1
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Adewara BA, Singh S. Bilateral Congenital Lacrimal Gland Agenesis: A New Finding in Harel-Yoon Syndrome With Heterozygous ATAD3A Deletion. Ophthalmic Plast Reconstr Surg 2025; 41:357-359. [PMID: 40359498 DOI: 10.1097/iop.0000000000002809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Bolajoko Abidemi Adewara
- Hariram Motumal Nasta and Renu Hariram Nasta Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, India
| | | |
Collapse
|
3
|
Lee K, Choi LY, Ahn JS, Song JY, Park JK, Yun SJ, Lee JH, Shin EC, Yeom SJ, Zhao J, Cho TJ, Oh NS, Shin JO, Kim D, Kim TG, Cho HT, Shin HR, Kim YJ, Kim JK. Transcriptomic signatures in response to antioxidants supplementation in Korean cattle beef, Hanwoo: a 7-month feeding study. Front Vet Sci 2025; 12:1546248. [PMID: 40343365 PMCID: PMC12061023 DOI: 10.3389/fvets.2025.1546248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction The present study investigated the effects of antioxidant supplementation on the transcriptomic profiles of Hanwoo cattle during a 7-month feeding trial. Methods Twelve castrated Hanwoo cattle were randomly assigned to two groups: a control group (CON) and a group supplemented with antioxidants (FEED), consisting of vitamin C, vitamin E, and selenium. Growth performance and carcass traits were evaluated, and liver transcriptomic changes were assessed using RNA sequencing. Results and discussion While no significant differences were observed in phenotypic traits such as weight gain and feed conversion ratio, transcriptomic analysis identified 641 differentially expressed genes between the CON and FEED groups. Functional enrichment analysis revealed that differentially expressed genes were mainly associated with transcription regulation, pseudouridine synthesis, and mitochondrial function. These findings suggest that antioxidant supplementation elicits significant molecular changes in the liver, particularly affecting transcriptional activity and mitochondrial processes, even in the absence of detectable phenotypic differences.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - La Yoon Choi
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | | | | | | | | | | | - Eui-Cheol Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jiangchao Zhao
- Department of Animal Science, Dale Bumpers College of Agricultural, Food and Life Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Tae Jin Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix, Gwangmyeong, Republic of Korea
| | | | - Hyo Ri Shin
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, NJ, United States
| |
Collapse
|
4
|
Jiang Z, Chen H, Zhang X, Jiang X, Tong Z, Ye J, Shi S, Shi X, Li F, Shao W, Shu Q, Yu L. Clinical characteristics and induced pluripotent stem cells (iPSCs) disease model of Harel-Yoon syndrome caused by compound heterozygous ATAD3A variants. Hum Cell 2025; 38:90. [PMID: 40246775 DOI: 10.1007/s13577-025-01214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/29/2025] [Indexed: 04/19/2025]
Abstract
ATPase family AAA-domain-containing protein 3 A (ATAD3A) is enriched on the mitochondrial membrane and is essential to the maintenance of mitochondrial structure and function. Variants of the ATAD3A gene can lead to Harel-Yoon syndrome (HAYOS), a developmental defect in neurological, cardiovascular, and other systems. This study aims to develop induced pluripotent stem cells (iPSCs) from the somatic cells of a patient (ZJUCHYLi001-A) and a negative control (ZJUCHYLi002-A) as effective tools for further investigations into the etiology of ATAD3A variant-related disease. We described and analyzed the clinical manifestations of the proband and her family members. Somatic cells from the proband and a negative control were collected and reprogrammed into iPSCs. Furthermore, we measured the ATAD3A expression levels in the iPSCs to confirm the validity of these cell lines. The proband and her elder sister were both critically ill and harbored compound heterozygous ATAD3A variants (F459S/T498 Nfs* 13). Their parents were carriers of these variants without any clinical manifestations. Both variants are located on the ATPase domain of the ATAD3A protein. Cell lines ZJUCHYLi001-A and ZJUCHYLi002-A presented typical features of pluripotent stem cells. The ATAD3A expression levels of ZJUCHYLi001-A were significantly reduced compared with ZJUCHYLi002-A. This study generated iPSCs from a patient with compound heterozygous variants of ATAD3A and a negative control as valuable tools for clarifying the molecular mechanisms underlying ATAD3A variant-related diseases.
Collapse
Affiliation(s)
- Ziyi Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xiaoling Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Zhengqing Tong
- Shanghai Snow Lake Technology Co., Ltd., Shanghai, China
| | - Jingjing Ye
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Ultrasound, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shanshan Shi
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xucong Shi
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Weiqin Shao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Qiang Shu
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ezer S, Ronin N, Yanovsky-Dagan S, Rotem-Bamberger S, Halstuk O, Wexler Y, Ben-Moshe Z, Plaschkes I, Benyamini H, Saada A, Inbal A, Harel T. Transcriptome analysis of atad3-null zebrafish embryos elucidates possible disease mechanisms. Orphanet J Rare Dis 2025; 20:181. [PMID: 40234890 PMCID: PMC12001410 DOI: 10.1186/s13023-025-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND ATAD3A, a nuclear gene encoding the ATAD3A protein, has diverse roles in mitochondrial processes, encompassing mitochondrial dynamics, mitochondrial DNA maintenance, metabolic pathways and inter-organellar interactions. Pathogenic variants in this gene cause neurological diseases in humans with recognizable genotype-phenotype correlations. Yet, gaps in knowledge remain regarding the underlying pathogenesis. METHODS To further investigate the gene function and its implication in health and disease, we utilized CRISPR/Cas9 genome editing to generate a knockout model of the zebrafish ortholog gene, atad3. We characterized the phenotype of the null model, performed mitochondrial and functional tests, and compared the transcriptome of null embryos to their healthy siblings. RESULTS Analysis of atad3-null zebrafish embryos revealed microcephaly, small eyes, pericardial edema and musculature thinning, closely mirroring the human rare disease phenotype. Larvae exhibited delayed hatching and embryonic lethality by 13 days post-fertilization (dpf). Locomotor activity, ATP content, mitochondrial content, and mitochondrial activity were all reduced in the mutant embryos. Transcriptome analysis at 3 dpf via RNA-sequencing indicated decline in most mitochondrial pathways, accompanied by a global upregulation of cytosolic tRNA synthetases, presumably secondary to mitochondrial stress and possibly endoplasmic reticulum (ER)-stress. Differential expression of select genes was corroborated in fibroblasts from an affected individual. CONCLUSIONS The atad3-null zebrafish model emerges as a reliable representation of human ATAD3A-associated disorders, with similarities in differentially expressed pathways and processes. Furthermore, our study underscores mitochondrial dysfunction as the primary underlying pathogenic mechanism in ATAD3A-associated disorders and identifies potential readouts for therapeutic studies.
Collapse
Affiliation(s)
- Shlomit Ezer
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathan Ronin
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Shahar Rotem-Bamberger
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Wexler
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Zohar Ben-Moshe
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Laboratory Sciences, Hadassah Academic College , Jerusalem, Israel
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Genetics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| |
Collapse
|
6
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2025; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Brügel M, Kiesel AS, Haack TB, Peralta S. Mutations in mitochondrial ATAD3 gene and disease, lessons from in vivo models. Front Neurosci 2024; 18:1496142. [PMID: 39605788 PMCID: PMC11599198 DOI: 10.3389/fnins.2024.1496142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in the ATAD3 gene cluster have been associated with different neurodevelopmental disorders showing clinical symptoms like global developmental delay, muscular hypotonia, cardiomyopathy, congenital cataracts, and cerebellar atrophy. ATAD3A encodes for a mitochondrial ATPase whose function is unclear and has been considered one of the five most common nuclear genes associated with mitochondrial diseases in childhood. However, the mechanism causing ATAD3-associated disorders is still unknown. In vivo models have been used to identify ATAD3 function. Here we summarize the features of mouse models with ATAD3 loss of function and Drosophila models overexpressing pathogenic ATAD3 variants. We discuss how these models have contributed to our understanding of ATAD3 function and the pathomechanism of the ATAD3-associated disease.
Collapse
Affiliation(s)
| | | | | | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Abdul-Raheem J, Nikkola E, Chen Z, Rohena L. Expanding the phenotype of Harel-Yoon syndrome: A case report suggesting a genotype/phenotype correlation. Am J Med Genet A 2024; 194:e63647. [PMID: 38877820 DOI: 10.1002/ajmg.a.63647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 06/16/2024]
Abstract
Harel-Yoon syndrome (HAYOS) is a unique neurodevelopmental genetic disorder characterized by hypotonia, spasticity, intellectual disability, hypertrophic cardiomyopathy, and global developmental delay. It primarily results from mutations in the ATAD3A gene, pivotal for mitochondrial function. This report presents a 5-year-old girl with HAYOS harboring a de novo heterozygous variant c.1064G>A; (p.G355D) in ATAD3A. Her clinical profile includes delayed milestones, hypotonia, spastic quadriplegia, and ptosis. Notably, dermatologic anomalies such as hypopigmentation, café au lait macules, and freckling are observed, expanding the known phenotype of HAYOS. The inclusion of dermatologic features challenges our understanding of the syndrome and emphasizes the importance of further research to elucidate the molecular connections between ATAD3A mutations and dermatologic manifestations.
Collapse
Affiliation(s)
| | | | | | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
- Department of Pediatrics, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| |
Collapse
|
9
|
Li S, Xu R, Yao Y, Rousseau D. ATAD3 is a limiting factor in mitochondrial biogenesis and adipogenesis of white adipocyte-like 3T3-L1 cells. Cell Biol Int 2024; 48:1473-1489. [PMID: 38923254 DOI: 10.1002/cbin.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
ATAD3 is a vital ATPase of the inner mitochondrial membrane of pluri-cellular eukaryotes, with largely unknown functions but early required for organism development as necessary for mitochondrial biogenesis. ATAD3 knock-down in C. elegans inhibits at first the development of adipocyte-like intestinal tissue so we used mouse adipocyte model 3T3-L1 cells to analyze ATAD3 functions during adipogenesis and lipogenesis in a mammalian model. ATAD3 function was studied by stable and transient modulation of ATAD3 expression in adipogenesis- induced 3T3-L1 cells using Knock-Down and overexpression strategies, exploring different steps of adipocyte differentiation and lipogenesis. We show that (i) an increase in ATAD3 is preceding differentiation-induced mitochondrial biogenesis; (ii) downregulation of ATAD3 inhibits adipogenesis, lipogenesis, and impedes overexpression of many mitochondrial proteins; (iii) ATAD3 re-expression rescues the phenotype of ATAD3 KD, and (iv) differentiation and lipogenesis are accelerated by ATAD3 overexpression, but inhibited by expression of a dominant-negative mutant. We further show that the ATAD3 KD phenotype is not due to altered insulin signal but involves a limitation of mitochondrial biogenesis linked to Drp1. These results demonstrate that ATAD3 is limiting for in vitro mitochondrial biogenesis and adipogenesis/lipogenesis and therefore that ATAD3 mutation/over- or under-expression could be involved in adipogenic and lipogenic pathologies.
Collapse
Affiliation(s)
- Shuijie Li
- Department of Biology, University Grenoble Alpes, Grenoble, France
| | - Rui Xu
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yao Yao
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Denis Rousseau
- Department of Biology, University Grenoble Alpes, Grenoble, France
- Laboratoire des Matériaux et du Génie Physique-Interfaces entre Matériaux et Matière Biologique -Institut National Polytechnique-Centre National de la Recherche Scientifique - Unité Mixte de Recherche, Grenoble, France
| |
Collapse
|
10
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Manzoni E, Carli S, Gaignard P, Schlieben LD, Hirano M, Ronchi D, Gonzales E, Shimura M, Murayama K, Okazaki Y, Barić I, Petkovic Ramadza D, Karall D, Mayr J, Martinelli D, La Morgia C, Primiano G, Santer R, Servidei S, Bris C, Cano A, Furlan F, Gasperini S, Laborde N, Lamperti C, Lenz D, Mancuso M, Montano V, Menni F, Musumeci O, Nesbitt V, Procopio E, Rouzier C, Staufner C, Taanman JW, Tal G, Ticci C, Cordelli DM, Carelli V, Procaccio V, Prokisch H, Garone C. Deoxyguanosine kinase deficiency: natural history and liver transplant outcome. Brain Commun 2024; 6:fcae160. [PMID: 38756539 PMCID: PMC11098040 DOI: 10.1093/braincomms/fcae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.
Collapse
Affiliation(s)
- Eleonora Manzoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| | - Sara Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Pauline Gaignard
- Department of Biochemistry, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris 94275, France
| | - Lea Dewi Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, 80333 Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg 80333, Germany
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10033, USA
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris 94270, France
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children’s Hospital, Chiba 260-0842, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children’s Hospital, Chiba 260-0842, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ivo Barić
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb 10000, Croatia
| | - Danijela Petkovic Ramadza
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb 10000, Croatia
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Mayr
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40124, Italy
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace -Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00136, Italy
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg 20246, Germany
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace -Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00136, Italy
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Céline Bris
- University Angers, Angers Hospital, INSERM, CNRS, MITOVASC, SFR ICAT, Angers F-49000, France
| | - Aline Cano
- Centre de référence des maladies héréditaires du métabolisme, CHU la Timone Enfants, Marseille 13005, France
| | - Francesca Furlan
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Regional Clinical Center for Expanded Newborn Screening, Milan 20122, Italy
| | - Serena Gasperini
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Nolwenn Laborde
- Unité de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse 31300, France
| | - Costanza Lamperti
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Neurological Institute ‘C. Besta’, Milan 20133, Italy
| | - Dominic Lenz
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Pisa 56126, Italy
| | - Vincenzo Montano
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Pisa 56126, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Regional Clinical Center for Expanded Newborn Screening, Milan 20122, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Victoria Nesbitt
- Department of Paediatrics, Medical Sciences Division, Oxford University, Oxford OX3 9DU, UK
| | - Elena Procopio
- Metabolic Unit, Meyer Children’s Hospital IRCCS, Florence 50139, Italy
| | - Cécile Rouzier
- Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice 06000, France
| | - Christian Staufner
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chiara Ticci
- Metabolic Unit, Meyer Children’s Hospital IRCCS, Florence 50139, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40124, Italy
| | - Vincent Procaccio
- University Angers, Angers Hospital, INSERM, CNRS, MITOVASC, SFR ICAT, Angers F-49000, France
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, 80333 Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg 80333, Germany
| | - Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| |
Collapse
|
14
|
Muñoz-Oreja M, Sandoval A, Bruland O, Perez-Rodriguez D, Fernandez-Pelayo U, de Arbina AL, Villar-Fernandez M, Hernández-Eguiazu H, Hernández I, Park Y, Goicoechea L, Pascual-Frías N, Garcia-Ruiz C, Fernandez-Checa J, Martí-Carrera I, Gil-Bea FJ, Hasan MT, Gegg ME, Bredrup C, Knappskog PM, Gereñu-Lopetegui G, Varhaug KN, Bindoff LA, Spinazzola A, Yoon WH, Holt IJ. Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation. Brain 2024; 147:1899-1913. [PMID: 38242545 PMCID: PMC11068212 DOI: 10.1093/brain/awae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.
Collapse
Affiliation(s)
- Mikel Muñoz-Oreja
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
| | - Abigail Sandoval
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Uxoa Fernandez-Pelayo
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Amaia Lopez de Arbina
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Marina Villar-Fernandez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | | | - Ixiar Hernández
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Nerea Pascual-Frías
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Jose Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Itxaso Martí-Carrera
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Pediatric Neurology, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | | | - Mazahir T Hasan
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, E-48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
| | | | - Gorka Gereñu-Lopetegui
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Kristin N Varhaug
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Laurence A Bindoff
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian J Holt
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Shen M, Zhang Y, Wu F, Shen M, Zhang S, Guo Y, Gan J, Wang R. Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation. Cell Cycle 2024; 23:233-247. [PMID: 38551450 PMCID: PMC11057657 DOI: 10.1080/15384101.2024.2309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 05/01/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Meizhu Shen
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Zhang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Wu
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meizhen Shen
- Department of Radiotheraphy, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sen Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jialiang Gan
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotheraphy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Gaudó P, de Tomás-Mateo E, Garrido-Pérez N, Santana A, Ruiz-Pesini E, Montoya J, Bayona-Bafaluy P. "ATAD3C regulates ATAD3A assembly and function in the mitochondrial membrane". Free Radic Biol Med 2024; 211:114-126. [PMID: 38092275 DOI: 10.1016/j.freeradbiomed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.
Collapse
Affiliation(s)
- Paula Gaudó
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Elena de Tomás-Mateo
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Nuria Garrido-Pérez
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35001, Las Palmas de Gran Canaria, Spain; Clinical Genetics Unit, Complejo Hospitarlario Universitario Insular-Materno Infantil de Las Palamas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Eduardo Ruiz-Pesini
- Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain.
| | - Julio Montoya
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
17
|
Zhang S, Lin L, Li Y, Peng C, Lin Y, Liu Y, Liang L, Huang J, Xie Q, Yang M, Zhu H. Harel-Yoon syndrome caused by a novel variant in ATAD3A: A case report. Heliyon 2024; 10:e23669. [PMID: 38173481 PMCID: PMC10761768 DOI: 10.1016/j.heliyon.2023.e23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Objectives To describe the clinical feature of a very recently identified phenotype associated with ATAD3A variation. Methods A neonate with Harel-Yoon syndrome was identified. We describe the proband's clinical and radiological features. The affected newborn and her parents underwent whole-exome sequencing and PCR-Sanger sequencing. Results Previously reported clinical manifestations were rare in the neonatal period, including unmanageable seizures necessitating the use of multiple drugs, congenital laryngeal stridor, hypotonia, challenges with feeding, corneal opacity, and subsequent demise due to respiratory failure. Molecular investigations have unveiled the presence of a newly identified heterozygous single-base substitution (c.1517A > C; p.Q506P) within the ATAD3A gene. Discussion This study unveils a novel single-base substitution, thereby expanding the mutation spectrum associated with ATAD3A. Furthermore, the clinical characteristics exhibited during the neonatal phase are comprehensively described, potentially facilitating improved clinical recognition of ATAD3A-associated HAYOS.
Collapse
Affiliation(s)
- Shuning Zhang
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Luyao Lin
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
| | - Yuelin Li
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
| | - Chanjuan Peng
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
| | - Yan Lin
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Yongle Liu
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Liyu Liang
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Jiyu Huang
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Qinmei Xie
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Meijun Yang
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| | - Hui Zhu
- Department of NICU, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, PR China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, PR China
| |
Collapse
|
18
|
Calame DG, Emrick LT. Functional genomics and small molecules in mitochondrial neurodevelopmental disorders. Neurotherapeutics 2024; 21:e00316. [PMID: 38244259 PMCID: PMC10903096 DOI: 10.1016/j.neurot.2024.e00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondria are critical for brain development and homeostasis. Therefore, pathogenic variation in the mitochondrial or nuclear genome which disrupts mitochondrial function frequently results in developmental disorders and neurodegeneration at the organismal level. Large-scale application of genome-wide technologies to individuals with mitochondrial diseases has dramatically accelerated identification of mitochondrial disease-gene associations in humans. Multi-omic and high-throughput studies involving transcriptomics, proteomics, metabolomics, and saturation genome editing are providing deeper insights into the functional consequence of mitochondrial genomic variation. Integration of deep phenotypic and genomic data through allelic series continues to uncover novel mitochondrial functions and permit mitochondrial gene function dissection on an unprecedented scale. Finally, mitochondrial disease-gene associations illuminate disease mechanisms and thereby direct therapeutic strategies involving small molecules and RNA-DNA therapeutics. This review summarizes progress in functional genomics and small molecule therapeutics in mitochondrial neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Lisa T Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J, Liu P. The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci 2024; 20:831-847. [PMID: 38250153 PMCID: PMC10797690 DOI: 10.7150/ijbs.89253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024] Open
Abstract
Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zeyu Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Chenjia Lin
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Zheng Y, Yu X, Zhang T, Hu L, Zhou D, Huang X. ATAD3A gene variations in a family with Harel-Yoon syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:738-743. [PMID: 38105692 PMCID: PMC10764186 DOI: 10.3724/zdxbyxb-2023-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Xinyu Yu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Ting Zhang
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lingwei Hu
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Duo Zhou
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xinwen Huang
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
21
|
Liu Z, Sun L, Zheng B, Wang H, Qin X, Zhang P, Wo Q, Li H, Mou Y, Zhang D, Wang S. The value of ATAD3A as a potential biomarker for bladder cancer. Cancer Med 2023; 12:22395-22406. [PMID: 38018291 PMCID: PMC10757082 DOI: 10.1002/cam4.6759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/28/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a highly malignant tumor, and if left untreated, it can develop severe hematuria and tumor metastasis, thereby endangering the patient's life. The purpose of this paper was to detect the expression of ATAD3A in BCa and research the relationship between ATAD3A and pathological features of bladder cancer and the prognosis of patients. METHODS First, the expression of ATAD3A in BCa and normal bladder tissues was analyzed based on the UALCAN and Oncomine public databases. Second, 491 cases of surgically resected bladder cancer specimens and 110 cases of normal adjacent tissues were immunohistochemically stained. The expression of ATAD3A was quantified, and the value and prognosis of ATAD3A as a biomarker of BCa were evaluated. RESULTS The expression of ATAD3A in bladder cancer tissues was higher than that in normal bladder mucosa. High expression of ATAD3A was correlated with patient age, tumor size, number of tumors, distant metastasis, lymph node metastasis, lymphovascular invasion, and TNM stage (p < 0.05). Overexpression of ATAD3A is closely related to cancer patient survival. The mean survival time of bladder cancer patients with high ATAD3A expression was shorter than those with low ATAD3A levels. According to the relative comparing result, the high ATAD3A expression herald reduced overall survival in BCa patients. CONCLUSIONS The abnormal overexpression of ATAD3A may be related to the initiation and progress of bladder cancer. The upregulation of ATAD3A can be used as an effective indicator to diagnose bladder cancer and predict tumor progression. Furthermore, the combination of information from public databases and the results of clinical sample analysis can help us better understand the mechanism of action of molecular oncogenes in bladder cancer.
Collapse
Affiliation(s)
- Zhenghong Liu
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Li Sun
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Bin Zheng
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Heng Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Pu Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qijun Wo
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haichang Li
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Yixuan Mou
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Dahong Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Shuai Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
22
|
Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: A Key Regulator of Mitochondria-Associated Diseases. Int J Mol Sci 2023; 24:12511. [PMID: 37569886 PMCID: PMC10419812 DOI: 10.3390/ijms241512511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 99089, USA; (L.C.); (Y.L.); (A.Z.)
| |
Collapse
|
23
|
Badonyi M, Marsh JA. Buffering of genetic dominance by allele-specific protein complex assembly. SCIENCE ADVANCES 2023; 9:eadf9845. [PMID: 37256959 PMCID: PMC10413657 DOI: 10.1126/sciadv.adf9845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose subunits were translated from the same mRNA in an allele-specific manner. It has thus been hypothesized that such cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly of mutant and wild-type subunits "poisons" complex activity. Here, we show that cotranslationally assembling subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly compared to those associated with loss-of-function mutations. We also find that complexes with known dominant-negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslational assembly. Finally, by combining complex properties with other features, we trained a computational model for predicting proteins likely to be associated with non-loss-of-function disease mechanisms, which we believe will be of considerable utility for protein variant interpretation.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
24
|
Skopkova M, Stufkova H, Rambani V, Stranecky V, Brennerova K, Kolnikova M, Pietrzykova M, Karhanek M, Noskova L, Tesarova M, Hansikova H, Gasperikova D. ATAD3A-related pontocerebellar hypoplasia: new patients and insights into phenotypic variability. Orphanet J Rare Dis 2023; 18:92. [PMID: 37095554 PMCID: PMC10127305 DOI: 10.1186/s13023-023-02689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/02/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.
Collapse
Affiliation(s)
- Martina Skopkova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Hana Stufkova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vibhuti Rambani
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katarina Brennerova
- Department of Paediatrics, Medical Faculty of Comenius University, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miriam Kolnikova
- Department of Paediatric Neurology, Medical Faculty of Comenius University, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Michaela Pietrzykova
- Department of Clinical Genetics, Institute of Medical Biology, Genetics and Clinical Genetics, Medical Faculty of Comenius University, University Hospital in Bratislava, Bratislava, Slovakia
| | - Miloslav Karhanek
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Tesarova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Daniela Gasperikova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia.
| |
Collapse
|
25
|
Panda A, Suvakov M, Mariani J, Drucker KL, Park Y, Jang Y, Kollmeyer TM, Sarkar G, Bae T, Kim JJ, Yoon WH, Jenkins RB, Vaccarino FM, Abyzov A. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. CRISPR J 2023; 6:176-182. [PMID: 37071670 PMCID: PMC10123805 DOI: 10.1089/crispr.2022.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.
Collapse
Affiliation(s)
- Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Kristen L. Drucker
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas M. Kollmeyer
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gobinda Sarkar
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean J. Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert B. Jenkins
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Chen Y, Rong S, Luo H, Huang B, Hu F, Chen M, Li C. Ketogenic Diet Attenuates Refractory Epilepsy of Harel-Yoon Syndrome With ATAD3A Variants: A Case Report and Review of Literature. Pediatr Neurol 2023; 143:79-83. [PMID: 37031571 DOI: 10.1016/j.pediatrneurol.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 03/04/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Harel-Yoon syndrome is a disease caused by variants in the ATAD3A gene, which manifest as global developmental delay, hypotonia, intellectual disability, and axonal neuropathy. The aim of this study is to summarize the clinical and gene mutation characteristics of a child with refractory epilepsy caused by ATAD3A gene mutation. METHODS The whole-exome sequencing combined with copy number variation analysis could help to understand the genetic diversity and underlying disease mechanisms in ATAD3A gene mutation. RESULTS We report a Chinese boy with Harel-Yoon syndrome presenting with refractory epilepsy, hypotonia, global developmental delay, and congenital cataract through whole-exome sequencing. Genetic analysis showed a missense mutation, c.251T>C(p.Thr84Met) in the ATAD3A gene (NM_001170535.1). Further copy number variation analysis identified a novel heterozygous deletion on chromosome1p36.33, which spans ATAD3A exon 1 and 2 regions. Multiple antiepileptic drugs failed to control his seizures. Eventually, seizure was controlled through ketogenic diet (KD). CONCLUSION Our case shows the potential diagnostic role of whole-exome sequencing in Harel-Yoon syndrome and expands the ATAD3A gene mutation spectrum. Multiple antiepileptic drugs failed to control refractory epilepsy in Harel-Yoon syndrome. The KD therapy may be effective for patients with refractory epilepsy who carry the ATAD3A variants.
Collapse
Affiliation(s)
- Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Han Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Fang Hu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Min Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China.
| |
Collapse
|
27
|
Tawfik CA, Zaitoun R, Farag AA. Harel Yoon syndrome: a novel mutation in ATAD3A gene and expansion of the clinical spectrum. Ophthalmic Genet 2023; 44:226-233. [PMID: 36856321 DOI: 10.1080/13816810.2023.2183223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Harel-Yoon syndrome (HAYOS) is a recently described neurodevelopmental disorder characterized by psychomotor delay, truncal hypotonia, appendicular spasticity, and peripheral neuropathy. It is caused by mutations in ATAD3A gene located on chromosome 1p.36.33 whose functions include mitochondrial DNA stabilization, the regulation of mitochondrial fission/fusion, and cholesterol homeostasis. MATERIALS AND METHODS An 11-year-old male patient of consanguineous Egyptian parents, who present with neuroregression and ptosis along with progressive impaired vision, undergoes complete ophthalmological and neurological examination. Additionally, color fundus photography, fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT) of both the macula and optic nerve head, full field electroretinogram (ERG), and visual field perimetry were obtained. Whole-exome sequencing and mitochondrial genome sequencing were done in a commercial laboratory from a peripheral blood sample. RESULTS A novel mutation in ATAD3A gene c.624_644del was identified by whole-exome sequencing consistent with a diagnosis of Harel-Yoon Syndrome (HAYOS). The 11-year-old boy had characteristic features of neurodevelopmental delay, hypotonia, and peripheral neuropathy. However, we documented some novel features as fatiguable ptosis, facial weakness, progressive bulbar palsy, obsessive-compulsive disorder (OCD) in addition to cone system dysfunction. CONCLUSION Our study reports a novel mutation in ATAD3A gene and expands the clinical spectrum of Harel-Yoon Syndrome. Future research aiming at better understanding of gene function will lead to better genotype-phenotype correlation and could pave the way to more treatment options.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of ophthalmology, Ain Shams University, Cairo, Egypt
- Watany Eye Hospital, Cairo, Egypt
| | | | | |
Collapse
|
28
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
29
|
Pagano M, Fumagalli C, Girolami F, Passantino S, Gozzini A, Brambilla A, Spinelli V, Morrone A, Procopio E, Pochiero F, Donati MA, Olivotto I, Favilli S. Clinical profile and outcome of cardiomyopathies in infants and children seen at a tertiary centre. Int J Cardiol 2023; 371:516-522. [PMID: 36130621 DOI: 10.1016/j.ijcard.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Due to their rare prevalence and marked heterogeneity, pediatric cardiomyopathies (CMPs) are little known and scarcely reported. We report the etiology, clinical profile and outcome of a consecutive cohort of children diagnosed with CMP and followed at Meyer Children's Hospital over a decade. PATIENTS AND METHODS We retrospectively reviewed patients consecutively referred from May 2008 to May 2019 for pediatric onset CMP (<18 years). Heart disease caused by arrhythmic disorders, toxic agents, rheumatic conditions and maternal disease were excluded. RESULTS We enrolled 110 patients (65 males), diagnosed at a median age of 27 [4-134] months; 35% had an infant onset (<1 year of age). A positive family history was more often associated with childhood-onset (38.8%). Hypertrophic cardiomyopathy (HCM; 48 patients) was the most frequent phenotype, followed by dilated cardiomyopathy (DCM; 35 patients). While metabolic and idiopathic etiologies were preponderant in infants, metabolic and sarcomeric diseases were most frequent in the childhood-onset group. Major adverse cardiac events (MACE) occurred in 31.8% of patients, including hospitalization for acute heart failure in 25.5% of patients, most commonly due to DCM. Overall, the most severe outcomes were documented in patients with metabolic diseases. CONCLUSIONS In a consecutive cohort of pediatric patients with CMP, those with infantile onset and with a metabolic etiology had the worst prognosis. Overall, MACE occurred in 41% of the entire population, most commonly associated with DCM, inborn errors of metabolism and genetic syndromes. Systematic NGS genetic testing was critical for etiological diagnosis and management.
Collapse
Affiliation(s)
- M Pagano
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy.
| | - C Fumagalli
- Cardiomyopathies Unit, Careggi University Hospital (AOUC), Florence, Italy
| | - F Girolami
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - S Passantino
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Gozzini
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Brambilla
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - V Spinelli
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Neuroscience Department, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Procopio
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - F Pochiero
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - M A Donati
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - I Olivotto
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy; Cardiomyopathies Unit, Careggi University Hospital (AOUC), Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - S Favilli
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
30
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
31
|
Ebihara T, Nagatomo T, Sugiyama Y, Tsuruoka T, Osone Y, Shimura M, Tajika M, Ichimoto K, Naruke Y, Akiyama N, Lim SC, Yatsuka Y, Nitta KR, Kishita Y, Fushimi T, Okazaki A, Ohtake A, Okazaki Y, Murayama K. Severe spinal cord hypoplasia due to a novel ATAD3A compound heterozygous deletion. Mol Genet Metab Rep 2022; 33:100912. [PMID: 36061954 PMCID: PMC9428837 DOI: 10.1016/j.ymgmr.2022.100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022] Open
Abstract
Biallelic deletions extending into the ATPase family AAA-domain containing protein 3A (ATAD3A) gene lead to infantile lethality with severe pontocerebellar hypoplasia (PCH). However, only 12 such cases have been reported worldwide to date, and the genotype–phenotype correlations are not well understood. We describe cases associated with the same novel biallelic deletions of the ATAD3A and ATAD3B/3A regions in Japanese siblings with severe spinal cord hypoplasia and multiple malformations, including PCH, leading to neonatal death. The ATAD3A protein is essential for normal interaction between mitochondria and endoplasmic reticulum and is important for mitochondrial biosynthesis. The cases were evaluated using whole-genome sequencing for genetic diagnosis of mitochondrial disease. Spinal cord lesions associated with biallelic compound heterozygous deletion extending into the ATAD3A gene have not been reported. In addition, the ATAD3A deletion was 19 base pairs long, which is short compared with those reported previously. This deletion introduced a frameshift, resulting in a premature termination codon, and was expected to be a null allele. The pathological findings of the atrophic spinal cord showed gliosis and tissue destruction of the gray and white matter. We describe spinal cord lesions as a new central nervous system phenotype associated with a biallelic compound heterozygous deletion extending into the ATAD3A gene. Biallelic ATAD3A deletions should be considered in cases of mitochondrial disease with spinal cord hypoplasia and PCH.
Collapse
|
32
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Lee H, Kim DW. Deletion of ATAD3A inhibits osteogenesis by impairing mitochondria structure and function in pre-osteoblast. Dev Dyn 2022; 251:1982-2000. [PMID: 36000457 DOI: 10.1002/dvdy.528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear encoded mitochondrial membrane protein that spans inner and outer membrane, and it has been shown to regulate mitochondrial dynamics and cholesterol metabolism. Since the mitochondrial functions have been implicated for osteogenic differentiation, a role of ATAD3A in skeletal development has been investigated. RESULTS Mesenchyme-specific ATAD3 knockout mice displayed severe defects in skeletal development. Additionally, osteoblast-specific deletion of ATAD3 in mice caused significant reduction in bone mass, while cartilage-specific ATAD3 knockout mice did not show any significant phenotypes. Consistent with these in vivo findings, ATAD3A knockdown impaired mitochondrial morphology and function in calvarial pre-osteoblast cultures, which, in turn, suppressed osteogenic differentiation in vitro. CONCLUSIONS The current findings suggest that ATAD3A plays a crucial role in mitochondria homeostasis, which is required for osteogenic differentiation during skeletal development.
Collapse
Affiliation(s)
- Hyeri Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Chung HL, Rump P, Lu D, Glassford MR, Mok JW, Fatih J, Basal A, Marcogliese PC, Kanca O, Rapp M, Fock JM, Kamsteeg EJ, Lupski JR, Larson A, Haninbal MC, Bellen H, Harel T. De novo variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration and affect glial function in Drosophila. Hum Mol Genet 2022; 31:3231-3244. [PMID: 35234901 PMCID: PMC9523557 DOI: 10.1093/hmg/ddac053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen 9700 RB, The Netherlands
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Megan R Glassford
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jawid Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 9112001, Israel
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michele Rapp
- University of Colorado Anschutz Medical Campus, Aurora, CO 60045, USA
| | - Johanna M Fock
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen 9700 RB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Larson
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 60045, United States
| | - Mark C Haninbal
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hugo Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
36
|
A High-Throughput Search for SFXN1 Physical Partners Led to the Identification of ATAD3, HSD10 and TIM50. BIOLOGY 2022; 11:biology11091298. [PMID: 36138777 PMCID: PMC9495560 DOI: 10.3390/biology11091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Mitochondria are central players in cell fate and cell death. Indeed, mitochondrial dysfunction has been observed in many diseases, including neurodegenerative diseases. The activity of these organelles relies on numerous mitochondrial transporters, among which the sideroflexins have received little attention to date despite their emerging importance in human health. To better understand the cellular functions of these transporters and their associations with diseases, we herein investigated the molecular partners of one human sideroflexin, SFXN1. Several proteins capable of interacting with SFXN1 were identified, including ATAD3 and HSD10, two mitochondrial proteins linked to neuronal disorders. Abstract Sideroflexins (SFXN, SLC56) are a family of evolutionarily conserved mitochondrial carriers potentially involved in iron homeostasis. One member of the SFXN family is SFXN1, recently identified as a human mitochondrial serine transporter. However, little is known about the SFXN1 interactome, necessitating a high-throughput search to better characterize SFXN1 mitochondrial functions. Via co-immunoprecipitation followed by shotgun mass spectrometry (coIP-MS), we identified 96 putative SFXN1 interactors in the MCF7 human cell line. Our in silico analysis of the SFXN1 interactome highlights biological processes linked to mitochondrial organization, electron transport chains and transmembrane transport. Among the potential physical partners, ATAD3A and 17β-HSD10, two proteins associated with neurological disorders, were confirmed using different human cell lines. Nevertheless, further work will be needed to investigate the significance of these interactions.
Collapse
|
37
|
Lamb IM, Rios KT, Shukla A, Ahiya AI, Morrisey J, Mell JC, Lindner SE, Mather MW, Vaidya AB. Mitochondrially targeted proximity biotinylation and proteomic analysis in Plasmodium falciparum. PLoS One 2022; 17:e0273357. [PMID: 35984838 PMCID: PMC9390924 DOI: 10.1371/journal.pone.0273357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 01/26/2023] Open
Abstract
Despite ongoing efforts to control malaria infection, progress in lowering the number of deaths and infections appears to have stalled. The continued high incidence of malaria infection and mortality is in part due to emergence of parasites resistant to frontline antimalarials. This highlights the need for continued identification of novel protein drug targets. Mitochondrial functions in Plasmodium falciparum, the deadliest species of human malaria parasite, are targets of validated antimalarials including atovaquone and proguanil (Malarone). Thus, there has been great interest in identifying other essential mitochondrial proteins as candidates for novel drug targets. Garnering an increased understanding of the proteomic landscape inside the P. falciparum mitochondrion will also allow us to learn about the basic biology housed within this unique organelle. We employed a proximity biotinylation technique and mass spectrometry to identify novel P. falciparum proteins putatively targeted to the mitochondrion. We fused the leader sequence of a mitochondrially targeted chaperone, Hsp60, to the promiscuous biotin ligase TurboID. Through these experiments, we generated a list of 122 "putative mitochondrial" proteins. To verify whether these proteins were indeed mitochondrial, we chose five candidate proteins of interest for localization studies using ectopic expression and tagging of each full-length protein. This allowed us to localize four candidate proteins of unknown function to the mitochondrion, three of which have previously been assessed to be essential. We suggest that phenotypic characterization of these and other proteins from this list of 122 could be fruitful in understanding the basic mitochondrial biology of these parasites and aid antimalarial drug discovery efforts.
Collapse
Affiliation(s)
- Ian M. Lamb
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Kelly T. Rios
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anurag Shukla
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Avantika I. Ahiya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joanne Morrisey
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joshua C. Mell
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
As brutally demonstrated by the COVID-19 pandemic, an effective immune system is essential for survival. Developed over evolutionary time, viral nucleic acid detection is a central pillar in the defensive armamentarium used to combat foreign microbial invasion. To ensure cellular homeostasis, such a strategy necessitates the efficient discrimination of pathogen-derived DNA and RNA from that of the host. In 2011, it was suggested that an upregulation of type I interferon signalling might serve as a defining feature of a novel set of Mendelian inborn errors of immunity, where antiviral sensors are triggered by host nucleic acids due to a failure of self versus non-self discrimination. These rare disorders have played a surprisingly significant role in informing our understanding of innate immunity and the relevance of type I interferon signalling for human health and disease. Here we consider what we have learned in this time, and how the field may develop in the future.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France.
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
39
|
Wortmann SB, Oud MM, Alders M, Coene KLM, van der Crabben SN, Feichtinger RG, Garanto A, Hoischen A, Langeveld M, Lefeber D, Mayr JA, Ockeloen CW, Prokisch H, Rodenburg R, Waterham HR, Wevers RA, van de Warrenburg BPC, Willemsen MAAP, Wolf NI, Vissers LELM, van Karnebeek CDM. How to proceed after "negative" exome: A review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques. J Inherit Metab Dis 2022; 45:663-681. [PMID: 35506430 PMCID: PMC9539960 DOI: 10.1002/jimd.12507] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Exome sequencing (ES) in the clinical setting of inborn metabolic diseases (IMDs) has created tremendous improvement in achieving an accurate and timely molecular diagnosis for a greater number of patients, but it still leaves the majority of patients without a diagnosis. In parallel, (personalized) treatment strategies are increasingly available, but this requires the availability of a molecular diagnosis. IMDs comprise an expanding field with the ongoing identification of novel disease genes and the recognition of multiple inheritance patterns, mosaicism, variable penetrance, and expressivity for known disease genes. The analysis of trio ES is preferred over singleton ES as information on the allelic origin (paternal, maternal, "de novo") reduces the number of variants that require interpretation. All ES data and interpretation strategies should be exploited including CNV and mitochondrial DNA analysis. The constant advancements in available techniques and knowledge necessitate the close exchange of clinicians and molecular geneticists about genotypes and phenotypes, as well as knowledge of the challenges and pitfalls of ES to initiate proper further diagnostic steps. Functional analyses (transcriptomics, proteomics, and metabolomics) can be applied to characterize and validate the impact of identified variants, or to guide the genomic search for a diagnosis in unsolved cases. Future diagnostic techniques (genome sequencing [GS], optical genome mapping, long-read sequencing, and epigenetic profiling) will further enhance the diagnostic yield. We provide an overview of the challenges and limitations inherent to ES followed by an outline of solutions and a clinical checklist, focused on establishing a diagnosis to eventually achieve (personalized) treatment.
Collapse
Affiliation(s)
- Saskia B. Wortmann
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Machteld M. Oud
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Mariëlle Alders
- Department of Human GeneticsAmsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - Karlien L. M. Coene
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Saskia N. van der Crabben
- Department of Human GeneticsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - René G. Feichtinger
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Alejandro Garanto
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsAmalia Children's Hospital, Radboud Institute for Molecular LifesciencesNijmegenThe Netherlands
- Department of Human GeneticsRadboud Institute for Molecular LifesciencesNijmegenThe Netherlands
| | - Alex Hoischen
- Department of Human Genetics, Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud Institute of Medical Life Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam University Medical Centers, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Dirk Lefeber
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Department of Neurology, Donders Institute for BrainCognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Johannes A. Mayr
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Charlotte W. Ockeloen
- Department of Human GeneticsRadboud Institute for Molecular LifesciencesNijmegenThe Netherlands
| | - Holger Prokisch
- School of MedicineInstitute of Human Genetics, Technical University Munich and Institute of NeurogenomicsNeuherbergGermany
| | - Richard Rodenburg
- Radboud Center for Mitochondrial and Metabolic MedicineTranslational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterNijmegenThe Netherlands
| | - Hans R. Waterham
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam University Medical Centers, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Ron A. Wevers
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Bart P. C. van de Warrenburg
- Department of Neurology, Donders Institute for BrainCognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Michel A. A. P. Willemsen
- Departments of Pediatric Neurology and PediatricsAmalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - Nicole I. Wolf
- Amsterdam Leukodystrophy Center, Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Lisenka E. L. M. Vissers
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Clara D. M. van Karnebeek
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Human GeneticsAmsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
- Department of Pediatrics, Emma Center for Personalized MedicineAmsterdam University Medical Centers, Amsterdam, Amsterdam Genetics Endocrinology Metabolism Research Institute, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
40
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
41
|
Marcogliese PC, Deal SL, Andrews J, Harnish JM, Bhavana VH, Graves HK, Jangam S, Luo X, Liu N, Bei D, Chao YH, Hull B, Lee PT, Pan H, Bhadane P, Huang MC, Longley CM, Chao HT, Chung HL, Haelterman NA, Kanca O, Manivannan SN, Rossetti LZ, German RJ, Gerard A, Schwaibold EMC, Fehr S, Guerrini R, Vetro A, England E, Murali CN, Barakat TS, van Dooren MF, Wilke M, van Slegtenhorst M, Lesca G, Sabatier I, Chatron N, Brownstein CA, Madden JA, Agrawal PB, Keren B, Courtin T, Perrin L, Brugger M, Roser T, Leiz S, Mau-Them FT, Delanne J, Sukarova-Angelovska E, Trajkova S, Rosenhahn E, Strehlow V, Platzer K, Keller R, Pavinato L, Brusco A, Rosenfeld JA, Marom R, Wangler MF, Yamamoto S. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep 2022; 38:110517. [PMID: 35294868 PMCID: PMC8983390 DOI: 10.1016/j.celrep.2022.110517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/23/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Samantha L Deal
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - J Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - V Hemanjani Bhavana
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Xi Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Department of Pediatrics, Division of Hematology/Oncology, BCM, Houston, TX 77030, USA
| | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Yu-Hsin Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Pradnya Bhadane
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Colleen M Longley
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Department of Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX 77030, USA; TCH, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Nele A Haelterman
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Linda Z Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Ryan J German
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | | | - Sarah Fehr
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Annalisa Vetro
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Eleina England
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Lyon, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Sabatier
- Department of Pediatric Neurology, Lyon University Hospitals, Lyon, France
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Lyon, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jill A Madden
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris 75013, France
| | - Thomas Courtin
- Genetic Department, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris 75013, France
| | - Laurence Perrin
- Genetic Department, Robert Debré Hospital, APHP.Nord-Université de Paris, Paris 75019, France
| | - Melanie Brugger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstraße 4, 80337 Munich, Germany
| | - Steffen Leiz
- Department of Pediatrics and Adolescent Medicine, Hospital Dritter Orden, Munich, Germany
| | - Frederic Tran Mau-Them
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, 21000 Dijon, France; Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de Biologie, CHU Dijon, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
| | - Julian Delanne
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, 21000 Dijon, France
| | - Elena Sukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, Republic of Macedonia
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Erik Rosenhahn
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Roberto Keller
- Adult Autism Center, Mental Health Department, Health Unit ASL Città di Torino, Turin, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Turin, Italy; Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, Turin, Italy
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, Lundberg K, Wang Q, Adams DJ, Xu R, Qi X. ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer's disease models. Nat Commun 2022; 13:1121. [PMID: 35236834 PMCID: PMC8891325 DOI: 10.1038/s41467-022-28769-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Predisposition to Alzheimer's disease (AD) may arise from lipid metabolism perturbation, however, the underlying mechanism remains elusive. Here, we identify ATPase family AAA-domain containing protein 3A (ATAD3A), a mitochondrial AAA-ATPase, as a molecular switch that links cholesterol metabolism impairment to AD phenotypes. In neuronal models of AD, the 5XFAD mouse model and post-mortem AD brains, ATAD3A is oligomerized and accumulated at the mitochondria-associated ER membranes (MAMs), where it induces cholesterol accumulation by inhibiting gene expression of CYP46A1, an enzyme governing brain cholesterol clearance. ATAD3A and CYP46A1 cooperate to promote APP processing and synaptic loss. Suppressing ATAD3A oligomerization by heterozygous ATAD3A knockout or pharmacological inhibition with DA1 restores neuronal CYP46A1 levels, normalizes brain cholesterol turnover and MAM integrity, suppresses APP processing and synaptic loss, and consequently reduces AD neuropathology and cognitive deficits in AD transgenic mice. These findings reveal a role for ATAD3A oligomerization in AD pathogenesis and suggest ATAD3A as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xiaoyan Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Philip Ropelewski
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zita Hubler
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kathleen Lundberg
- Proteomics Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
43
|
Lang L, Loveless R, Dou J, Lam T, Chen A, Wang F, Sun L, Juarez J, Qin ZS, Saba NF, Shay C, Teng Y. ATAD3A mediates activation of RAS-independent mitochondrial ERK1/2 signaling, favoring head and neck cancer development. J Exp Clin Cancer Res 2022; 41:43. [PMID: 35093151 PMCID: PMC8800319 DOI: 10.1186/s13046-022-02274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Targeting mitochondrial oncoproteins presents a new concept in the development of effective cancer therapeutics. ATAD3A is a nuclear-encoded mitochondrial enzyme contributing to mitochondrial dynamics, cholesterol metabolism, and signal transduction. However, its impact and underlying regulatory mechanisms in cancers remain ill-defined. METHODS We used head and neck squamous cell carcinoma (HNSCC) as a research platform and achieved gene depletion by lentiviral shRNA and CRISPR/Cas9. Molecular alterations were examined by RNA-sequencing, phospho-kinase profiling, Western blotting, RT-qPCR, immunohistochemistry, and immunoprecipitation. Cancer cell growth was assessed by MTT, colony formation, soft agar, and 3D cultures. The therapeutic efficacy in tumor development was evaluated in orthotopic tongue tumor NSG mice. RESULTS ATAD3A is highly expressed in HNSCC tissues and cell lines. Loss of ATAD3A expression suppresses HNSCC cell growth and elicits tumor regression in orthotopic tumor-bearing mice, whereas gain of ATAD3A expression produces the opposite effects. From a mechanistic perspective, the tumor suppression induced by the overexpression of the Walker A dead mutant of ATAD3A (K358) produces a potent dominant-negative effect due to defective ATP-binding. Moreover, ATAD3A binds to ERK1/2 in the mitochondria of HNSCC cells in the presence of VDAC1, and this interaction is essential for the activation of mitochondrial ERK1/2 signaling. Most importantly, the ATAD3A-ERK1/2 signaling axis drives HNSCC development in a RAS-independent fashion and, thus, tumor suppression is more effectively achieved when ATAD3A knockout is combined with RAS inhibitor treatment. CONCLUSIONS These findings highlight the novel function of ATAD3A in regulating mitochondrial ERK1/2 activation that favors HNSCC development. Combined targeting of ATAD3A and RAS signaling may potentiate anticancer activity for HNSCC therapeutics.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Juan Dou
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Tiffany Lam
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Alex Chen
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Li Sun
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Jakeline Juarez
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Zhaohui Steve Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
44
|
Qi R, Li R, Yang W, Sang Y. Harel-Yoon syndrome caused by the c.368G>A variant in the ATAD3A gene: A case report. Asian J Surg 2022; 45:914-916. [PMID: 35012852 DOI: 10.1016/j.asjsur.2021.12.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ruifang Qi
- Department of Endocrinology, Baoding Children's Hospital, Baoding, 071000, China
| | - Rongmin Li
- Department of Endocrinology, Baoding Children's Hospital, Baoding, 071000, China
| | - Wenli Yang
- Department of Endocrinology and Genetic Metabolism, National Children's Medical Center, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China
| | - Yanmei Sang
- Department of Endocrinology and Genetic Metabolism, National Children's Medical Center, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China.
| |
Collapse
|
45
|
Yanovsky-Dagan S, Frumkin A, Lupski JR, Harel T. CRISPR/Cas9-induced gene conversion between ATAD3 paralogs. HGG ADVANCES 2022; 3:100092. [PMID: 35199044 PMCID: PMC8844715 DOI: 10.1016/j.xhgg.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Paralogs and pseudogenes are abundant within the human genome, and can mediate non-allelic homologous recombination (NAHR) or gene conversion events. The ATAD3 locus contains three paralogs situated in tandem, and is therefore prone to NAHR-mediated deletions and duplications associated with severe neurological phenotypes. To study this locus further, we aimed to generate biallelic loss-of-function variants in ATAD3A by CRISPR/Cas9 genome editing. Unexpectedly, two of the generated clones underwent gene conversion, as evidenced by replacement of the targeted sequence of ATAD3A by a donor sequence from its paralog ATAD3B. We highlight the complexity of CRISPR/Cas9 design, end-product formation, and recombination repair mechanisms for CRISPR/Cas9 delivery as a nucleic acid molecular therapy when targeting genes that have paralogs or pseudogenes, and advocate meticulous evaluation of resultant clones in model organisms. In addition, we suggest that endogenous gene conversion may be used to repair missense variants in genes with paralogs or pseudogenes.
Collapse
Affiliation(s)
| | - Ayala Frumkin
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Corresponding author
| |
Collapse
|
46
|
Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep 2021; 37:110139. [PMID: 34936866 PMCID: PMC8785211 DOI: 10.1016/j.celrep.2021.110139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ATPase Family AAA Domain Containing 3A (ATAD3A), is a mitochondrial inner membrane protein conserved in metazoans. ATAD3A has been associated with several mitochondrial functions, including nucleoid organization, cholesterol metabolism, and mitochondrial translation. To address its primary role, we generated a neuronal-specific conditional knockout (Atad3 nKO) mouse model, which developed a severe encephalopathy by 5 months of age. Pre-symptomatic mice showed aberrant mitochondrial cristae morphogenesis in the cortex as early as 2 months. Using a multi-omics approach in the CNS of 2-to-3-month-old mice, we found early alterations in the organelle membrane structure. We also show that human ATAD3A associates with different components of the inner membrane, including OXPHOS complex I, Letm1, and prohibitin complexes. Stochastic Optical Reconstruction Microscopy (STORM) shows that ATAD3A is regularly distributed along the inner mitochondrial membrane, suggesting a critical structural role in inner mitochondrial membrane and its organization, most likely in an ATPase-dependent manner. Arguello et al. show that deletion of the mitochondrial protein ATAD3 in neurons leads to neuronal loss and death. The earliest phenotype is disruption of the mitochondrial inner membrane structure; OXPHOS complexes are affected later. ATAD3 is regularly spaced and has several interactors at the inner membrane, including CI subunits.
Collapse
Affiliation(s)
- Tania Arguello
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hana Antonicka
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC H3A 0C7, Canada
| | - Gabriel Gaidosh
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ya-Ting Tu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
47
|
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 232:2026-2042. [PMID: 34482561 DOI: 10.1111/nph.17717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vincent Schulz
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Lea Brings
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Theresa Schoeller
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kristina Kühn
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
48
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
49
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, Dhir A, Frémond ML, Rodero MP, Seabra L, Carter E, Bodemer C, Buhas D, Callewaert B, de Lonlay P, De Somer L, Dyment DA, Faes F, Grove L, Holden S, Hully M, Kurian MA, McMillan HJ, Suetens K, Tyynismaa H, Chhun S, Wai T, Wouters C, Bader-Meunier B, Crow YJ. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med 2021; 218:e20201560. [PMID: 34387651 PMCID: PMC8374862 DOI: 10.1084/jem.20201560] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.
Collapse
Affiliation(s)
- Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Erika Della Mina
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Erika Van Nieuwenhove
- Universitair Ziekenhuis Leuven, Department of Pediatrics, Leuven, Belgium
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, Katholieke Universiteit Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lise Waumans
- Department of Pathology, Universitair Ziekenhuis Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Sylvie Fraitag
- Service d’Anatomo-Pathologie, Hôpital Necker-Enfants-Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashish Dhir
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Mathieu P. Rodero
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Luis Seabra
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Edwin Carter
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christine Bodemer
- Department of Dermatology and Reference Centre for Genodermatoses and Rare Skin Diseases, Imagine Institute, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Université Paris-Centre, Paris, France
| | - Daniela Buhas
- Medical Genetics Division, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Quebec, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants Malades, Université de Paris, Filière G2M, MetabERN, Paris, France
- Institut Imagine, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1163, Paris, France
| | - Lien De Somer
- Pediatric Rheumatology, Universitair Ziekenhuis Leuven, Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases at University Hospital Leuven, Leuven, Belgium
| | - David A. Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Fran Faes
- Department of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Lucy Grove
- Community Paediatric Department, West Suffolk Hospital Foundation Trust, Bury St Edmunds, UK
| | - Simon Holden
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Marie Hully
- Pediatric Neurology Department, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Manju A. Kurian
- Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Hugh J. McMillan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Kristin Suetens
- Department of Radiology, University Hospitals Leuven, Radiology, Leuven, Belgium
- Department of Radiology, Regional Hospital Heilig Hart Leuven, Leuven, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine and Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stéphanie Chhun
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique Unité mixte de recherche 8253, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur, Centre National de la Recherche Scientifique, Unité mixte de recherche 3691, Paris, France
| | - Carine Wouters
- Pediatric Rheumatology, Universitair Ziekenhuis Leuven, Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases at University Hospital Leuven, Leuven, Belgium
| | - Brigitte Bader-Meunier
- Pediatric Immunology-Hematology and Rheumatology Unit, Hôpital Necker-Enfants Malades, Laboratory of Immunogenetics of Pediatric Autoimmunity, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1163, Assistance Publique - Hôpitaux de Paris, Institut Imagine, Paris, France
| | - Yanick J. Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|