1
|
Bruguera ES, Mahoney JP, Weis WI. The co-receptor Tetraspanin12 directly captures Norrin to promote ligand-specific β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578714. [PMID: 38352533 PMCID: PMC10862866 DOI: 10.1101/2024.02.03.578714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and Low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine-knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.
Collapse
Affiliation(s)
- Elise S Bruguera
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jacob P Mahoney
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - William I Weis
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
3
|
Redden LD, Iaboni DS, van der Ende S, Nightingale M, Gaston D, McMaster CR, Robitaille JM, Gupta RR. Multimodal imaging of white preretinal lesions in atypical familial exudative vitreoretinopathy: Case report and literature review. Am J Ophthalmol Case Rep 2024; 34:102051. [PMID: 38628947 PMCID: PMC11019094 DOI: 10.1016/j.ajoc.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To report a rare clinical finding of preretinal granules associated with atypical familial exudative vitreoretinopathy (FEVR) and perform a review of the literature. Observations An asymptomatic 18-year-old male was referred for unilateral peripheral avascular retina evaluation in association with presumed FEVR. He was first noted to have white preretinal granules on fundus examination at five years of age. The lesions remained unchanged over the subsequent years. Genetic testing did not reveal a pathogenic or likely pathogenic variant in a known FEVR gene. A review of the literature revealed five other cases of FEVR with similar findings. Conclusions and Importance Literature review suggests preretinal granules may present rarely in FEVR. Negative genetic screening of known FEVR genes in our patient with atypical FEVR suggests either a molecularly distinct etiology supporting the rarity of this association with FEVR or, alternatively, the presence of granules in developmental retinal vascular anomalies that are not specific to FEVR. Future study and genetic testing is necessary to better understand the cause of these preretinal granules and the clinical manifestations of FEVR.
Collapse
Affiliation(s)
- Liam D. Redden
- Dalhousie Medical School, Dalhousie University, Halifax, NS, Canada
| | - Douglas S.M. Iaboni
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sarah van der Ende
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R. McMaster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johane M. Robitaille
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - R. Rishi Gupta
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Lähteenoja L, Palosaari T, Tiirikka T, Haanpää M, Moilanen J, Falck A, Rahikkala E. Clinical and genetic characteristics and natural history of Finnish families with familial exudative vitreoretinopathy due to pathogenic FZD4 variants. Acta Ophthalmol 2024. [PMID: 38706142 DOI: 10.1111/aos.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population. METHODS Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed. RESULTS Thirty-two individuals with FZD4 c.313A>G variant and three individuals with FZD4 c.40_49del were included in the study. The clinical phenotype was variable even among family members with the same FZD4 variant. Only 34% (N = 12/35) of variant-positive individuals had been clinically diagnosed with FEVR. The median age of the onset of symptoms was 2.3 years, ranging between 0 to 25 years. Median visual acuity was 0.1 logMAR (0.8 Snellen decimal), ranging between light perception and -0.1 logMAR (1.25 Snellen decimal). Most (N = 33/35, 94%) were classified as not visually impaired. Despite unilateral visual loss present in some, they did not meet the criteria of visual impairment according to the WHO classification. Two study patients (N = 2/35, 6%) had severe visual impairment. The most common FEVR stage in study patient's eyes (N = 28/70 eyes, 40%) was FEVR stage 1, that is, avascular periphery or abnormal vascularisation. Most of FZD4-variant-positive study patient's eyes (N = 31/50 eyes, 62%) were myopic. Two individuals presented with persistent hyperplastic primary vitreous expanding the phenotypic spectrum of FEVR. Shared haplotypes extending approximately 0.9 Mb around the recurrent FZD4 c.313A>G variant were identified. CONCLUSION Most study patients were unaffected or had mild clinical manifestations by FEVR. Myopia seemed to be overly common in FZD4-variant-positive individuals.
Collapse
Affiliation(s)
- Laura Lähteenoja
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Tapani Palosaari
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Timo Tiirikka
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Maria Haanpää
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Jukka Moilanen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Aura Falck
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Surl D, Won D, Lee ST, Lee CS, Lee J, Lim HT, Chung SA, Song WK, Kim M, Kim SS, Shin S, Choi JR, Sangermano R, Byeon SH, Bujakowska KM, Han J. Clinician-Driven Reanalysis of Exome Sequencing Data From Patients With Inherited Retinal Diseases. JAMA Netw Open 2024; 7:e2414198. [PMID: 38819824 PMCID: PMC11143468 DOI: 10.1001/jamanetworkopen.2024.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Despite advances in next-generation sequencing (NGS), a significant proportion of patients with inherited retinal disease (IRD) remain undiagnosed after initial genetic testing. Exome sequencing (ES) reanalysis in the clinical setting has been suggested as one method for improving diagnosis of IRD. Objective To investigate the association of clinician-led reanalysis of ES data, which incorporates updated clinical information and comprehensive bioinformatic analysis, with the diagnostic yield in a cohort of patients with IRDs in Korea. Design, Setting, and Participants This was a multicenter prospective cohort study involving 264 unrelated patients with IRDs, conducted in Korea between March 2018 and February 2020. Comprehensive ophthalmologic examinations and ES analyses were performed, and ES data were reanalyzed by an IRD specialist for single nucleotide variants, copy number variants, mobile element insertions, and mitochondrial variants. Data were analyzed from March to July 2023. Main Outcomes and Measures Diagnostic rate of conventional bioinformatic analysis and clinician-driven ES reanalysis. Results A total of 264 participants (151 [57.2%] male; mean [SD] age at genetic testing, 33.6 [18.9] years) were enrolled, including 129 patients (48.9%) with retinitis pigmentosa and 26 patients (9.8%) with Stargardt disease or macular dystrophy. Initial bioinformatic analysis diagnosed 166 patients (62.9%). Clinician-driven reanalysis identified the molecular cause of diseases in an additional 22 patients, corresponding to an 8.3-percentage point increase in diagnostic rate. Key factors associated with new molecular diagnoses included clinical phenotype updates (4 patients) and detection of previously overlooked variation, such as structural variants (9 patients), mitochondrial variants (3 patients), filtered or not captured variants (4 patients), and noncanonical splicing variants (2 patients). Among the 22 patients, variants in 7 patients (31.8%) were observed in the initial analysis but not reported to patients, while those in the remaining 15 patients (68.2%) were newly detected by the ES reanalysis. Conclusions and Relevance In this cohort study, clinician-centered reanalysis of ES data was associated with improved molecular diagnostic yields in patients with IRD. This approach is important for uncovering missed genetic causes of retinal disease.
Collapse
Affiliation(s)
- Dongheon Surl
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Christopher Seungkyu Lee
- Institute of Vision Research, Severance Hospital, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Seung Ah Chung
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Min Kim
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Soo Kim
- Institute of Vision Research, Severance Hospital, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | - Suk Ho Byeon
- Institute of Vision Research, Severance Hospital, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| |
Collapse
|
6
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
7
|
Zhao R, Liu M, Dai E, Chen C, Lv L, Peng L, He Y, Li S, Yang M. Deciphering a crucial dimeric interface governing Norrin dimerization and the pathogenesis of familial exudative vitreoretinopathy. FASEB J 2024; 38:e23493. [PMID: 38363575 DOI: 10.1096/fj.202302387r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate β-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted β-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of β-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on β-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liting Lv
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
8
|
Le V, Abdelmessih G, Dailey WA, Pinnock C, Jobczyk V, Rashingkar R, Drenser KA, Mitton KP. Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome. Cells 2023; 12:2579. [PMID: 37947657 PMCID: PMC10647367 DOI: 10.3390/cells12212579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.
Collapse
Affiliation(s)
- Vincent Le
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | | | - Wendy A. Dailey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Cecille Pinnock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Victoria Jobczyk
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Revati Rashingkar
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Kimberly A. Drenser
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Associated Retinal Consultants P.C., Royal Oak, MI 48073, USA
| | - Kenneth P. Mitton
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
9
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Liu S, Zhao H, Huang L, Ma C, Wang Q, Liu L. Vascular features around the optic disc in familial exudative vitreoretinopathy: findings and their relationship to disease severity. BMC Ophthalmol 2023; 23:139. [PMID: 37020201 PMCID: PMC10074868 DOI: 10.1186/s12886-023-02884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder of retinal vascular development. We aimed to study the vascular characteristics around the optic disc in neonates with FEVR and the relationship with disease severity. METHODS A retrospective, case-control study including 43 (58 eyes) newborn patients with FEVR at stages 1 to 3 and 30 (53 eyes) age-matched normal full-term newborns was conducted. The peripapillary vessel tortuosity (VT), vessel width (VW) and vessel density (VD) were quantified by computer technology. The t-distributed stochastic neighbor embedding (t-SNE) algorithm was used to visualize the relationship between the severity of FEVR and the characteristics of perioptic disc vascular parameters. RESULTS The peripapillary VT, VW and VD were significantly increased in the FEVR group compared with the control group (P < 0.05). Subgroup analysis showed that VW and VD increased significantly with progressing FEVR stage (P < 0.05). And only VT in stage 3 FEVR was significantly increased compared with stage 1 and stage 2 (P < 0.05). After controlling the confounders, ordinal logistic regression analysis indicated that the VW (aOR: 1.75, P = 0.0002) and VD (aOR: 2.41, P = 0.0170) were significantly independent correlated with the FEVR stage, but VT (aOR: 1.07, P = 0.5454) was not correlated with FEVR staging. Visual analysis based on the t-SNE algorithm showed that peri-optic disc vascular parameters had a continuity along the direction of FEVR severity. CONCLUSIONS In the neonatal population, there were significant differences in peripapillary vascular parameters between patients with FEVR and normal subjects. Quantitative measurement of vascular parameters around the optic disc can be used as one of the indicators to assess the severity of FEVR.
Collapse
Affiliation(s)
- Shuai Liu
- Anhui Province Maternity and Child Health Hospital, Maternity and Child Health Hospital affiliated to Anhui Medical University, Hefei, 230001, China
| | - Hongwei Zhao
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230022, Anhui, China
| | - Liuhui Huang
- Department of Ophthalmology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai, 200072, China
| | - Cuixia Ma
- Anhui Province Maternity and Child Health Hospital, Maternity and Child Health Hospital affiliated to Anhui Medical University, Hefei, 230001, China
| | - Qiong Wang
- Anhui Province Maternity and Child Health Hospital, Maternity and Child Health Hospital affiliated to Anhui Medical University, Hefei, 230001, China
| | - Lei Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230022, Anhui, China.
| |
Collapse
|
11
|
Zhao R, Dai E, Wang S, Zhang X, He Y, Peng L, Zhao P, Yang Z, Yang M, Li S. A comprehensive functional analysis on the pathogenesis of novel TSPAN12 and NDP variants in familial exudative vitreoretinopathy. Clin Genet 2023; 103:320-329. [PMID: 36453149 DOI: 10.1111/cge.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder; however, the known FEVR-associated variants account for approximately only 50% cases. Currently, the pathogenesis of most reported variants is not well studied, we aim to identify novel variants from FEVR-associated genes and perform a comprehensive functional analysis to uncover the pathogenesis of variants that cause FEVR. Using targeted gene panel and Sanger sequencing, we identified six novel and three known variants in TSPAN12 and NDP. These variants were demonstrated to cause significant inhibition of Norrin/β-catenin pathway by dual-luciferase reporter assay and western blot analysis. Structural analysis and co-immunoprecipitation revealed compromised interactions between missense variants and binding partners in the Norrin/β-catenin pathway. Immunofluorescence and subcellular protein extraction were performed to reveal the abnormal subcellular trafficking. Additionally, over-expression of TSPAN12 successfully enhanced the Norrin/β-catenin signaling activity by strengthening the binding affinity of mutant Norrin with FZD4 or LRP5. Together, these observations expanded the spectrum of FEVR-associated variants for the genetic counseling and prenatal diagnosis of FEVR, as well providing a potential therapeutic strategy for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
12
|
He Y, Yang M, Zhao R, Peng L, Dai E, Huang L, Zhao P, Li S, Yang Z. Novel truncating variants in CTNNB1 cause familial exudative vitreoretinopathy. J Med Genet 2023; 60:174-182. [PMID: 35361685 DOI: 10.1136/jmedgenet-2021-108259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/β-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of β-catenin that reduced Norrin/β-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/β-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION Our findings reinforced the current pathogenesis of Norrin/β-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.
Collapse
Affiliation(s)
- Yunqi He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China .,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China .,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Yu WX, Li YK, Xu MF, Xu CJ, Chen J, Wei YL, She ZY. Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell Death Dis 2022; 8:490. [PMID: 36513626 DOI: 10.1038/s41420-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Chromosome stability relies on bipolar spindle assembly and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is a plus-end-directed kinesin motor protein, which is essential for spindle pole separation and chromosome alignment in mitosis. Heterozygous Eg5 mutations cause autosomal-dominant microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome in humans. However, the developmental roles and cellular mechanisms of Eg5 in organogenesis remain largely unknown. In this study, we have shown that Eg5 inhibition leads to the formation of the monopolar spindle, chromosome misalignment, polyploidy, and subsequent apoptosis. Strikingly, long-term inhibition of Eg5 stimulates the immune responses and the accumulation of lymphocytes in the mouse spleen through the innate and specific immunity pathways. Eg5 inhibition results in metaphase arrest and cell growth inhibition, and suppresses the formation of somite and retinal development in zebrafish embryos. Our data have revealed the essential roles of kinesin-5 Eg5 involved in cell proliferation, chromosome stability, and organogenesis during development. Our findings shed a light on the cellular basis and pathogenesis in microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome of Eg5-mutation-positive patients.
Collapse
Affiliation(s)
- Wen-Xin Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Yu-Kun Li
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Chen-Jie Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, 350001, Fuzhou, Fujian, China.,College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 350122, Fuzhou, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Selective Activation of the Wnt-Signaling Pathway as a Novel Therapy for the Treatment of Diabetic Retinopathy and Other Retinal Vascular Diseases. Pharmaceutics 2022; 14:pharmaceutics14112476. [PMID: 36432666 PMCID: PMC9697247 DOI: 10.3390/pharmaceutics14112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Retinal ischemia, often associated with various disorders such as diabetic retinopathy (DR), retinal vein occlusion, glaucoma, optic neuropathies, stroke, and other retinopathies, is a major cause of visual impairment and blindness worldwide. As proper blood supply to the retina is critical to maintain its high metabolic demand, any impediment to blood flow can lead to a decrease in oxygen supply, resulting in retinal ischemia. In the pathogenesis of DR, including diabetic macular edema (DME), elevated blood glucose leads to blood-retina barrier (BRB) disruptions, vascular leakage, and capillary occlusion and dropouts, causing insufficient delivery of oxygen to the retina, and ultimately resulting in visual impairment. Other potential causes of DR include neuronal dysfunction in the absence of vascular defect, genetic, and environmental factors. The exact disease progression remains unclear and varies from patient to patient. Vascular leakage leading to edema clearly links to visual impairment and remains an important target for therapy. Despite recent advances in the treatment of DME and DR with anti-VEGFs, effective therapies with new mechanisms of action to address current treatment limitations regarding vessel regeneration and reperfusion of ischemic retinal areas are still needed. The Wnt signaling pathway plays a critical role in proper vascular development and maintenance in the retina, and thus provides a novel therapeutic approach for the treatment of diabetic and other retinopathies. In this review, we summarize the potential of this pathway to address treatment gaps with current therapies, its promise as a novel and potentially disease modifying therapy for patients with DR and opportunities in other retinal vascular diseases.
Collapse
|
15
|
Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2022; 292:31-46. [PMID: 33665890 DOI: 10.1111/joim.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) is essential for creating and maintaining tissue homeostasis in the central nervous system (CNS), which is key for proper neuronal function. In most vertebrates, the BBB is localized to microvascular endothelial cells that acquire barrier properties during angiogenesis of the neuroectoderm. Complex and continuous tight junctions, and the lack of fenestrae combined with low pinocytotic activity render the BBB endothelium a tight barrier for water-soluble molecules that may only enter the CNS via specific transporters. The differentiation of these unique endothelial properties during embryonic development is initiated by endothelial-specific flavours of the Wnt/β-catenin pathway in a precise spatiotemporal manner. In this review, we summarize the currently known cellular (neural precursor and endothelial cells) and molecular (VEGF and Wnt/β-catenin) mechanisms mediating brain angiogenesis and barrier formation. Moreover, we introduce more recently discovered crosstalk with cellular and acellular elements within the developing CNS such as the extracellular matrix. We discuss recent insights into the downstream molecular mechanisms of Wnt/β-catenin in particular, the recently identified target genes like Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, Zic3, Sox17, Apcdd1 and Fgfbp1 that are involved in refining and maintaining barrier characteristics in the mature BBB endothelium. Additionally, we elute to recent insight into barrier heterogeneity and differential endothelial barrier properties within the CNS, focussing on the circumventricular organs as well as on the neurogenic niches in the subventricular zone and the hippocampus. Finally, open questions and future BBB research directions are highlighted in the context of taking benefit from understanding BBB development for strategies to modulate BBB function under pathological conditions.
Collapse
Affiliation(s)
- A Ben-Zvi
- From the, The Department of Developmental Biology and Cancer Research, Institute for Medical Research IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Yang M, Li S, Huang L, Zhao R, Dai E, Jiang X, He Y, Lu J, Peng L, Liu W, Zhang Z, Jiang D, Zhang Y, Jiang Z, Yang Y, Zhao P, Zhu X, Ding X, Yang Z. CTNND1 variants cause familial exudative vitreoretinopathy through Wnt/Cadherin axis. JCI Insight 2022; 7:158428. [PMID: 35700046 PMCID: PMC9431724 DOI: 10.1172/jci.insight.158428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder that can cause vision loss. The CTNND1 gene encodes a cellular adhesion protein p120-catenin (p120), which is essential for vascularization, yet the function of p120 in postnatal physiological angiogenesis remains unclear. Here, we applied whole-exome sequencing (WES) on 140 probands of FEVR families and identified three candidate variants in the human CTNND1 gene. We performed inducible deletion of Ctnnd1 in the postnatal mouse endothelial cells (ECs) and observed typical phenotypes of FEVR. Immunofluorescence of retina flat mounts also revealed immune responses, including reactive astrogliosis and microgliosis accompanied by abnormal Vegfa expression. Using an unbiased proteomics analysis in combination with in vivo or in vitro approaches, we propose that p120 is critical for the integrity of cadherin/catenin complex, and that p120 activates Wnt signaling activity by protecting β-catenin from Gsk3β-ubiquitin-guided degradation. Treatment of CTNND1-depleted HRECs with Gsk3β inhibitors LiCl or CHIR-99021 successfully enhanced cell proliferation by preventing β-catenin from degradation. Moreover, LiCl treatment increased vessel density in Ctnnd1-deficient mouse retinas. Functional analysis also revealed that variants in CTNND1 cause FEVR by compromising the expression of adherens junctions (AJs) and Wnt signaling activity. Additionally, genetic interactions between p120 and β-catenin or α-catenin revealed by double heterozygous deletion in mice further confirmed that p120 regulates vascular development through the Wnt/Cadherin axis. Together, we propose that CTNND1 is a novel candidate gene associated with FEVR, and that variants in CTNND1 can cause FEVR through the Wnt/Cadherin axis.
Collapse
Affiliation(s)
- Mu Yang
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Li
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rulian Zhao
- Prenatal Diagnosis Center, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xiaoyan Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi He
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinglin Lu
- Prenatal Diagnosis Center, Sun Yat-sen University, Guangzhou, China
| | - Li Peng
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Wenjing Liu
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichua, Chengdu, China
| | - Yi Zhang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xianjun Zhu
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenglin Yang
- Department of Medical Genetics, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Peng L, Dai E, Xiao H, Zhao R, He Y, Li S, Yang M, Yang Z, Zhao P. A novel frameshift variant in the TSPAN12 gene causes autosomal dominant FEVR. Mol Genet Genomic Med 2022; 10:e1949. [PMID: 35417085 PMCID: PMC9184668 DOI: 10.1002/mgg3.1949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited blinding eye disease with abnormal retinal vascular development. We aim to broaden the variant spectrum of FEVR and provide a basis for molecular diagnosis and genetic consultation. METHODS We recruited five FEVR patients from one large Chinese family. Whole-exome sequencing (WES) and Sanger sequencing were applied to sequence, analyze, and verify variants on genomic DNA samples. Immunocytochemistry, western blot, qPCR, and luciferase assay were performed to test the influence of the variant on the protein expression and activity of the Norrin/β-catenin pathway. RESULTS We identified a novel heterozygous frameshift variant c.533dupC (p.D179Rfs*6) in Tetraspanin 12 (TSPAN12) gene that is related to FEVR. This variant caused degradation of the entire TSPAN12 protein, which failed to activate Norrin/β-catenin signaling, possibly causing FEVR. CONCLUSION Our study revealed a novel frameshift variant D179Rfs*6 in TSPAN12 that is inherited in an autosomal dominant manner. We found that D179Rfs*6 caused a failure to activate Norrin/β-catenin signaling. This finding broadens the variant spectrum of TSPAN12 and provides invaluable information for the molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
| | - Erkuan Dai
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haodong Xiao
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Natural Products Research Center, Institute of Chengdu BiologySichuan Translational Medicine Hospital, Chinese Academy of SciencesChengduChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduChina
| | - Peiquan Zhao
- Department of OphthalmologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
18
|
Zhao R, Wang S, Zhao P, Dai E, Zhang X, Peng L, He Y, Yang M, Li S, Yang Z. Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 2022; 50:441-448. [PMID: 35133048 DOI: 10.1111/ceo.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited ocular disease with clinical manifestations of aberrant retinal vasculature. We aimed to identify novel causative variants responsible for FEVR and provided evidence for the genetic counselling of FEVR. METHODS We applied whole-exome sequencing (WES) on the genomic DNA samples from the probands and performed Sanger sequencing for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and the activity of mutant proteins. RESULTS We identified one novel heterozygous nonsense variant, and three novel heterozygous frameshift variants including c.1801G>T (p.G601*), c.1965delC (p.H656Tfs*41), c.4445delC (p.S1482Cfs*17), and c.4482delC (p.P1495Rfs*4), which disabled the function of LRP5 on the Norrin/β-catenin signalling. Overexpression of variant-carrying LRP5 proteins resulted in down regulation of the protein levels of β-catenin and the Norrin/β-catenin signalling target genes c-Myc and Glut1. CONCLUSION Our study showed that four inherited LRP5 variants can cause autosomal dominant FEVR via down regulation of Norrin/β-catenin signalling and expanded the spectrum of FEVR-associated LRP5 variants.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shiyuan Wang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xiang Zhang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Huang L, Zhang L, Li X, Lu J, Sun L, Chen L, Ding X, Li Z. Ocular manifestations of Chinese patients with copy number variants in the NDP gene. Mol Vis 2022; 28:29-38. [PMID: 35656167 PMCID: PMC9108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) are genetic disorders that can be caused by mutations in the NDP gene and affect retinal vasculature growth and development. This study aimed to describe the copy number variations (CNVs) in the NDP gene in Chinese FEVR families and the associated phenotypes. METHODS This study recruited 651 FEVR families. SeqCNV was used to analyze the CNVs in the families without mutations in known FEVR-associated genes. Multiplex ligation-dependent probe amplification and semiquantitative multiplex PCR were performed to verify the NDP CNVs. The probands and family members underwent complete ocular examinations. RESULTS NDP CNVs were identified in four patients from three unrelated families, accounting for 15% of the patients with NDP mutations and 0.46% of the entire FEVR cohort. Exon 2 deletions were detected in two families, and whole gene deletion was identified in one family. The affected individuals were born blind with total retinal detachment. CONCLUSIONS The findings confirm that CNVs are a common NDP mutation type. The CNV-associated phenotype is congenital blindness with total retinal detachment. Antenatal genetic analyses and fetal ultrasound can facilitate early diagnosis and interventions in patients with NDP mutations.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Linyan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhan Li
- Zhuhai Women and Children's Hospital, Zhuhai, China
| |
Collapse
|
20
|
Bryant D, Pauzuolyte V, Ingham NJ, Patel A, Pagarkar W, Anderson LA, Smith KE, Moulding DA, Leong YC, Jafree DJ, Long DA, Al-Yassin A, Steel KP, Jagger DJ, Forge A, Berger W, Sowden JC, Bitner-Glindzicz M. The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention. JCI Insight 2022; 7:148586. [PMID: 35132964 PMCID: PMC8855802 DOI: 10.1172/jci.insight.148586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.
Collapse
Affiliation(s)
- Dale Bryant
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Valda Pauzuolyte
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Waheeda Pagarkar
- Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Lucy A Anderson
- UCL Ear Institute, University College London, London, United Kingdom
| | - Katie E Smith
- UCL Ear Institute, University College London, London, United Kingdom
| | - Dale A Moulding
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Yeh C Leong
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Daniyal J Jafree
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David A Long
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Amina Al-Yassin
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| | - Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zürich, Schlieren, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Maria Bitner-Glindzicz
- UCL Great Ormond Street Institute of Child Health, University College London, and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
21
|
Shoda T, Wen T, Caldwell JM, Ben-Baruch Morgenstern N, Osswald GA, Rochman M, Mack LE, Felton JM, Abonia JP, Arva NC, Atkins D, Bonis PA, Capocelli KE, Collins MH, Dellon ES, Falk GW, Gonsalves N, Gupta SK, Hirano I, Leung J, Menard-Katcher PA, Mukkada VA, Putnam PE, Rudman Spergel AK, Spergel JM, Wechsler JB, Yang GY, Aceves SS, Furuta GT, Rothenberg ME. Loss of Endothelial TSPAN12 Promotes Fibrostenotic Eosinophilic Esophagitis via Endothelial Cell-Fibroblast Crosstalk. Gastroenterology 2022; 162:439-453. [PMID: 34687736 PMCID: PMC8792211 DOI: 10.1053/j.gastro.2021.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Eosinophilic esophagitis (EoE) can progress to fibrostenosis by unclear mechanisms. Herein, we investigated gene dysregulation in fibrostenotic EoE, its association with clinical parameters and specific pathways, and the functional consequences. METHODS Esophageal biopsies from subjects with EoE were collected across 11 Consortium of Eosinophilic Gastrointestinal Disease Researchers sites (n = 311) and 2 independent replication cohorts (n = 83). Inclusion criteria for fibrostenotic EoE were endoscopic rings, stricture, and/or a history of dilation. Endoscopic, histologic, and molecular features were assessed by the EoE Endoscopic Reference Score, EoE Histology Scoring System, EoE Diagnostic Panel, and RNA sequencing. Esophageal endothelial TSPAN12 expression and functional effects on barrier integrity and gene expression were analyzed in vitro. RESULTS TSPAN12 was the gene most correlated with fibrostenosis (r = -0.40, P < .001). TSPAN12 was lower in fibrostenotic EoE and correlated with EoE Endoscopic Reference Score, EoE Diagnostic Panel, and EoE Histology Scoring System (r = 0.34-0.47, P < .001). Lower TSPAN12 associated with smaller esophageal diameter (r = 0.44, P = .03), increased lamina propria fibrosis (r = -0.41, P < .001), and genes enriched in cell cycle-related pathways. Interleukin (IL)-13 reduced TSPAN12 expression in endothelial cells. Conversely, anti-IL-13 therapy increased TSPAN12 expression. TSPAN12 gene silencing increased endothelial cell permeability and dysregulated genes associated with extracellular matrix pathways. Endothelial cell-fibroblast crosstalk induced extracellular matrix changes relevant to esophageal remodeling. CONCLUSIONS Patients with fibrostenotic EoE express decreased levels of endothelial TSPAN12. We propose that IL-13 decreases TSPAN12, likely contributing to the chronicity of EoE by promoting tissue remodeling through fibroblast-endothelial cell crosstalk.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Garrett A Osswald
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lydia E Mack
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer M Felton
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Pablo Abonia
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicoleta C Arva
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dan Atkins
- Section of Pediatric Allergy and Immunology, Children's Hospital Colorado, Aurora, Colorado
| | - Peter A Bonis
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | | | - Margaret H Collins
- Division of Pathology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Evan S Dellon
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary W Falk
- Division of Gastroenterology, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nirmala Gonsalves
- Division of Gastroenterology & Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sandeep K Gupta
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ikuo Hirano
- Division of Gastroenterology & Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Leung
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Paul A Menard-Katcher
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology, and Nutrition, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip E Putnam
- Division of Gastroenterology, Hepatology, and Nutrition, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amanda K Rudman Spergel
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jonathan M Spergel
- Division of Allergy and Immunology, University of Pennsylvania Perelman School of Medicine/Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua B Wechsler
- Gastroenterology, Hepatology and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Guang-Yu Yang
- Department of Pathology and Laboratory Medicine, Northwestern University, Chicago, Illinois
| | - Seema S Aceves
- Division of Allergy Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, California
| | - Glenn T Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Marc E Rothenberg
- Division of Allergy and Immunology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | | |
Collapse
|
22
|
Zou G, Qi R, Ma M, Fu S, Liang Q, Bi X, Wang C, Hu X, Cai Y, Sheng X. A novel stop codon mutation of TSPAN12 gene in Chinese patients with familial exudative vitreoretinopathy. Ophthalmic Genet 2021; 43:210-217. [PMID: 34738848 DOI: 10.1080/13816810.2021.1998555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a group of inherited eye diseases characterized by premature arrest of retinal vessel development. The purpose of our study was to characterize the genetic causes and clinical features in eight Chinese families with FEVR using next-generation sequencing (NGS) technology. MATERIALS AND METHODS Eight families with FEVR were included in genetic and clinical analyses. We screened the proband and the parents in eight pedigrees with FEVR using targeted NGS approach and in silico analysis to determine the causative mutation for their family's phenotype. RESULTS Four cases (4/8, 50.0%) were confirmed to harbor mutations in known genes, including 3 novel mutations and one previously reported mutation. Among the detected mutations, TSPAN12 accounted for 75% (3/4). We identified a novel stop codon of TSPAN12, a heterozygous missense mutation NM_012338.4:c.633T>A, NP_036470.1:p.Tyr211Ter involved in highly conserved residues in the proband. Retrospective analysis of its clinical manifestation showed that the mutant carrier presented mild clinical features. CONCLUSIONS We found the novel stop codon mutation p.Tyr211Ter in the TSPAN12, which creates a milder phenotype. Discovery of this novel mutation expands the mutation spectrum of TSPAN12, and would be valuable for future genetic disease diagnosis.
Collapse
Affiliation(s)
- Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Rui Qi
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Meijiao Ma
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaojun Bi
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Chanjuan Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Xuejun Hu
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Yujuan Cai
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| | - Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, Ningxia, China
| |
Collapse
|
23
|
Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L, Huang Y, Fei P, Yang Y, Zhang S, Xu H, Yuan Y, Zhang X, Zhu X, Ma S, Hao F, Sundaresan P, Zhu W, Yang Z. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 2021; 131:139869. [PMID: 33497368 DOI: 10.1172/jci139869] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huijuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ye Yuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Weiquan Zhu
- Department of Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
24
|
Elhusseiny AM, Jabroun M, Rajabi F, Gonzalez E, Alkharashi M. A novel variant in the TSPAN12 gene-presenting as unilateral myopia, pediatric cataract, and heterochromia in a patient with familial exudative vitreoretinopathy. Eur J Ophthalmol 2021; 32:NP6-NP9. [PMID: 34151585 DOI: 10.1177/11206721211027415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To report a case of 16-month-old boy with a novel variant TSPAN12 gene-presenting as unilateral myopia, pediatric cataract, and heterochromia in a patient with familial exudative vitreoretinopathy. OBSERVATION A 16-month-old otherwise healthy boy was referred to Boston Children's Hospital for evaluation of strabismus. Ocular examination revealed intermittent esotropia, left hypotropia, and limited left eye elevation in both adduction and abduction. Full cycloplegic hyperopic correction of +3.50 diopters (D) over both eyes was given to the patient. Over several months, refraction of the right eye showed progressive myopia (-6.00 D) with new onset iris heterochromia. Fundus examination showed there was a large area of chorioretinal atrophy with abrupt ending of the blood vessels; anterior to the ora serrata there were diffuse vitreous bands and veils that reached the lens anteriorly in direct contact with the lenticular opacity. A novel heterozygous nonsense likely pathogenic variant was identified in the TSPAN12 gene (NM_012338.3) c.315T>A (p.Cys105Ter) confirming the diagnosis of FEVR. CONCLUSION AND IMPORTANCE Asymmetric FEVR rarely present with unilateral axial myopia however association with acquired heterochromia and cataract has never been reported. We report a case of FEVR caused by a novel TSPAN12 likely pathogenic nonsense variant presenting as unilateral progressive myopia, acquired heterochromia, and pediatric cataract.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mireille Jabroun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farrah Rajabi
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Efren Gonzalez
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maan Alkharashi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Chen C, Yang M, Huang L, Zhao R, Sundaresan P, Zhu X, Li S, Yang Z. Whole-Exome Sequencing Reveals Novel TSPAN12 Variants in Autosomal Dominant Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2021; 25:399-404. [PMID: 34077673 DOI: 10.1089/gtmb.2021.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR), a group of rare inherited retinal vascular disorders, is the major cause of vision loss in juveniles. At present, the diagnosis of FEVR remains difficult due to its clinical and genetic heterogeneities. Aims: To identify the causative genetic variants in two unrelated FEVR-affected families: one Indian family and one Chinese Han family. Materials and Methods: Five affected patients from two families were recruited for this study. Whole-exome sequencing was applied to the probands, and Sanger sequencing was performed for validation. Stringent whole-exome sequence data analyses were performed to evaluate all of the identified pathogenic variants. Results: Two novel variants in the TSPAN12 gene, were identified: a missense variant c.437 T > G (p.Leu146Arg); and a nonsense variant c.477 C > A (p.Cys159*). Both variants cosegregated with the disease in the investigated FEVR-affected families. Additionally, both variants inactivated the ability of TSPAN12 protein to enhance Norrin/β-catenin signaling. Conclusion: This study expands the mutational spectrum of TSPAN12 for FEVR.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
26
|
Kondo H, Matsushita I, Nagata T, Fujihara E, Hosono K, Uchio E, Hotta Y, Kusaka S. Retinal Features of Family Members With Familial Exudative Vitreoretinopathy Caused By Mutations in KIF11 Gene. Transl Vis Sci Technol 2021; 10:18. [PMID: 34128965 PMCID: PMC8212440 DOI: 10.1167/tvst.10.7.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine the clinical characteristics of patients and family members with familial exudative vitreoretinopathy (FEVR) caused by mutations in the KIF11 gene. Methods Twenty-one patients from 10 FEVR families with mutations in the KIF11 gene were studied. The retinal and systemic features were examined. The genetic analyses performed included Sanger sequencing of the KIF11 gene, whole exome sequencing, as well as array comparative genomic hybridization (CGH) analysis and multiple ligation probe assay (MLPA). Results Sequence analysis revealed seven different KIF11 mutations. Array CGH with MLPA revealed two different exon deletions. All probands had advanced FEVR with retinal detachments (RDs) and microcephaly with or without developmental disabilities. Patients with bilateral RDs were more frequently associated with developmental disabilities (P = 0.023). Multimodal imaging of the family members revealed that six of nine patients without RDs (66%) had varying degrees of chorioretinopathy. The retinal folds in FEVR patients were associated with severe retinal avascularization. However, funduscopic changes in the peripheral retina were unremarkable in family members without RDs. A score representing the peripheral vascular anomalies determined from the fluorescein angiograms was lower than that of control eyes of patients with mutations of the Wnt signaling genes (P = 0.0029). Conclusions The probands with KIF11 mutations were associated with severe ocular and systemic pathologies, whereas affected family members showed highly variable clinical manifestations. Peripheral vascular anomalies can often be unremarkable in eyes without RDs. Translational Relevance These findings highlight more diverse mechanisms that underlie the pathological changes in patients with FEVR.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Etsuko Fujihara
- Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
27
|
Hasegawa T, Hirato M, Kobashi C, Yamaguchi A, Takagi R, Tanaka Y, Kaburaki T, Kakehashi A. Evaluation of the Foveal Avascular Zone in Familial Exudative Vitreoretinopathy Using Optical Coherence Tomography Angiography. Clin Ophthalmol 2021; 15:1913-1920. [PMID: 33994778 PMCID: PMC8114822 DOI: 10.2147/opth.s305520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the foveal avascular zone (FAZ) and retinal structure in familial exudative vitreoretinopathy (FEVR). Patients and Methods Eighteen eyes with stage 1 or 2 FEVR and 20 control eyes were evaluated. The central retinal thickness (CRT), foveal inner retinal thickness (IRT), surface retinal vessel density (SRVD), and deep retinal vessel density (DRVD) were measured using optical coherence tomography. The FAZ area was calculated using ImageJ software. The equivalent spherical value (SE) and axial length (AL) were measured. Results The CRT (232.5±3.086 vs 211±12.6325 μm; p=0.003) and foveal IRT (15.83±13.95 vs 0.9±4.02 μm; p=0.002) were thicker in the FEVR group than in the control group. The surface FAZ area (0.265±0.08 vs 0.364±0.09 mm2; p=0.004) and the deep FAZ area (0.364±0.1 vs 0.484±0.11 mm2; p=0.03) were smaller in the FEVR group than in the control group. The SRVD values did not differ among the sectors, but the DRVD was higher in the FEVR group except for the inferior sector (superior, p=0.027; inferior, p=0.88; temporal, p=0.035; nasal, p=0.027). The SE and AL did not differ between the two groups. There were no correlations between the surface and deep layer FAZ area and age, CRT, SE, and AL. The surface, deep FAZ area, and foveal IRT were correlated negatively (surface, r = -0.47, p=0.033; deep layer FAZ area, r = -0.46, p=0.037). Conclusion Eyes with FEVR have a smaller FAZ because the vascular structure in the inner retina remained in the fovea.
Collapse
Affiliation(s)
- Tetsuya Hasegawa
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Misaki Hirato
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Chieko Kobashi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Aya Yamaguchi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Rina Takagi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Yoshiaki Tanaka
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Akihiro Kakehashi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| |
Collapse
|
28
|
Pathogenic variants and associated phenotypic spectrum of TSPAN12 based on data from a large cohort. Graefes Arch Clin Exp Ophthalmol 2021; 259:2929-2939. [PMID: 33907885 DOI: 10.1007/s00417-021-05196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The pathogenic variants in TSPAN12 could lead to familial exudative vitreoretinopathy (FEVR), which has high clinical variability. This study aims to assess the pathogenicity of TSPAN12 variants and their phenotypic spectrum based on exome sequencing from 7092 probands with different eye conditions. METHODS The variants in TSPAN12 were selected from exome sequencing data of samples from 7092 probands with different forms of eye conditions. Potentially pathogenic variants were evaluated through the annotation of types, locations, population frequencies, and in silico predictions of variants from in-house data, gnomAD, and published literature. The clinical features of patients with potentially pathogenic variants in TSPAN12 were assessed. RESULTS A total of 45 variants in TSPAN12 with coding effects were detected based on the exome data from 7092 probands, among which 31 were classified as pathogenic variants including 15 novels. The 31 variants were identified in 34 probands with various initial diagnoses, including FEVR in 21 probands and diseases other than FEVR in the remaining 13 probands. Biallelic pathogenic variants were identified in one proband with initial diagnosis of high myopia. CONCLUSION Truncating variants and the missense variants that are predicted as deleterious are likely pathogenic variants of TSPAN12. Approximately 61.8% of patients with pathogenic variants in this gene had an initial diagnosis of FEVR, and the remaining 38.2% of patients had various initial diagnoses. These findings expand the understanding about variant evaluation of TSPAN12 and phenotypic spectrum of TSPAN12-associated FEVR.
Collapse
|
29
|
Sun G, Chen J, Ding Y, Wren JD, Xu F, Lu L, Wang Y, Wang DW, Zhang XA. A Bioinformatics Perspective on the Links Between Tetraspanin-Enriched Microdomains and Cardiovascular Pathophysiology. Front Cardiovasc Med 2021; 8:630471. [PMID: 33860000 PMCID: PMC8042132 DOI: 10.3389/fcvm.2021.630471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tetraspanins and integrins are integral membrane proteins. Tetraspanins interact with integrins to modulate the dynamics of adhesion, migration, proliferation, and signaling in the form of membrane domains called tetraspanin-enriched microdomains (TEMs). TEMs also contain other cell adhesion proteins like immunoglobulin superfamily (IgSF) proteins and claudins. Cardiovascular functions of these TEM proteins have emerged and remain to be further revealed. Objectives: The aims of this study are to explore the roles of these TEM proteins in the cardiovascular system using bioinformatics tools and databases and to highlight the TEM proteins that may functionally associate with cardiovascular physiology and pathology. Methods: For human samples, three databases-GTEx, NCBI-dbGaP, and NCBI-GEO-were used for the analyses. The dbGaP database was used for GWAS analysis to determine the association between target genes and human phenotypes. GEO is an NCBI public repository that archives genomics data. GTEx was used for the analyses of tissue-specific mRNA expression levels and eQTL. For murine samples, GeneNetwork was used to find gene-phenotype correlations and gene-gene correlations of expression levels in mice. The analysis of cardiovascular data was the focus of this study. Results: Some integrins and tetraspanins, such as ITGA8 and Cd151, are highly expressed in the human cardiovascular system. TEM components are associated with multiple cardiovascular pathophysiological events in humans. GWAS and GEO analyses showed that human Cd82 and ITGA9 are associated with blood pressure. Data from mice also suggest that various cardiovascular phenotypes are correlated with integrins and tetraspanins. For instance, Cd82 and ITGA9, again, have correlations with blood pressure in mice. Conclusion: ITGA9 is related to blood pressure in both species. KEGG analysis also linked ITGA9 to metabolism and MAPK signaling pathway. This work provides an example of using integrated bioinformatics approaches across different species to identify the connections of structurally and/or functionally related molecules to certain categories of diseases.
Collapse
Affiliation(s)
- Ge Sun
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Fuyi Xu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yan Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dao-wen Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
30
|
Tao Z, Bu S, Lu F. Two AOS genes attributed to familial exudative vitreoretinopathy with microcephaly: Two case reports. Medicine (Baltimore) 2021; 100:e24633. [PMID: 33655927 PMCID: PMC7939203 DOI: 10.1097/md.0000000000024633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Familial exudative vitreoretinopathy (FEVR) is an inherited disorder, which is mostly reported to be associated with the mutation of genes involved in the Wnt signaling pathway related to β-catenin. To the best of our knowledge, the involvement of Adams-Oliver syndrome (AOS) genes in FEVR patients have not been reported before. PATIENT CONCERNS Two patients with FEVR presented with microcephaly. One of them showed slight scarring of the scalp vertex which is a typical manifestation of AOS. The whole exon sequencing confirmed the diagnosis of AOS with 2 AOS-gene mutations at DOCK6 and ARHGAP31. Further clinical examination revealed that their parents with the same mutations showed FEVR-like vascular anomalies. DIAGNOSIS Both patients were diagnosed with AOS through whole exon sequencing, and they presented with some FEVR-like retinopathy including retinal detachment. INTERVENTIONS Both patients received vitrectomy for tractional retinal detachment with proliferative vitreoretinopathy. During the follow-up, 1 patient received additional laser photocoagulation for tractional retinal detachment. OUTCOMES The 2 patients remained stable in the latest follow up after the treatment. LESSONS Microcephaly could be associated with some form of retinopathy. We proposed that mutation of DOCK6 and ARHGAP31 genes could be the possible cause of FEVR associated with microcephaly. Our study suggested that these genes may be candidate genes of FEVR.
Collapse
Affiliation(s)
- Zhiyan Tao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Shaochong Bu
- Tianjin Medical University Eye Hospital and Eye Institute, Tianjin, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province
| |
Collapse
|
31
|
|
32
|
Amorelli GM, Barresi C, Ji MH, Orazi L, Molle F, Lepore D. Familial Exudative Vitreoretinopathy With Neurodevelopmental Delay and Hypoplasia of the Corpus Callosum. Ophthalmic Surg Lasers Imaging Retina 2020; 51:588-591. [DOI: 10.3928/23258160-20201005-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022]
|
33
|
Chen C, Sun L, Li S, Huang L, Zhang T, Wang Z, Yu B, Luo X, Ding X. Novel variants in familial exudative vitreoretinopathy patients with KIF11 mutations and the Genotype-Phenotype correlation. Exp Eye Res 2020; 199:108165. [PMID: 32730767 DOI: 10.1016/j.exer.2020.108165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disease characterized by abnormal development of retinal vasculature. KIF11 mutations were identified to be associated with FEVR in recent years. The purpose of this study was to investigate novel variants and describe associated ocular and extraocular phenotypes in FEVR patients with KIF11 mutations. Herein, 417 probands with clinical diagnosis of FEVR were enrolled. Genetic testing and ophthalmic examinations were performed in all subjects, and the genotype-phenotype correlation was analyzed. Overall, KIF11 mutation was identified in nine probands (9/417, 2.2%) among the patients with FEVR phenotype. There were six males and three females whose median age was six months (range: four months to six years old) at first visit. Among the detected mutations, five (55.6%) were frameshift, two (22.2%) were missense, one (11.1%) nonsense, and one (11.1%) splicing. Seven of these KIF11 mutations were detected as novel. Four (4/9, 44.4%) of the mutations were de novo. Clinical examinations showed that: four probands presented with bilateral falciform retinal fold; two with bilateral tractional retinal detachment; one was observed tractional retinal detachment in one eye and retinal fold in the other eye; one had falciform retinal fold in one eye and chorioretinal atrophy in the other eye; one exhibited rhegmatogenous retinal detachment in the left eye. Six of the probands were detected to have microcephaly. In conclusion: Most (5/9,55.6%) of the causative mutations were frameshift, and nearly half (4/9, 44.4%) of the mutations were de novo. Most (8/9, 88.9%) patients with KIF11 mutations showed typical ocular manifestations of severe FEVR. Majority (6/9, 66.7%) of the probands had a KIF11 mutation and were detected to have microcephaly. Seven of these harbored KIF11 mutations detected to be novel.
Collapse
Affiliation(s)
- Chonglin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhirong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bilin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoling Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Yildiz Ekinci D, Ugurlu A, Tasli NG. WHAT IS THE INCIDENCE OF RETINOPATHY OF PREMATURITY (ROP) IN 'BIG' BABIES?: RESULTS OF A RETROSPECTIVE MULTICENTER STUDY. Ophthalmic Epidemiol 2020; 28:138-143. [PMID: 32657188 DOI: 10.1080/09286586.2020.1793372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM This study aims to determine the incidence of ROP and to investigate its prognosis among premature babies with a BW of ≥2000 g. MATERIAL AND METHOD We retrospectively analyzed the data of 1004 babies with BW≥2000 g admitted to the ROP Diagnosis and Treatment Centers of X University Hospital and X Hospital between 2018 and 2019. Examination findings were recorded according to the Classification of Retinopathy of Prematurity guideline. We recorded the following information: GA, BW, type of delivery, oxygen therapy, age at the time of diagnosis (weeks), the location of ROP, the severity of ROP, vascular characteristics of ROP, treatment status, PMA, treatment modality, and retinal vascular development. RESULTS The 2008 eyes of 1004 subjects were included in the study. Mean GA (SD) of subjects was 34.3 (1.3) weeks (range: 31-36) and mean BW (SD) was 2377.3 (244.2) g (range: 2000-3400). The 283 eyes of 144 patients (14.1%, 95% CI: [11.7-17.3%]) had been diagnosed with ROP. We evaluated the location of ROP and found that it was in Zone II in 279 of the 283 eyes and in Zone I in 4 eyes. We found that 213 of the 283 eyes had stage 1 ROP, 53 eyes had stage 2 ROP, and 17 eyes had stage 3 ROP. According to the international ROP classification, 17 eyes of 9 patients had Type 1 ROP, and 266 eyes of 135 patients had Type 2 ROP in the study. Seventeen eyes (0.85%, 95%CI: [0.62-1.36%]) required treatment. CONCLUSION We conclude that the incidence of ROP in babies with BW≥2000 g is higher in Turkey compared to developed countries. It is important to include these babies in the screening program as they can develop advanced ROP requiring treatment.
Collapse
Affiliation(s)
- Dilbade Yildiz Ekinci
- Department of Ophthalmology, Diyarbakır Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Adem Ugurlu
- Faculty of Medicine, Department of Ophthalmology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Nurdan Gamze Tasli
- Faculty of Medicine, Department of Ophthalmology, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
35
|
Carroll RM, Kim BJ. Asymptomatic adults in a single family with familial exudative vitreoretinopathy and TSPAN12 variant. Ophthalmic Genet 2020; 40:474-479. [PMID: 31755339 DOI: 10.1080/13816810.2019.1686157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Familial exudative vitreoretinopathy (FEVR) is a disorder of retinal angiogenesis associated with mutations in multiple genes related to the Wnt pathway. The disease is characterized by a spectrum of ophthalmic manifestations that range from asymptomatic to blinding. While FEVR has classically been considered a diagnosis made in the pediatric population, it can be seen in adults and lead to vision loss if unidentified. We present three asymptomatic adults in a single, five-member family with clinical findings and genetic testing supportive of a diagnosis of FEVR.Materials and Methods: Case series. All patients underwent ophthalmologic examination, diagnostic imaging, and genetic testing.Results: A 32-year-old female was referred for evaluation of abnormal retinal vessels. Clinical examination and diagnostic testing revealed retinal vascular dragging, peripheral avascularity, and retinal neovascularization suggestive of a diagnosis of FEVR. Genetic testing was positive for a heterozygous intronic variant (c.149 + 3A>G) in TSPAN12. The same variant was identified in the patient's mother and one adult sister, each showing evidence of early stage FEVR. The patient's father and second adult sister had normal eye exams with negative genetic testing. All patients were asymptomatic with good vision.Conclusions: FEVR can be first diagnosed in asymptomatic adult patients who may require treatment. The disease, therefore, may be incompletely characterized and under diagnosed. The specific variant in TSPAN12 identified in this family may be associated with early stage FEVR or disease that manifests later in life. Clinical correlation with exact variants such as this may enhance our understanding of this disease.
Collapse
Affiliation(s)
- Robert M Carroll
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Li L, Li H, Wang L, Wu S, Lv L, Tahir A, Xiao X, Wong CKC, Sun F, Ge R, Cheng CY. Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. Crit Rev Biochem Mol Biol 2020; 55:71-87. [PMID: 32207344 DOI: 10.1080/10409238.2020.1742091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40 years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lingling Wang
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Anam Tahir
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| |
Collapse
|
37
|
Qi D, Liu S, Yu T. Characterization of Unique Lens Morphology in a Cohort of Children with Familial Exudative Vitreoretinopathy. Curr Eye Res 2020; 45:1222-1227. [PMID: 32141791 DOI: 10.1080/02713683.2020.1737715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To characterize the lens morphology and to measure the clinical features of familial exudative vitreoretinopathy (FEVR) in children. Methods: Unique lens changes were observed in a cohort of children with FEVR from March 2015 to November 2017 using slit lamp examination and all the patients underwent cycloplegic refraction, ultrasound A and B, keratometry and fundus fluorescein angiography. Results: Twelve eyes of eight children with FEVR had unique lens changes. The contraction of the posterior capsule caused unique lens changes resulting in myopia in nine eyes of six children and astigmatism in eight eyes of five children. Retinal lesions in the affected eyes were all stage 1 to 2. Six eyes of three patients underwent lensectomy and intraocular lens implantation due to high anisometropia which could not be corrected by conventional optical correction. During lensectomy, the opacification in the posterior capsule was found to be due to the fibrous membrane that protruded into the anterior vitreous and not due to lens opacification. Three patients had bilateral lensectomy, in two of whom significant macular involvement was observed in one eye and in one of whom significant macular involvement was observed in both eyes. After surgery visual acuity (VA) improved obviously in two eyes without significant macular involvement and did not improve in the four eyes which had significant macular involvement. Among the five patients who did not have lensectomy, one patient was lost to follow-up and one patient had VA improved in both eyes without significant macular involvement. The other three patients did not have much change in VA. Conclusions: Clinicians should be aware that when a high myopia or astigmatism does not match the corneal curvature and the length of the eye, one should check carefully the changes of lens and fundus after dilating the pupil, to avoid misdiagnosis and missed diagnosis.
Collapse
Affiliation(s)
- Dongmei Qi
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University) , Chongqing, China
| | - Sha Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University) , Chongqing, China
| | - Tao Yu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University) , Chongqing, China
| |
Collapse
|
38
|
Sen P, Singh N, Rishi E, Bhende P, Rao C, Rishi P, Bhende M, Sharma T, Gopal L. Outcomes of surgery in eyes with familial exudative vitreoretinopathyassociated retinal detachment. Can J Ophthalmol 2020; 55:253-262. [PMID: 31941588 DOI: 10.1016/j.jcjo.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate various techniques of surgical treatment of retinal detachment associated with familial exudative vitreoretinopathy (FEVR) and the factors affecting the anatomical and visual outcome. DESIGN Retrospective case series. PARTICIPANTS Patients diagnosed with FEVR associated retinal detachment and operated for the same between January 2004 and September 2017. METHODS A retrospective chart review was conducted of all patients diagnosed with FEVR between January 2004 and September 2017. Patients with rhegmatogenous retinal detachment (RRD) and tractional retinal detachment (TRD) were included for analysis. Statistical analysis was performed using the t test for mean visual acuities, Fisher's exact test for categorical data, and the one-way analysis of variance for visual outcomes among surgical management options. RESULTS A total of 44 eyes of 38 patients diagnosed with FEVR-associated retinal detachment and operated for the same were evaluated. At the time of initial presentation, the mean age of the 38 patients was 14.6 ± 10.9 years and 57.8% were males. Out of 44 eyes that underwent surgical intervention, 79.5% cases were of RRD (n = 35), and TRD was seen in 20.5% cases (n = 9). Primary management in the form of scleral buckle was done in 14 (31.8%) eyes, with 11 eyes (78.6%) having an attached retina after a single surgery and 85.7% after multiple surgeries. Primary pars plana vitrectomy (PPV) was done in 30 (68.2%) eyes, of which 73.3% had attached retina after single surgery and 83.8% after multiple surgeries. Poor pre-operative best-corrected visual acuity, presence of TRD, and presence of falciform folds were associated with poor anatomical outcome. CONCLUSIONS Favourable outcomes can be achieved, though multiple surgical interventions may, however, be necessary for the ultimate success in some cases.
Collapse
Affiliation(s)
- Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India..
| | - Niharika Singh
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Ekta Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Pramod Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Chetan Rao
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Tarun Sharma
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Lingam Gopal
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| |
Collapse
|
39
|
Weiner GA, Nudleman E. Microcornea, Posterior Megalolenticonus, Persistent Fetal Vasculature, and Coloboma Syndrome Associated With a New Mutation in ZNF408. Ophthalmic Surg Lasers Imaging Retina 2019; 50:253-256. [PMID: 30998249 DOI: 10.3928/23258160-20190401-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
The authors report a case of a 6-week-old girl with microphthalmia, posterior lenticonus, persistent fetal vasculature, and coloboma of the right eye, with morning glory disc anomaly and falciform retinal folds of the left eye. Genetic testing revealed a previously unreported mutation (c.1471A>G [p.T491A]) in the gene ZNF408, which has been associated with autosomal recessive retinitis pigmentosa and autosomal dominant familial exudative vitreoretinopathy. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:253-256.].
Collapse
|
40
|
Hsu ST, Finn AP, Chen X, Ngo HT, House RJ, Toth CA, Vajzovic L. Macular Microvascular Findings in Familial Exudative Vitreoretinopathy on Optical Coherence Tomography Angiography. Ophthalmic Surg Lasers Imaging Retina 2019; 50:322-329. [PMID: 31100165 DOI: 10.3928/23258160-20190503-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To describe depth-resolved macular microvasculature abnormalities in patients with familial exudative vitreoretinopathy (FEVR) using optical coherence tomography angiography (OCTA). PATIENTS AND METHODS Twenty-two eyes (11 eyes of six patients with FEVR and 11 control eyes) were imaged with OCTA. Graders qualitatively analyzed the OCTA images of the superficial and deep vascular complexes for abnormal vascular features and compared to fluorescein angiography (FA). RESULTS Seven of 11 eyes with FEVR displayed abnormal macular vascular findings. Abnormalities in the superficial vascular complex included dilation, disorganization, straightening, heterogeneous vessel density, and curls/loops. In the deep vascular complex, abnormalities included areas of decreased density, disorganization, curls/loops, and "end bulbs." Except for dragging and straightening of the vessels, none of these macular features were visible on FA. CONCLUSION OCTA revealed marked macular abnormalities in eyes with FEVR that have not been previously observed with FA alone, suggesting this is more than a disease of the retinal periphery and involves macular and deep retinal vasculature abnormalities. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:322-329.].
Collapse
|
41
|
Bao Y, Yang J, Chen L, Chen M, Zhao P, Qiu S, Zhang L, Zhang G. A Novel Mutation in the NDP Gene is Associated with Familial Exudative Vitreoretinopathy in a Southern Chinese Family. Genet Test Mol Biomarkers 2019; 23:850-856. [PMID: 31821093 DOI: 10.1089/gtmb.2019.0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: To report a clinical and genetic investigation of a southern Chinese family with X-linked recessive exudative vitreoretinopathy and vitreous hemorrhage. Materials and Methods: We collected clinical data from a proband and his family. Complete ophthalmic examinations were carried out on the proband. Genomic DNA was sampled from either peripheral blood or buccal swabs of 13 individuals, and whole exome sequencing was performed on the proband and his parents. Sanger sequencing was utilized to validate the probable mutation in the proband and the remaining family members. Results: Seventeen family members, with three affected individuals were included in this study. The predominant phenotypes, with highly variable expressivity, were vitreoretinopathy, vitreous hemorrhage, retinal detachment, and even phthisis. A Y53C mutation in the NDP gene (HGNC:7678; NM_000266.3:exon2:c.A158G:p.Y53C;NP_000257.1:p.Tyr53Cys) was identified as being the most probable pathogenic mutation. Co-segregation of the mutation with the variable phenotype was confirmed within the proband's family. Conclusions: The clinical appearance of familial exudative vitreoretinopathy was highly variable, among the three affected male family members. A novel missense mutation in the NDP gene was identified as the pathogenic mutation.
Collapse
Affiliation(s)
- Yun Bao
- Shanghai Center for Clinical Laboratory, Department of Molecular Biology, Shanghai, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Genetic Counselling, Shanghai WeHealth BioMedical Technology Co.,Ltd., Shanghai, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Miaohong Chen
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuiping Qiu
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Lu Zhang
- Department of Genetic Counselling, Shanghai WeHealth BioMedical Technology Co.,Ltd., Shanghai, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen, China.,Shenzhen Key Ophthalmic Laboratory, Health Science Center, Shenzhen University, The Second Affiliated Hospital of Jinan University, Shenzhen, China
| |
Collapse
|
42
|
Zhang DL, Blair MP, Zeid JL, Basith SST, Shapiro MJ. FEVR phenotype associated with septo-optic dysplasia. Ophthalmic Genet 2019; 40:449-452. [PMID: 31755341 DOI: 10.1080/13816810.2019.1660380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Septo-optic dysplasia, also known as de Morsier syndrome, is a disorder of brain development characterized by optic nerve hypoplasia, hypopituitarism, and midline brain defects.Materials and Methods: Single retrospective case report.Results: An infant born at 38 5/7 weeks gestation age weighing 3125 g developed respiratory distress shortly after birth. Systemic findings included myocardial dysfunction, hypopituitarism, feeding intolerance, microphallus, and dysmorphic features. Eye examination revealed tractional retinal detachments and optic nerve hypoplasia. In addition, peripheral non-perfusion and peripheral neovascularization were consistent with Familial Exudative Vitreoretinopathy (FEVR) phenotype. MRI showed hypoplastic optic nerves, ectopic posterior pituitary with hypoplastic pituitary infundibulum, and slightly thin corpus callosum, diagnostic of septo-optic dysplasia. Genetic testing revealed no pathogenic variants and two variants of uncertain significance.Conclusion: FEVR findings can be associated with septo-optic dysplasia and may point to an etiologic connection between neural development and subsequent vascular development.
Collapse
Affiliation(s)
| | - Michael P Blair
- Retina Consultants Ltd., Des Plaines, Illinois, USA.,Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois, USA
| | - Janice L Zeid
- Department of Pediatric Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Syeda S T Basith
- Department of Pediatric Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
43
|
Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nat Commun 2019; 10:5243. [PMID: 31748531 PMCID: PMC6868140 DOI: 10.1038/s41467-019-13220-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR. Integrin-linked kinase (ILK) is an important mediator of integrin signaling. Here Park et al. show that mice with endothelial-specific deletion of Ilk develop vascular defects that resemble familial exudative vitreoretinopathy, and identify mutations in ILK in patients with exudative vitreoretinopathy suggesting a potential role in human pathogenesis.
Collapse
|
44
|
Familial Exudative Vitreoretinopathy-Related Disease-Causing Genes and Norrin/ β-Catenin Signal Pathway: Structure, Function, and Mutation Spectrums. J Ophthalmol 2019; 2019:5782536. [PMID: 31827910 PMCID: PMC6885210 DOI: 10.1155/2019/5782536] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by incomplete vascularization/abnormality of peripheral retina. Four of the identified disease-causing genes of FEVR were NDP, FZD4, LRP5, and TSPAN12, the protein coded by which were the components of the Norrin/β-catenin signal pathway. In this review, we summarized and discussed the spectrum of mutations involving these four genes. By the end of 2017, the number of FEVR causing mutations reported for NDP, FZD4, LRP5, and TSPAN12 was, respectively, 26, 121, 58, and 40. Three most frequently reported mutations were c. 362G > A (p.R121Q) of NDP, c. 313A > G (p.M105V), and c.1282_1285delGACA (p.D428SfsX2) of FZD4. Mutations have a tendency to cluster in some “hotspots” domains which may be responsible for protein interactions.
Collapse
|
45
|
Hull S, Arno G, Ostergaard P, Pontikos N, Robson AG, Webster AR, Hogg CR, Wright GA, Henderson RHH, Martin CA, Jackson AP, Mansour S, Moore AT, Michaelides M. Clinical and Molecular Characterization of Familial Exudative Vitreoretinopathy Associated With Microcephaly. Am J Ophthalmol 2019; 207:87-98. [PMID: 31077665 DOI: 10.1016/j.ajo.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. DESIGN Retrospective case series. METHODS Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). RESULTS All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. CONCLUSIONS Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling.
Collapse
Affiliation(s)
- Sarah Hull
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Pia Ostergaard
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Chris R Hogg
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Genevieve A Wright
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Robert H H Henderson
- Moorfields Eye Hospital, London, United Kingdom; Ophthalmology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Carol-Anne Martin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sahar Mansour
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom; South West Thames Regional Genetics Service, St George's Healthcare NHS Trust, London, United Kingdom
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom; Ophthalmology Department, University of California, San Francisco, California
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
46
|
Caceres L, Prykhozhij SV, Cairns E, Gjerde H, Duff NM, Collett K, Ngo M, Nasrallah GK, McMaster CR, Litvak M, Robitaille JM, Berman JN. Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 2019; 248:1243-1256. [PMID: 31566834 DOI: 10.1002/dvdy.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.
Collapse
Affiliation(s)
- Lucia Caceres
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Cairns
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Harald Gjerde
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicole M Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Keon Collett
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mike Ngo
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Matthew Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Johane M Robitaille
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Amorelli GM, Ji MH, Orazi L, Molle F, Lepore D. Familial exudative retinopathy TSPAN12 positive presenting as bilateral retinal stalks: late structural and functional findings. Am J Ophthalmol Case Rep 2019; 15:100480. [PMID: 31431934 PMCID: PMC6579933 DOI: 10.1016/j.ajoc.2019.100480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 03/12/2019] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Affiliation(s)
- Giulia M. Amorelli
- Department of Ophthalmology, Catholic University of Sacred Heart, Rome, Italy
| | - Marco H. Ji
- Department of Ophthalmology, Catholic University of Sacred Heart, Rome, Italy
- Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lorenzo Orazi
- Italian National Center of Services and Research for Prevention of Blindness and Rehabilitation of the Visually Impaired, Rome, Italy
| | - Fernando Molle
- Department of Ophthalmology, Catholic University of Sacred Heart, Rome, Italy
| | - Domenico Lepore
- Department of Ophthalmology, Catholic University of Sacred Heart, Rome, Italy
- Corresponding author. Dept Ophthalmology, Catholic University of Sacred Heart, Largo Francesco Vito 8, 00168, Rome, Italy.
| |
Collapse
|
48
|
Zhang C, Lai MB, Pedler MG, Johnson V, Adams RH, Petrash JM, Chen Z, Junge HJ. Endothelial Cell-Specific Inactivation of TSPAN12 (Tetraspanin 12) Reveals Pathological Consequences of Barrier Defects in an Otherwise Intact Vasculature. Arterioscler Thromb Vasc Biol 2019; 38:2691-2705. [PMID: 30354230 PMCID: PMC6221394 DOI: 10.1161/atvbaha.118.311689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Blood-CNS (central nervous system) barrier defects are implicated in retinopathies, neurodegenerative diseases, stroke, and epilepsy, yet, the pathological mechanisms downstream of barrier defects remain incompletely understood. Blood-retina barrier (BRB) formation and retinal angiogenesis require β-catenin signaling induced by the ligand norrin (NDP [Norrie disease protein]), the receptor FZD4 (frizzled 4), coreceptor LRP5 (low-density lipoprotein receptor-like protein 5), and the tetraspanin TSPAN12 (tetraspanin 12). Impaired NDP/FZD4 signaling causes familial exudative vitreoretinopathy, which may lead to blindness. This study seeked to define cell type-specific functions of TSPAN12 in the retina. Approach and Results— A loxP-flanked Tspan12 allele was generated and recombined in endothelial cells using a tamoxifen-inducible Cdh5-CreERT2 driver. Resulting phenotypes were documented using confocal microscopy. RNA-Seq, histopathologic analysis, and electroretinogram were performed on retinas of aged mice. We show that TSPAN12 functions in endothelial cells to promote vascular morphogenesis and BRB formation in developing mice and BRB maintenance in adult mice. Early loss of TSPAN12 in endothelial cells causes lack of intraretinal capillaries and increased VE-cadherin (CDH5 [cadherin5 aka VE-cadherin]) expression, consistent with premature vascular quiescence. Late loss of TSPAN12 strongly impairs BRB maintenance without affecting vascular morphogenesis, pericyte coverage, or perfusion. Long-term BRB defects are associated with immunoglobulin extravasation, complement deposition, cystoid edema, and impaired b-wave in electroretinograms. RNA-sequencing reveals transcriptional responses to the perturbation of the BRB, including genes involved in vascular basement membrane alterations in diabetic retinopathy. Conclusions— This study establishes mice with late endothelial cell–specific loss of Tspan12 as a model to study pathological consequences of BRB impairment in an otherwise intact vasculature.
Collapse
Affiliation(s)
- Chi Zhang
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Maria B Lai
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora (M.G.P., J.M.P.)
| | - Verity Johnson
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Germany (R.H.A.)
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora (M.G.P., J.M.P.)
| | - Zhe Chen
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| | - Harald J Junge
- From the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (C.Z., M.B.L., V.J., Z.C., H.J.J.)
| |
Collapse
|
49
|
Iwata A, Kusaka S, Ishimaru M, Kondo H, Kuniyoshi K. Early vitrectomy to reverse macular dragging in a one-month-old boy with familial exudative vitreoretinopathy. Am J Ophthalmol Case Rep 2019; 15:100493. [PMID: 31294129 PMCID: PMC6595075 DOI: 10.1016/j.ajoc.2019.100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose Vitrectomy is usually only indicated for familial exudative vitreoretinopathy (FEVR) cases with progressive retinal folds or macular dragging. In this report, we present our experience reversing the progression of macular dragging by performing early eye vitrectomies in a 1-month-old male baby with FEVR. Observations A 7-day-old, full-term male baby was examined by a pediatric ophthalmologist. His sister had a laser ablation treatment after being diagnosed with FEVR. The ophthalmologist found the baby had avascular retinas, fibrovascular membranes, and vitreous hemorrhages in both eyes, and performed retinal photocoagulations the next day. Although the retinal folds had not yet formed, the arcade vessels began to linearize after the procedure, strongly suggesting disease progression. Therefore, we performed lens-sparing vitrectomies in both eyes on the twenty-ninth day of life. After surgery, the macular dragging reversed, as evidenced by vascular arcade angle measurements. Three years after the surgery, the boy's visual acuity was 0.4 in both eyes. Conclusions and Importance In this case, we believe the good postoperative outcomes were due to early vitrectomies before the vitreoretinal traction became severe. In addition, the retinal photocoagulation performed on the eighth day of life may have reduced disease activity, at least partially. This case highlights the importance of prompt diagnosis and appropriate treatment of FEVR.
Collapse
Affiliation(s)
- Akiko Iwata
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mayumi Ishimaru
- Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
50
|
Plotnikov D, Shah RL, Rodrigues JN, Cumberland PM, Rahi JS, Hysi PG, Atan D, Williams C, Guggenheim JA. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. Hum Genet 2019; 138:723-737. [PMID: 31073882 PMCID: PMC6611893 DOI: 10.1007/s00439-019-02022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
Abstract
Strabismus refers to an abnormal alignment of the eyes leading to the loss of central binocular vision. Concomitant strabismus occurs when the angle of deviation is constant in all positions of gaze and often manifests in early childhood when it is considered to be a neurodevelopmental disorder of the visual system. As such, it is inherited as a complex genetic trait, affecting 2-4% of the population. A genome-wide association study (GWAS) for self-reported strabismus (1345 cases and 65,349 controls from UK Biobank) revealed a single genome-wide significant locus on chromosome 17q25. Approximately 20 variants across the NPLOC4-TSPAN10-PDE6G gene cluster and in almost perfect linkage disequilibrium (LD) were most strongly associated (lead variant: rs75078292, OR = 1.26, p = 2.24E-08). A recessive model provided a better fit to the data than an additive model. Association with strabismus was independent of refractive error, and the degree of association with strabismus was minimally attenuated after adjustment for amblyopia. The association with strabismus was replicated in an independent cohort of clinician-diagnosed children aged 7 years old (116 cases and 5084 controls; OR = 1.85, p = 0.009). The associated variants included 2 strong candidate causal variants predicted to have functional effects: rs6420484, which substitutes tyrosine for a conserved cysteine (C177Y) in the TSPAN10 gene, and a 4-bp deletion variant, rs397693108, predicted to cause a frameshift in TSPAN10. The population-attributable risk for the locus was approximately 8.4%, indicating an important role in conferring susceptibility to strabismus.
Collapse
Affiliation(s)
- Denis Plotnikov
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rupal L Shah
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Jamille N Rodrigues
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK
| | - Phillippa M Cumberland
- Life Course Epidemiology and Biostatistics Section, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Ulverscroft Vision Research Group, University College London Institute of Child Health, London, WC1N 1EH, UK
| | - Jugnoo S Rahi
- Life Course Epidemiology and Biostatistics Section, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Ulverscroft Vision Research Group, University College London Institute of Child Health, London, WC1N 1EH, UK
- University College London Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Denize Atan
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK.
| | - Jeremy A Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|