1
|
Siegert S, Grisold A, Pal-Handl K, Lilja S, Kepa S, Silvaieh S, Laccone F, Wiest G, Pogledic I, Schmook MT, Boltshauser E, Schmidt WM, Krenn M. Developmental, Cognitive, Ocular Motor, and Neuroimaging Findings Related to SUFU Haploinsufficiency: Unraveling Subtle and Highly Variable Phenotypes. Pediatr Neurol 2024; 160:38-44. [PMID: 39181021 DOI: 10.1016/j.pediatrneurol.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Biallelic SUFU variants have originally been linked to Joubert syndrome, comprising cerebellar abnormalities, dysmorphism, and polydactyly. In contrast, heterozygous truncating variants have recently been associated with developmental delay and ocular motor apraxia, but only a limited number of patients have been reported. Here, we aim to delineate further the mild end of the phenotypic spectrum related to SUFU haploinsufficiency. METHODS Nine individuals (from three unrelated families) harboring truncating SUFU variants were investigated, including two previously reported individuals (from one family). We provide results from a comprehensive assessment comprising neuroimaging, neuropsychology, video-oculography, and genetic testing. RESULTS We identified three inherited or de novo truncating variants in SUFU (NM_016169.4): c.895C>T p.(Arg299∗), c.71dup p.(Ala25Glyfs∗23), and c.71del p.(Pro24Argfs∗72). The phenotypic expression showed high variability both between and within families. Clinical features include motor developmental delay (seven of nine), axial hypotonia (five of nine), ocular motor apraxia (three of nine), and cerebellar signs (three of nine). Four of the six reported children had macrocephaly. Neuropsychological and developmental assessments revealed mildly delayed language development in the youngest children, whereas general cognition was normal in all variant carriers. Subtle but characteristic SUFU-related neuroimaging abnormalities (including superior cerebellar dysplasia, abnormalities of the superior cerebellar peduncles, rostrally displaced fastigium, and vermis hypoplasia) were observed in seven of nine individuals. CONCLUSIONS Our data shed further light on the mild but recognizable features of SUFU haploinsufficiency and underline its marked phenotypic variability, even within families. Notably, neurodevelopmental and behavioral abnormalities are mild compared with Joubert syndrome and seem to be well compensated over time.
Collapse
Affiliation(s)
- Sandy Siegert
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Katharina Pal-Handl
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stephanie Lilja
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kepa
- Gesundheitszentrum Floridsdorf der Österreichischen Gesundheitskasse, Vienna, Austria
| | - Sara Silvaieh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Gerald Wiest
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ivana Pogledic
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maria T Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children's Hospital, Zurich, Switzerland
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Lee SG, Evans G, Stephen M, Goren R, Bondy M, Goodman S. Medulloblastoma and other neoplasms in patients with heterozygous germline SUFU variants: A scoping review. Am J Med Genet A 2024; 194:e63496. [PMID: 38282294 DOI: 10.1002/ajmg.a.63496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
In 2002, heterozygous suppressor of fused variants (SUFU+/-) in the germline were described to have a tumor suppressor role in the development of pediatric medulloblastoma (MB). Other neoplasms associated with pathologic germline SUFU+/- variants have also been described among patients with basal cell nevus syndrome (BCNS; BCNS is also known as Gorlin syndrome, nevoid basal cell carcinoma [BCC] syndrome or Gorlin-Goltz syndrome; OMIM 109400), an autosomal-dominant cancer predisposition syndrome. The phenotype of patients with germline SUFU+/- variants is very poorly characterized due to a paucity of large studies with long-term follow-up. As such, there is a clinical need to better characterize the spectrum of neoplasms among patients with germline SUFU+/- variants so that clinicians can provide accurate counseling and optimize tumor surveillance strategies. The objective of this study is to perform a scoping review to map the evidence on the rate of medulloblastoma and to describe the spectrum of other neoplasms among patients with germline SUFU+/- variants. A review of all published literature in PubMed (MEDLINE), EMBASE, Cochrane, and Web of Science were searched from the beginning of each respective database until October 9, 2021. Studies of pediatric and adult patients with a confirmed germline SUFU+/- variant who were evaluated for the presence of any neoplasm (benign or malignant) were included. There were 176 patients (N = 30 studies) identified with a confirmed germline SUFU+/- variant who met inclusion criteria. Data were extracted from two cohort studies, two case-control studies, 18 case series, and eight case reports. The median age at diagnosis of a germline SUFU+/- variant was 4.5 years where 44.4% identified as female and 13.4% of variants were de novo. There were 34 different neoplasms (benign and malignant) documented among patients with confirmed germline SUFU+/- variants, and the most common were medulloblastoma (N = 59 patients), BCC (N = 21 patients), and meningioma (N = 19 patients). The median age at medulloblastoma diagnosis was 1.42 years (range 0.083-3; interquartile range 1.2). When data were available for these three most frequent neoplasms (N = 95 patients), 31 patients (32.6%) had neither MB, BCC nor meningioma; 51 patients (53.7%) had one of medulloblastoma or BCC or meningioma; eight patients (8.4%) had two of medulloblastoma or BCC or meningioma, and five patients (5.3%) had medulloblastoma and BCC and meningioma. This is the first study to synthesize the data on the frequency and spectrum of neoplasms specifically among patients with a confirmed germline SUFU+/- variant. This scoping review is a necessary step forward in optimizing evidence-based tumor surveillance strategies for medulloblastoma and estimating the risk of other neoplasms that could impact patient outcomes.
Collapse
Affiliation(s)
- Stephanie G Lee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gareth Evans
- Division of Evolution, Infection and Genomic Science, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester NHS Foundation Trust, Manchester, UK
| | - Maddie Stephen
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Goren
- Queen's School of Medicine, Queens University, Kingston, Ontario, Canada
| | - Melissa Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Steven Goodman
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
4
|
Farheen S, PM MM, Rehman S, Hoda MF, Gupta Y, Ali A, Chosdol K, Shahi MH. Homeodomain Transcription Factors Nkx2.2 and Pax6 as Novel Biomarkers for Meningioma Tumor Treatment. Indian J Clin Biochem 2024; 39:47-59. [PMID: 38223000 PMCID: PMC10784245 DOI: 10.1007/s12291-022-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01085-1.
Collapse
Affiliation(s)
- Shirin Farheen
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Mubeena Mariyath PM
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Suhailur Rehman
- Department of Pathology, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Md. Fakhrul Hoda
- Department of Neurosurgery, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asif Ali
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| |
Collapse
|
5
|
Wang J, Zhang A, Wang B, Yuan J, Zhu J, Li M, Liu H, Cheng L, Kong P. Multiple ossified intracranial and spinal meningiomas: a rare case report and literature review. Front Neurol 2023; 14:1253915. [PMID: 37885473 PMCID: PMC10598861 DOI: 10.3389/fneur.2023.1253915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023] Open
Abstract
Ossified intracranial meningiomas (OIM) and ossified spinal meningiomas (OSM) are rare neoplasms of mesenchymal origin that predominantly manifest in the spinal cord and infrequently in the cranial region, accounting for ~0. 7-5.5% of all meningiomas. It is extremely rare to have multiple intracranial and spinal lesions accompanied by ossification. Herein, we report this rare case for the first time. A 34-year-old woman presented with paresthesia and limb weakness in the right lower limb and gradually worsened. Approximately half a year later, she could only walk with crutches. Magnetic resonance imaging of the brain and spinal cord showed multiple meningiomas, and histopathological examination confirmed multiple OIM and OSM (WHO grade 1). Multiple OIM and OSM are extremely rare with diverse imaging features, and it is easily confused with other tumors. Histopathological examination is the final diagnostic method.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Boya Wang
- Department of Neurology, People's Hospital of Fenggang County, Zunyi, Guizhou, China
| | - Jingmeng Yuan
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Junchi Zhu
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengjiao Li
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Henli Liu
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lijuan Cheng
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ping Kong
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Caruso G, Ferrarotto R, Curcio A, Metro L, Pasqualetti F, Gaviani P, Barresi V, Angileri FF, Caffo M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers (Basel) 2023; 15:4521. [PMID: 37760490 PMCID: PMC10526192 DOI: 10.3390/cancers15184521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Meningiomas are the most frequent histotypes of tumors of the central nervous system. Their incidence is approximately 35% of all primary brain tumors. Although they have the status of benign lesions, meningiomas are often associated with a decreased quality of life due to focal neurological deficits that may be related. The optimal treatment is total resection. Histological grading is the most important prognostic factor. Recently, molecular alterations have been identified that are specifically related to particular phenotypes and, probably, are also responsible for grading, site, and prognostic trend. Meningiomas recur in 10-25% of cases. In these cases, and in patients with atypical or anaplastic meningiomas, the methods of approach are relatively insufficient. To date, data on the molecular biology, genetics, and epigenetics of meningiomas are insufficient. To achieve an optimal treatment strategy, it is necessary to identify the mechanisms that regulate tumor formation and progression. Combination therapies affecting multiple molecular targets are currently opening up and have significant promise as adjuvant therapeutic options. We review the most recent literature to identify studies investigating recent therapeutic treatments recently used for meningiomas.
Collapse
Affiliation(s)
- Gerardo Caruso
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Rosamaria Ferrarotto
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Antonello Curcio
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Luisa Metro
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | | | - Paola Gaviani
- Neuro Oncology Unit, IRCCS Foundation Carlo Besta Neurological Institute, 20133 Milan, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy;
| | - Filippo Flavio Angileri
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy; (R.F.); (A.C.); (L.M.); (F.F.A.); (M.C.)
| |
Collapse
|
7
|
Paradise BD, Gainullin VG, Almada LL, Sigafoos AN, Sen S, Vera RE, Raja Arul GL, Toruner M, Pease DR, Gonzalez AL, Mentucci FM, Grasso DH, Fernandez-Zapico ME. SUFU promotes GLI activity in a Hedgehog-independent manner in pancreatic cancer. Biochem J 2023; 480:1199-1216. [PMID: 37477952 DOI: 10.1042/bcj20220439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.
Collapse
Affiliation(s)
- Brooke D Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | | | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Ashley N Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Glancis Luzeena Raja Arul
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - David R Pease
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Alina L Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), La Pampa 6300, Argentina
| | | | - Daniel H Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Escuela de Farmacia y Bioquimica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | | |
Collapse
|
8
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Álvarez-Salafranca M, García-García M, Montes-Torres A, Rivera-Fuertes I, López-Giménez MT, Ara M. SUFU-associated Gorlin syndrome: Expanding the spectrum between classic nevoid basal cell carcinoma syndrome and multiple hereditary infundibulocystic basal cell carcinoma. Australas J Dermatol 2023; 64:249-254. [PMID: 36825822 DOI: 10.1111/ajd.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, is characterized by an aberrant activation of the hedgehog (Hh) pathway, most cases being caused by PTCH1 mutations. However, certain features such as multiple hereditary infundibulocystic basal cell carcinomas (MHIBCC), sclerotic fibromas, childhood medulloblastoma or meningioma may be relatively specific to a SUFU mutation. We present two patients with MHIBCC, along with a more complex cutaneous and extracutaneous phenotype. MHIBCC syndrome and BCNS may share clinical features and, indeed, both syndromes probably represent different degrees of upregulation in the Hh pathway.
Collapse
Affiliation(s)
| | - Mar García-García
- Department of Pathology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Andrea Montes-Torres
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Ignacio Rivera-Fuertes
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | | | - Mariano Ara
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| |
Collapse
|
10
|
Wang EJ, Haddad AF, Young JS, Morshed RA, Wu JPH, Salha DM, Butowski N, Aghi MK. Recent advances in the molecular prognostication of meningiomas. Front Oncol 2023; 12:910199. [PMID: 36686824 PMCID: PMC9845914 DOI: 10.3389/fonc.2022.910199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
Meningiomas are the most common primary intracranial neoplasm. While traditionally viewed as benign, meningiomas are associated with significant patient morbidity, and certain meningioma subgroups display more aggressive and malignant behavior with higher rates of recurrence. Historically, the risk stratification of meningioma recurrence has been primarily associated with the World Health Organization histopathological grade and surgical extent of resection. However, a growing body of literature has highlighted the value of utilizing molecular characteristics to assess meningioma aggressiveness and recurrence risk. In this review, we discuss preclinical and clinical evidence surrounding the use of molecular classification schemes for meningioma prognostication. We also highlight how molecular data may inform meningioma treatment strategies and future directions.
Collapse
Affiliation(s)
- Elaina J. Wang
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Alexander F. Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua P. H. Wu
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Diana M. Salha
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Manish K. Aghi,
| |
Collapse
|
11
|
Wang JZ, Nassiri F, Mawrin C, Zadeh G. Genomic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:137-158. [PMID: 37432625 DOI: 10.1007/978-3-031-29750-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite being the most common primary brain tumor in adults, until recently, the genomics of meningiomas have remained quite understudied. In this chapter we will discuss the early cytogenetic and mutational changes uncovered in meningiomas, from the discovery of the loss of chromosome 22q and the neurofibromatosis-2 (NF2) gene to other non-NF2 driver mutations (KLF4, TRAF7, AKT1, SMO, etc.) discovered using next generation sequencing. We discuss each of these alterations in the context of their clinical significance and conclude the chapter by reviewing recent multiomic studies that have integrated our knowledge of these alterations together to develop novel molecular classifications for meningiomas.
Collapse
Affiliation(s)
- Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Chen Y, Zhang H, Zhao Y, Ma J. Congenital medulloblastoma in two brothers with SUFU-mutated Gorlin-Goltz syndrome: Case reports and literature review. Front Oncol 2022; 12:988798. [PMID: 36313636 PMCID: PMC9603755 DOI: 10.3389/fonc.2022.988798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCongenital medulloblastoma is very rare, and many cases involve germline mutations that can lead to inherited syndromes. Here, we first report two brothers with congenital medulloblastoma who were diagnosed with Gorlin-Goltz syndrome caused by SUFU mutation.Clinical presentationMedulloblastoma was detected in two brothers at 2 and 3 months of age, with very similar imaging features. Genetic testing revealed that both children and their mother carried SUFU gene germline mutations, and both brothers were diagnosed with Gorlin-Goltz syndrome.ConclusionGorlin-Goltz syndrome-associated congenital medulloblastoma with SUFU germline mutation is very rare. Pathological types mostly involve desmoplastic/nodular or extensive nodularity; chemotherapy is the main treatment, and studies revealing prognostic data are scarce.
Collapse
Affiliation(s)
| | | | - Yang Zhao
- *Correspondence: Jie Ma, ; Yang Zhao,
| | - Jie Ma
- *Correspondence: Jie Ma, ; Yang Zhao,
| |
Collapse
|
14
|
Serpieri V, D’Abrusco F, Dempsey JC, Cheng YHH, Arrigoni F, Baker J, Battini R, Bertini ES, Borgatti R, Christman AK, Curry C, D'Arrigo S, Fluss J, Freilinger M, Gana S, Ishak GE, Leuzzi V, Loucks H, Manti F, Mendelsohn N, Merlini L, Miller CV, Muhammad A, Nuovo S, Romaniello R, Schmidt W, Signorini S, Siliquini S, Szczałuba K, Vasco G, Wilson M, Zanni G, Boltshauser E, Doherty D, Valente EM. SUFU haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum. J Med Genet 2022; 59:888-894. [PMID: 34675124 PMCID: PMC9411896 DOI: 10.1136/jmedgenet-2021-108114] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.
Collapse
Affiliation(s)
| | - Fulvio D’Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Yong-Han Hank Cheng
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Janice Baker
- Genomics and Genetic Medicine Department, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Roberta Battini
- Unit of Child Neuropsychiatry, IRCCS Foundation Stella Maris, Calambrone, Toscana, Italy,Department of Clinical ad Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Silvio Bertini
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Angela K Christman
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Cynthia Curry
- Department of Pediatrics, Stanford University, Stanford, California, USA,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, Fresno, California, USA,University Pediatric Specialists, Fresno, California, USA
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joel Fluss
- Department of Women, Children and Adolescents, Geneva University Hospitals, Geneva, Switzerland
| | - Michael Freilinger
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Gisele E Ishak
- Department of Neuroradiology, University of Washington School of Medicine, Seattle, Washington, USA,Pediatric Radiology, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Hailey Loucks
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Nancy Mendelsohn
- Complex Health Solutions, United Healthcare, Minneapolis, Minnesota, USA
| | - Laura Merlini
- Department of Pediatric Radiology, Geneva University Hospitals Children's Hospital, Geneva, Switzerland
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA
| | - Ansar Muhammad
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland,Depatment of Ophtalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sara Nuovo
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Lazio, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Wolfgang Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Siliquini
- Child Neuropsychiatry Unit, Paediatric Hospital G Salesi, Ancona, Italy
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Warszawski Uniwersytet Medyczny, Warszawa, Poland
| | - Gessica Vasco
- Unit of Neurorehabilitation, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Meredith Wilson
- Department of Clinical Genetics, Children’s Hospital at Westmead, Sydney, New South Wales, Australia,Discipline of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ginevra Zanni
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Diseases, Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children's Hospital Zürich, Zurich, Zürich, Switzerland
| | - Dan Doherty
- Department of Pediatrics, University of Washington Center for Mendelian Genomics, WashingtonUSA,Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy,Department of Molecular Medicine, University of Pavia, Pavia, Lombardia, Italy
| | | |
Collapse
|
15
|
Peris-Celda M, Carrión-Navarro J, Palacín-Aliana I, Sánchez-Gómez P, Acín RP, Garcia-Romero N, Ayuso-Sacido A. Suppressor of fused associates with dissemination patterns in patients with glioma. Front Oncol 2022; 12:923681. [PMID: 36091108 PMCID: PMC9450955 DOI: 10.3389/fonc.2022.923681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common brain tumors, which present poor prognosis, due, in part, to tumor cell migration and infiltration into distant brain areas. However, the underlying mechanisms causing such effects are unknown. Hedgehog (HH)–Gli axis is one of the signaling pathways involved, with a high number of molecular mediators. In this study, we investigated the association between HH-Gli intermediates and clinical parameters. We found that high levels of SuFu are associated with high dissemination patterns in patients with glioma. Therefore, we analyzed SuFu expression data in three glioma cohorts of surgical samples (N =1,759) and modified its expression in Glioblastoma Cancer Stem Cells (GB CSC) in vitro models. Our data reveal that SuFu overexpression increases cancer stemness properties together with a migratory phenotype. This work identifies SuFu as a new molecular player in glioma cell migration and a promising target to develop blocking agents to decrease GB dissemination.
Collapse
Affiliation(s)
- María Peris-Celda
- Department of Neurosurgery, Mayo Clinic, Rochester, NY, United States
| | | | - Irina Palacín-Aliana
- Atrys Health, Barcelona, Spain
- Fundación de Investigación HM-Hospitales, Madrid, Spain
- Faculty of Science, Universidad de Alcalá, Madrid, Spain
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-Unidad Funcional de Investigación de Enfermedades crónicas (UFIEC), Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
16
|
Guerrini-Rousseau L, Masliah-Planchon J, Waszak SM, Alhopuro P, Benusiglio PR, Bourdeaut F, Brecht IB, Del Baldo G, Dhanda SK, Garrè ML, Gidding CEM, Hirsch S, Hoarau P, Jorgensen M, Kratz C, Lafay-Cousin L, Mastronuzzi A, Pastorino L, Pfister SM, Schroeder C, Smith MJ, Vahteristo P, Vibert R, Vilain C, Waespe N, Winship IM, Evans DG, Brugieres L. Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. J Med Genet 2022; 59:jmedgenet-2021-108385. [PMID: 35768194 PMCID: PMC9613872 DOI: 10.1136/jmedgenet-2021-108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. METHODS To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. RESULTS Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. CONCLUSION Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Pia Alhopuro
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Patrick R Benusiglio
- Département de Génétique et Institut Universitaire de Cancérologie, Sorbonne University Faculty of Medicine Pitié-Salpêtrière Campus, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Hospitals Tubingen, Tubingen, Germany
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, IRCCS, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Department of Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrie E M Gidding
- Neuro-Oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
| | - Pauline Hoarau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Mette Jorgensen
- Oncology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Christian Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Mastronuzzi
- Pediatric Hematology/Oncology and Stem Cells Transplatation, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Lorenza Pastorino
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
- Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tubingen Institute of Human Genetics, Tubingen, Germany
| | - Miriam Jane Smith
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Roseline Vibert
- Department of Genetics, PSL Research University, Institute Curie, Paris, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Waespe
- CANSEARCH Research Platform, Depatment of pediatric oncology and hematology, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ingrid M Winship
- Department of Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences,Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Laurence Brugieres
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
- Department of Children and Adolescents Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
17
|
Erson-Omay EZ, Vetsa S, Vasandani S, Barak T, Nadar A, Marianayanam N, Yalcin K, Miyagishima D, Aguilera SM, Robert S, Mishra-Gorur K, Fulbright RK, McGuone D, Günel M, Moliterno J. Genomic profiling of sporadic multiple meningiomas. BMC Med Genomics 2022; 15:112. [PMID: 35568945 PMCID: PMC9107270 DOI: 10.1186/s12920-022-01258-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple meningiomas (MMs) rarely occur sporadically. It is unclear whether each individual tumor in a single patient behaves similarly. Moreover, the molecular mechanisms underlying the formation of sporadic MMs and clonal formation etiology of these tumors are poorly understood. METHODS Patients with spatially separated MMs without prior radiation exposure or a family history who underwent surgical resection of at least two meningiomas were included. Unbiased, comprehensive next generation sequencing was performed, and relevant clinical data was analyzed. RESULTS Fifteen meningiomas and one dural specimen from six patients were included. The majority of tumors (12/15) were WHO Grade I; one patient had bilateral MMs, one of which was Grade II, while the other was Grade I. We found 11/15 of our cohort specimens were of NF2-loss subtype. Meningiomas from 5/6 patients had a monoclonal origin, with the tumor from the remaining patient showing evidence for independent clonal formation. We identified a novel case of non-NF2 mutant MM with monoclonal etiology. MMs due to a monoclonal origin did not always display a homogenous genomic profile, but rather exhibited heterogeneity due to branching evolution. CONCLUSIONS Both NF2-loss and non-NF2 driven MMs can form due to monoclonal expansion and those tumors can acquire inter-tumoral heterogeneity through branched evolution. Grade I and II meningiomas can occur in the same patient. Thus, the molecular make-up and clinical behavior of one tumor in MMs, cannot reliably lend insight into that of the others and suggests the clinical management strategy for MMs should be tailored individually.
Collapse
Affiliation(s)
- E. Zeynep Erson-Omay
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Shaurey Vetsa
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Sagar Vasandani
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Tanyeri Barak
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA
| | - Arushii Nadar
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Neelan Marianayanam
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Kanat Yalcin
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA
| | - Danielle Miyagishima
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA
| | - Stephanie Marie Aguilera
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA
| | - Stephanie Robert
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA
| | - Ketu Mishra-Gorur
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA
| | - Robert K. Fulbright
- grid.47100.320000000419368710Department of Radiology and Biomedical Imaging, Neuroradiology Section, Yale School of Medicine, New Haven, CT USA
| | - Declan McGuone
- grid.47100.320000000419368710Department of Pathology, Yale School of Medicine, New Haven, CT USA
| | - Murat Günel
- grid.47100.320000000419368710Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT 06520-8082 USA ,grid.490524.eThe Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT USA ,grid.417307.6The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT USA ,grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA. .,The Chênevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA. .,The Susan Beris, MD Neurosurgical Oncology Program at Yale New Haven Hospital, New Haven, CT, USA.
| |
Collapse
|
18
|
Pemov A, Kim J, Jones K, Vogt A, Sadetzki S, Stewart DR. Examination of Genetic Susceptibility in Radiation-Associated Meningioma. Radiat Res 2022; 198:81-88. [DOI: 10.1667/rade-21-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
Previous epidemiological studies have demonstrated elevated susceptibility to ionizing radiation in some families, thus suggesting the presence of genetic components that conferred increased rate of radiation-associated meningioma (RAM). In this study, we exome-sequenced and investigated the segregation pattern of rare deleterious variants in 11 RAM pedigrees. In addition, we performed a rare-variant association analysis in 92 unrelated familial cases of RAM that were ancestry-matched with 88 meningioma-free controls. In the pedigree analysis, we found that each family carried mostly a unique set of rare deleterious variants. A follow-up pathway analysis of the union of the genes that segregated within each of the 11 pedigrees identified a single statistically significant (q value = 7.90E-04) “ECM receptor interaction” set. In the case-control association analysis, we observed no statistically significant variants or genes after multiple testing correction; however, examination of ontological categories of the genes that associated with RAM at nominal P values <0.01 identified biologically relevant pathways such as DNA repair, cell cycle and apoptosis. These results suggest that it is unlikely that a small number of highly penetrant genes are involved in the pathogenesis of RAM. Substantially larger studies are needed to identify genetic risk variants and genes in RAM.
Collapse
Affiliation(s)
- A. Pemov
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland
| | - J. Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland
| | - K. Jones
- Frederick National Laboratory for Cancer Research, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland
| | - A. Vogt
- Frederick National Laboratory for Cancer Research, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland
| | - S. Sadetzki
- Sackler School of Medicine, Tel-Aviv University, Israel
| | - D. R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland
| |
Collapse
|
19
|
Bi WL, Santagata S. Skull Base Tumors: Neuropathology and Clinical Implications. Neurosurgery 2022; 90:243-261. [PMID: 34164689 DOI: 10.1093/neuros/nyab209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumors that arise in and around the skull base comprise a wide range of common and rare entities. Recent studies have advanced our understanding of their pathogenesis, which in some cases, have significantly influenced clinical practice. The genotype of meningiomas is strongly associated with their phenotype, including histologic subtype and tumor location, and clinical outcome. A single molecular alteration, NAB2-STAT6 fusion, has redefined the category of solitary fibrous tumors to include the previous entity hemangiopericytomas. Schwannomas, both sporadic and familial, are characterized by near ubiquitous alterations in NF2 , with additional mutations in SMARCB1 or LZTR1 in schwannomatosis. In pituitary adenohypophyseal tumors, cell lineage transcription factors such as SF-1, T-PIT, and PIT-1 are now essential for classification, providing a more rigorous taxonomy for tumors that were previously considered null cell adenomas. The pituicyte lineage transcription factor TTF-1 defines neurohypophyseal tumors, which may represent a single nosological entity with a spectrum of morphologic manifestations (ie, granular cell tumor, pituicytoma, and spindle cell oncocytoma). Likewise, the notochord cell lineage transcription factor brachyury defines chordoma, discriminating them from chondrosarcomas. The identification of nonoverlapping genetic drivers of adamantinomatous craniopharyngiomas and papillary craniopharyngiomas indicates that these are distinct tumor entities and has led to successful targeted treatment of papillary craniopharyngiomas using BRAF and/or mitogen-activated protein kinase inhibitors. Similarly, dramatic therapeutic responses have been achieved in patients with Langerhans cell histiocytosis, both with BRAF -mutant and BRAF -wildtype tumors. Familiarity with the pathology of skull base tumors, their natural history, and molecular features is essential for optimizing patient care.
Collapse
Affiliation(s)
- Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts , USA
- Laboratory of Systems Pharmacology, Harvard Medical School , Boston , Massachusetts , USA
- Ludwig Center at Harvard, Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
20
|
Mawrin C, Koch R, Waldt N, Sandalcioglu IE, Braunsdorf WEK, Warnke JP, Goehre F, Meisel HJ, Ewald C, Neyazii S, Schüller U, Kirches E. A new amplicon-based gene panel for next generation sequencing characterization of meningiomas. Brain Pathol 2022; 32:e13046. [PMID: 35213080 PMCID: PMC8877726 DOI: 10.1111/bpa.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Meningiomas are the most frequent primary intracranial tumors. The considerable variety of histological subtypes has been expanded by the definition of molecular alterations, which can improve both diagnostic accuracy and determination of individual patient's outcome. According to the upcoming WHO classification of brain tumors, the in‐time analysis of frequent molecular events in meningiomas may become mandatory to define meningioma subtypes. We have compiled a custom‐made amplicon‐based next generation sequencing (NGS) meningioma panel covering the most frequent known recurrent mutations in 15 different genes. In an unselected consecutive meningioma cohort (109 patients) analyzed over a period of 12 months, we detected mutations in 11 different genes, with most frequent alterations in NF2 (43%), AKT1E17K (15%), and TRAF7 (13%). In 39 tumors (36%), two different mutations were detected, with NF2 and SUFU (n = 5) and KLF4 and TRAF7 (n = 5) being the most frequent combinations. No alterations were found in POLR2A, CDKN2A, CDKN2B, and BAP1, and no homozygous CDKN2A/B deletion was detected. NF2 mutations were found in tumors of all WHO grades, whereas mutations in KLF4, TRAF7, and SMO were restricted to WHO grade I meningiomas. In contrast, SMARCE1 and TERT mutations were associated with WHO grade II meningiomas (according to the WHO classification 2016). The distribution of mutations across histological subtypes or tumor localization was in line with the existing literature, with typical combinations like KLF4K409Q/TRAF7 for secretory meningiomas and preferential skull base localization of meningiomas harboring SMO and AKT1E17K mutations. Thus, we present a custom‐made NGS meningioma panel providing a time and cost‐efficient reliable detection of relevant somatic molecular alterations in meningiomas suitable for daily routine.
Collapse
Affiliation(s)
- Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ralf Koch
- Department of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Natalie Waldt
- Department of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Jan-Peter Warnke
- Department of Neurosurgery, Paracelsus-Hospital Zwickau, Zwickau, Germany
| | - Felix Goehre
- Department of Neurosurgery, Bergmannstrost Hospital Halle/Saale, Halle/Saale, Germany
| | - Hans-Jürgen Meisel
- Department of Neurosurgery, Bergmannstrost Hospital Halle/Saale, Halle/Saale, Germany
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Sina Neyazii
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg, Hamburg, Germany.,Research Institute Children's Cancer Center, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg, Hamburg, Germany.,Research Institute Children's Cancer Center, Hamburg, Germany.,Department of Neuropathology, University Hospital Hamburg, Hamburg, Germany
| | - Elmar Kirches
- Department of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
21
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
22
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
24
|
Sufu negatively regulates both initiations of centrosome duplication and DNA replication. Proc Natl Acad Sci U S A 2021; 118:2026421118. [PMID: 34260378 DOI: 10.1073/pnas.2026421118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.
Collapse
|
25
|
Zhou P, Wei L, Shi J, Shao N. Familial Tuberculum Sellae Meningiomas. J Craniofac Surg 2021; 32:e19-e20. [PMID: 32858607 PMCID: PMC7769181 DOI: 10.1097/scs.0000000000006823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to study and explore the genetic mechanism of familial meningiomas through 3 cases of familial tuberculum sellae meningioma.
Collapse
Affiliation(s)
| | - Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | | | | |
Collapse
|
26
|
Boetto J, Lerond J, Peyre M, Tran S, Marijon P, Kalamarides M, Bielle F. GAB1 overexpression identifies hedgehog-activated anterior skull base meningiomas. Neuropathol Appl Neurobiol 2021; 47:748-755. [PMID: 34056767 DOI: 10.1111/nan.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS Mutations activating the hedgehog (Hh) signalling pathway have been described in anterior skull base meningiomas, raising hope for the use of targeted therapies. However, identification of Hh-activated tumours is hampered by the lack of a reliable immunohistochemical marker. We report the evaluation of GAB1, an immunohistochemical marker used to detect Hh pathway activation in medulloblastoma, as a potential marker of Hh-activated meningiomas. METHODS GAB1 staining was compared to SMO mutation detection with Sanger and NGS techniques as well as Hh pathway activation study through mRNA expression level analyses in a discovery set of 110 anterior skull base meningiomas and in a prospective validation set of 21 meningiomas. RESULTS Using an expression score ranging from 0 to 400, we show that a cut-off score of 250 lead to excellent detection of Hh pathway mutations (sensitivity 100%, specificity 86%). The prospective validation set confirmed the excellent negative predictive value of GAB1 to exclude Hh-independent meningiomas. We describe a large series of 32 SMO-mutant meningiomas and define multiple ways of Hh activation, either through somatic mutations or associated with mutually co-exclusive sonic hedgehog (SHH) or Indian hedgehog (IHH) overexpression independent of the mutations. CONCLUSION The assessment of GAB1 expression by an immunohistochemical score is a fast and cost-efficient tool to screen anterior skull base meningiomas for activation of the Hh pathway. It could facilitate the identification of selected cases amenable to sequencing for Hh pathway genes as predictive markers for targeted therapy.
Collapse
Affiliation(s)
- Julien Boetto
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital Center, Montpellier, France.,ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France
| | - Julie Lerond
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society) - site de recherche intégrée sur le cancer IUC - APHP.6 - Sorbonne Université, Paris, France
| | - Matthieu Peyre
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Suzanne Tran
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,Department of Neuropathology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Pauline Marijon
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michel Kalamarides
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Franck Bielle
- ICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society) - site de recherche intégrée sur le cancer IUC - APHP.6 - Sorbonne Université, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France.,Department of Neuropathology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
27
|
Morphologic, Immunohistochemical, and Molecular Distinction Between Fibroepithelioma of Pinkus and "Fenestrated" Basal Cell Carcinoma. Am J Dermatopathol 2021; 42:513-520. [PMID: 31693503 DOI: 10.1097/dad.0000000000001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibroepithelioma of Pinkus (FEP) is a rare cutaneous neoplasm with a characteristic fenestrated architecture and a prominent spindle cell stromal component and which invariably pursues an indolent course. The classification of FEP has been much debated since its first description in 1953, with some arguing that it represents a variant of a basal cell carcinoma (BCC) while others view it as a variant of a trichoblastoma. Multiple previous immunohistochemical studies aiming to clarify this issue have yielded conflicting results. To date, there have been no molecular studies of FEP. We identified 16 cases of fenestrated follicular neoplasms and classified them as BCC or FEP based solely on histomorphologic criteria. CK20 immunohistochemistry supported this classification scheme, with FEP showing significantly more CK20-positive Merkel cells than BCC. We then analyzed a subset of these tumors by a targeted next-generation DNA sequencing platform. All the BCC cases harbored pathogenic PTCH1 mutations, confirming the diagnosis. By contrast, none of the FEP cases harbored a PTCH1 mutation or indeed any mutation known to be causally linked to the development of BCC. Our results suggest that FEP can be distinguished from BCC on morphologic, immunohistochemical, and molecular genetic grounds. We argue that FEP is better considered a benign follicular neoplasm and support its classification as a variant of trichoblastoma.
Collapse
|
28
|
Current recommendations for cancer surveillance in Gorlin syndrome: a report from the SIOPE host genome working group (SIOPE HGWG). Fam Cancer 2021; 20:317-325. [PMID: 33860896 PMCID: PMC8484213 DOI: 10.1007/s10689-021-00247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/17/2021] [Indexed: 01/22/2023]
Abstract
Gorlin syndrome (MIM 109,400), a cancer predisposition syndrome related to a constitutional pathogenic variation (PV) of a gene in the Sonic Hedgehog pathway (PTCH1 or SUFU), is associated with a broad spectrum of benign and malignant tumors. Basal cell carcinomas (BCC), odontogenic keratocysts and medulloblastomas are the main tumor types encountered, but meningiomas, ovarian or cardiac fibromas and sarcomas have also been described. The clinical features and tumor risks are different depending on the causative gene. Due to the rarity of this condition, there is little data on phenotype-genotype correlations. This report summarizes genotype-based recommendations for screening patients with PTCH1 and SUFU-related Gorlin syndrome, discussed during a workshop of the Host Genome Working Group of the European branch of the International Society of Pediatric Oncology (SIOPE HGWG) held in January 2020. In order to allow early detection of BCC, dermatologic examination should start at age 10 in PTCH1, and at age 20 in SUFU PV carriers. Odontogenic keratocyst screening, based on odontologic examination, should begin at age 2 with annual orthopantogram beginning around age 8 for PTCH1 PV carriers only. For medulloblastomas, repeated brain MRI from birth to 5 years should be proposed for SUFU PV carriers only. Brain MRI for meningiomas and pelvic ultrasound for ovarian fibromas should be offered to both PTCH1 and SUFU PV carriers. Follow-up of patients treated with radiotherapy should be prolonged and thorough because of the risk of secondary malignancies. Prospective evaluation of evidence of the effectiveness of these surveillance recommendations is required.
Collapse
|
29
|
Ogasawara C, Philbrick BD, Adamson DC. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines 2021; 9:biomedicines9030319. [PMID: 33801089 PMCID: PMC8004084 DOI: 10.3390/biomedicines9030319] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most common intracranial tumor, making up more than a third of all primary central nervous system (CNS) tumors. They are mostly benign tumors that can be observed or preferentially treated with gross total resection that provides good outcomes. Meningiomas with complicated histology or in compromising locations has proved to be a challenge in treating and predicting prognostic outcomes. Advances in genomics and molecular characteristics of meningiomas have uncovered potential use for more accurate grading and prediction of prognosis and recurrence. With the study and detection of genomic aberrancies, specific biologic targets are now being trialed for possible management of meningiomas that are not responsive to standard surgery and radiotherapy treatment. This review summarizes current epidemiology, etiology, molecular characteristics, diagnosis, treatments, and current treatment trials.
Collapse
Affiliation(s)
- Christian Ogasawara
- Department of Surgery, University of Hawaii School of Medicine, Honolulu, HI 96813, USA;
| | - Brandon D. Philbrick
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - D. Cory Adamson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Neurosurgery, Atlanta VA Medical Center, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(919)-698-3152
| |
Collapse
|
30
|
Fountain DM, Smith MJ, O'Leary C, Pathmanaban ON, Roncaroli F, Bobola N, King AT, Evans DG. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021; 40:875-884. [PMID: 33262459 PMCID: PMC8440207 DOI: 10.1038/s41388-020-01568-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Meningiomas are the most common primary brain tumor and their incidence and prevalence is increasing. This review summarizes current evidence regarding the embryogenesis of the human meninges in the context of meningioma pathogenesis and anatomical distribution. Though not mutually exclusive, chromosomal instability and pathogenic variants affecting the long arm of chromosome 22 (22q) result in meningiomas in neural-crest cell-derived meninges, while variants affecting Hedgehog signaling, PI3K signaling, TRAF7, KLF4, and POLR2A result in meningiomas in the mesodermal-derived meninges of the midline and paramedian anterior, central, and ventral posterior skull base. Current evidence regarding the common pathways for genetic pathogenesis and the anatomical distribution of meningiomas is presented alongside existing understanding of the embryological origins for the meninges prior to proposing next steps for this work.
Collapse
Affiliation(s)
- Daniel M Fountain
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK.
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Claire O'Leary
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Boetto J, Peyre M, Kalamarides M. Meningiomas from a developmental perspective: exploring the crossroads between meningeal embryology and tumorigenesis. Acta Neurochir (Wien) 2021; 163:57-66. [PMID: 33216210 DOI: 10.1007/s00701-020-04650-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Meningiomas are tumors arising from the meninges and represent the most frequent central nervous system tumors in adults. Recent large-scale genetic studies and preclinical meningioma mouse modelling led to a better comprehension of meningioma development and suggested evidences of close relationships between meningeal embryology and tumorigenesis. In this non-systematic review, we summarize the current knowledge on meningeal embryology and developmental biology, and illustrate how meningioma tumorigenesis is deeply related to meningeal embryology, concerning the potential cell of origin, the role of reactivation of embryonic stem cells, the influence of the embryonic tissue of origin, and the parallelism between topography-dependant molecular pathways involved in normal meninges and in meningioma development. Our study emphasizes why future studies on meningeal embryology are mandatory to affine our comprehension of mechanisms underlying meningioma initiation and development.
Collapse
Affiliation(s)
- Julien Boetto
- Neurosurgery Department, Gui de Chauliac Hospital, Montpellier University Medical Center, 91 avenue Augustin Fliche, 34090, Montpellier, France.
| | - Matthieu Peyre
- APHP, Groupe Hospitalo-Universitaire Pitié-Salpétrière, Neurosurgery Department, Sorbonne Université, Paris, France
| | - Michel Kalamarides
- APHP, Groupe Hospitalo-Universitaire Pitié-Salpétrière, Neurosurgery Department, Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Gao X, Zhang L, Jia Q, Tang L, Guo W, Wang T, Wu Z, Zhou W, Li Z, Xiao J. Whole Genome Sequencing Identifies Key Genes in Spinal Schwannoma. Front Genet 2020; 11:507816. [PMID: 33193598 PMCID: PMC7661748 DOI: 10.3389/fgene.2020.507816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal schwannoma is the most common primary spinal tumor but its genomic landscape and underlying mechanism driving its initiation remain elusive. The aim of the present study was to gain further insights into the molecular mechanisms of this kind of tumor through whole genome sequencing of nine spinal schwannomas and paired blood samples. The results showed that ATM, CHD4, FAT1, KMT2D, MED12, NF2, and SUFU were the most frequently mutated cancer-related genes. In addition, the somatic copy number alterations (CNA) was potentially associated with spinal schwannoma, among which NF2 was found to be frequently deleted in schwannoma samples. Only a few genes were located within the amplified regions. In contrast, the deleted regions in 15q15.1 and 7q36.1 contained most of these genes. With respect to tumorigenesis, NF2 had the highest variant allele frequency (VAF) than other genes, and homozygous deletion was observed in NF1, NF2, and CDKN2C. Pathway-level analysis suggested that Hippo signaling pathway may be a critical pathway controlling the initiation of spinal schwannoma. Collectively, this systematic analysis of DNA sequencing data revealed that some key genes including NF1, NF2, and CDKN2C and Hippo signaling pathway were associated with spinal schwannoma, which may help improve our understanding about the genomic landscape of spinal schwannoma.
Collapse
Affiliation(s)
- Xin Gao
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li Zhang
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China.,Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Qi Jia
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen Guo
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Taizhou People's Hospital, Taizhou, China
| | - Tao Wang
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zheyu Wu
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wang Zhou
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxi Li
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Orthopedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Huntoon K, Toland AMS, Dahiya S. Meningioma: A Review of Clinicopathological and Molecular Aspects. Front Oncol 2020; 10:579599. [PMID: 33194703 PMCID: PMC7645220 DOI: 10.3389/fonc.2020.579599] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most the common primary brain tumors in adults, representing approximately a third of all intracranial neoplasms. They classically are found to be more common in females, with the exception of higher grades that have a predilection for males, and patients of older age. Meningiomas can also be seen as a spectrum of inherited syndromes such as neurofibromatosis 2 as well as ionizing radiation. In general, the 5-year survival for a WHO grade I meningioma exceeds 80%; however, survival is greatly reduced in anaplastic meningiomas. The standard of care for meningiomas in a surgically-accessible location is gross total resection. Radiation therapy is generally saved for atypical, anaplastic, recurrent, and surgically inaccessible benign meningiomas with a total dose of ~60 Gy. However, the method of radiation, regimen and timing is still evolving and is an area of active research with ongoing clinical trials. While there are currently no good adjuvant chemotherapeutic agents available, recent advances in the genomic and epigenomic landscape of meningiomas are being explored for potential targeted therapy.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
34
|
Hedgehog Pathway Alterations Downstream of Patched-1 Are Common in Infundibulocystic Basal Cell Carcinoma. Am J Dermatopathol 2020; 43:266-272. [PMID: 32796174 DOI: 10.1097/dad.0000000000001746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The infundibulocystic variant of basal cell carcinoma (BCC) is characterized histologically by anastamosing strands of basaloid epithelium with associated small infundibular-type cysts. Since its first description in 1987, this rare entity has generated considerable controversy with some authors classifying it as a benign follicular neoplasm rather than a BCC subtype. Prior studies aiming to settle this issue using immunohistochemical analysis reached opposite conclusions. The defining feature of BCC is activation of the Hedgehog signaling pathway, and mutations in Patched-1 (PTCH1) are the most common molecular finding in both sporadic and inherited forms of BCC. Mutations in other downstream components including Smoothened (SMO) and Suppressor of Fused (SUFU) also occur, but are much less common. Here, we report a molecular genetic analysis of a small series of infundibulocystic BCC using a next-generation DNA sequencing platform. All 4 cases harbored mutations or other genetic alterations in components of the Hedgehog pathway, supporting the classification of this entity as a BCC variant. Interestingly, these tumors were enriched for genetic alterations downstream of PTCH1, involving SUFU, SMO, GLI1, and GLI2. This observation was of particular interest given that rare kindreds of the Multiple Hereditary Infundibulocystic BCC syndrome (MHIBCC), which is related, but possibly distinct from the nevoid BCC syndrome, harbored mutations in SUFU. Our results support the classification of the infundibulocystic variant as a subtype of BCC, and suggest that the level at which genetic alterations occur within the Hedgehog pathway may be an important determinant of the morphologic features in BCC.
Collapse
|
35
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
36
|
Manetti F, Stecca B, Santini R, Maresca L, Giannini G, Taddei M, Petricci E. Pharmacophore-Based Virtual Screening for Identification of Negative Modulators of GLI1 as Potential Anticancer Agents. ACS Med Chem Lett 2020; 11:832-838. [PMID: 32435392 DOI: 10.1021/acsmedchemlett.9b00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Starting from known GLI1 inhibitors, a pharmacophore-based virtual screening approach was applied to databases of commercially available compounds with the aim of identifying new GLI1 modulators. As a result, three different chemical scaffolds emerged that were characterized by a significant ability to reduce the transcriptional activity of the endogenous Hedgehog-GLI pathway and GLI1 protein level in murine NIH3T3 cells. They also showed a micromolar antiproliferative activity in human melanoma (A375) and medulloblastoma (DAOY) cell lines, without cytotoxicity in non-neoplastic mammary epithelial cells.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena, via Fiorentina 1, I-53100 Siena, Italy
| | - Barbara Stecca
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Roberta Santini
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | - Luisa Maresca
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, I-50139 Firenze, Italy
| | | | - Maurizio Taddei
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena, via Fiorentina 1, I-53100 Siena, Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
37
|
Kasiri S, Chen B, Wilson AN, Reczek A, Mazambani S, Gadhvi J, Noel E, Marriam U, Mino B, Lu W, Girard L, Solis LM, Luby-Phelps K, Bishop J, Kim JW, Kim J. Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species. Oncogene 2020; 39:3258-3275. [PMID: 32108165 PMCID: PMC7160060 DOI: 10.1038/s41388-020-1224-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects-a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to suppress tumor growth and metastases, in part, by limiting ROS activity.
Collapse
Affiliation(s)
- Sahba Kasiri
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Baozhi Chen
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Alexandra N Wilson
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Annika Reczek
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Evan Noel
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ummay Marriam
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luc Girard
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - James Kim
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol 2020; 139:643-665. [PMID: 31161239 PMCID: PMC7038792 DOI: 10.1007/s00401-019-02029-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.
Collapse
Affiliation(s)
- Shannon Coy
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA.
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
39
|
Lee YS, Lee YS. Molecular characteristics of meningiomas. J Pathol Transl Med 2020; 54:45-63. [PMID: 31964111 PMCID: PMC6986967 DOI: 10.4132/jptm.2019.11.05] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Meningioma is the most common primary intracranial tumor in adults. The grading of meningioma is based on World Health Organization criteria, which rely on histopathological features alone. This grading system is unable to conclusively predict the clinical behavior of these tumors (i.e., recurrence or prognosis in benign or atypical grades). Advances in molecular techniques over the last decade that include genomic and epigenomic data associated with meningiomas have been used to identify genetic biomarkers that can predict tumor behavior. This review summarizes the molecular characteristics of meningioma using genetic and epigenetic biomarkers. Molecular alterations that can predict meningioma behavior may be integrated into the upcoming World Health Organization grading system.
Collapse
Affiliation(s)
- Young Suk Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
40
|
Burnett BA, Womeldorff MR, Jensen R. Meningioma: Signaling pathways and tumor growth. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:137-150. [PMID: 32553285 DOI: 10.1016/b978-0-12-804280-9.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Meningiomas are the most common primary intracranial brain tumor in adult humans; however, our understanding of meningioma tumorigenesis is relatively limited in comparison with the body of research available for other intracranial tumors such as gliomas. Here we briefly describe the current understanding of aberrant signaling pathways and tumor growth mechanisms responsible for meningioma differentiation, cellular growth, development, inhibition, and death. Numerous cellular functions impacted by these signaling pathways are critical for angiogenesis, proliferation, and apoptosis. Ultimately, a further understanding of the signaling pathways involved in meningioma tumorigenesis will lead to better treatment modalities in the future.
Collapse
Affiliation(s)
- Brian Andrew Burnett
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | | | - Randy Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
41
|
YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathol 2020; 139:215-218. [PMID: 31734728 DOI: 10.1007/s00401-019-02095-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
|
42
|
Abstract
More than 70,000 primary central nervous system tumors are diagnosed in the United States each year. Approximately 36% of these are meningiomas, making it the most common primary brain tumor. Because meningioma risk increases dramatically with age, the healthcare burden of meningioma in the developed world will continue to rise as demographics shift toward an older population. In addition to demographic factors associated with increased meningioma risk (i.e., older age, female sex, African American ethnicity), increased body mass index is a strong risk factor. A history of atopic allergies, eczema, and increased serum IgE are all consistently associated with reduced meningioma risk, suggesting a potential role for immunosurveillance. Although ionizing radiation is a strong meningioma risk factor, it accounts for very few cases at the population level. Recent studies suggest that diagnostic radiation (e.g., dental X-rays) increases meningioma risk. Because radiation dosages associated with medical imaging have decreased dramatically, the public health impact of this exposure is likely in decline. Genome-wide association studies have identified common inherited variants in the gene MLLT10 and RIC8A as low-penetrance meningioma risk alleles. To provide further insight into the etiology of meningioma, future studies will need to simultaneously examine genetic and environmental risk factors, while also stratifying analyses by subject sex.
Collapse
Affiliation(s)
- Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC, United States.
| |
Collapse
|
43
|
Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschké P, Nectoux J, Orhant L, Zordan C, Goizet C, Goutagny S, Lallemand D, Vidaud M, Vidaud D, Kalamarides M, Parfait B. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol 2019; 20:917-929. [PMID: 29409008 DOI: 10.1093/neuonc/noy009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Clinical overlap between neurofibromatosis type 2 (NF2), schwannomatosis, and meningiomatosis can make clinical diagnosis difficult. Hence, molecular investigation of germline and tumor tissues may improve the diagnosis. Methods We present the targeted next-generation sequencing (NGS) of NF2, SMARCB1, LZTR1, SMARCE1, and SUFU tumor suppressor genes, using an amplicon-based approach. We analyzed blood DNA from a cohort of 196 patients, including patients with NF2 (N = 79), schwannomatosis (N = 40), meningiomatosis (N = 12), and no clearly established diagnosis (N = 65). Matched tumor DNA was analyzed when available. Forty-seven NF2-/SMARCB1-negative schwannomatosis patients and 27 NF2-negative meningiomatosis patients were also evaluated. Results A NF2 variant was found in 41/79 (52%) NF2 patients. SMARCB1 or LZTR1 variants were identified in 5/40 (12.5%) and 13/40 (∼32%) patients in the schwannomatosis cohort. Potentially pathogenic variants were found in 12/65 (18.5%) patients with no clearly established diagnosis. A LZTR1 variant was identified in 16/47 (34%) NF2/SMARCB1-negative schwannomatosis patients. A SMARCE1 variant was found in 3/39 (∼8%) meningiomatosis patients. No SUFU variant was found in the cohort. NGS was an effective and sensitive method to detect mutant alleles in blood or tumor DNA of mosaic NF2 patients. Interestingly, we identified a 4-hit mechanism resulting in the complete NF2 loss-of-function combined with SMARCB1 and LZTR1 haploinsufficiency in two-thirds of tumors from NF2 patients. Conclusions Simultaneous investigation of NF2, SMARCB1, LZTR1, and SMARCE1 is a key element in the differential diagnosis of NF2, schwannomatosis, and meningiomatosis. The targeted NGS strategy is suitable for the identification of NF2 mosaicism in blood and for the investigation of tumors from these patients.
Collapse
Affiliation(s)
- Camille Louvrier
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Joëlle Cohen
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Université Paris Descartes-Sorbonne, Paris Cité, Imagine Institute, Paris, France
| | - Juliette Nectoux
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lucie Orhant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Zordan
- Service de Génétique Médicale, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France.,Laboratoire MRGM, INSERM U1211, Université Bordeaux, Bordeaux, France
| | - Stéphane Goutagny
- Service de Neurochirurgie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Dominique Lallemand
- Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| | - Michel Kalamarides
- Service de Neurochirurgie, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes-Sorbonne, Paris Cité, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
44
|
Kerr K, Qualmann K, Esquenazi Y, Hagan J, Kim DH. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. Neurosurgery 2019; 83:1107-1118. [PMID: 29660026 PMCID: PMC6235681 DOI: 10.1093/neuros/nyy121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, there is an incomplete understanding of the molecular pathogenesis of meningiomas, the most common primary brain tumor. Several familial syndromes are characterized by increased meningioma risk, and the genetics of these syndromes provides mechanistic insight into sporadic disease. The best defined of these syndromes is neurofibromatosis type 2, which is caused by a mutation in the NF2 gene and has a meningioma incidence of approximately 50%. This finding led to the subsequent discovery that NF2 loss-of-function occurs in up to 60% of sporadic tumors. Other important familial diseases with increased meningioma risk include nevoid basal cell carcinoma syndrome, multiple endocrine neoplasia 1 (MEN1), Cowden syndrome, Werner syndrome, BAP1 tumor predisposition syndrome, Rubinstein-Taybi syndrome, and familial meningiomatosis caused by germline mutations in the SMARCB1 and SMARCE1 genes. For each of these syndromes, the diagnostic criteria, incidence in the population, and frequency of meningioma are presented to review the relevant clinical information for these conditions. The genetic mutations, molecular pathway derangements, and relationship to sporadic disease for each syndrome are described in detail to identify targets for further investigation. Familial syndromes characterized by meningiomas often affect genes and pathways that are also implicated in a subset of sporadic cases, suggesting key molecular targets for therapeutic intervention. Further studies are needed to resolve the functional relevance of specific genes whose significance in sporadic disease remains to be elucidated.
Collapse
Affiliation(s)
- Keith Kerr
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Krista Qualmann
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - John Hagan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Dong H Kim
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| |
Collapse
|
45
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
46
|
Askaner G, Lei U, Bertelsen B, Venzo A, Wadt K. Novel SUFU Frameshift Variant Leading to Meningioma in Three Generations in a Family with Gorlin Syndrome. Case Rep Genet 2019; 2019:9650184. [PMID: 31485359 PMCID: PMC6702821 DOI: 10.1155/2019/9650184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023] Open
Abstract
Gorlin syndrome is mainly caused by pathogenic germline variants in the tumour suppressor genes PTCH1 and SUFU, both regulatory genes in the hedgehog pathway. However, the phenotypes of patients with PTCH1 and SUFU pathogenic variants seem to differ. We present a family with a frameshift variant in the SUFU gene c.954del, p.Asn319Thrfs∗42 leading to meningiomas and multiple basal cell-carcinomas.
Collapse
Affiliation(s)
- Gustav Askaner
- Department of Plastic Surgery, Hospital South West Jutland, Esbjerg, Denmark
| | - Ulrikke Lei
- Department of Dermatology and Allergy, Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alessandro Venzo
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
47
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
48
|
Mutations in SUFU and PTCH1 genes may cause different cutaneous cancer predisposition syndromes: similar, but not the same. Fam Cancer 2019; 17:601-606. [PMID: 29356994 DOI: 10.1007/s10689-018-0073-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many cancer predisposition syndromes are preceded or accompanied by a range of typical skin signs. Gorlin syndrome is a rare multisystem inherited disorder which can predispose to basal cell carcinomas (BCCs), childhood medulloblastomas in addition to various developmental abnormalities; the majority of cases are due to mutations in the PTCH1 gene. Approximately 5% of cases have been attributed to a mutation in the SUFU gene. Certain phenotypic features have been identified as being more prevalent in individuals with a SUFU mutation such as childhood medulloblastoma, infundibulocystic BCCs and trichoepitheliomas. Recently hamartomatous skin lesions have also been noted in families with childhood medulloblastoma, a "Gorlin like" phenotype and a SUFU mutation. Here we describe a family previously diagnosed with Gorlin syndrome with a novel SUFU splice site deleterious genetic variant, who have several dermatological features including palmar sclerotic fibromas which has not been described in relation to a SUFU mutation before. We highlight the features more prominent in individuals with a SUFU mutation. It is important to note that emerging therapies for treatment of BCCs in patients with a PTCH1 mutation may not be effective in those with a SUFU mutation.
Collapse
|
49
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
50
|
Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet Med 2018; 21:1525-1533. [PMID: 30523344 DOI: 10.1038/s41436-018-0384-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE We have evaluated deficiencies in existing diagnostic criteria for neurofibromatosis 2 (NF2). METHODS Two large databases of individuals fulfilling NF2 criteria (n = 1361) and those tested for NF2 variants with criteria short of diagnosis (n = 1416) were interrogated. We assessed the proportions meeting each diagnostic criterion with constitutional or mosaic NF2 variants and the positive predictive value (PPV) with regard to definite diagnosis. RESULTS There was no evidence for usefulness of old criteria "glioma" or "neurofibroma." "Ependymoma" had 100% PPV and high levels of confirmed NF2 diagnosis (67.7%). Those with bilateral vestibular schwannoma (VS) alone aged ≥60 years had the lowest confirmation rate (6.6%) and reduced PPV (80%). Siblings as a first-degree relative, without an affected parent, had 0% PPV. All three individuals with unilateral VS and an affected sibling were proven not to have NF2. The biggest overlap was with LZTR1-associated schwannomatosis. In this category, seven individuals with unilateral VS plus ≥2 nondermal schwannomas reduced PPV to 67%. CONCLUSIONS The present study confirms important deficiencies in NF2 diagnostic criteria. The term "glioma" should be dropped and replaced by "ependymoma." Similarly "neurofibroma" should be removed. Dropping "sibling" from first-degree relatives should be considered and testing of LZTR1 should be recommended for unilateral VS.
Collapse
|