of health resources and low vaccination coverage, etc. In this study, we developed a smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle platform for the effective and convenient delivery of multidose COVID-19 vaccines and decentralized vaccine information storage. The mushroom-like structure allows the MILD system to be easily pressed into the skin and detached from the patch base, acting as a "tattoo" to record the vaccine counts in situ without any storage equipment, offering quick accessibility and effortless readout, saving a great deal of valuable time and energy for both patients and health professionals. After loading inactivated SARS-CoV-2 virus-based vaccines, MILD system induced a high level of antibodies against the SARS-CoV-2 receptor-binding domain (RBD) in vivo without eliciting systemic toxicity and local damage. Collectively, this smart delivery platform serves as a promising carrier to improve COVID-19 vaccination efficacy through its dual capabilities of vaccine delivery and in situ data storage, thus exhibiting great potential for helping to contain the COVID-19 pandemic or a resurgence.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Rengui Xu
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Huiling Fan
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Researches and
Pharmacodynamic Evaluation, Huazhong University of Science and
Technology, Wuhan 430030, China
| | - Yunruo Xu
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Peng Cao
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Yan Zhang
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Researches and
Pharmacodynamic Evaluation, Huazhong University of Science and
Technology, Wuhan 430030, China
| | - Zheng Wang
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union
Hospital, Tongji Medical College, Huazhong, University of Science and
Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and
Regenerative Medicine, Union Hospital, Huazhong University of Science and
Technology, Wuhan 430022, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin
School of Medicine, National University of Singapore, 117597,
Singapore
- Departments of Chemical and Biomolecular Engineering,
and Biomedical Engineering, Faculty of Engineering, National University of
Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for
Translational Medicine, Yong Loo Lin School of Medicine, National University
of Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS
Center for Nanomedicine, Yong Loo Lin School of Medicine, National University
of Singapore, 117597, Singapore
| |
Collapse
|
26
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
27
|
Mansoor I, Eassa HA, Mohammed KHA, Abd El-Fattah MA, Abdo MH, Rashad E, Eassa HA, Saleh A, Amin OM, Nounou MI, Ghoneim O. Microneedle-Based Vaccine Delivery: Review of an Emerging Technology. AAPS PharmSciTech 2022; 23:103. [PMID: 35381906 PMCID: PMC8982652 DOI: 10.1208/s12249-022-02250-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccination has produced a great improvement to the global health by decreasing/eradicating many infectious diseases responsible for significant morbidity and mortality. Thanks to vaccines, many infections affecting childhood have been greatly decreased or even eradicated (smallpox, measles, and polio). That is why great efforts are made to achieve mass vaccination against COVID-19. However, developed vaccines face many challenges with regard to their safety and stability. Moreover, needle phobia could prevent a significant proportion of the population from receiving vaccines. In this context, microneedles (MNs) could potentially present a solution to address these challenges. MNs represent single dose administration systems that do not need reconstitution or cold-chain storage. Being self-administered, pain-free, and capable of producing superior immunogenicity makes them a more attractive alternative. This review explores microneedles’ types, safety, and efficacy in vaccine delivery. Preclinical and clinical studies for microneedle-based vaccines are discussed and patent examples are included.
Collapse
|
28
|
Papi M, Pozzi D, Palmieri V, Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. NANO TODAY 2022; 43:101403. [PMID: 35079274 PMCID: PMC8776405 DOI: 10.1016/j.nantod.2022.101403] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
BioNTech/Pfizer's Comirnaty and Moderna's SpikeVax vaccines consist in mRNA encapsulated in lipid nanoparticles (LNPs). The modularity of the delivery platform and the manufacturing possibilities provided by microfluidics let them look like an instant success, but they are the product of decades of intense research. There is a multitude of considerations to be made when designing an optimal mRNA-LNPs vaccine. Herein, we provide a brief overview of what is presently known and what still requires investigation to optimize mRNA LNPs vaccines. Lastly, we give our perspective on the engineering of 3D bioprinted validation systems that will allow faster, cheaper, and more predictive vaccine testing in the future compared with animal models.
Collapse
Affiliation(s)
- Massimiliano Papi
- Department of Neuroscience, Catholic University of Sacred Heart, L.go Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Valentina Palmieri
- Institute for Complex Systems, National Research Council of Italy, Via dei Taurini 19, 00185 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
29
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
30
|
Su Z, Cheshmehzangi A, McDonnell D, da Veiga CP, Xiang YT. Mind the "Vaccine Fatigue". Front Immunol 2022; 13:839433. [PMID: 35359948 PMCID: PMC8960954 DOI: 10.3389/fimmu.2022.839433] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/18/2022] [Indexed: 01/24/2023] Open
Abstract
Background Omicron scares and speculations are gaining momentum. Amid the nonstop debates and discussions about COVID-19 vaccines, the "vaccine fatigue" phenomenon may become more prevalent. However, to date, no research has systematically examined factors that shape people's vaccine fatigue. To bridge the research gap, this study aims to investigate the antecedents that cause or catalyze people's vaccine fatigue. Methods A narrative literature review was conducted in PubMed, Scopus, and PsycINFO to identify factors that shape people's vaccine fatigue. The search was completed on December 6, 2021, with a focus on scholarly literature published in English. Results A total of 37 articles were reviewed and analyzed. Vaccine fatigue was most frequently discussed in the context of infectious diseases in general at the pre-vaccination stage. Vaccine fatigue has been identified in the general public, the parents, and the doctors. Overall, a wide range of antecedents to vaccine fatigue has been identified, ranging from the frequency of immunization demands, vaccine side effects, misconceptions about the severity of the diseases and the need for vaccination, to lack of trust in the government and the media. Conclusion Vaccine fatigue is people's inertia or inaction towards vaccine information or instruction due to perceived burden and burnout. Our study found that while some contributors to vaccine fatigue are rooted in limitations of vaccine sciences and therefore can hardly be avoided, effective and empathetic vaccine communications hold great promise in eliminating preventable vaccine fatigue across sectors in society.
Collapse
Affiliation(s)
- Zhaohui Su
- School of Public Health, Institute for Human Rights, Southeast University, Nanjing, China,*Correspondence: Zhaohui Su, ; Yu-Tao Xiang,
| | - Ali Cheshmehzangi
- Department of Architecture and Built Environment, Architecture and Urban Design, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China,Network for Education and Research on Peace and Sustainability, Hiroshima University, Hiroshima, Japan
| | - Dean McDonnell
- Department of Humanities, South East Technological University, Carlow, Ireland
| | | | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, University of Macau, Macao, Macao SAR, China,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China,Centre for Cognitive and Brain Sciences, University of Macau, Macao, Macao SAR, China,Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhaohui Su, ; Yu-Tao Xiang,
| |
Collapse
|
31
|
Mabrouk MT, Huang W, Martinez‐Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107781. [PMID: 34894000 PMCID: PMC8957524 DOI: 10.1002/adma.202107781] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Indexed: 05/09/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Wei‐Chiao Huang
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Luis Martinez‐Sobrido
- Division of Disease Intervention and PreventionTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| |
Collapse
|
32
|
Jet injectors: Perspectives for small volume delivery with lasers. Adv Drug Deliv Rev 2022; 182:114109. [PMID: 34998902 DOI: 10.1016/j.addr.2021.114109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing evidence of advantages when delivering small volumes into the superficial skin layers, namely the epidermis and dermis. Injections such as vaccines and insulin would benefit from delivery into these superficial layers. Furthermore, the same technology for small volume needle-free injections can serve (medical) tattooing as well as other personalized medicine treatments. The research dedicated to needle-free jet injectors actuated by laser energy has increased in the last decade. In this case, the absorption of the optical energy by the liquid results in an explosively growing bubble. This bubble displaces the rest of the liquid, resulting in a fast microfluidic jet which can penetrate the skin. This technique allows for precise control over volumes (pL to µL) and penetration depths (µm to mm). Furthermore, these injections can be tuned without changing the device, by varying parameters such as laser power, beam diameter and filling level of the liquid container. Despite the published research on the working principles and capabilities of individual laser-actuated jet injectors, a thorough overview encompassing all of them is lacking. In this perspective, we will discuss the current status of laser-based jet injectors and contrast their advantages and limitations, as well as their potential and challenges.
Collapse
|
33
|
Labouta HI, Langer R, Cullis PR, Merkel OM, Prausnitz MR, Gomaa Y, Nogueira SS, Kumeria T. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Deliv Transl Res 2022; 12:2581-2588. [PMID: 35290656 PMCID: PMC8923087 DOI: 10.1007/s13346-022-01146-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
The triumphant success of mRNA vaccines is a testimony to the important role drug delivery technologies have played in protecting billions of people against SARS-CoV-2 (or the Corona Virus Disease 2019; COVID-19). Several lipid nanoparticle (LNP) mRNA vaccines were developed and have been instrumental in preventing the disease by boosting the immune system against the pathogen, SARS-CoV-2. These vaccines have been built on decades of scientific research in drug delivery of mRNA, vaccines, and other biologicals. In this manuscript, several leading and emerging scientists in the field of drug delivery share their perspective on the role of drug delivery technologies in developing safe and efficacious vaccines, in a roundtable discussion. The authors also discussed their viewpoint on the current challenges, and the key research questions that should drive this important area of research.
Collapse
Affiliation(s)
- Hagar I. Labouta
- grid.21613.370000 0004 1936 9609College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5 Canada ,grid.21613.370000 0004 1936 9609Biomedical Engineering, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4 Canada ,grid.7155.60000 0001 2260 6941Faculty of Pharmacy, Alexandria University, Alexandria, 21521 Egypt
| | - Robert Langer
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Pieter R. Cullis
- grid.17091.3e0000 0001 2288 9830Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Olivia M. Merkel
- grid.5252.00000 0004 1936 973XDepartment of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Mark R. Prausnitz
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Yasmine Gomaa
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Sara S. Nogueira
- grid.1005.40000 0004 4902 0432School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Australian Centre for NanoMedicine, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| | - Tushar Kumeria
- grid.1005.40000 0004 4902 0432School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Australian Centre for NanoMedicine, University of New South Wales, Kensington, Sydney, NSW 2052 Australia
| |
Collapse
|
34
|
Nguyen TT, Nguyen TTD, Tran NMA, Nguyen HT, Vo GV. Microneedles enable the development of skin-targeted vaccines against coronaviruses and influenza viruses. Pharm Dev Technol 2021; 27:83-94. [PMID: 34802372 DOI: 10.1080/10837450.2021.2008967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Throughout the COVID-19 pandemic, many have seriously worried that the plus burden of seasonal influenza that might create a destructive scenario, resulting in overwhelmed healthcare capacities and onwards loss of life. Many efforts to develop a safe and efficacious vaccine to prevent infection by coronavirus and influenza, highlight the importance of vaccination to combat infectious pathogens. While vaccines are traditionally given as injections into the muscle, microneedle (MN) patches designed to precisely deliver cargos into the cutaneous microenvironment, rich in immune cells, provide a noninvasive and self-applicable vaccination approach, reducing overall costs and improving access to vaccines in places with limited supply. The current review aimed to highlight advances in research on the development of MNs-mediated cutaneous vaccine delivery. Concluding remarks and challenges on MNs-based skin immunization are also provided to contribute to the rational development of safe and effective MN-delivered vaccines against these emerging infectious diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
35
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
36
|
Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv Drug Deliv Rev 2021; 179:113997. [PMID: 34634396 DOI: 10.1016/j.addr.2021.113997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The recent advancement and prevalence of wearable technologies and their ability to make digital measurements of vital signs and wellness parameters have triggered a new paradigm in the management of diseases. Drug delivery as a function of stimuli or response from wearable, closed-loop systems can offer real-time on-demand or preprogrammed drug delivery capability and offer total management of disease states. Here we review the key opportunities in this space for development of closed-loop systems, given the advent of digital wearable technologies. Particular considerations and focus are given to closed-loop systems combined with transdermal drug delivery technologies.
Collapse
|
37
|
Balmert SC, Ghozloujeh ZG, Carey CD, Akilov OE, Korkmaz E, Falo LD. Research Techniques Made Simple: Skin-Targeted Drug and Vaccine Delivery Using Dissolvable Microneedle Arrays. J Invest Dermatol 2021; 141:2549-2557.e1. [PMID: 34688405 DOI: 10.1016/j.jid.2021.07.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Skin-targeted drug delivery is broadly employed for both local and systemic therapeutics and is an important tool for discovery efforts in cutaneous biology. Recently, emerging technologies support efforts toward skin-targeted biocargo delivery for local and systemic therapeutic benefit. Effective targeting of bioactive molecules, including large (molecular weight > 500 Da) or complex (hydrophilic and charged) molecules, to defined cutaneous microenvironments is intrinsically challenging owing to the protective barrier function of the skin. Dissolvable microneedle arrays (MNAs) have proven to be a promising technology to address the unmet need for controlled, minimally invasive, and reliable delivery of a wide range of biocargos to the skin. In this paper, we describe the unique properties of the skin that make it an attractive target for vaccine delivery, for immune-modulating therapies, and for systemic drug delivery and the structural characteristics of the skin that present obstacles to efficient intracutaneous and transdermal delivery of bioactive molecules. We provide an overview of MNA fabrication and the characteristics and mechanisms of dissolvable MNA cargo delivery to the cutaneous microenvironment. We present a representative example of a clinical application of MNAs and discuss future directions for MNA development and applications.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emrullah Korkmaz
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; The UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
38
|
Kim E, Weisel FJ, Balmert SC, Khan MS, Huang S, Erdos G, Kenniston TW, Carey CD, Joachim SM, Conter LJ, Weisel NM, Okba NMA, Haagmans BL, Percivalle E, Cassaniti I, Baldanti F, Korkmaz E, Shlomchik MJ, Falo LD, Gambotto A. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol 2021; 51:1774-1784. [PMID: 33772778 PMCID: PMC8250272 DOI: 10.1002/eji.202149167] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.
Collapse
Affiliation(s)
- Eun Kim
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Florian J. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen C. Balmert
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Muhammad S. Khan
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| | - Shaohua Huang
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Geza Erdos
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Thomas W. Kenniston
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Cara Donahue Carey
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen M. Joachim
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Laura J. Conter
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nadine M. Weisel
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Nisreen M. A. Okba
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Bart L. Haagmans
- Department of ViroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Elena Percivalle
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Irene Cassaniti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
| | - Fausto Baldanti
- Molecular Virology UnitMicrobiology and Virology DepartmentIRCCS Policlinico San MatteoPaviaItaly
- Department of ClinicalSurgicalDiagnostic and Pediatric SciencesUniversity of PaviaPaviaItaly
| | - Emrullah Korkmaz
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Louis D. Falo
- Department of DermatologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPAUSA
- Clinical and Translational Science InstituteUniversity of PittsburghPittsburghPAUSA
- The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Andrea Gambotto
- Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
- Department of MedicineDivision of Infectious DiseaseUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Microbiology and Molecular Genetics University of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
39
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
40
|
Migliore A, Gigliucci G, Di Marzo R, Russo D, Mammucari M. Intradermal Vaccination: A Potential Tool in the Battle Against the COVID-19 Pandemic? Risk Manag Healthc Policy 2021; 14:2079-2087. [PMID: 34045909 PMCID: PMC8144901 DOI: 10.2147/rmhp.s309707] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
This narrative review is the final output of an initiative of the SIM (Italian Society of Mesotherapy). A narrative review of scientific literature on the efficacy of fractional intradermal vaccination in comparison with full doses has been conducted for the following pathogens: influenza virus, rabies virus, poliovirus (PV), hepatitis B virus (HBV), hepatitis A virus (HAV), diphtheria-tetanus-pertussis bacterias (DTP), human papillomavirus (HPV), Japanese encephalitis virus (JE), meningococcus, varicella zoster virus (VZV) and yellow fever virus. The findings suggest that the use of the intradermal route represents a valid strategy in terms of efficacy and efficiency for influenza, rabies and HBV vaccines. Some systematic reviews on influenza vaccines suggest the absence of a substantial difference between immunogenicity induced by a fractional ID dose of up to 20% and the IM dose in healthy adults, elderly, immunocompromised patients and children. Clinical studies of remaining vaccines against other pathogens (HAV, DTP bacterias, JE, meningococcal disease, VZV, and yellow fever virus) are scarce, but promising. In the context of a COVID-19 vaccine shortage, countries should investigate if a fractional dosing scheme may help to save doses and achieve herd immunity quickly. SIM urges the scientific community and health authorities to investigate the potentiality of fractionate intradermal administration in anti-COVID-19 vaccination. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xyVoP0mH6sQ
Collapse
Affiliation(s)
- Alberto Migliore
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Gianfranco Gigliucci
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | | | | | | |
Collapse
|
41
|
Wertz PW. Roles of Lipids in the Permeability Barriers of Skin and Oral Mucosa. Int J Mol Sci 2021; 22:ijms22105229. [PMID: 34063352 PMCID: PMC8155912 DOI: 10.3390/ijms22105229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
PubMed searches reveal much literature regarding lipids in barrier function of skin and less literature on lipids in barrier function of the oral mucosa. In terrestrial mammals, birds, and reptiles, the skin’s permeability barrier is provided by ceramides, fatty acids, and cholesterol in the outermost layers of the epidermis, the stratum corneum. This layer consists of about 10–20 layers of cornified cells embedded in a lipid matrix. It effectively prevents loss of water and electrolytes from the underlying tissue, and it limits the penetration of potentially harmful substances from the environment. In the oral cavity, the regions of the gingiva and hard palate are covered by keratinized epithelia that much resemble the epidermis. The oral stratum corneum contains a lipid mixture similar to that in the epidermal stratum corneum but in lower amounts and is accordingly more permeable. The superficial regions of the nonkeratinized oral epithelia also provide a permeability barrier. These epithelial regions do contain ceramides, cholesterol, and free fatty acids, which may underlie barrier function. The oral epithelial permeability barriers primarily protect the underlying tissue by preventing the penetration of potentially toxic substances, including microbial products. Transdermal drug delivery, buccal absorption, and lipid-related disease are discussed.
Collapse
|
42
|
Andryukov BG, Besednova NN. Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health 2021; 8:388-415. [PMID: 34395690 PMCID: PMC8334630 DOI: 10.3934/publichealth.2021030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
In December 2020, COVID-19 vaccination started in many countries, with which the world community hopes to stop the further spread of the current pandemic. More than 90% of sick and deceased patients belong to the category of older adults (65 years and older). This category of the population is most vulnerable to infectious diseases, so vaccination is the most effective preventive strategy, the need for which for older adults is indisputable. Here we briefly summarize information about age-related changes in the immune system and present current data on their impact on the formation of the immune response to vaccination. Older age is accompanied by the process of biological aging accompanied by involution of the immune system with increased susceptibility to infections and a decrease in the effect of immunization. Therefore, in the ongoing mass COVID-19 vaccination, the older adults are a growing public health concern. The authors provide an overview of the various types of COVID-19 vaccines approved for mass immunization of the population by the end of 2020, including older adults, as well as an overview of strategies and platforms to improve the effectiveness of vaccination of this population. In the final part, the authors propose for discussion a system for assessing the safety and monitoring the effectiveness of COVID-19 vaccines for the older adults.
Collapse
Affiliation(s)
- Boris G Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
- Far Eastern Federal University (FEFU), 690091, Vladivostok, Russia
| | - Natalya N Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
| |
Collapse
|