1
|
Wu Y, Gong Y, Liu L, Bai L, Zhang Y, Li S, Wang C, Yuan Y, Lv X, Qin Y, Wang H, Liu Y, Chen F, Chen S, Zhang F, Guo X, Wang X, Ning Y. The Impact of Selenium Deficiency and T-2 Toxin on Zip6 Expression in Kashin-Beck Disease. Biol Trace Elem Res 2024:10.1007/s12011-024-04426-8. [PMID: 39455492 DOI: 10.1007/s12011-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the expression of Zip6, a gene predominantly located in the placenta, breast, and prostate tissues, in patients with Kashin-Beck disease (KBD). Environmental risk factor models for KBD were developed using low selenium (Se) feeding (with a Se content of 0.02 mg Se/kg in the feed) and exposure to T-2 toxin (200 ng/g*BW/D). Additionally, the study examined the alterations in Se and Zn2+ levels, along with the mRNA and protein expression levels of Zip6 and KBD related genes, including Mtf1, Mmp3, Mmp13, Adamts5, and Col2a1. Differentially expressed genes (DEGs) were examined by transcriptome sequencing to elucidate the mechanism by which Zip6 induces metabolic disorder of the extracellular matrix (ECM), subsequently leading to cartilage injury under the influence of Se deficiency and T-2 toxin. The findings indicated that the expression levels of Zip6 in adult and pediatric KBD chondrocytes were not synchronized. In the animal study, there was a notable increase in the Zn2+ level in the comprehensive exposure (CE) group. Moreover, in both the T-2 exposure (T-2) and CE groups, there was a significant decrease in the expression of Zip6 in each zone, and the expression of Adamts5 in the middle zone exhibited a significant increase (P < 0.05) correlating with varying degrees of cartilage tissue damage in each group. Sequencing results revealed that the significantly up-regulated DEGs in the CE group included Zimz2. This study suggested that Se and T-2 toxin may influence the expression of Zip6, and it investigated the role of Zn2+ in the pathogenesis of KBD, thereby providing a novel scientific foundation for understanding the pathogenesis of KBD.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- Center for Immunological and Metabolic Diseases, MED-X Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Lian Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yirong Qin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, No.157 Xi Wu Road, Xi'an, 710004, People's Republic of China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
2
|
Song CC, Liu T, Hogstrand C, Zhong CC, Zheng H, Sun LH, Luo Z. SENP1 mediates zinc-induced ZnT6 deSUMOylation at Lys-409 involved in the regulation of zinc metabolism in Golgi apparatus. Cell Mol Life Sci 2024; 81:422. [PMID: 39367979 PMCID: PMC11455790 DOI: 10.1007/s00018-024-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Zinc (Zn) transporters contribute to the maintenance of intracellular Zn homeostasis in vertebrate, whose activity and function are modulated by post-translational modification. However, the function of small ubiquitin-like modifier (SUMOylation) in Zn metabolism remains elusive. Here, compared with low Zn group, a high-Zn diet significantly increases hepatic Zn content and upregulates the expression of metal-response element-binding transcription factor-1 (MTF-1), Zn transporter 6 (ZnT6) and deSUMOylation enzymes (SENP1, SENP2, and SENP6), but inhibits the expression of SUMO proteins and the E1, E2, and E3 enzymes. Mechanistically, Zn triggers the activation of the MTF-1/SENP1 pathway, resulting in the reduction of ZnT6 SUMOylation at Lys 409 by small ubiquitin-like modifier 1 (SUMO1), and promoting the deSUMOylation process mediated by SENP1. SUMOylation modification of ZnT6 has no influence on its localization but reduces its protein stability. Importantly, deSUMOylation of ZnT6 is crucial for controlling Zn export from the cytosols into the Golgi apparatus. In conclusion, for the first time, we elucidate a novel mechanism by which SUMO1-catalyzed SUMOylation and SENP1-mediated deSUMOylation of ZnT6 orchestrate the regulation of Zn metabolism within the Golgi apparatus.
Collapse
Affiliation(s)
- Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Tao Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Shoji M, Ohashi T, Nagase S, Yuri H, Ichihashi K, Takagishi T, Nagata Y, Nomura Y, Fukunaka A, Kenjou S, Miyake H, Hara T, Yoshigai E, Fujitani Y, Sakurai H, Dos Santos HG, Fukada T, Kuzuhara T. Possible involvement of zinc transporter ZIP13 in myogenic differentiation. Sci Rep 2024; 14:8052. [PMID: 38609428 PMCID: PMC11014994 DOI: 10.1038/s41598-024-56912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takuto Ohashi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Saki Nagase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Haato Yuri
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Teruhisa Takagishi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuji Nagata
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuki Nomura
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Sae Kenjou
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Hatsuna Miyake
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Takafumi Hara
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Emi Yoshigai
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto-City, Kyoto, Japan
| | | | - Toshiyuki Fukada
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| |
Collapse
|
4
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Doolan BJ, Lavallee M, Hausser I, Pope FM, Seneviratne SL, Winship IM, Burrows NP. Dermatologic manifestations and diagnostic assessments of the Ehlers-Danlos syndromes: A clinical review. J Am Acad Dermatol 2023; 89:551-559. [PMID: 36764582 DOI: 10.1016/j.jaad.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The Ehlers-Danlos syndromes (EDSs) comprise a group of connective tissue disorders that manifest with skin hyperextensibility, easy bruising, joint hypermobility and fragility of skin, soft tissues, and some organs. A correct assessment of cutaneous features along with the use of adjunct technologies can improve diagnostic accuracy. OBJECTIVES To systematically review the cutaneous features and adjunct investigations of EDS. METHODS A search of PubMed and Web of Science for EDS-related cutaneous features and additional investigations was undertaken from publication of the 2017 International Classification of EDS until January 15, 2022. RESULTS One-hundred-and-forty studies involved 839 patients with EDS. The EDS female-to-male ratio was 1.36:1 (P < .001). A high prevalence of skin hyperextensibility, bruising, and soft skin were noted. Most patients with vascular Ehlers-Danlos syndrome showed venous visibility, skin fragility, and acrogeria. Classical EDS showed subcutaneous spheroids and molluscoid pseudotumours. In patients that underwent skin biopsies, only 30.3% and 71.4% showed features suggestive of EDS using light microscopy and transmission electron microscopy, respectively. LIMITATIONS Retrospective study and small cases numbers for some EDS-subtypes. CONCLUSIONS An accurate clinical diagnosis increases the chances of a molecular diagnosis, particularly for rarer EDS subtypes, whilst decreasing the need for genetic testing where there is a low clinical suspicion for a monogenic EDS-subtype.
Collapse
Affiliation(s)
- Brent J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK; St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Mark Lavallee
- Department of Orthopedics, University of Pittsburgh Medical Center of Central PA, Pittsburgh, Pennsylvania
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - F Michael Pope
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust (West Middlesex University Hospital), London, UK
| | - Suranjith L Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK; Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka
| | - Ingrid M Winship
- Department of Genetic Medicine, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel P Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
6
|
Ren X, Feng C, Wang Y, Chen P, Wang S, Wang J, Cao H, Li Y, Ji M, Hou P. SLC39A10 promotes malignant phenotypes of gastric cancer cells by activating the CK2-mediated MAPK/ERK and PI3K/AKT pathways. Exp Mol Med 2023; 55:1757-1769. [PMID: 37524874 PMCID: PMC10474099 DOI: 10.1038/s12276-023-01062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023] Open
Abstract
Solute carrier family 39 member 10 (SLC39A10) belongs to a subfamily of zinc transporters and plays a key role in B-cell development. Previous studies have reported that its upregulation promotes breast cancer metastasis by enhancing the influx of zinc ions (Zn2+); however, its role in gastric cancer remains totally unclear. Here, we found that SLC39A10 expression was frequently increased in gastric adenocarcinomas and that SLC39A10 upregulation was strongly associated with poor patient outcomes; in addition, we identified SLC39A10 as a direct target of c-Myc. Functional studies showed that ectopic expression of SLC39A10 in gastric cancer cells dramatically enhanced the proliferation, colony formation, invasiveness abilities of these gastric cancer cells and tumorigenic potential in nude mice. Conversely, SLC39A10 knockdown inhibited gastric cancer cell proliferation and colony formation. Mechanistically, SLC39A10 exerted its carcinogenic effects by increasing Zn2+ availability and subsequently enhancing the enzyme activity of CK2 (casein kinase 2). As a result, the MAPK/ERK and PI3K/AKT pathways, two major downstream effectors of CK2, were activated, while c-Myc, a downstream target of these two pathways, formed a vicious feedback loop with SLC39A10 to drive the malignant progression of gastric cancer. Taken together, our data demonstrate that SLC39A10 is a functional oncogene in gastric cancer and suggest that targeting CK2 is an alternative therapeutic strategy for gastric cancer patients with high SLC39A10 expression.
Collapse
Affiliation(s)
- Xiaojuan Ren
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Jianling Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yujun Li
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, P. R. China.
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
7
|
Polesel M, Ingles-Prieto A, Christodoulaki E, Ferrada E, Doucerain C, Altermatt P, Knecht M, Kuhn M, Steck AL, Wilhelm M, Manolova V. Functional characterization of SLC39 family members ZIP5 and ZIP10 in overexpressing HEK293 cells reveals selective copper transport activity. Biometals 2023; 36:227-237. [PMID: 36454509 PMCID: PMC11196296 DOI: 10.1007/s10534-022-00474-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Zinc is the second most prevalent metal element present in living organisms, and control of its concentration is pivotal to physiology. The amount of zinc available to the cell cytoplasm is regulated by the activity of members of the SLC39 family, the ZIP proteins. Selectivity of ZIP transporters has been the focus of earlier studies which provided a biochemical and structural basis for the selectivity for zinc over other metals such as copper, iron, and manganese. However, several previous studies have shown how certain ZIP proteins exhibit higher selectivity for metal elements other than zinc. Sequence similarities suggest an evolutionary basis for the elemental selectivity within the ZIP family. Here, by engineering HEK293 cells to overexpress ZIP proteins, we have studied the selectivity of two phylogenetic clades of ZIP proteins, that is ZIP8/ZIP14 (previously known to be iron and manganese transporters) and ZIP5/ZIP10. By incubating ZIP over-expressing cells in presence of several divalent metals, we found that ZIP5 and ZIP10 are high affinity copper transporters with greater selectivity over other elements, revealing a novel substrate signature for the ZIP5/ZIP10 clade.
Collapse
Affiliation(s)
- Marcello Polesel
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland.
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Evandro Ferrada
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Cédric Doucerain
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Patrick Altermatt
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Michelle Knecht
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Michael Kuhn
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Anna-Lena Steck
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Maria Wilhelm
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| | - Vania Manolova
- Vifor (International) AG, Wagistrasse 27a, 8952, Schlieren, Switzerland
| |
Collapse
|
8
|
Agrawal P, Kaur H, Kondekar A, Rathi S. A case of Ehlers-Danlos syndrome presenting as short stature: a novel mutation in SLC39A13 causing spondylodysplastic Ehlers-Danlos syndrome. Oxf Med Case Reports 2023; 2023:omac107. [PMID: 36727144 PMCID: PMC9885422 DOI: 10.1093/omcr/omac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 08/21/2022] [Indexed: 02/01/2023] Open
Abstract
Ehlers-Danlos syndrome (EDS) is a heritable connective tissue disorder characterized by a varying degree of skin hyperextensibility and joint hypermobility. EDS is classified into 13 subtypes according to the most recent classification. These subtypes are clinically and genetically heterogenous. The spondylodysplastic subvariety of EDS (spEDS) is caused by homozygous mutations in B4GALT7, B3GALT6 and SLC39A13. To date, 13 individuals with molecularly diagnosed SLC39A13-related spEDS have been reported. The spEDS caused by biallelic pathogenic SLC39A13 variants are characterized by short stature, protuberant eyes with bluish sclera, finely wrinkled palms, hypermobile joints, hyperextensible skin and characteristic radiological findings. Herein, we report a case of 7-year-old-female child with spEDS associated with novel homozygous (pathogenic/likely pathogenic) missense variation of the SLC39A13 gene.
Collapse
Affiliation(s)
| | - Harpreet Kaur
- Correspondence address. TNMC and BYL Nair Hospital, Mumbai, India. Tel: +919326351705; E-mail:
| | - Alpana Kondekar
- Department of Paediatrics, TNMC and BYL Nair Ch Hospital, Mumbai, India
| | - Surbhi Rathi
- Department of Paediatrics, TNMC and BYL Nair Ch Hospital, Mumbai, India
| |
Collapse
|
9
|
Coexistence of spinocerebellar ataxia autosomal recessive type 21 and Ehlers-Danlos syndrome spondylodysplastic type 3 in a patient. Clin Dysmorphol 2023; 32:25-28. [PMID: 36503921 DOI: 10.1097/mcd.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Zinc and Zinc Transporters in Dermatology. Int J Mol Sci 2022; 23:ijms232416165. [PMID: 36555806 PMCID: PMC9785331 DOI: 10.3390/ijms232416165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc is an important trace mineral in the human body and a daily intake of zinc is required to maintain a healthy status. Over the past decades, zinc has been used in formulating topical and systemic therapies for various skin disorders owing to its wound healing and antimicrobial properties. Zinc transporters play a major role in maintaining the integrity of the integumentary system by controlling zinc homeostasis within dermal layers. Mutations and abnormal function of zinc-transporting proteins can lead to disease development, such as spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and acrodermatitis enteropathica (AE) which can be fatal if left untreated. This review discusses the layers of the skin, the importance of zinc and zinc transporters in each layer, and the various skin disorders caused by zinc deficiency, in addition to zinc-containing compounds used for treating different skin disorders and skin protection.
Collapse
|
11
|
Abstract
Zinc plays a critical role in many physiological processes, and disruption of zinc homeostasis induces various disorders, such as growth retardation, osteopenia, immune deficiency, and inflammation. However, how the imbalance in zinc homeostasis leads to heart disease is not yet fully understood. Cardiovascular diseases are a major cause of death worldwide, and the development of novel therapeutic targets to treat it is urgently needed. We report that a zinc transporter, ZIP13, regulates cardiovascular homeostasis. We found that the expression level of Zip13 mRNA was diminished in both primary neonatal cardiomyocytes and mouse heart tissues treated with the cardiotoxic agent doxycycline. Primary neonatal cardiomyocytes from Zip13 gene-knockout (KO) mice exhibited abnormal irregular arrhythmic beating. RNA-seq analysis identified 606 differentially expressed genes in Zip13-KO mouse-derived primary neonatal cardiomyocytes and Gene ontology (GO) analysis revealed that both inflammation- and cell adhesion-related genes were significantly enriched. In addition, telemetry echocardiography analysis suggested that arrhythmias were likely to occur in Zip13-KO mice, in which elevated levels of the cardiac fibrosis marker Col1a1, vascular inflammation-related gene eNOS, and Golgi-related molecule GM130 were observed. These results indicate the physiological importance of ZIP13-it maintains cardiovascular homeostasis by resolving inflammation and stress response. Our findings suggest that optimizing ZIP13 expression and/or function may improve cardiovascular disease management.
Collapse
|
12
|
Asanad S, Bayomi M, Brown D, Buzzard J, Lai E, Ling C, Miglani T, Mohammed T, Tsai J, Uddin O, Singman E. Ehlers-Danlos syndromes and their manifestations in the visual system. Front Med (Lausanne) 2022; 9:996458. [PMID: 36237549 PMCID: PMC9552959 DOI: 10.3389/fmed.2022.996458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ehlers-Danlos syndrome (EDS) is a rare, genetically variable, heterogenous group of (currently recognized) thirteen connective tissue disorders characterized by skin hyperextensibility, tissue fragility, and generalized joint hypermobility. In addition to these commonly recognized phenotypes, recent studies have notably highlighted variable ophthalmic features in EDS. In this review, we comprehensively gather and discuss the ocular manifestations of EDS and its thirteen subtypes in the clinical setting.
Collapse
Affiliation(s)
- Samuel Asanad
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - May Bayomi
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Douglas Brown
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Joshua Buzzard
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Eric Lai
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Carlthan Ling
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Trisha Miglani
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Taariq Mohammed
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Joby Tsai
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Olivia Uddin
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Eric Singman
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
- *Correspondence: Eric Singman
| |
Collapse
|
13
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
14
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
15
|
Osteogenesis Imperfecta/Ehlers-Danlos Overlap Syndrome and Neuroblastoma-Case Report and Review of Literature. Genes (Basel) 2022; 13:genes13040581. [PMID: 35456387 PMCID: PMC9024599 DOI: 10.3390/genes13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Osteogenesis imperfecta/Ehlers−Danlos (OI/EDS) overlap syndrome is a recently described disorder of connective tissue, characterized by mutation of COL1A1 (17q21.33) or COL1A2 (7q21.3) genes, that are involved in α-1 and α-2 chains of type 1 collagen synthesis. The clinical spectrum of this new clinical entity is broad: patients could present a mixed phenotype that includes features of both osteogenesis imperfecta (bone fragility, long bone fractures, blue sclerae, short stature) and Ehlers−Danlos syndrome (joint hyperextensibility, soft and hyperextensible skin, abnormal wound healing, easy bruising, vascular fragility). We reported the case of a young Caucasian girl with severe short stature and a previous history of neuroblastoma, who displayed the compound phenotype of OI/EDS. Next generation sequencing was applied to the proband and her parent genome. Our patient presented a de novo heterozygous COL1A1 variant (c.3235G>A, p.Gly1079Ser), whose presence might be indicative of diagnosis of OI/EDS overlap syndrome. We also hypothesize that the association with the previous history of neuroblastoma could be influenced by the presence of COL1A1 mutation, whose role has been already described in the behavior and progression of some cancers.
Collapse
|
16
|
The Ehlers–Danlos Syndromes against the Backdrop of Inborn Errors of Metabolism. Genes (Basel) 2022; 13:genes13020265. [PMID: 35205310 PMCID: PMC8872221 DOI: 10.3390/genes13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The Ehlers–Danlos syndromes are a group of multisystemic heritable connective tissue disorders with clinical presentations that range from multiple congenital malformations, over adolescent-onset debilitating or even life-threatening complications of connective tissue fragility, to mild conditions that remain undiagnosed in adulthood. To date, thirteen different EDS types have been recognized, stemming from genetic defects in 20 different genes. While initial biochemical and molecular analyses mainly discovered defects in genes coding for the fibrillar collagens type I, III and V or their modifying enzymes, recent discoveries have linked EDS to defects in non-collagenous matrix glycoproteins, in proteoglycan biosynthesis and in the complement pathway. This genetic heterogeneity explains the important clinical heterogeneity among and within the different EDS types. Generalized joint hypermobility and skin hyperextensibility with cutaneous fragility, atrophic scarring and easy bruising are defining manifestations of EDS; however, other signs and symptoms of connective tissue fragility, such as complications of vascular and internal organ fragility, orocraniofacial abnormalities, neuromuscular involvement and ophthalmological complications are variably present in the different types of EDS. These features may help to differentiate between the different EDS types but also evoke a wide differential diagnosis, including different inborn errors of metabolism. In this narrative review, we will discuss the clinical presentation of EDS within the context of inborn errors of metabolism, give a brief overview of their underlying genetic defects and pathophysiological mechanisms and provide a guide for the diagnostic approach.
Collapse
|
17
|
Golgi Metal Ion Homeostasis in Human Health and Diseases. Cells 2022; 11:cells11020289. [PMID: 35053405 PMCID: PMC8773785 DOI: 10.3390/cells11020289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus is a membrane organelle located in the center of the protein processing and trafficking pathway. It consists of sub-compartments with distinct biochemical compositions and functions. Main functions of the Golgi, including membrane trafficking, protein glycosylation, and sorting, require a well-maintained stable microenvironment in the sub-compartments of the Golgi, along with metal ion homeostasis. Metal ions, such as Ca2+, Mn2+, Zn2+, and Cu2+, are important cofactors of many Golgi resident glycosylation enzymes. The homeostasis of metal ions in the secretory pathway, which is required for proper function and stress response of the Golgi, is tightly regulated and maintained by transporters. Mutations in the transporters cause human diseases. Here we provide a review specifically focusing on the transporters that maintain Golgi metal ion homeostasis under physiological conditions and their alterations in diseases.
Collapse
|
18
|
Micale L, Fusco C, Castori M. Ehlers-Danlos Syndromes, Joint Hypermobility and Hypermobility Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:207-233. [PMID: 34807421 DOI: 10.1007/978-3-030-80614-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ehlers-Danlos syndrome is an umbrella term for a clinically and genetically heterogeneous group of hereditary soft connective tissue disorders mainly featuring abnormal cutaneous texture (doughy/velvety, soft, thin, and/or variably hyperextensible skin), easy bruising, and joint hypermobility. Currently, musculoskeletal manifestations related to joint hypermobility are perceived as the most prevalent determinants of the quality of life of affected individuals. The 2017 International Classification of Ehlers-Danlos syndromes and related disorders identifies 13 clinical types due to deleterious variants in 19 different genes. Recent publications point out the possibility of a wider spectrum of conditions that may be considered members of the Ehlers-Danlos syndrome community. Most Ehlers-Danlos syndromes are due to inherited abnormalities affecting the biogenesis of fibrillar collagens and other components of the extracellular matrix. The introduction of next-generation sequencing technologies in the diagnostic setting fastened patients' classification and improved our knowledge on the phenotypic variability of many Ehlers-Danlos syndromes. This is impacting significantly patients' management and family counseling. At the same time, most individuals presenting with joint hypermobility and associated musculoskeletal manifestations still remain without a firm diagnosis, due to a too vague clinical presentation and/or the lack of an identifiable molecular biomarker. These individuals are currently defined with the term "hypermobility spectrum disorders". Hence, in parallel with a continuous update of the International Classification of Ehlers-Danlos syndromes, the scientific community is investing efforts in offering a more efficient framework for classifying and, hopefully, managing individuals with joint hypermobility.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
19
|
Vroman R, Malfait AM, Miller RE, Malfait F, Syx D. Animal Models of Ehlers-Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Front Genet 2021; 12:726474. [PMID: 34712265 PMCID: PMC8547655 DOI: 10.3389/fgene.2021.726474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Robin Vroman
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
21
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Lieberwirth JK, Joset P, Heinze A, Hentschel J, Stein A, Iannaccone A, Steindl K, Kuechler A, Abou Jamra R. Bi-allelic loss of function variants in SLC30A5 as cause of perinatal lethal cardiomyopathy. Eur J Hum Genet 2021; 29:808-815. [PMID: 33547425 PMCID: PMC8110774 DOI: 10.1038/s41431-020-00803-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Perinatal mortality is a heavy burden for both affected parents and physicians. However, the underlying genetic causes have not been sufficiently investigated and most cases remain without diagnosis. This impedes appropriate counseling or therapy. We describe four affected children of two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. In the four patients, we found the following homozygous loss of function (LoF) variants in SLC30A5 NM_022902.4:c.832_836del p.(Ile278Phefs*33) and NM_022902.4:c.1981_1982del p.(His661Tyrfs*10). Knockout of SLC30A5 has previously been shown a cardiac phenotype in mouse models and no homozygous LoF variants in SLC30A5 are currently described in gnomAD. Taken together, we present SLC30A5 as a new gene for a severe and perinatally lethal form of cardiomyopathy.
Collapse
Affiliation(s)
- Johann Kaspar Lieberwirth
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Pascal Joset
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Anja Heinze
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Julia Hentschel
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Anja Stein
- grid.5718.b0000 0001 2187 5445Department of Pediatrics I, Division of Neonatology, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Antonella Iannaccone
- grid.5718.b0000 0001 2187 5445Department of Gynecology and Obstetrics, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Katharina Steindl
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alma Kuechler
- grid.5718.b0000 0001 2187 5445Institute of Human Genetics, University Medical Center Essen, University of Duisburg—Essen, Essen, Germany
| | - Rami Abou Jamra
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Gensemer C, Burks R, Kautz S, Judge DP, Lavallee M, Norris RA. Hypermobile Ehlers-Danlos syndromes: Complex phenotypes, challenging diagnoses, and poorly understood causes. Dev Dyn 2021; 250:318-344. [PMID: 32629534 PMCID: PMC7785693 DOI: 10.1002/dvdy.220] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable, connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. There is phenotypic and genetic variation among the 13 subtypes. The initial genetic findings on EDS were related to alterations in fibrillar collagen, but the elucidation of the molecular basis of many of the subtypes revealed several genes not involved in collagen biosynthesis or structure. However, the genetic basis of the hypermobile type of EDS (hEDS) is still unknown. hEDS is the most common type of EDS and involves generalized joint hypermobility, musculoskeletal manifestations, and mild skin involvement along with the presence of several comorbid conditions. Variability in the spectrum and severity of symptoms and progression of patient phenotype likely depend on age, gender, lifestyle, and expression domains of the EDS genes during development and postnatal life. In this review, we summarize the current molecular, genetic, epidemiologic, and pathogenetic findings related to EDS with a focus on the hypermobile type.
Collapse
Affiliation(s)
- Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Randall Burks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel P. Judge
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Lavallee
- Department of Family Medicine, Wellspan Health, York, Pennsylvania
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
24
|
Tuna F, Doğanlar ZB, Özdemir H, Demirbag Kabayel D, Doğanlar O. Ehlers-Danlos syndrome-related genes and serum strontium, zinc, and lithium levels in generalized joint hypermobility: a case-control study. Connect Tissue Res 2021; 62:215-225. [PMID: 31594391 DOI: 10.1080/03008207.2019.1675648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim of the study: Generalized joint hypermobility (GJH) is a common feature of almost all Ehlers-Danlos syndrome (EDS) types; however, its genetic basis remains unclear. Therefore, it is crucial to distinguish the genetic basis of GJH from other connective tissue disorders, including the different subtypes of EDS. The aim of this study was to determine the blood EDS-related gene expressions and serum element levels in GJH and reveal their predictive characteristics and correlations with the Beighton score. Materials and Methods: A total of 39 women aged 18-23 years with GJH and 38 age- and sex-matched controls were included in the study. Inductively coupled plasma mass spectrometry was used to analyze the serum levels of zinc (Zn), strontium (Sr), and lithium (Li). The relative expression levels of the EDS-related genes were determined using quantitative real-time polymerase chain reaction (PCR). Results: Our results showed that women with GJH possessed significantly lower Li and higher Zn and Sr levels than the controls. In addition, the gene expressions of TNXB and SLC39A13 were significantly higher, whereas those of COL1A1, COL1A2, COL5A1, FKBP14, and DSE were lower in the GJH group. Pearson correlation analyses revealed a strong negative correlation between the Beighton score and B4GALT7, FKBP14, COL1A1, and Li. However, a significant positive correlation was noted between the Beighton score and SLC39A13, TNXB, Zn, Sr, and B3GALT6. Conclusion: Our findings provide valuable basal levels for conducting gene function analysis of joint hypermobility-related connective tissue disorders.
Collapse
Affiliation(s)
- Filiz Tuna
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Trakya Universtiy Faculty of Medicine , Edirne, Turkey
| | - Hande Özdemir
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Derya Demirbag Kabayel
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya Universtiy Faculty of Medicine , Edirne, Turkey
| |
Collapse
|
25
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
Reticular Basement Membrane Thickness Is Associated with Growth- and Fibrosis-Promoting Airway Transcriptome Profile-Study in Asthma Patients. Int J Mol Sci 2021; 22:ijms22030998. [PMID: 33498209 PMCID: PMC7863966 DOI: 10.3390/ijms22030998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022] Open
Abstract
Airway remodeling in asthma is characterized by reticular basement membrane (RBM) thickening, likely related to epithelial structural and functional changes. Gene expression profiling of the airway epithelium might identify genes involved in bronchial structural alterations. We analyzed bronchial wall geometry (computed tomography (CT)), RBM thickness (histology), and the bronchial epithelium transcriptome profile (gene expression array) in moderate to severe persistent (n = 21) vs. no persistent (n = 19) airflow limitation asthmatics. RBM thickness was similar in the two studied subgroups. Among the genes associated with increased RBM thickness, the most essential were those engaged in cell activation, proliferation, and growth (e.g., CDK20, TACC2, ORC5, and NEK5) and inhibiting apoptosis (e.g., higher mRNA expression of RFN34, BIRC3, NAA16, and lower of RNF13, MRPL37, CACNA1G). Additionally, RBM thickness correlated with the expression of genes encoding extracellular matrix (ECM) components (LAMA3, USH2A), involved in ECM remodeling (LTBP1), neovascularization (FGD5, HPRT1), nerve functioning (TPH1, PCDHGC4), oxidative stress adaptation (RIT1, HSP90AB1), epigenetic modifications (OLMALINC, DNMT3A), and the innate immune response (STAP1, OAS2). Cluster analysis revealed that genes linked with RBM thickness were also related to thicker bronchial walls in CT. Our study suggests that the pro-fibrotic profile in the airway epithelial cell transcriptome is associated with a thicker RBM, and thus, may contribute to asthma airway remodeling.
Collapse
|
27
|
Wang J, Cheng X, Zhao H, Yang Q, Xu Z. Downregulation of the zinc transporter SLC39A13 (ZIP13) is responsible for the activation of CaMKII at reperfusion and leads to myocardial ischemia/reperfusion injury in mouse hearts. J Mol Cell Cardiol 2020; 152:69-79. [PMID: 33307093 DOI: 10.1016/j.yjmcc.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
While Zn2+ dyshomeostasis is known to contribute to ischemia/reperfusion (I/R) injury, the roles of zinc transporters that are responsible for Zn2+ homeostasis in the pathogenesis of I/R injury remain to be addressed. This study reports that ZIP13 (SLC39A13), a zinc transporter, plays a role in myocardial I/R injury by modulating the Ca2+ signaling pathway rather than by regulating Zn2+ transport. ZIP13 is downregulated upon reperfusion in mouse hearts or in H9c2 cells at reoxygenation. Ca2+ but not Zn2+ was responsible for ZIP13 downregulation, implying that ZIP13 may play a role in I/R injury through the Ca2+ signaling pathway. In line with our assumption, knockout of ZIP13 resulted in phosphorylation (Thr287) of Ca2+-calmodulin-dependent protein kinase (CaMKII), indicating that downregulation of ZIP13 leads to CaMKII activation. Further studies showed that the heart-specific knockout of ZIP13 enhanced I/R-induced CaMKII phosphorylation in mouse hearts. In contrast, overexpression of ZIP13 suppressed I/R-induced CaMKII phosphorylation. Moreover, the heart-specific knockout of ZIP13 exacerbated myocardial infarction in mouse hearts subjected to I/R, whereas overexpression of ZIP13 reduced infarct size. In addition, knockout of ZIP13 induced increases of mitochondrial Ca2+, ROS, mitochondrial swelling, decrease in the mitochondrial respiration control rate (RCR), and dissipation of mitochondrial membrane potential (ΔΨm) in a CaMKII-dependent manner. These data suggest that downregulation of ZIP13 at reperfusion contributes to myocardial I/R injury through activation of CaMKII and the mitochondrial death pathway.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
28
|
Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118882. [PMID: 33017595 DOI: 10.1016/j.bbamcr.2020.118882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
C. elegans is a powerful model for studies of zinc biology. Here we review recent discoveries and emphasize the advantages of this model organism. Methods for manipulating and measuring zinc levels have been developed in or adapted to the worm. The C. elegans genome encodes highly conserved zinc transporters, and their expression and function are beginning to be characterized. Homeostatic mechanisms have evolved to respond to high and low zinc conditions. The pathway for high zinc homeostasis has been recently elucidated based on the discovery of the master regulator of high zinc homeostasis, HIZR-1. A parallel pathway for low zinc homeostasis is beginning to emerge based on the discovery of the Low Zinc Activation promoter element. Zinc has been established to play a role in two cell fate determination events, and accumulating evidence suggests zinc may function as a second messenger signaling molecule during vulval cell development and sperm activation.
Collapse
Affiliation(s)
- Brian J Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Adelita D Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America.
| |
Collapse
|
29
|
The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas. Gene 2020; 750:144759. [DOI: 10.1016/j.gene.2020.144759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
|
30
|
Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Primers 2020; 6:64. [PMID: 32732924 DOI: 10.1038/s41572-020-0194-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.
Collapse
Affiliation(s)
- Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Strong MD, Hart MD, Tang TZ, Ojo BA, Wu L, Nacke MR, Agidew WT, Hwang HJ, Hoyt PR, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. Role of zinc transporter ZIP12 in susceptibility-weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. FASEB J 2020; 34:10702-12725. [PMID: 32716562 DOI: 10.1096/fj.202000772r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Brain zinc dysregulation is linked to many neurological disorders. However, the mechanisms regulating brain zinc homeostasis are poorly understood. We performed secondary analyses of brain MRI GWAS and exome sequencing data from adults in the UK Biobank. Coding ZIP12 polymorphisms in zinc transporter ZIP12 (SLC39A12) were associated with altered brain susceptibility weighted MRI (swMRI). Conditional and joint association analyses revealed independent GWAS signals in linkage disequilibrium with 2 missense ZIP12 polymorphisms, rs10764176 and rs72778328, with reduced zinc transport activity. ZIP12 rare coding variants predicted to be deleterious were associated with similar impacts on brain swMRI. In Neuro-2a cells, ZIP12 deficiency by short hairpin RNA (shRNA) depletion or CRISPR/Cas9 genome editing resulted in impaired mitochondrial function, increased superoxide presence, and detectable protein carbonylation. Inhibition of Complexes I and IV of the electron transport chain reduced neurite outgrowth in ZIP12 deficient cells. Transcriptional coactivator PGC-1α, mitochondrial superoxide dismutase (SOD2), and chemical antioxidants α-tocopherol, MitoTEMPO, and MitoQ restored neurite extension impaired by ZIP12 deficiency. Mutant forms of α-synuclein and tau linked to familial Parkinson's disease and frontotemporal dementia, respectively, reduced neurite outgrowth in cells deficient in ZIP12. Zinc and ZIP12 may confer resilience against neurological diseases or premature aging of the brain.
Collapse
Affiliation(s)
- Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Tony Z Tang
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Babajide A Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mariah R Nacke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Workneh T Agidew
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hong J Hwang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Peter R Hoyt
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
32
|
van Huizen NA, Ijzermans JNM, Burgers PC, Luider TM. Collagen analysis with mass spectrometry. MASS SPECTROMETRY REVIEWS 2020; 39:309-335. [PMID: 31498911 DOI: 10.1002/mas.21600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kumps C, Campos-Xavier B, Hilhorst-Hofstee Y, Marcelis C, Kraenzlin M, Fleischer N, Unger S, Superti-Furga A. The Connective Tissue Disorder Associated with Recessive Variants in the SLC39A13 Zinc Transporter Gene (Spondylo-Dysplastic Ehlers-Danlos Syndrome Type 3): Insights from Four Novel Patients and Follow-Up on Two Original Cases. Genes (Basel) 2020; 11:genes11040420. [PMID: 32295219 PMCID: PMC7231014 DOI: 10.3390/genes11040420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Recessive loss-of-function variants in SLC39A13, a putative zinc transporter gene, were first associated with a connective tissue disorder that is now called “Ehlers–Danlos syndrome, spondylodysplastic form type 3” (SCD-EDS, OMIM 612350) in 2008. Nine individuals have been described. We describe here four additional affected individuals from three consanguineous families and the follow up of two of the original cases. In our series, cardinal findings included thin and finely wrinkled skin of the hands and feet, characteristic facial features with downslanting palpebral fissures, mild hypertelorism, prominent eyes with a paucity of periorbital fat, blueish sclerae, microdontia, or oligodontia, and—in contrast to most types of Ehlers–Danlos syndrome—significant short stature of childhood onset. Mild radiographic changes were observed, among which platyspondyly is a useful diagnostic feature. Two of our patients developed severe keratoconus, and two suffered from cerebrovascular accidents in their twenties, suggesting that there may be a vascular component to this condition. All patients tested had a significantly reduced ratio of the two collagen-derived crosslink derivates, pyridinoline-to-deoxypyridinoline, in urine, suggesting that this simple test is diagnostically useful. Additionally, analysis of the facial features of affected individuals by DeepGestalt technology confirmed their specificity and may be sufficient to suggest the diagnosis directly. Given that the clinical presentation in childhood consists mainly of short stature and characteristic facial features, the differential diagnosis is not necessarily that of a connective tissue disorder and therefore, we propose that SLC39A13 is included in gene panels designed to address dysmorphism and short stature. This approach may result in more efficient diagnosis.
Collapse
Affiliation(s)
- Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (C.K.); (B.C.-X.); (S.U.)
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (C.K.); (B.C.-X.); (S.U.)
| | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marius Kraenzlin
- Clinic for Endocrinology, Diabetes & Metabolism, University Hospital Basel, 4031 Basel, Switzerland;
| | | | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (C.K.); (B.C.-X.); (S.U.)
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (C.K.); (B.C.-X.); (S.U.)
- Correspondence:
| |
Collapse
|
34
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
35
|
Elucidating the H + Coupled Zn 2+ Transport Mechanism of ZIP4; Implications in Acrodermatitis Enteropathica. Int J Mol Sci 2020; 21:ijms21030734. [PMID: 31979155 PMCID: PMC7037870 DOI: 10.3390/ijms21030734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cellular Zn2+ homeostasis is tightly regulated and primarily mediated by designated Zn2+ transport proteins, namely zinc transporters (ZnTs; SLC30) that shuttle Zn2+ efflux, and ZRT-IRT-like proteins (ZIPs; SLC39) that mediate Zn2+ influx. While the functional determinants of ZnT-mediated Zn2+ efflux are elucidated, those of ZIP transporters are lesser understood. Previous work has suggested three distinct molecular mechanisms: (I) HCO3- or (II) H+ coupled Zn2+ transport, or (III) a pH regulated electrodiffusional mode of transport. Here, using live-cell fluorescent imaging of Zn2+ and H+, in cells expressing ZIP4, we set out to interrogate its function. Intracellular pH changes or the presence of HCO3- failed to induce Zn2+ influx. In contrast, extracellular acidification stimulated ZIP4 dependent Zn2+ uptake. Furthermore, Zn2+ uptake was coupled to enhanced H+ influx in cells expressing ZIP4, thus indicating that ZIP4 is not acting as a pH regulated channel but rather as an H+ powered Zn2+ co-transporter. We further illustrate how this functional mechanism is affected by genetic variants in SLC39A4 that in turn lead to Acrodermatitis enteropathica, a rare condition of Zn2+ deficiency.
Collapse
|
36
|
Novakovic S, Molesworth LW, Gourley TE, Boag PR, Davis GM. Zinc transporters maintain longevity by influencing insulin/IGF-1 activity in Caenorhabditis elegans. FEBS Lett 2020; 594:1424-1432. [PMID: 31883120 DOI: 10.1002/1873-3468.13725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Adequate dietary intake of essential metals such as zinc is important for maintaining homeostasis. Abnormal zinc intake in Caenorhabditis elegans has been shown to increase or decrease normal lifespan by influencing the insulin/IGF-1 pathway. Distribution of zinc is achieved by a family of highly conserved zinc transport proteins (ZIPT in C. elegans). This study investigated the role of the zipt family of genes and showed that depletion of individual zipt genes results in a decreased lifespan. Moreover, zipt-16 and zipt-17 mutants synthetically interact with the insulin/IGF cofactors daf-16 and skn-1, and cause abnormal localisation of DAF-16. This study suggests that the zipt family of genes are required for maintaining normal lifespan through influencing the insulin/IGF-1 pathway.
Collapse
Affiliation(s)
- Stevan Novakovic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Luke W Molesworth
- School of Health and Life Sciences, Federation University, Churchill, VIC, Australia
| | - Taylin E Gourley
- School of Health and Life Sciences, Federation University, Churchill, VIC, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Gregory M Davis
- School of Health and Life Sciences, Federation University, Churchill, VIC, Australia
| |
Collapse
|
37
|
Genetic Disorders Associated with Metal Metabolism. Cells 2019; 8:cells8121598. [PMID: 31835360 PMCID: PMC6952812 DOI: 10.3390/cells8121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic disorders associated with metal metabolism form a large group of disorders and mostly result from defects in the proteins/enzymes involved in nutrient metabolism and energy production. These defects can affect different metabolic pathways and cause mild to severe disorders related to metal metabolism. Some disorders have moderate to severe clinical consequences. In severe cases, these elements accumulate in different tissues and organs, particularly the brain. As they are toxic and interfere with normal biological functions, the severity of the disorder increases. However, the human body requires a very small amount of these elements, and a deficiency of or increase in these elements can cause different genetic disorders to occur. Some of the metals discussed in the present review are copper, iron, manganese, zinc, and selenium. These elements may play a key role in the pathology and physiology of the nervous system.
Collapse
|
38
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|
39
|
Zhao M, Zhou B. A distinctive sequence motif in the fourth transmembrane domain confers ZIP13 iron function in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118607. [PMID: 31733261 DOI: 10.1016/j.bbamcr.2019.118607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023]
Abstract
The zinc/iron permease (ZIP/SLC39A) family plays an important role in metal ion transport and is essential for diverse physiological processes. Members of the ZIP family function primarily in the influx of transition metal ions zinc and iron, into cytoplasm from extracellular space or intracellular organelles. The molecular determinants defining metal ion selectivity among ZIP family members remain unclear. Specifically, we reported before that the Drosophila ZIP family member ZIP13 (dZIP13), functions as an iron exporter and was responsible for pumping iron into the secretory pathway. ZIP13 protein is unique in that it differs from the other LIV-1 subfamily members at transmembrane domain IV (TM4), wherein relative positions of the conserved H and D residues in the HNXXD sequence motif are switched, generating a DNXXH motif. In this study, we undertook an in vivo approach to explore the significance of this D/H exchange. Comparative functional analysis of mutants revealed that the relative positions of D and H are critical for the physiological roles of dZIP13 and its close homologue dZIP7. Swapping D/H position of this DNXXH sequence in dZIP13 resulted in loss of iron activity; normal dZIP13 could not complement dZIP7 loss, but swapping the two relative amino acid positions D and H in dZIP13 was sufficient to make it functionally analogous to its close homologue dZIP7. This work provides the first in vivo functional analysis of a structural motif required to differentiate different transporting functions of ZIPs.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Caraffi SG, Maini I, Ivanovski I, Pollazzon M, Giangiobbe S, Valli M, Rossi A, Sassi S, Faccioli S, Rocco MD, Magnani C, Campos-Xavier B, Unger S, Superti-Furga A, Garavelli L. Severe Peripheral Joint Laxity is a Distinctive Clinical Feature of Spondylodysplastic-Ehlers-Danlos Syndrome (EDS)- B4GALT7 and Spondylodysplastic-EDS- B3GALT6. Genes (Basel) 2019; 10:genes10100799. [PMID: 31614862 PMCID: PMC6826576 DOI: 10.3390/genes10100799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Variations in genes encoding for the enzymes responsible for synthesizing the linker region of proteoglycans may result in recessive conditions known as "linkeropathies". The two phenotypes related to mutations in genes B4GALT7 and B3GALT6 (encoding for galactosyltransferase I and II respectively) are similar, characterized by short stature, hypotonia, joint hypermobility, skeletal features and a suggestive face with prominent forehead, thin soft tissue and prominent eyes. The most outstanding feature of these disorders is the combination of severe connective tissue involvement, often manifesting in newborns and infants, and skeletal dysplasia that becomes apparent during childhood. Here, we intend to more accurately define some of the clinical features of B4GALT7 and B3GALT6-related conditions and underline the extreme hypermobility of distal joints and the soft, doughy skin on the hands and feet as features that may be useful as the first clues for a correct diagnosis.
Collapse
Affiliation(s)
- Stefano Giuseppe Caraffi
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Ilenia Maini
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
- Child Neuropsychiatry Unit, Azienda USL of Parma, 43125 Parma, Italy.
| | - Ivan Ivanovski
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy.
| | - Marzia Pollazzon
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Sara Giangiobbe
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Maurizia Valli
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Sassi
- Rehabilitation Pediatric Unit, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Silvia Faccioli
- Rehabilitation Pediatric Unit, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, 43121 Parma, Italy.
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Sheila Unger
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
41
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Drosophila ZIP13 is posttranslationally regulated by iron-mediated stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1487-1497. [DOI: 10.1016/j.bbamcr.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
|
43
|
Further Defining the Phenotypic Spectrum of B3GAT3 Mutations and Literature Review on Linkeropathy Syndromes. Genes (Basel) 2019; 10:genes10090631. [PMID: 31438591 PMCID: PMC6770791 DOI: 10.3390/genes10090631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
The term linkeropathies (LKs) refers to a group of rare heritable connective tissue disorders, characterized by a variable degree of short stature, skeletal dysplasia, joint laxity, cutaneous anomalies, dysmorphism, heart malformation, and developmental delay. The LK genes encode for enzymes that add glycosaminoglycan chains onto proteoglycans via a common tetrasaccharide linker region. Biallelic variants in XYLT1 and XYLT2, encoding xylosyltransferases, are associated with Desbuquois dysplasia type 2 and spondylo-ocular syndrome, respectively. Defects in B4GALT7 and B3GALT6, encoding galactosyltransferases, lead to spondylodysplastic Ehlers-Danlos syndrome (spEDS). Mutations in B3GAT3, encoding a glucuronyltransferase, were described in 25 patients from 12 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Herein, we report on a 13-year-old girl with a clinical presentation suggestive of spEDS, according to the 2017 EDS nosology, in whom compound heterozygosity for two B3GAT3 likely pathogenic variants was identified. We review the spectrum of B3GAT3-related disorders and provide a comparison of all LK patients reported up to now, highlighting that LKs are a phenotypic continuum bridging EDS and skeletal disorders, hence offering future nosologic perspectives.
Collapse
|
44
|
Ewans LJ, Colley A, Gaston-Massuet C, Gualtieri A, Cowley MJ, McCabe MJ, Anand D, Lachke SA, Scietti L, Forneris F, Zhu Y, Ying K, Walsh C, Kirk EP, Miller D, Giunta C, Sillence D, Dinger M, Buckley M, Roscioli T. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet 2019; 56:629-638. [DOI: 10.1136/jmedgenet-2019-106019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
BackgroundPathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease.MethodsReported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features.ResultsKey clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder.ConclusionThese data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.
Collapse
|
45
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
46
|
Understanding the basis of Ehlers-Danlos syndrome in the era of the next-generation sequencing. Arch Dermatol Res 2019; 311:265-275. [PMID: 30826961 DOI: 10.1007/s00403-019-01894-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) defined by joint laxity, skin alterations, and joint hypermobility. The latest EDS classification recognized 13 subtypes in which the clinical and genetic phenotypes are often overlapping, making the diagnosis rather difficult and strengthening the importance of the molecular diagnostic confirmation. New genetic techniques such as next-generation sequencing (NGS) gave the opportunity to identify the genetic bases of unresolved EDS types and support clinical counseling. To date, the molecular defects have been identified in 19 genes, mainly in those encoding collagen, its modifying enzymes or other constituents of the extracellular matrix (ECM). In this review we summarize the contribution of NGS technologies to the current knowledge of the genetic background in different EDS subtypes.
Collapse
|
47
|
Hirose T, Shimazaki T, Takahashi N, Fukada T, Watanabe T, Tangkawattana P, Takehana K. Morphometric analysis of thoracic aorta in Slc39a13/Zip13-KO mice. Cell Tissue Res 2019; 376:137-141. [PMID: 30610452 DOI: 10.1007/s00441-018-2977-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/13/2018] [Indexed: 01/24/2023]
Abstract
Ehlers-Danlos syndrome (EDS) is a collection of inheritable diseases involving the musculoskeletal, integumentary and visual systems. Spondylodysplastic EDS-ZIP13 (spEDS-ZIP13: OMIM 612350) was recently defined as a new form of EDS. Although vasculitis has been found in many spEDS-ZIP13 patients, vascular pathology has not been included as a pathognomonic lesion of this type of EDS. We investigate the morphometry of the thoracic aorta in wild-type and Zip13-knockout (Zip13-KO) mice. Our assessment found abnormalities in the number and morphology of elastic and cellular components in the aortic wall, especially the tunica media, of Zip13-KO mice, indicating aortic fragility. Accordingly, our major findings (vascular smooth muscle cells with small nuclei, small percentage of elastic membrane area per tunica media, many large elastic flaps) should be considered vulnerable characteristics indicating fragility of the aorta in patients with spEDS-ZIP13.
Collapse
Affiliation(s)
- Takuya Hirose
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Takamasa Shimazaki
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Naoki Takahashi
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8055, Japan
| | - Takafumi Watanabe
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
- Laboratory of Animal Functional Anatomy, Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Prasarn Tangkawattana
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Kazushige Takehana
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
48
|
Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 2018; 49:27-34. [PMID: 29895369 PMCID: PMC6082398 DOI: 10.1016/j.jtemb.2018.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular compartments to avoid toxicity, maintain homeostasis, and for loading metalloproteins needed during myogenesis. This study advances our basic understanding of the complex Zn transport network during muscle differentiation.
Collapse
Affiliation(s)
- Amanda L Paskavitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Sonia Ortiz-Miranda
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
49
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
50
|
Ueda K, Kawai T, Senoo H, Shimizu A, Ishiko A, Nagata M. Histopathological and electron microscopic study in dogs with patellar luxation and skin hyperextensibility. J Vet Med Sci 2018; 80:1309-1316. [PMID: 29984735 PMCID: PMC6115261 DOI: 10.1292/jvms.18-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patellar luxation is abnormal displacement of the patella from the femoral trochlear
groove. It is seen primarily in small breed dogs and causes pain and limited mobility of
the stifle joint. This study aimed to investigate the relationship among patellar
luxation, skin extension, and skin collagen fibril diameter. Nine dogs with patellar
luxation and five clinically normal dogs were enrolled in the study. We measured the skin
extension and investigated the ultrastructure of the skin and patellofemoral ligament by
histopathology and transmission electron microscopy. The mean skin extension in dogs with
patellar luxation was 18.5 ± 5.5% which is greater than the reference value (14.5%). Mean
skin extension in controls was 8.8 ± 1.7% and was within the normal range. In dogs with
patellar luxation, histopathology of the skin and patellofemoral ligament showed sparse
and unevenly distributed collagen fibers. Transmission electron microscopy identified
poorly organized, irregularly shaped, thin collagen fibrils. Collagen fibril thickness in
dogs with patellar luxation was significantly less than fibril thickness in controls
(P<0.001). There was a significant negative correlation (ρ= −0.863;
P<0.001) between skin collagen fibril diameter and skin extension.
Skin extension was correlated with patellar luxation and disease severity. Dogs with
patellar luxation, joint dysplasia, and hyperextensible skin appear to be pathologically
related. This might represent a phenotype of the Ehlers–Danlos syndrome, a hereditary
connective tissue disorder in humans.
Collapse
Affiliation(s)
- Kazunori Ueda
- Yokohama Yamate Dog & Cat Medical Center, 27-4 Kashiwaba, Naka, Yokohama, Kanagawa 231-0866, Japan
| | - Tomoyuki Kawai
- Yokohama Yamate Dog & Cat Medical Center, 27-4 Kashiwaba, Naka, Yokohama, Kanagawa 231-0866, Japan
| | - Haruki Senoo
- Department of Cell Biology and Histology, Akita University School of Medicine, 1-1-1 Hondo Akita, Akita 010-8543, Japan
| | - Atsushi Shimizu
- Shimizu Animal Hospital, 1747-1 Kaisuka, Kamogawa-shi, Chiba 296-0004, Japan.,Department of Dermatology, School of Medicine, Faculty of Medicine, Toho University, 6-11-1 Ohmori-Nishi, Ohta, Tokyo 143-8541, Japan
| | - Akira Ishiko
- Department of Dermatology, School of Medicine, Faculty of Medicine, Toho University, 6-11-1 Ohmori-Nishi, Ohta, Tokyo 143-8541, Japan
| | - Masahiko Nagata
- Synergy Animal General Hospital, 815 Ishigami Kawaguchi, Saitama 333-0823, Japan
| |
Collapse
|