1
|
Yilmaz A, Mutlu-Agardan NB, Takka S. Development of immediate release tablet formulations of lornoxicam with hot melt extrusion-based three-dimensional printing technology. Drug Dev Ind Pharm 2025:1-13. [PMID: 39727292 DOI: 10.1080/03639045.2024.2447277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modeling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique. METHODS Various filament formulations were extruded using an extruder, and suitable filaments were used to produce 3D-printed tablets. Filaments and tablets were characterized. Dissolution studies were performed on tablets with different infill densities. DSC, FTIR, XRD, and SEM analyses were conducted. RESULTS Although the solubility of LRX increases with pH, disintegrating agents such as MCC II had a more significant effect on the dissolution of LRX than sodium bicarbonate, which was used as the alkalinizing pore-forming agent. Dissolution studies revealed that the dissolution of LRX was enhanced by tablet erosion. Tablet erosion increased as the infill density decreased, and an immediate release profile was reached with tablets having 25% infill density. Despite the availability of conventional immediate release LRX tablets, this newly developed formulation offers the potential to be modulated for personalized therapy via the 3D printing technique. CONCLUSION This study demonstrates the feasibility of HME-based FDM printing technology for producing immediate-release LRX tablets with consistent quality, highlighting the utilization of MCC II as a disintegrating agent that enhances LRX dissolution in this process.
Collapse
Affiliation(s)
- Aysel Yilmaz
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| | - N Basaran Mutlu-Agardan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| | - Sevgi Takka
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Etiler, Turkey
| |
Collapse
|
2
|
Mora-Castaño G, Rodríguez-Pombo L, Carou-Senra P, Januskaite P, Rial C, Bendicho-Lavilla C, Couce ML, Millán-Jiménez M, Caraballo I, Basit AW, Alvarez-Lorenzo C, Goyanes A. Optimising 3D printed medications for rare diseases: In-line mass uniformity testing in direct powder extrusion 3D printing. Int J Pharm 2025; 668:124964. [PMID: 39557179 DOI: 10.1016/j.ijpharm.2024.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Biotinidase deficiency is a rare inherited disorder characterized by biotin metabolism issues, leading to neurological and cutaneous symptoms that can be alleviated through biotin administration. Three-dimensional (3D) printing (3DP) offers potential for personalized medicine production for rare diseases, due to its flexibility in designing dosage forms and controlling release profiles. For such point-of-care applications, rigorous quality control (QC) measures are essential to ensure precise dosing, optimal performance, and product safety, especially for low personalized doses in preclinical and clinical studies. In this work, we addressed QC challenges by integrating a precision balance into a direct powder extrusion pharmaceutical 3D printer (M3DIMAKER™) for real-time, in-line mass uniformity testing, a critical quality control step. Small and large capsule-shaped biotin printlets (3D printed tablets) for immediate- and extended-release were printed. The integrated balance monitored and registered each printlet's weight, identifying any deviations from acceptable limits. While all large printlet batches met mass uniformity criteria, some small printlet batches exhibited weight deviations. In vitro release studies showed large immediate-release printlets releasing 82% of biotin within 45 min, compared to 100% for small immediate-release printlets. For extended-release formulations, 35% of the drug was released from small printlets, whereas 24% was released from large printlets at the same time point. The integration of process analytical technology tools in 3DP shows promise in enhancing QC and scalability of personalized dosing at the point-of-care, demonstrating successful integration of a balance into a direct powder extrusion 3D printer for in-line mass uniformity testing across different sizes of capsule-shaped printlets.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Carlos Bendicho-Lavilla
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| |
Collapse
|
3
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
4
|
Martínez-Jiménez JE, Sathisaran I, Reyes Figueroa F, Reyes S, López-Nieves M, Vlaar CP, Monbaliu JCM, Romañach R, Ruaño G, Stelzer T, Duconge J. A review of precision medicine in developing pharmaceutical products: Perspectives and opportunities. Int J Pharm 2024; 670:125070. [PMID: 39689830 DOI: 10.1016/j.ijpharm.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Over the next decade, Precision Medicine (PM) is poised to become the standard of care in pharmaceutical therapy, necessitating a fundamental transformation in the design and development of innovative custom-made drug products. To date, a comprehensive review linking PM with practical personalized drug formulations is missing. This review attempts to provide an overview of state-of-the-art formulation approaches capable of translating PM evaluation and resulting recommendations (clinical research) into tailored drug products (non-clinical research) for real-world patients. Comprehensive literature searches in four scientific databases (Scopus, SciFinder, Web of Science, and PubMed) were performed. Current approaches to point-of-care PM formulations and needs-based locally distributed manufacturing presently under research & development (R&D) as alternatives to conventional large-scale manufacturing of one-size-fits-all drug products are discussed. The following methods were identified as the most promising PM formulation strategies: tablet splitting, liquid dispensing, compounding pharmacies, additive manufacturing, drug impregnation, drug extrusion, and orodispersible films (ODFs). The challenges and opportunities of current state-of-the-art formulation technologies that can enable making PM routinely accessible in practice settings will be discussed. Additionally, light will be shed on point-of-use manufacturing (Pharmacy on Demand) as an uncharted territory for PM and its pathway towards practical implementation.
Collapse
Affiliation(s)
- Jorge E Martínez-Jiménez
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States
| | - Indumathi Sathisaran
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States
| | - Francheska Reyes Figueroa
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Stephanie Reyes
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Marisol López-Nieves
- Department of Pharmacy Practice, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium
| | - Rodolfo Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, United States
| | - Gualberto Ruaño
- Hartford Hospital Institute of Living, Hartford, CT 06102, United States
| | - Torsten Stelzer
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| | - Jorge Duconge
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| |
Collapse
|
5
|
Kozakiewicz-Latała M, Dyba AJ, Marciniak D, Szymczyk-Ziółkowska P, Cieszko M, Nartowski KP, Nowak M, Karolewicz B. PVA-based formulations as a design-technology platform for orally disintegrating film matrices. Int J Pharm 2024; 665:124666. [PMID: 39265848 DOI: 10.1016/j.ijpharm.2024.124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
In the majority of pharmaceutical applications, polymers are employed extensively in a diverse range of pharmaceutical products, serving as indispensable components of contemporary solid oral dosage forms. A comprehensive understanding of the properties of polymers and selection the appropriate methods of characterization is essential for the design and development of novel drug delivery systems and manufacturing processes. Orally disintegrating film (ODF) formulations are considered to be a potential substitute to traditional oral dosage forms and an alternative method of drug administration for children and uncooperative adult patients, including those with swallowing difficulties. A multitude of pharmaceutical formulations with varying mechanical and biopharmaceutical properties have emerged from the modification of the original polymeric bulk. Here we propose different formulation approaches, i.e. solvent casting (SC), 3D printing (3DP), electrospinning (ES), and lyophilization (LP) that enabled us to adjust the disintegration time and the release profile of poorly water soluble haloperidol (HAL, BCS class II) from PVA (polyvinyl alcohol) based polymer films while maintaining similar hydrogel composition. In this study, the solubility of haloperidol in aqueous solution was improved by the addition of lactic acid. The prepared films were evaluated for their morphology (SEM, micro-CT), physicochemical and biopharmaceutical properties. TMDSC, TGA and PXRD were employed for extensive thermal and structural analysis of fabricated materials and their stability. These results allowed us to establish correlations between preparation technology, structural characteristics and properties of PVA films and to adapt the suitable manufacturing technique of the ODFs to achieve appropriate HAL dissolution behaviour.
Collapse
Affiliation(s)
- Marta Kozakiewicz-Latała
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Aleksandra J Dyba
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Dominik Marciniak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Wroclaw University of Science and Technology, Lukasiewicza 5, 50-371 Wroclaw, Poland
| | - Mieczysław Cieszko
- Department of Mechanics of Porous Materials, Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
| | - Karol P Nartowski
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Maciej Nowak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland.
| |
Collapse
|
6
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024; 21:1595-1614. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Narala S, Ali Youssef AA, Munnangi SR, Narala N, Lakkala P, Vemula SK, Repka M. 3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing. Expert Opin Drug Deliv 2024; 21:1543-1557. [PMID: 38236621 DOI: 10.1080/17425247.2024.2306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
Pawar A, Karanwad T, Banerjee S. 3D printed tinidazole tablets coupled with melt-extrusion techniques for formulating child friendly medicines. Eur J Pharm Biopharm 2024; 203:114471. [PMID: 39186960 DOI: 10.1016/j.ejpb.2024.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
This study investigates the feasibility of fabrication of poly(1-vinyl-2-pyrrolidone) (Kollidon®25)-mediated filaments for producing tinidazole (TNZ)-loaded, customizable, child-friendly tablets (with varying shapes and sizes) using hot melt extrusion (HME) coupled with fused deposition modeling (FDM) technology. Kollidon®25, chosen for its ability to enhance the dissolution of TNZ (a BCS Class II drug), was evaluated for polymer-drug compatibility through Hansen solubility, polarity, and interaction parameter analyses, confirming good miscibility and affinity between TNZ and Kollidon®25. Placebo- and TNZ-loaded filaments were prepared in different ratios using HME, followed by the development of 3D-printed tablets via FDM. The fabricated batches of placebo and TNZ-loaded 3D tablets were characterized, and it was found that they had an average weight variation of 270.41 ± 7.44 mg and 270.87 ± 9.33 mg, hardness of 155.01 ± 11.79 N and 265.3 ± 7.62 N, and friability of 0.1583 ± 0.0011 % and 0.2254 ± 0.0013 %. Amorphization was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) analysis. Scanning electron microscopy (SEM) revealed a layer-by-layer pattern with tiny fractures on the tablet surfaces, which enhanced media penetration, resulting in improved dissolution profiles. The TNZ release profile showed complete 100 % release within 2.0 h in a gastric acidic medium. These findings support the potential of Kollidon®25 to create customizable, child-friendly, 3D-printed dosage forms with different shapes and sizes for TNZ delivery, offering a unique approach to paediatric medications.
Collapse
Affiliation(s)
- Abhishek Pawar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India.
| |
Collapse
|
9
|
Strähle UT, Pütz N, Hannig M. A coating machine for coating filaments with bioactive nanomaterials for extrusion 3D printing. Heliyon 2024; 10:e33223. [PMID: 39027443 PMCID: PMC11254607 DOI: 10.1016/j.heliyon.2024.e33223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Extrusion printing based on biocompatible filaments offers a wide variety of targeted medical and dental applications in the area of personalized medicine, if combined with bioactive nanomaterials. However, this requires filament to be coated with bioactive nanomaterial. This study introduces a concept of a machine to coat filament with bioactive nanomaterials and its application. A machine was constructed with modules manufactured using additive manufacturing. A filament spool of polylactide (PLA) or glycol-modified polyethylene terephthalate (PETG) was transported through a copper tube, with the outer surface of the filament heated to the appropriate glass transition temperature to incorporate added nanomaterials such as nano-hydroxyapatite (nHA) or nano-fluorapatite(nFA). Coatings with nHA led to an increase in diameter of around 3 μm, while coatings with nFA increased the diameter by 4 μm. Printing of cubes with a standard extrusion printer platform using PLA or PETG filaments with added nHA or nFA has been successfully carried out. Scanning electron microscope (SEM) images of coated filaments and printed cubes showed an irregular distribution of nHA or nFA, which could be verified by energy dispersive X-ray analysis (EDX). Adding and adjusting bioactive nanomaterials to filament with a coating machine for filament proved to generate printable filaments. With the wide range of possible applications by different nanomaterials it is anticipated that extrusion printing can cover needs for personalized medicine and dentistry.
Collapse
Affiliation(s)
- Ulf Tilman Strähle
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
- Synoptic Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, 66421, Homburg, Saarland, Germany
| |
Collapse
|
10
|
Lv Y, Wu L, Yan J, Shen Z, Zhang J, Zhang X, Li T. Antimicrobial poly (1,4-butylene carbonate): Preparation, characterization, and potential applications as a material for tympanic membrane repair. Heliyon 2024; 10:e31789. [PMID: 38868060 PMCID: PMC11168318 DOI: 10.1016/j.heliyon.2024.e31789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Perforation of the tympanic membrane (TM) is a common condition that often requires a scaffold as a support for surgery. However, because of the external environment of the auditory canal, the scaffold could become bacterially infected and prevent the TM from healing. As a result, the perfect scaffold should have both antibacterial and biomimetic qualities. In this study, the biodegradable biomaterial poly(1,4-butylene carbonate) (PBC) films containing levofloxacin (LEV) was successfully prepared for the first time. The results showed that the hydrophilicity of the LEV/PBC film was improved after the addition of LEV, and the tensile strength was also complied with the requirements of the standard. The created antibacterial film demonstrated excellent antibacterial properties. In vitro hemolysis experiments revealed no risk of hemolysis for the new material, and the cytotoxicity study further confirmed its non-cytotoxic nature. Overall, LEV was a good component of PBC/LEV film, which is expected to be used for TM repair in the future.
Collapse
Affiliation(s)
- Yuan Lv
- The Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Linrong Wu
- The Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Jiangyu Yan
- The Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Zhisen Shen
- The Department of Otolaryngology, Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Junjun Zhang
- Department of Trauma Surgery, Yinzhou No.2 Hospital, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Tian Li
- Fourth Military Medical University School of Basic Medicine, Xi'an, China
| |
Collapse
|
11
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
12
|
Mora-Castaño G, Millán-Jiménez M, Niederquell A, Schönenberger M, Shojaie F, Kuentz M, Caraballo I. Amorphous solid dispersion of a binary formulation with felodipine and HPMC for 3D printed floating tablets. Int J Pharm 2024; 658:124215. [PMID: 38740104 DOI: 10.1016/j.ijpharm.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study focuses on the combination of three-dimensional printing (3DP) and amorphous solid dispersion (ASD) technologies for the manufacturing of gastroretentive floating tablets. Employing hot melt extrusion (HME) and fused deposition modeling (FDM), the study investigates the development of drug-loaded filaments and 3D printed (3DP) tablets containing felodipine as model drug and hydroxypropyl methylcellulose (HPMC) as the polymeric carrier. Prior to fabrication, solubility parameter estimation and molecular dynamics simulations were applied to predict drug-polymer interactions, which are crucial for ASD formation. Physical bulk and surface characterization complemented the quality control of both drug-loaded filaments and 3DP tablets. The analysis confirmed a successful amorphous dispersion of felodipine within the polymeric matrix. Furthermore, the low infill percentage and enclosed design of the 3DP tablet allowed for obtaining low-density systems. This structure resulted in buoyancy during the entire drug release process until a complete dissolution of the 3DP tablets (more than 8 h) was attained. The particular design made it possible for a single polymer to achieve a zero-order controlled release of the drug, which is considered the ideal kinetics for a gastroretentive system. Accordingly, this study can be seen as an advancement in ASD formulation for 3DP technology within pharmaceutics.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- University of Basel, Swiss Nanoscience Institute, Nano Imaging Lab, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Fatemeh Shojaie
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
13
|
Liang H, Chen B, Duan S, Yang L, Xu R, Zhang H, Sun M, Zhou X, Liu H, Wen H, Cai Z. Treatment of complex limb fractures with 3D printing technology combined with personalized plates: a retrospective study of case series and literature review. Front Surg 2024; 11:1383401. [PMID: 38817945 PMCID: PMC11137251 DOI: 10.3389/fsurg.2024.1383401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background In recent years, 3D printing technology has made significant strides in the medical field. With the advancement of orthopedics, there is an increasing pursuit of high surgical quality and optimal functional recovery. 3D printing enables the creation of precise physical models of fractures, and customized personalized steel plates can better realign and more comprehensively and securely fix fractures. These technologies improve preoperative diagnosis, simulation, and planning for complex limb fractures, providing patients with better treatment options. Patients and methods Five typical cases were selected from a pool of numerous patients treated with 3D printing technology combined with personalized custom steel plates at our hospital. These cases were chosen to demonstrate the entire process of printing 3D models and customizing individualized steel plates, including details of the patients' surgeries and treatment procedures. Literature reviews were conducted, with a focus on highlighting the application of 3D printing technology combined with personalized custom steel plates in the treatment of complex limb fractures. Results 3D printing technology can produce accurate physical models of fractures, and personalized custom plates can achieve better fracture realignment and more comprehensive and robust fixation. These technologies provide patients with better treatment options. Conclusion The use of 3D printing models and personalized custom steel plates can improve preoperative diagnosis, simulation, and planning for complex limb fractures, realizing personalized medicine. This approach helps reduce surgical time, minimize trauma, enhance treatment outcomes, and improve patient functional recovery.
Collapse
Affiliation(s)
- Hairui Liang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Beibei Chen
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Siyu Duan
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Lei Yang
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Shenyang, China
| | - Rongda Xu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming Sun
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Xueting Zhou
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hanfei Liu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hang Wen
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Zhencun Cai
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
| |
Collapse
|
14
|
Mehta T, Aziz H, Sen K, Chang SY, Nagarajan V, Ma AWK, Chaudhuri B. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets. Int J Pharm 2024; 656:124037. [PMID: 38522489 DOI: 10.1016/j.ijpharm.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.
Collapse
Affiliation(s)
- Tanu Mehta
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Hossain Aziz
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Koyel Sen
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Shing-Yun Chang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | | | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA.
| |
Collapse
|
15
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
16
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
17
|
Patil H, Vemula SK, Narala S, Lakkala P, Munnangi SR, Narala N, Jara MO, Williams RO, Terefe H, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation-Where Are We Now? AAPS PharmSciTech 2024; 25:37. [PMID: 38355916 DOI: 10.1208/s12249-024-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Hibreniguss Terefe
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
18
|
Roche A, Sanchez-Ballester NM, Bataille B, Delannoy V, Soulairol I. Fused Deposition Modelling 3D printing and solubility improvement of BCS II and IV active ingredients - A narrative review. J Control Release 2024; 365:507-520. [PMID: 38036003 DOI: 10.1016/j.jconrel.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the field of pharmaceutical research and development, Fused Deposition Modelling (FDM) 3D printing (3DP) has aroused growing interest within the last ten years. The use of thermoplastic polymers, combined with the melting process of the raw materials, offers the possibility of manufacturing amorphous solid dispersions (ASDs). In the pharmaceutical industry, the formulation of an ASD is a widely used strategy to improve the solubility of poorly soluble drugs (classified by the Biopharmaceutical Classification System (BCS) as class II and IV). In this review, an analysis of studies that have developed a FDM printed form containing a BCS class II or IV active substance was performed. The focus has been placed on the evaluation of the solid state of the active molecules (crystalline or amorphous) and on the study of their dissolution profile. Thus, the aim of this work is to highlight the interest of FDM 3DP to induce the amorphisation phenomenon of Class II and IV active substances by forming an ASD, and as result improving their solubility.
Collapse
Affiliation(s)
- Agnès Roche
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Noelia M Sanchez-Ballester
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| | - Bernard Bataille
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Violaine Delannoy
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Ian Soulairol
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
19
|
dos Santos J, Balbinot GDS, Buchner S, Collares FM, Windbergs M, Deon M, Beck RCR. 3D printed matrix solid forms: Can the drug solubility and dose customisation affect their controlled release behaviour? Int J Pharm X 2023; 5:100153. [PMID: 36632070 PMCID: PMC9827047 DOI: 10.1016/j.ijpx.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The use of 3D printing in pharmaceutics has grown over the last years, along with the number of studies on the impact of the composition of these formulations on their pharmaceutical and biopharmaceutical properties. Recently, we reported the combined effect of the infill percentage and the presence of a pore former on the drug release behaviour of 3D printed matrix solid forms prepared by fused deposition modelling. However, there are some open questions about the effect of the drug solubility and the size of these dosage forms on their controlled release properties. Therefore, we produced poly(Ɛ-caprolactone) filaments containing different soluble forms of dexamethasone (free acid, DEX; acetate ester, DEX-A; and phosphate salt, DEX-P), which showed suitable mechanical properties and printability. 3D printed solid forms were produced in two different sizes. The formulations composed of DEX-P released about 50% of drug after 10 h, while those containing DEX or DEX-A released about 9%. The drug release profiles from the 3D printed forms containing the same drug form but with different sizes were almost completely overlapped. Therefore, these 3D printed matrix solid forms can have their drug content customised by adjusting their size, without changing their controlled release behaviour.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Silvio Buchner
- Laboratório de Altas Pressões e Materiais Avançados (LAPMA), Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Exploring Environmental Settings to Improve the Printability of Paroxetine-Loaded Filaments by Fused Deposition Modelling. Pharmaceutics 2023; 15:2636. [PMID: 38004614 PMCID: PMC10675712 DOI: 10.3390/pharmaceutics15112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The successful integration of hot-melt extrusion (HME) and fused deposition modelling (FDM) depends on a better understanding of the impact of environmental conditions on the printability of formulations, since they significantly affect the properties of the raw materials, whose control is crucial to enable three-dimensional printing (3DP). Hence, the objective of this work was to investigate the correlation between the environmental settings and the properties of paroxetine (PRX)-loaded filaments, previously produced by HME, which affect printability by FDM. The influence of different drying methods of the physical mixtures (PMs) and HME-filaments (FILs) on the quality and printability of these products was also assessed. The printability of FILs was evaluated in terms of the water content, and the mechanical and thermal properties of the products. Stability studies and physicochemical, thermal, and in vitro dissolution tests were carried out on the 3D-printed tablets. Stability studies demonstrated the high ductility of the PRX loaded FILs, especially under high humidity conditions. Under low humidity storage conditions (11% RH), the FILs became stiffer and were successfully used to feed the FDM printer. Water removal was slow when carried out passively in a controlled atmosphere (desiccator) or accelerated by using active drying methods (heat or microwave). Pre-drying of the PRX/excipients and/or PMs did not show any positive effect on the printability of the FIL. On the contrary, dry heat and, preferably, microwave mediated drying processes were shown to reduce the holding time required for successful FDM printing, enabling on-demand production at the point of care.
Collapse
Affiliation(s)
- Sara Figueiredo
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - Ana I. Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Fátima G. Carvalho
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - João F. Pinto
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
| |
Collapse
|
21
|
de Carvalho ACW, Paiva NF, Demonari IK, Duarte MPF, do Couto RO, de Freitas O, Vicentini FTMDC. The Potential of Films as Transmucosal Drug Delivery Systems. Pharmaceutics 2023; 15:2583. [PMID: 38004562 PMCID: PMC10675688 DOI: 10.3390/pharmaceutics15112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Pharmaceutical films are polymeric formulations used as a delivery platform for administration of small and macromolecular drugs for local or systemic action. They can be produced by using synthetic, semi-synthetic, or natural polymers through solvent casting, electrospinning, hot-melt extrusion, and 3D printing methods, and depending on the components and the manufacturing methods used, the films allow the modulation of drug release. Moreover, they have advantages that have drawn interest in the development and evaluation of film application on the buccal, nasal, vaginal, and ocular mucosa. This review aims to provide an overview of and critically discuss the use of films as transmucosal drug delivery systems. For this, aspects such as the composition of these formulations, the theories of mucoadhesion, and the methods of production were deeply considered, and an analysis of the main transmucosal pathways for which there are examples of developed films was conducted. All of this allowed us to point out the most relevant characteristics and opportunities that deserve to be taken into account in the use of films as transmucosal drug delivery systems.
Collapse
Affiliation(s)
- Ana Clara Wada de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Natália Floriano Paiva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Isabella Kriunas Demonari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Maíra Peres Ferreira Duarte
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Renê Oliveira do Couto
- Campus Centro-Oeste Dona Lindu (CCO), Universidade Federal de São João del-Rei (UFSJ), Divinópolis 35501-296, MG, Brazil
| | - Osvaldo de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | | |
Collapse
|
22
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
23
|
Muhindo D, Ashour EA, Almutairi M, Repka MA. Development of Subdermal Implants Using Direct Powder Extrusion 3D Printing and Hot-Melt Extrusion Technologies. AAPS PharmSciTech 2023; 24:215. [PMID: 37857937 DOI: 10.1208/s12249-023-02669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Implants are drug delivery platforms that consist of a drug-polymer matrix with the ability of providing a localized and efficient controlled release of the drug with minimal side effects and achievement of the desired therapeutic outcomes with low drug loadings. Direct powder extrusion (DPE) 3D printing technology involves the extrusion of material through a nozzle of the printer in the form of pellets or powder. The present study aimed at investigating the use of the CELLINK BIO X™ bioprinter using DPE 3D printing technique to fabricate and evaluate the impact of different shapes (cuboid, cylinder, and tube) of raloxifene hydrochloride (RFH)-loaded subdermal implants on the release of RFH from the implants. This study further evaluated the impact of different processing techniques, viz., hot-melt extrusion (HME) technology vs. DPE 3D printing technique, on the release of RFH from the implants fabricated by each processing technique. All the fabricated implants were characterized by XRD, DSC, SEM, and FTIR, and evaluated for their water uptake, mass loss, and in vitro RFH release. The current study successfully demonstrated a great opportunity of controlling and/or tuning the release of RFH from the subdermal implants by altering the implant shape, and hence surface area, and could be a great contribution and/or addition to the personalization of medicines and improvement of patient compliance.
Collapse
Affiliation(s)
- Derick Muhindo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
24
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
25
|
Choudhari M, Damle S, Saha RN, Dubey SK, Singhvi G. Emerging Applications of Hydroxypropyl Methylcellulose Acetate Succinate: Different Aspects in Drug Delivery and Its Commercial Potential. AAPS PharmSciTech 2023; 24:188. [PMID: 37715004 DOI: 10.1208/s12249-023-02645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has multi-disciplinary applications spanning across the development of drug delivery systems, in 3D printing, and in tissue engineering, etc. HPMCAS helps in maintaining the drug in a super-saturated condition by inhibiting its precipitation, thereby increasing the rate and extent of dissolution in the aqueous media. HPMCAS has several distinctive characteristics, such as being amphiphilic in nature, having an ionization pH, and a succinyl and acetyl substitution ratio, all of which are beneficial while developing formulations. This review provides insights regarding the various types of formulations being developed using HPMCAS, including amorphous solid dispersion (ASD), amorphous nanoparticles, dry coating, and 3D printing, along with their applicability in drug delivery and biomedical fields. Furthermore, HPMCAS, compared with other carbohydrate polymers, shows several benefits in drug delivery, including proficiency in imparting stable ASD with a high dissolution rate, being easily processable, and enhancing bioavailability. The various commercially available formulations, regulatory considerations, and key patents containing the HPMCAS have been discussed in this review.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd. Verna Industrial Estate, Verna, Goa, 403722, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
- R&D Healthcare Emami Ltd., Belgharia, Kolkata, 700056, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
26
|
Pires FQ, Gross IP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Bao SN, Cunha-Filho M. In-situ formation of nanoparticles from drug-loaded 3D polymeric matrices. Eur J Pharm Sci 2023; 188:106517. [PMID: 37406970 DOI: 10.1016/j.ejps.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The in-situ formation of nanoparticles from polymer-based solid medicines, although previously described, has been overlooked despite its potential to interfere with oral drug bioavailability. Such polymeric pharmaceuticals are becoming increasingly common on the market and can become even more popular due to the dizzying advance of 3D printing medicines. Hence, this work aimed to study this phenomenon during the dissolution of 3D printed tablets produced with three different polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol (PVA), and Eudragit RL PO® (EUD RL) combined with plasticizers and the model drug naringenin (NAR). The components' interaction, dissolution behavior, and characteristics of the formed particles were investigated employing thermal, spectroscopic, mechanical, and chromatographic assays. All the systems generated stable spherical-shaped particles throughout 24 h, encapsulating over 25% of NAR. Results suggest encapsulation efficiencies variations may depend on interactions between polymer-drug, drug-plasticizer, and polymer-plasticizer, which formed stable nanoparticles even in the drug absence, as observed with the HPMCAS and EUD RL formulations. Additionally, components solubility in the medium and previous formulation treatments are also a decisive factor for nanoparticle formation. In particular, the treatment provided by hot-melt extrusion and FDM 3D printing affected the dissolution efficiency enhancing the interaction between the components, reverberating on particle size and particle formation kinetics mainly for HPMCAS and EUD RL. In conclusion, the 3D printing process influences the in-situ formation of nanoparticles, which can directly affect oral drug bioavailability and needs to be monitored.
Collapse
Affiliation(s)
- Felipe Q Pires
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Idejan P Gross
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Livia L Sa-Barreto
- University of Brasilia, Faculty of Ceilandia, 72220-900, Brasília, DF, Brazil
| | - Tais Gratieri
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Sonia N Bao
- University of Brasilia, Institute of Biological Sciences, Laboratório de Microscopia e Microanálise. 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil.
| |
Collapse
|
27
|
Abdelhamid M, Corzo C, Ocampo AB, Maisriemler M, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M. Mechanically promoted lipid-based filaments via composition tuning for extrusion-based 3D-printing. Int J Pharm 2023; 643:123279. [PMID: 37524255 DOI: 10.1016/j.ijpharm.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential. In this study, highly flexible filaments were extruded using PG6-C16P, a lipid-based excipient belonging to the group of polyglycerol esters of fatty acids (PGFAs), based on tuning the ratio between its major and minor composition fractions. Increasing the percentage of the minor fractions in the system was found to enhance the relevant mechanical filament properties by 50-fold, guaranteeing a flawless 3D-printability. Applying a novel liquid feeding approach further improved the mechanical filament properties at lower percentage of minor fractions, whilst circumventing the issues associated with the standard extrusion approach such as low throughput. Upon drug incorporation, the filaments retained high mechanical properties with a controlled drug release pattern. This work demonstrates PG6-C16 P as an advanced lipid-based material and a competitive printing excipient that can empower filament-based 3D-printing.
Collapse
Affiliation(s)
- Moaaz Abdelhamid
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Eyke Slama
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria.
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
28
|
Matadh AV, Echanur A, Suresh S, Chede L, Maibach H, Kulkarni V, Murthy SN, H N S. Can Continuous Manufacturing of Topical Semisolids by Hot Melt Extrusion Soon Be a Reality? Mol Pharm 2023; 20:3779-3790. [PMID: 37421361 DOI: 10.1021/acs.molpharmaceut.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
For more than five decades, pharmaceutical manufacturers have been relying heavily on batch manufacturing that is a sequential, multistep, laborious, and time-consuming process. However, late advances in manufacturing technologies have prompted manufacturers to consider continuous manufacturing (CM) is a feasible manufacturing process that encompasses fewer steps and is less tedious and quick. Global regulatory agencies are taking a proactive role to facilitate pharmaceutical industries to adopt CM that assures product quality by employing robust manufacturing technologies encountering fewer interruptions, thereby substantially reducing product failures and recalls. However, adopting innovative CM is known to pose technical and regulatory challenges. Hot melt extrusion (HME) is one such state-of-the-art enabling technology that facilitates CM of diverse pharmaceutical dosage forms, including topical semisolids. Efforts have been made to continuously manufacture semisolids by HME integrating the principles of Quality by Design (QbD) and Quality Risk Management (QRM) and deploying Process Analytical Technologies (PAT) tools. Attempts have been made to systematically elucidate the effect of critical material attributes (CMA) and critical process parameters (CPP) on product critical quality attributes (CQA) and Quality Target Product Profiles (QTPP) deploying PAT tools. The article critically reviews the feasibility of one of the enabling technologies such as HME in CM of topical semisolids. The review highlights the benefits of the CM process and challenges ahead to implement the technology to topical semisolids. Once the CM of semisolids adopting melt extrusion integrated with PAT tools becomes a reality, the process can be extended to manufacture sterile semisolids that usually involve more critical processing steps.
Collapse
Affiliation(s)
- Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Anusha Echanur
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Laxmishanthi Chede
- College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Howard Maibach
- University of California, 2340 Sutter Street, San Francisco, California 94115, United States
| | - Vijay Kulkarni
- Steer Life Sciences, Fourth Phase, Peenya, Industrial Area, Bengaluru 560058, Karnataka, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
- Topical Products Testing, LLC, 9, Industrial Park Drive, Oxford, Mississippi 38655, United States
| | - Shivakumar H N
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
- KLE College of Pharmacy, Second Block, Rajajinagar, Bengaluru 560010, Karnataka, India
| |
Collapse
|
29
|
Krueger L, Cao Y, Zheng Z, Ward J, Miles JA, Popat A. 3D printing tablets for high-precision dose titration of caffeine. Int J Pharm 2023; 642:123132. [PMID: 37315638 DOI: 10.1016/j.ijpharm.2023.123132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Through 3D printing (3DP), many parameters of solid oral dosage forms can be customised, allowing for truly personalised medicine in a way that traditional pharmaceutical manufacturing would struggle to achieve. One of the many options for customisation involves dose titration, allowing for gradual weaning of a medication at dose intervals smaller than what is available commercially. In this study we demonstrate the high accuracy and precision of 3DP dose titration of caffeine, selected due to its global prevalence as a behavioural drug and well-known titration-dependent adverse reactions in humans. This was achieved using a simple filament base of polyvinyl alcohol, glycerol, and starch, utilising hot melt extrusion coupled with fused deposition modelling 3DP. Tablets containing 25 mg, 50 mg, and 100 mg doses of caffeine were successfully printed with drug content in the accepted range prescribed for conventional tablets (90 - 110%), and excellent precision whereby the weights of all doses showed a relative standard deviation of no more than 3%. Importantly, these results proved 3D printed tablets to be far superior to splitting a commercially available caffeine tablet. Additional assessment of filament and tablet samples were reviewed by differential scanning calorimetry, thermogravimetric analysis, HPLC, and scanning electron microscopy, showing no evidence of degradation of caffeine or the raw materials, with smooth and consistent filament extrusion. Upon dissolution, all tablets achieved greater than 70% release between 50 and 60 min, showing a predictable rapid release profile regardless of dose. The outcomes of this study highlight the benefits that dose titration with 3DP can offer, especially to more commonly prescribed medications that can have even more harmful withdrawal-induced adverse reactions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng Zheng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason Ward
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
30
|
Mansuroglu Y, Dressman J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023; 15:1996. [PMID: 37514182 PMCID: PMC10386192 DOI: 10.3390/pharmaceutics15071996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug loading, milling and hydrodynamics on the release of a model drug, flurbiprofen, from sustained-release hot-melt extrudates with Eudragit polymers. The choice of polymer and degree of particle size reduction of the extrudate by milling were the two key influences on the release profile: the percentage release after 12 h varied from 6% (2 mm threads) to 84% (particle size <125 µm) for Eudragit RL extrudates vs. 4.5 to 62% for the corresponding Eudragit RS extrudates. By contrast, the release profile was largely independent of drug loading and robust to hydrodynamics in the dissolution vessel. Thus, hot-melt extrusion offers the ability to tailor the release of the API to the therapeutic indication through a combination of particle size and polymer choice while providing robustness over a wide range of hydrodynamic conditions.
Collapse
Affiliation(s)
- Yaser Mansuroglu
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Lovrec-Krstič T, Orthaber K, Maver U, Sarenac T. Review of Potential Drug-Eluting Contact Lens Technologies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103653. [PMID: 37241280 DOI: 10.3390/ma16103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The field of ophthalmology is expanding exponentially, both in terms of diagnostic and therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to an ageing population and climate change, the number of ophthalmic patients will continue to increase, overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug delivery. Alternative methods, i.e., with better compliance, stability and longevity of drug delivery, would be preferred. Several approaches and materials are being studied and used to overcome these drawbacks. We believe that drug-loaded contact lenses are among the most promising and are a real step toward dropless ocular therapy, potentially leading to a transformation in clinical ophthalmic practice. In this review, we outline the current role of contact lenses in ocular drug delivery, focusing on materials, drug binding and preparation, concluding with a look at future developments.
Collapse
Affiliation(s)
- Tina Lovrec-Krstič
- Community Health Centre Dr. Adolfa Drolca Maribor, Department of Radiology with Centre for Breast Disease, Ulica talcev 5, 2000 Maribor, Slovenia
| | - Kristjan Orthaber
- Department of Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomislav Sarenac
- Department of Ophthalmology, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
32
|
Doolaanea A, Latif N, Singh S, Kumar M, Safa'at MF, Alfatama M, Edros R, Bhatia A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023; 24:116. [PMID: 37160772 DOI: 10.1208/s12249-023-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Three-dimensional (3D) printing technology has presently been explored widely in the field of pharmaceutical research to produce various conventional as well as novel dosage forms such as tablets, capsules, oral films, pellets, subcutaneous implants, scaffolds, and vaginal rings. The use of this innovative method is a good choice for its advanced technologies and the ability to make tailored medicine specifically for individual patient. There are many 3D printing systems that are used to print tablets, implants, and vaginal rings. Among the available systems, the fused deposition modeling (FDM) is widely utilized. The FDM has been regarded as the best choice of printer as it shows high potential in the production of tablets as a unit dose in 3D printing medicine manufacturing. In order to design a 3D-printed tablet or other dosage forms, the physicochemical properties of polymers play a vital role. One should have proper knowledge about the polymer's properties so that one can select appropriate polymers in order to design 3D-printed dosage form. This review highlighted the various physicochemical properties of polymers that are currently used as filaments in 3D printing. In this manuscript, the authors also discussed various systems that are currently adopted in the 3D printing.
Collapse
Affiliation(s)
- AbdAlmonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
- IKOP SdnBhd, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
| | - NurFaezah Latif
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | | | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Raihana Edros
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
33
|
Almotairy A, Alyahya M, Althobaiti A, Almutairi M, Bandari S, Ashour EA, Repka MA. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm 2023; 635:122709. [PMID: 36801364 PMCID: PMC10023499 DOI: 10.1016/j.ijpharm.2023.122709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Cervical cancer is known globally as one of the most common health problems in women. Indeed, one of the most convenient approaches for its treatment is an appropriate bioadhesive vaginal film. This approach provides a local treatment modality, which inevitably decreases dosing frequency and improves patient compliance. Recently, disulfiram (DSF) has been investigated and demonstrated to possess anticervical cancer activity; therefore, it is employed in this work. The current study aimed to produce a novel, personalized three-dimensional (3D) printed DSF extended-release film using the hot-melt extrusion (HME) and 3D printing technologies. The optimization of the formulation composition and the HME and 3D printing processing temperatures was an important factor for overcoming the DSF heat-sensitivity issue. In addition, the 3D printing speed was specifically the most crucial parameter for alleviating heat-sensitivity concerns, which led to the production of films (F1 and F2) with an acceptable DSF content and good mechanical properties. The bioadhesion film study using sheep cervical tissue indicated a reasonable adhesive peak force (N) of 0.24 ± 0.08 for F1 and 0.40 ± 0.09 for F2, while the work of adhesion (N.mm) for F1 and F2 was 0.28 ± 0.14 and 0.54 ± 0.14, respectively. Moreover, the cumulative in vitro release data indicated that the printed films released DSF for up to 24 h. HME-coupled 3D printing successfully produced a patient-centric and personalized DSF extended-release vaginal film with a reduced dose and longer dosing interval.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
34
|
Uboldi M, Perrotta C, Moscheni C, Zecchini S, Napoli A, Castiglioni C, Gazzaniga A, Melocchi A, Zema L. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15030757. [PMID: 36986618 PMCID: PMC10057729 DOI: 10.3390/pharmaceutics15030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-50324654
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| |
Collapse
|
35
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
36
|
Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023; 24:57. [PMID: 36759435 DOI: 10.1208/s12249-023-02524-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
There has been a tremendous increase in the investigations of three-dimensional (3D) printing for biomedical and pharmaceutical applications, and drug delivery in particular, ever since the US FDA approved the first 3D printed medicine, SPRITAM® (levetiracetam) in 2015. Three-dimensional printing, also known as additive manufacturing, involves various manufacturing techniques like fused-deposition modeling, 3D inkjet, stereolithography, direct powder extrusion, and selective laser sintering, among other 3D printing techniques, which are based on the digitally controlled layer-by-layer deposition of materials to form various geometries of printlets. In contrast to conventional manufacturing methods, 3D printing technologies provide the unique and important opportunity for the fabrication of personalized dosage forms, which is an important aspect in addressing diverse patient medical needs. There is however the need to speed up the use of 3D printing in the biopharmaceutical industry and clinical settings, and this can be made possible through the integration of modern technologies like artificial intelligence, machine learning, and Internet of Things, into additive manufacturing. This will lead to less human involvement and expertise, independent, streamlined, and intelligent production of personalized medicines. Four-dimensional (4D) printing is another important additive manufacturing technique similar to 3D printing, but adds a 4th dimension defined as time, to the printing. This paper aims to give a detailed review of the applications and principles of operation of various 3D printing technologies in drug delivery, and the materials used in 3D printing, and highlight the challenges and opportunities of additive manufacturing, while introducing the concept of 4D printing and its pharmaceutical applications.
Collapse
Affiliation(s)
- Derick Muhindo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Priyanka Srinivasan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Pii Center for Pharmaceutical Technology, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
37
|
Nyavanandi D, Narala S, Mandati P, Alzahrani A, Kolimi P, Almotairy A, Repka MA. Twin Screw Melt Granulation: Alternative Approach for Improving Solubility and Permeability of a Non-steroidal Anti-inflammatory Drug Ibuprofen. AAPS PharmSciTech 2023; 24:47. [PMID: 36703024 DOI: 10.1208/s12249-023-02512-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA.,Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, AlMunawarah, Al Madinah, 30001, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Jackson, MS, 38677, USA.
| |
Collapse
|
38
|
Burgos GL, Hernández-Espinell JR, Graciani-Massa T, Yao X, Borchardt-Setter KA, Yu L, López-Mejías V, Stelzer T. Role of Heteronucleants in Melt Crystallization of Crystalline Solid Dispersions. CRYSTAL GROWTH & DESIGN 2023; 23:49-58. [PMID: 38107196 PMCID: PMC10722868 DOI: 10.1021/acs.cgd.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Few publications exist concerning polymorphic control during melt crystallization, particularly when employing heteronucleants. Here, the influence of a polymeric thin film (polyethylene terephthalate, PET) on the crystallization from melt of the polymorphic compound acetaminophen (ACM) in polyethylene glycol (PEG) was investigated. Molten ACM-PEG at different compositions was monitored using in situ Raman spectroscopy for nucleation induction time measurements and phase identification. Furthermore, X-ray diffraction (XRD) served to analyze the preferred orientation (PO) of the pastilles (solidified melt droplets) on PET-coated and uncoated substrates. The results indicate that PET-coated substrates qualitatively accelerate the nucleation of ACM form II (ACM II) in PEG compared to uncoated glass substrates. Additionally, the occurrence of ACM II in PEG was increased by an average of 10% when crystallized on PET-coated substrates compared to uncoated substrates. Overall, these results suggest that ACM can interact through hydrogen bonding with the PET-coated substrate, leading to faster nucleation. This investigation illustrates the effect of PET-coated substrates in the selective crystallization of ACM II in PEG as crystalline solid dispersions (CSDs). Ultimately, the results suggest the implementation of polymeric heteronucleants in melt crystallization processes, specifically, in advanced polymer-based formulation processes for the enhanced polymorphic form control of pharmaceutical compounds in CSDs.
Collapse
Affiliation(s)
- Giovanni López Burgos
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - José R Hernández-Espinell
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Tatiana Graciani-Massa
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Xin Yao
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kennedy A Borchardt-Setter
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Vilmalí López-Mejías
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
39
|
Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X 2023; 5:100159. [PMID: 36632068 PMCID: PMC9827389 DOI: 10.1016/j.ijpx.2023.100159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) printing or Additive Manufacturing (AM) technology is an innovative tool with great potential and diverse applications in various fields. As 3D printing has been burgeoning in recent times, a tremendous transformation can be envisaged in medical care, especially the manufacturing procedures leading to personalized medicine. Stereolithography (SLA), a vat-photopolymerization technique, that uses a laser beam, is known for its ability to fabricate complex 3D structures ranging from micron-size needles to life-size organs, because of its high resolution, precision, accuracy, and speed. This review presents a glimpse of varied 3D printing techniques, mainly expounding SLA in terms of the materials used, the orientation of printing, and the working mechanisms. The previous works that focused on developing pharmaceutical dosage forms, drug-eluting devices, and tissue scaffolds are presented in this paper, followed by the challenges associated with SLA from an industrial and regulatory perspective. Due to its excellent advantages, this technology could transform the conventional "one dose fits all" concept to bring digitalized patient-centric medication into reality.
Collapse
|
40
|
Serajuddin ATM. Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: An overview and commentary. ADMET & DMPK 2023; 11:33-55. [PMID: 36778904 PMCID: PMC9909727 DOI: 10.5599/admet.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Since the approval of a 3D-printed tablet by the FDA in 2015 for marketing, there has been a great interest in 3D printing in the pharmaceutical field for the development of personalized and on-demand medications. Among various 3D printing methods explored for the development of oral solid dosage form like tablet, the fused deposition modeling (FDM) 3D-printing, where the drug-polymer mixtures are first converted into filaments by hot melt extrusion (HME) and then the filaments are printed into tablets using 3D printers by applying computer-aided design principles, has emerged as the most attractive option. However, no FDM 3D-printed tablets have yet been marketed as the technology faces many challenges, such as limited availability of pharmaceutical-grade polymers that can be printed into tablets, low drug-polymer miscibility, the need for high temperature for HME and 3D-printing, and slow drug release rates from tablets. These challenges are discussed in this article with a special focus on drug release rates since FDM 3D-printing usually leads to the preparation of slow-release tablets while the rapid release from dosage forms is often desired for optimal therapeutic outcomes of new drug candidates. Pros and cons of various strategies for the development of rapidly dissolving FDM 3D-printed tablets reported in the literature are reviewed. Finally, two case studies on emerging strategies for the development of rapidly dissolving FDM 3D-printed tablets are presented, where one outlines a systematic approach for formulating rapidly dissolving tablets, and the other describes a novel strategy to increase dissolution rates of drugs from FDM 3D-printed tablets, which at the same time can also increase drug-polymer miscibility and printability of tablets and lower processing temperatures. Thus, this overview and commentary discusses various issues involving the formulation of rapidly dissolving FDM 3D-printed tablets and provides guidance for the development of commercially viable products.
Collapse
Affiliation(s)
- Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| |
Collapse
|
41
|
Expandable Drug Delivery Systems Based on Shape Memory Polymers: Impact of Film Coating on Mechanical Properties and Release and Recovery Performance. Pharmaceutics 2022; 14:pharmaceutics14122814. [PMID: 36559306 PMCID: PMC9786903 DOI: 10.3390/pharmaceutics14122814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Retentive drug delivery systems (DDSs) are intended for prolonged residence and release inside hollow muscular organs, to achieve either local or systemic therapeutic goals. Recently, formulations based on shape memory polymers (SMPs) have gained attention in view of their special ability to recover a shape with greater spatial encumbrance at the target organ (e.g., urinary bladder or stomach), triggered by contact with biological fluids at body temperature. In this work, poly(vinyl alcohol) (PVA), a pharmaceutical-grade SMP previously shown to be an interesting 4D printing candidate, was employed to fabricate expandable organ-retentive prototypes by hot melt extrusion. With the aim of improving the mechanical resistance of the expandable DDS and slowing down relevant drug release, the application of insoluble permeable coatings based on either Eudragit® RS/RL or Eudragit® NE was evaluated using simple I-shaped specimens. The impact of the composition and thickness of the coating on the shape memory, swelling, and release behavior as well as on the mechanical properties of these specimens was thoroughly investigated and the effectiveness of the proposed strategy was demonstrated by the results obtained.
Collapse
|
42
|
Mandati P, Dumpa N, Alzahrani A, Nyavanandi D, Narala S, Wang H, Bandari S, Repka MA, Tiwari S, Langley N. Hot-Melt Extrusion-Based Fused Deposition Modeling 3D Printing of Atorvastatin Calcium Tablets: Impact of Shape and Infill Density on Printability and Performance. AAPS PharmSciTech 2022; 24:13. [PMID: 36477554 DOI: 10.1208/s12249-022-02470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.5 mm diameters were extruded using a Process 11 mm hot-melt extruder employing atorvastatin calcium as a model drug and Kollicoat® IR, Kollidon® VA64, Kollidon® 12PF, and Kolliphor® P407 as hydrophilic polymers. Filaments of Kollicoat® IR in combination with Kollidon® VA64/Kollidon® 12PF has resulted in successful printing of immediate release tablets. The mechanical properties of drug-loaded filaments were evaluated using a 3-point bend test and stiffness test. The transformation of a crystalline drug to an amorphous form and the absence of drug-polymer interactions were confirmed by differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The effect of infill density on drug release profiles was greater than that of tablet shape. The stability of 3D printed tablets was preserved even after storage under accelerated conditions (40 ± 2°C and 75 ± 5% RH) for 6 months. Thus, the 3D printing process of hot-melt extrusion paired with fused deposition modeling serves as an alternative manufacturing approach for developing patient-focused doses.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Mississippi, 38677, University, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, Mississippi, 38677, University, USA.
| | - Sandip Tiwari
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| | - Nigel Langley
- BASF Corporation, 500 White Plains Road, New York, Tarrytown, USA
| |
Collapse
|
43
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
44
|
Nyavanandi D, Mandati P, Narala S, Alzahrani A, Kolimi P, Pradhan A, Bandari S, Repka MA. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Int J Pharm 2022; 628:122283. [DOI: 10.1016/j.ijpharm.2022.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
45
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
46
|
Muldoon K, Ahmad Z, Su YC, Tseng FG, Chen X, McLaughlin JAD, Chang MW. A Refined Hot Melt Printing Technique with Real-Time CT Imaging Capability. MICROMACHINES 2022; 13:1794. [PMID: 36296147 PMCID: PMC9609882 DOI: 10.3390/mi13101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Personalised drug delivery systems with the ability to offer real-time imaging and control release are an advancement in diagnostic and therapeutic applications. This allows for a tailored drug dosage specific to the patient with a release profile that offers the optimum therapeutic effect. Coupling this application with medical imaging capabilities, real-time contrast can be viewed to display the interaction with the host. Current approaches towards such novelty produce a drug burst release profile and contrasting agents associated with side effects as a result of poor encapsulation of these components. In this study, a 3D-printed drug delivery matrix with real-time imaging is engineered. Polycaprolactone (PCL) forms the bulk structure and encapsulates tetracycline hydrochloride (TH), an antibiotic drug and Iron Oxide Nanoparticles (IONP, Fe3O4), a superparamagnetic contrasting agent. Hot melt extrusion (HME) coupled with fused deposition modelling (FDM) is utilised to promote the encapsulation of TH and IONP. The effect of additives on the formation of micropores (10-20 µm) on the 3D-printed surface was investigated. The high-resolution process demonstrated successful encapsulation of both bioactive and nano components to present promising applications in drug delivery systems, medical imaging and targeted therapy.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystem, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China
| | - James A. D. McLaughlin
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), University of Ulster, Belfast BT15 1ED, UK
| |
Collapse
|
47
|
Zhang J, Li Y, Cai Y, Ahmad I, Zhang A, Ding Y, Qiu Y, Zhang G, Tang W, Lyu F. Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydr Polym 2022; 294:119763. [DOI: 10.1016/j.carbpol.2022.119763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
48
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
49
|
Tan G, Ioannou N, Mathew E, Tagalakis AD, Lamprou DA, Yu-Wai-Man C. 3D printing in Ophthalmology: From medical implants to personalised medicine. Int J Pharm 2022; 625:122094. [PMID: 35952803 DOI: 10.1016/j.ijpharm.2022.122094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems. In addition, 3D printed medical devices and implants can be customised for each patient to provide a more tailored treatment approach. The advantages and applications of 3D printing can be used to treat patients with different eye conditions, with advances in 3D bioprinting offering novel therapy applications in ophthalmology. The purpose of this review paper is to provide an in-depth understanding of the applications and advantages of 3D printing in treating different ocular conditions in the cornea, glaucoma, retina, lids and orbits.
Collapse
Affiliation(s)
- Greymi Tan
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Nicole Ioannou
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
50
|
Zhang P, Xu P, Chung S, Bandari S, Repka MA. Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing. Int J Pharm 2022; 624:121972. [PMID: 35787460 DOI: 10.1016/j.ijpharm.2022.121972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022]
Abstract
The objective of this study was to fabricate bilayer tablets using hot-melt extrusion (HME)-based dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing techniques. Acetaminophen (APAP) and caffeine citrate (CC) were used as the model drugs. Five bilayer tablets with different formulations were developed and two different structures were printed for each formulation. Three-point bending, Hooke's law, and resistance and stiffness tests were conducted to determine the mechanical properties of the filaments. A novel method, 3D printed tablet retention rate, was developed and used for the first time to compare the printing quality of different filaments. The 3D printed tablets were evaluated to derive the drug release rates using a USP-II dissolution apparatus. HPMC HME 15LV and HPMCAS-LG were identified as good printing materials; however, HPMC HME 100LV was not suitable for printing under frequent nozzle switching conditions. Although mechanical characterization tests can be used to determine whether filaments can be printed, they cannot specifically distinguish the quality of printing between the filaments. Overall, this study revealed the successful fabrication of bilayer tablets via HME paired with dual-nozzle FDM 3D printing.
Collapse
Affiliation(s)
- Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Pengchong Xu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sooyeon Chung
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|