1
|
Wang D, Yu H, Qu Y, An K, Liang H, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Identification of Downregulated MECR Gene in Parkinson's Disease Through Integrated Transcriptomic Analysis and Validation. Int J Mol Sci 2025; 26:550. [PMID: 39859268 PMCID: PMC11765974 DOI: 10.3390/ijms26020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (α-syn) aggregation. Lipid metabolism dysfunction may contribute to PD progression. This study aims to identify lipid metabolism-related genes (LMGs) associated with PD using an integrative transcriptomic analysis of microarray and single-cell RNA sequencing (scRNA-seq) datasets from patients with PD and healthy controls. Differentially expressed genes (DEGs) related to lipid metabolism were identified, and key genes were further filtered using weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. Four LMGs, AGPAT2, ASAH2, FA2H, and MECR were identified, with MECR being notably downregulated in both bulk and single-cell transcriptomic analyses of PD patients. This downregulation was further validated in α-syn PFF-induced PD models. Virtual screening and molecular simulations identified potential allosteric modulators of MECR, which may offer a pathway for future therapeutic exploration. This study highlights MECR as a critical gene link between lipid metabolism dysfunction and PD, suggesting the need for further investigation into its therapeutic implications.
Collapse
Affiliation(s)
- Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoheng Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongming Liang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Xue
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Bick NR, Dreishpoon MB, Perry A, Rogachevskaya A, Bottomley SS, Fleming MD, Ducamp S, Tsvetkov P. Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency. J Biol Chem 2024; 300:107995. [PMID: 39547509 DOI: 10.1016/j.jbc.2024.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe-S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe-S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.
Collapse
Affiliation(s)
- Nolan R Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA
| | - Margaret B Dreishpoon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ava Perry
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA
| | - Anna Rogachevskaya
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvia S Bottomley
- Department of Medicine, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Tsvetkov
- Broad Institute of MIT and Harvard, Cambridge, Massachusets, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Autio KJ, Koivisto H, Schmitz W, Puronurmi A, Tanila H, Kastaniotis AJ. Exploration of dietary interventions to treat mitochondrial fatty acid disorders in a mouse model. J Nutr Biochem 2024; 131:109692. [PMID: 38879137 DOI: 10.1016/j.jnutbio.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial fatty acids synthesis (mtFAS) is a conserved metabolic pathway essential for mitochondrial respiration. The best characterized mtFAS product is the medium-chain fatty acid octanoate (C8) used as a substrate in the synthesis of lipoic acid (LA), a cofactor required by several mitochondrial enzyme complexes. In humans, mutations in the mtFAS component enoyl reductase MECR cause childhood-onset neurodegenerative disorder MEPAN. A complete deletion of Mecr in mice is embryonically lethal, while selective deletion of Mecr in cerebellar Purkinje cells causes neurodegeneration in these cells. A fundamental question in the research of mtFAS deficiency is if the defect is amenable to treatment by supplementation with known mtFAS products. Here we used the Purkinje-cell specific mtFAS deficiency neurodegeneration model mice to study if feeding the mice with a medium-chain triacylglycerol-rich formula supplemented with LA could slow down or prevent the neurodegeneration in Purkinje cell-specific Mecr KO mice. Feeding started at the age of 4 weeks and continued until the age of 9 months. The neurological status on the mice was assessed at the age of 3, 6, and 9 months with behavioral tests and the state of the Purkinje cell deterioration in the cerebellum was studied histologically. We showed that feeding the mice with medium chain triacylglycerols and LA affected fatty acid profiles in the cerebellum and plasma but did not prevent the development of neurodegeneration in these mice. Our results indicate that dietary supplementation with medium chain fatty acids and LA alone is not an efficient way to treat mtFAS disorders.
Collapse
Affiliation(s)
- Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Werner Schmitz
- Faculty of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Anna Puronurmi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
4
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Jia N, Yu S, Zhang G, Li L, Wang J, Lai C. Recurrent MECR R258W causes adult-onset optic atrophy: A case report. Eur J Med Genet 2024; 68:104917. [PMID: 38296034 DOI: 10.1016/j.ejmg.2024.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
MECR-related neurologic disorder, also known as mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) or dystonia with optic atrophy and basal ganglia abnormalities in childhood (MIM: #617282), is an autosomal recessive inherited disease characterized by a progressive childhood-onset movement disorder and optic atrophy. Here we report a 19-year-old male, presented with progressive visual failure, nystagmus, and right orbital pain, with no history of movement or eye disorder in his childhood. His visual decline started at age 18 years, whereas nystagmus emerged seven months later. Analysis of whole-exome sequencing (WES) revealed a homozygous recurrent variant (NM_016011.5:c.772C > T, p.Arg258Trp) in MECR. These findings suggest phenotypic heterogeneity in MECR-related neurologic disorder, thus, more relevant case screening, will help to delineate the genotype-phenotype correlation of the MECR gene.
Collapse
Affiliation(s)
- Nan Jia
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuiqing Yu
- Beijing Chigene Translational Medical Research Center Co. Ltd., Beijing, China
| | - Geng Zhang
- Beijing Chigene Translational Medical Research Center Co. Ltd., Beijing, China
| | - Lin Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chuntao Lai
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Garg D, Sharma S, Mohammad SS, Prasad AN. Editorial: Movement disorders in neurometabolic conditions. Front Neurol 2024; 15:1397998. [PMID: 38585363 PMCID: PMC10995242 DOI: 10.3389/fneur.2024.1397998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Shekeeb S Mohammad
- Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
8
|
Nataraj J, MacLean JA, Davies J, Kurtz J, Salisbury A, Liker MA, Sanger TD, Olaya J. Application of deep brain stimulation for the treatment of childhood-onset dystonia in patients with MEPAN syndrome. Front Neurol 2024; 14:1307595. [PMID: 38328756 PMCID: PMC10847241 DOI: 10.3389/fneur.2023.1307595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Mitochondrial Enoyl CoA Reductase Protein-Associated Neurodegeneration (MEPAN) syndrome is a rare inherited metabolic condition caused by MECR gene mutations. This gene encodes a protein essential for fatty acid synthesis, and defects cause progressively worsening childhood-onset dystonia, optic atrophy, and basal ganglia abnormalities. Deep brain stimulation (DBS) has shown mixed improvement in other childhood-onset dystonia conditions. To the best of our knowledge, DBS has not been investigated as a treatment for dystonia in patients with MEPAN syndrome. Methods Two children with MEPAN were identified as possible DBS candidates due to severe generalized dystonia unresponsive to pharmacotherapy. Temporary depth electrodes were placed in six locations bilaterally and tested during a 6-day hospitalization to determine the best locations for permanent electrode placement. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) were used for preoperative and postoperative testing to quantitatively assess dystonia severity changes. Patient 1 had permanent electrodes placed at the globus pallidus internus (GPi) and pedunculopontine nucleus (PPN). Patient 2 had permanent electrodes placed at the GPi and ventralis intermedius nucleus of the thalamus (VIM). Results Both patients successfully underwent DBS placement with no perioperative complications and significant improvement in their BFMDRS score. Patient 2 also demonstrated improvement in the BADS. Discussion We demonstrated a novel application of DBS in MEPAN syndrome patients with childhood-onset dystonia. These patients showed clinically significant improvements in dystonia following DBS, indicating that DBS can be considered for dystonia in patients with rare metabolic disorders that currently have no other proven treatment options.
Collapse
Affiliation(s)
- Jaya Nataraj
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
| | - Jennifer A. MacLean
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurology, Children’s Hospital of Orange County, Orange, CA, United States
| | - Jordan Davies
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Joshua Kurtz
- School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Amanda Salisbury
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
| | - Mark A. Liker
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Terence D. Sanger
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurology, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Joffre Olaya
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Wedan RJ, Longenecker JZ, Nowinski SM. Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism. Cell Metab 2024; 36:36-47. [PMID: 38128528 PMCID: PMC10843818 DOI: 10.1016/j.cmet.2023.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.
Collapse
Affiliation(s)
- Riley J Wedan
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA; College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jacob Z Longenecker
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
10
|
Rawson F, Christen M, Rose J, Paran E, Leeb T, Fadda A. Polioencephalopathy in Eurasier dogs. J Vet Intern Med 2024; 38:277-284. [PMID: 38041431 PMCID: PMC10800227 DOI: 10.1111/jvim.16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Polioencephalopathies secondary to inborn errors of metabolism have been described in dogs, but few genetically characterized. OBJECTIVES Clinically and genetically characterize polioencephalopathy in a family of Eurasier dogs. ANIMALS Three Eurasier dogs (littermates) presented with early onset movement disorders (9 weeks in 2, 4-6 months in 1). Progressive gait abnormalities were detected in 2 of the dogs, persistent divergent strabismus in 1, whereas consciousness and behavior remained intact in all dogs. One dog was euthanized at 25 months. METHODS Video footage was assessed in all dogs, and Dogs 1 and 2 had examinations and investigations performed. Whole genome sequencing of Dog 1 and further genetic analyses in the family were performed. A cohort of 115 Eurasier controls was genotyped for specific variants. RESULTS Episodes were characterized by generalized ataxia, as well as a hypermetric thoracic limb gait, dystonia, and irregular flexion and extension movements of the thoracic limbs. Magnetic resonance imaging of the brain in Dogs 1 and 2 identified symmetrical, bilateral T2 and fluid attenuated inversion recovery hyperintense, T1 hypo to isointense, nonenhancing lesions of the caudate nucleus, lateral and medial geniculate nuclei, thalamus, hippocampus, rostral colliculus and mild generalized brain atrophy. Genetic analyses identified a homozygous mitochondrial trans-2-enoyl-CoA reductase (MECR) missense variant in all 3 dogs, and a homozygous autophagy-related gene 4D (ATG4D) missense variant in Dogs 1 and 2. CONCLUSIONS AND CLINICAL IMPORTANCE We describe a presumed hereditary and progressive polioencephalopathy in a family of Eurasier dogs. Further research is needed to establish the role of the MECR gene in dogs and the pathogenic effects of the detected variants.
Collapse
Affiliation(s)
- Faye Rawson
- Langford Veterinary ServicesUniversity of BristolBristolUK
| | - Matthias Christen
- Institute of Genetics, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Emilie Paran
- Langford Veterinary ServicesUniversity of BristolBristolUK
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Angela Fadda
- Langford Veterinary ServicesUniversity of BristolBristolUK
| |
Collapse
|
11
|
Fiorini C, Degiorgi A, Cascavilla ML, Tropeano CV, La Morgia C, Battista M, Ormanbekova D, Palombo F, Carbonelli M, Bandello F, Carelli V, Maresca A, Barboni P, Baruffini E, Caporali L. Recessive MECR pathogenic variants cause an LHON-like optic neuropathy. J Med Genet 2023; 61:93-101. [PMID: 37734847 PMCID: PMC10804020 DOI: 10.1136/jmg-2023-109340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.
Collapse
Affiliation(s)
- Claudio Fiorini
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Andrea Degiorgi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | - Chiara La Morgia
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Battista
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Danara Ormanbekova
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Flavia Palombo
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Valerio Carelli
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Caporali
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Gupta PR, Gospe SM. Ophthalmic manifestations of MEPAN syndrome. Ophthalmic Genet 2023; 44:469-474. [PMID: 36262091 DOI: 10.1080/13816810.2022.2135112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) syndrome is an ultra-rare autosomal recessive disorder caused by loss-of-function mutations in the MECR gene. The syndrome is characterized by dystonia in early childhood, basal ganglia signal abnormalities on MRI, and subsequent optic atrophy, with relative sparing of cognition. We characterize the ophthalmic manifestations observed in a patient with MEPAN syndrome, as a detailed account of ocular findings has not been published to date. METHODS Case study of a patient with genetically confirmed MEPAN syndrome, with full ophthalmic evaluation including slit-lamp exam, sensorimotor exam, fundus photography, retinal ocular coherence tomography (OCT), electroretinography, visual evoked potentials, and visual field testing. RESULTS The patient exhibited decreased visual acuity of 20/150 in both eyes with moderate dyschromatopsia on pseudoisochromatic plate testing, while peripheral vision was largely intact on Goldmann visual field testing. Fundus exam revealed bilateral optic atrophy with pallor most pronounced temporally, corresponding to OCT findings of diffuse retinal nerve fiber layer thinning most prominent in the papillomacular bundle region and severe ganglion cell layer thinning in the maculae. She also displayed a high frequency horizontal end-gaze nystagmus and symmetric bilateral external ophthalmoplegia. CONCLUSIONS The pattern of bilateral optic atrophy in our patient with MEPAN syndrome shows predilection for the papillomacular bundle, similar to that seen in other mitochondrial disorders with optic neuropathy, such as Leber Hereditary Optic Neuropathy and Dominant Optic Atrophy. Our patient's external ophthalmoplegia is another neuro-ophthalmic finding that may be seen in patients with heritable mitochondrial disease, either as an isolated ocular phenotype or within a constellation of systemic manifestations.
Collapse
Affiliation(s)
| | - Sidney M Gospe
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Du Q, Wang X, Chen J, Wang Y, Liu W, Wang L, Liu H, Jiang L, Nie Z. Machine learning encodes urine and serum metabolic patterns for autoimmune disease discrimination, classification and metabolic dysregulation analysis. Analyst 2023; 148:4318-4330. [PMID: 37547947 DOI: 10.1039/d3an01051a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
There is a wide variety of autoimmune diseases (ADs) with complex pathogenesis and their accurate diagnosis is difficult to achieve because of their vague symptoms. Metabolomics has been proven to be an efficient tool in the analysis of metabolic disorders to provide clues about the mechanism and diagnosis of diseases. Previous studies of the metabolomics analysis of ADs were not competent in their discrimination. Herein, a liquid chromatography tandem mass spectrometry (LC-MS) strategy combined with machine learning is proposed for the discrimination and classification of ADs. Urine and serum samples were collected from 267 subjects consisting of 127 healthy controls (HC) and 140 AD patients, including those with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), sicca syndrome (SS), ankylosing spondylitis (AS), systemic scleroderma (SSc) and connective tissue disease (CTD). Machine learning algorithms were encoded for the discrimination and classification of ADs with metabolomic patterns obtained by LC-MS, and satisfactory results were achieved. Notably, urine samples exhibited higher accuracy for disease differentiation and triage than serum samples. Apart from that, differential metabolites were selected and metabolite panels were evaluated to demonstrate their representativeness. Metabolic dysregulations were also investigated to gain more knowledge about the pathogenesis of ADs. This research provides a promising method for the application of metabolomics combined with machine learning in precision medicine.
Collapse
Affiliation(s)
- Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlan Liu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Liping Wang
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province 341000, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
15
|
Berg JA, Zhou Y, Ouyang Y, Cluntun AA, Waller TC, Conway ME, Nowinski SM, Van Ry T, George I, Cox JE, Wang B, Rutter J. Metaboverse enables automated discovery and visualization of diverse metabolic regulatory patterns. Nat Cell Biol 2023; 25:616-625. [PMID: 37012464 PMCID: PMC10104781 DOI: 10.1038/s41556-023-01117-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
Metabolism is intertwined with various cellular processes, including controlling cell fate, influencing tumorigenesis, participating in stress responses and more. Metabolism is a complex, interdependent network, and local perturbations can have indirect effects that are pervasive across the metabolic network. Current analytical and technical limitations have long created a bottleneck in metabolic data interpretation. To address these shortcomings, we developed Metaboverse, a user-friendly tool to facilitate data exploration and hypothesis generation. Here we introduce algorithms that leverage the metabolic network to extract complex reaction patterns from data. To minimize the impact of missing measurements within the network, we introduce methods that enable pattern recognition across multiple reactions. Using Metaboverse, we identify a previously undescribed metabolite signature that correlated with survival outcomes in early stage lung adenocarcinoma patients. Using a yeast model, we identify metabolic responses suggesting an adaptive role of citrate homeostasis during mitochondrial dysfunction facilitated by the citrate transporter, Ctp1. We demonstrate that Metaboverse augments the user's ability to extract meaningful patterns from multi-omics datasets to develop actionable hypotheses.
Collapse
Affiliation(s)
- Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Altos Labs, Redwood City, CA, USA.
| | - Youjia Zhou
- School of Computing, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Yeyun Ouyang
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Altos Labs, Redwood City, CA, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - T Cameron Waller
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Megan E Conway
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sara M Nowinski
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Tyler Van Ry
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Ian George
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Bei Wang
- School of Computing, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Webb BD, Nowinski SM, Solmonson A, Ganesh J, Rodenburg RJ, Leandro J, Evans A, Vu HS, Naidich TP, Gelb BD, DeBerardinis RJ, Rutter J, Houten SM. Recessive pathogenic variants in MCAT cause combined oxidative phosphorylation deficiency. eLife 2023; 12:e68047. [PMID: 36881526 PMCID: PMC9991045 DOI: 10.7554/elife.68047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Malonyl-CoA-acyl carrier protein transacylase (MCAT) is an enzyme involved in mitochondrial fatty acid synthesis (mtFAS) and catalyzes the transfer of the malonyl moiety of malonyl-CoA to the mitochondrial acyl carrier protein (ACP). Previously, we showed that loss-of-function of mtFAS genes, including Mcat, is associated with severe loss of electron transport chain (ETC) complexes in mouse immortalized skeletal myoblasts (Nowinski et al., 2020). Here, we report a proband presenting with hypotonia, failure to thrive, nystagmus, and abnormal brain MRI findings. Using whole exome sequencing, we identified biallelic variants in MCAT. Protein levels for NDUFB8 and COXII, subunits of complex I and IV respectively, were markedly reduced in lymphoblasts and fibroblasts, as well as SDHB for complex II in fibroblasts. ETC enzyme activities were decreased in parallel. Re-expression of wild-type MCAT rescued the phenotype in patient fibroblasts. This is the first report of a patient with MCAT pathogenic variants and combined oxidative phosphorylation deficiency.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Pediatrics and Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public HealthMadison, WIUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel InstituteGrand Rapids, MIUnited States
| | - Ashley Solmonson
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
| | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Richard J Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical CenterNijmegenNetherlands
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Anthony Evans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Hieu S Vu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Ralph J DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
- Howard Hughes Medical InstituteChevy Chase, MDUnited States
| | - Jared Rutter
- Howard Hughes Medical InstituteChevy Chase, MDUnited States
- Department of Biochemistry, University of UtahSalt Lake City, UTUnited States
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| |
Collapse
|
17
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
18
|
Rahman MT, Koski MK, Panecka-Hofman J, Schmitz W, Kastaniotis AJ, Wade RC, Wierenga RK, Hiltunen JK, Autio KJ. An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nat Commun 2023; 14:619. [PMID: 36739436 PMCID: PMC9899272 DOI: 10.1038/s41467-023-36358-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory function. MtFAS generates the octanoic acid precursor for lipoic acid synthesis, but the role of longer fatty acid products has remained unclear. The structurally well-characterized component of mtFAS, human 2E-enoyl-ACP reductase (MECR) rescues respiratory growth and lipoylation defects of a Saccharomyces cerevisiae Δetr1 strain lacking native mtFAS enoyl reductase. To address the role of longer products of mtFAS, we employed in silico molecular simulations to design a MECR variant with a shortened substrate binding cavity. Our in vitro and in vivo analyses indicate that the MECR G165Q variant allows synthesis of octanoyl groups but not long chain fatty acids, confirming the validity of our computational approach to engineer substrate length specificity. Furthermore, our data imply that restoring lipoylation in mtFAS deficient yeast strains is not sufficient to support respiration and that long chain acyl-ACPs generated by mtFAS are required for mitochondrial function.
Collapse
Affiliation(s)
- M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Joanna Panecka-Hofman
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Werner Schmitz
- Faculty of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | | | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Chauhan MZ, Chacko JG, Ghaffarieh A, Moulin CM, Pelaez D, Uwaydat SH, Bhattacharya SK. Mitochondrial Triglyceride Dysregulation in Optic Nerves Following Indirect Traumatic Optic Neuropathy. Biomolecules 2022; 12:biom12121885. [PMID: 36551313 PMCID: PMC9775509 DOI: 10.3390/biom12121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The purpose of this work is to identify mitochondrial optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Briefly, a mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier (Branson Digital Sonifier 450, Danbury, CT, USA) with a microtip probe. We performed an analysis of a previously generated dataset from high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). We analyzed lipids from isolated mitochondria from the ON at 1 day, 7 days, and 14 days post-sonication compared to non-sonicated controls. Lipid abundance alterations in post-sonicated ON mitochondria were evaluated with 1-way ANOVA (FDR-adjusted significant p-value < 0.01), debiased sparse partial correlation (DSPC) network modeling, and partial least squares-discriminant analysis (PLS-DA). We find temporal alterations in triglyceride metabolism are observed in ON mitochondria of mice following sonication-induced optic neuropathy with notable depletions of TG(18:1/18:2/18:2), TG(18:1/18:1/18:1), and TG(16:0/16:0/18:1). Depletion of mitochondrial triglycerides may mediate ON damage in indirect traumatic optic neuropathy through loss energy substrates for neuronal metabolism.
Collapse
Affiliation(s)
- Muhammad Z. Chauhan
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph G. Chacko
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
| | - Alireza Ghaffarieh
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
| | - Chloe M. Moulin
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sami H. Uwaydat
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences Little Rock, Little Rock, AR 72205, USA
- Correspondence: (S.H.U.); (S.K.B.); Tel.: +305-482-4103 (S.K.B.)
| | - Sanjoy K. Bhattacharya
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (S.H.U.); (S.K.B.); Tel.: +305-482-4103 (S.K.B.)
| |
Collapse
|
20
|
Chander V, Mahmoud M, Hu J, Dardas Z, Grochowski CM, Dawood M, Khayat MM, Li H, Li S, Jhangiani S, Korchina V, Shen H, Weissenberger G, Meng Q, Gingras MC, Muzny DM, Doddapaneni H, Posey JE, Lupski JR, Sabo A, Murdock DR, Sedlazeck FJ, Gibbs RA. Long read sequencing and expression studies of AHDC1 deletions in Xia-Gibbs syndrome reveal a novel genetic regulatory mechanism. Hum Mutat 2022; 43:2033-2053. [PMID: 36054313 PMCID: PMC10167679 DOI: 10.1002/humu.24461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Varuna Chander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michael M. Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shoudong Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hua Shen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Hayflick SJ, Jeong SY, Sibon OCM. PKAN pathogenesis and treatment. Mol Genet Metab 2022; 137:283-291. [PMID: 36240582 PMCID: PMC9970616 DOI: 10.1016/j.ymgme.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.
Collapse
Affiliation(s)
- Susan J Hayflick
- Departments of Molecular & Medical Genetics, Pediatrics, and Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV, the Netherlands
| |
Collapse
|
22
|
Lipoate protein ligase B primarily recognizes the C 8-phosphopantetheine arm of its donor substrate and weakly binds the acyl carrier protein. J Biol Chem 2022; 298:102203. [PMID: 35764173 PMCID: PMC9307952 DOI: 10.1016/j.jbc.2022.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoic acid is a sulfur containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using E. coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H STD and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.
Collapse
|
23
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
24
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
25
|
Ergin S, Kherad N, Alagoz M. RNA sequencing and its applications in cancer and rare diseases. Mol Biol Rep 2022; 49:2325-2333. [PMID: 34988891 PMCID: PMC8731134 DOI: 10.1007/s11033-021-06963-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
With the invention of RNA sequencing over a decade ago, diagnosis and identification of the gene-related diseases entered a new phase that enabled more accurate analysis of the diseases that are difficult to approach and analyze. RNA sequencing has availed in-depth study of transcriptomes in different species and provided better understanding of rare diseases and taxonomical classifications of various eukaryotic organisms. Development of single-cell, short-read, long-read and direct RNA sequencing using both blood and biopsy specimens of the organism together with recent advancement in computational analysis programs has made the medical professional's ability in identifying the origin and cause of genetic disorders indispensable. Altogether, such advantages have evolved the treatment design since RNA sequencing can detect the resistant genes against the existing therapies and help medical professions to take a further step in improving methods of treatments towards higher effectiveness and less side effects. Therefore, it is of essence to all researchers and scientists to have deeper insight in all available methods of RNA sequencing while taking a step-in therapy design.
Collapse
Affiliation(s)
- Selvi Ergin
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
| | - Nasim Kherad
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey
| | - Meryem Alagoz
- Department of Molecular Biology and Genetics, Biruni University, Istanbul, Turkey.
| |
Collapse
|
26
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Riley LG, Nafisinia M, Menezes MJ, Nambiar R, Williams A, Barnes EH, Selvanathan A, Lichkus K, Bratkovic D, Yaplito-Lee J, Bhattacharya K, Ellaway C, Kava M, Balasubramaniam S, Christodoulou J. FGF21 outperforms GDF15 as a diagnostic biomarker of mitochondrial disease in children. Mol Genet Metab 2022; 135:63-71. [PMID: 34991945 DOI: 10.1016/j.ymgme.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022]
Abstract
Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.
Collapse
Affiliation(s)
- Lisa G Riley
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Rare Diseases Functional Genomics, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Michael Nafisinia
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Storr Liver Centre, Sydney, NSW, Australia
| | - Minal J Menezes
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia
| | - Reta Nambiar
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Andrew Williams
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia; Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Kate Lichkus
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Joy Yaplito-Lee
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Carolyn Ellaway
- Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maina Kava
- Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; Department of Neurology, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Peng L, Ma W, Xie Q, Chen B. Identification and validation of hub genes for diabetic retinopathy. PeerJ 2021; 9:e12126. [PMID: 34603851 PMCID: PMC8445088 DOI: 10.7717/peerj.12126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is characterized by a gradually progressive alteration in the retinal microvasculature that leads to middle-aged adult acquired persistent blindness. Limited research has been conducted on DR pathogenesis at the gene level. Thus, we aimed to reveal novel key genes that might be associated with DR formation via a bioinformatics analysis. Methods The GSE53257 dataset from the Gene Expression Omnibus was downloaded for gene co-expression analysis. We identified significant gene modules via the Weighted Gene Co-expression Network Analysis, which was conducted by the Protein-Protein Interaction (PPI) Network via Cytoscape and from this we screened for key genes and gene sets for particular functional and pathway-specific enrichments. The hub gene expression was verified by real-time PCR in DR rats modeling and an external database. Results Two significant gene modules were identified. Significant key genes were predominantly associated with mitochondrial function, fatty acid oxidation and oxidative stress. Among all key genes analyzed, six up-regulated genes (i.e., SLC25A33, NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were highly and significantly relevant in the context of DR formation. The PCR results showed that SLC25A33 and NDUFS1 expression were increased in DR rats modeling group. Conclusion Gene co-expression network analysis highlights the importance of mitochondria and oxidative stress in the pathophysiology of DR. DR co-expressing gene module was constructed and key genes were identified, and both SLC25A33 and NDUFS1 may serve as potential biomarker and therapeutic target for DR.
Collapse
Affiliation(s)
- Li Peng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Wei Ma
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Xie
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Li M, Tian X, Li X, Huang M, Huang S, Wu Y, Jiang M, Shi Y, Shi L, Wang Z. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147130. [PMID: 34088150 DOI: 10.1016/j.scitotenv.2021.147130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The effects of global warming and anthropogenic disturbance force animals to migrate from lower to higher elevations to find suitable new habitats. As such migrations increase hypoxic stress on the animals, it is important to understand how plateau- and plain-dwelling animals respond to low-oxygen environments. We used comparative transcriptomics to explore the response of Neodon fuscus, Lasiopodomys brandtii, and Mus musculus skeletal muscle tissues to hypoxic conditions. Results indicate that these species have adopted different oxygen transport and energy metabolism strategies for dealing with a hypoxic environment. N. fuscus promotes oxygen transport by increasing hemoglobin synthesis and reduces the risk of thrombosis through cooperative regulation of genes, including Fga, Fgb, Alb, and Ttr; genes such as Acs16, Gpat4, and Ndufb7 are involved in regulating lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, and electron-linked transmission, thereby maintaining a normal energy supply in hypoxic conditions. In contrast, the oxygen-carrying capacity and angiogenesis of red blood cells in L. brandtii are promoted by genes in the CYP and COL families; this species maintains its bodily energy supply by enhancing the pentose phosphate pathway and mitochondrial fatty acid synthesis pathway. However, under hypoxia, M. musculus cannot effectively transport additional oxygen; thus, its cell cycle, proliferation, and migration are somewhat affected. Given its lack of hypoxic tolerance experience, M. musculus also shows significantly reduced oxidative phosphorylation levels under hypoxic conditions. Our results suggest that the glucose capacity of M. musculus skeletal muscle does not provide sufficient energy during hypoxia; thus, we hypothesize that it supplements its bodily energy by synthesizing ketone bodies. For the first time, we describe the energy metabolism pathways of N. fuscus and L. brandtii skeletal muscle tissues under hypoxic conditions. Our findings, therefore, improve our understanding of how vertebrates thrive in high altitude and plain habitats when faced with hypoxic conditions.
Collapse
Affiliation(s)
- Mengyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuang Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
31
|
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis 2021; 44:809-825. [PMID: 33594685 DOI: 10.1002/jimd.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Li H, Yuan S, Minegishi Y, Suga A, Yoshitake K, Sheng X, Ye J, Smith S, Bunkoczi G, Yamamoto M, Iwata T. Novel mutations in malonyl-CoA-acyl carrier protein transacylase provoke autosomal recessive optic neuropathy. Hum Mol Genet 2021; 29:444-458. [PMID: 31915829 DOI: 10.1093/hmg/ddz311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited optic neuropathies are rare eye diseases of optic nerve dysfunction that present in various genetic forms. Previously, mutation in three genes encoding mitochondrial proteins has been implicated in autosomal recessive forms of optic atrophy that involve progressive degeneration of optic nerve and retinal ganglion cells (RGC). Using whole exome analysis, a novel double homozygous mutation p.L81R and pR212W in malonyl CoA-acyl carrier protein transacylase (MCAT), a mitochondrial protein involved in fatty acid biosynthesis, has now been identified as responsible for an autosomal recessive optic neuropathy from a Chinese consanguineous family. MCAT is expressed in RGC that are rich in mitochondria. The disease variants lead to structurally unstable MCAT protein with significantly reduced intracellular expression. RGC-specific knockdown of Mcat in mice, lead to an attenuated retinal neurofiber layer, that resembles the phenotype of optic neuropathy. These results indicated that MCAT plays an essential role in mitochondrial function and maintenance of RGC axons, while novel MCAT p.L81R and p.R212W mutations can lead to optic neuropathy.
Collapse
Affiliation(s)
- Huiping Li
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.,Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Shiqin Yuan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.,Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Yuriko Minegishi
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Xunlun Sheng
- Ningxia Clinical Research Center of Blinding Eye Disease, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, No. 936, Huang He East Road,Yinchuan, 750001, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University Systems, 6400, Perkin Road, Baton Rouge, LA, 70808, USA
| | - Stuart Smith
- Children's Hospital Oakland Research Institute, 5700, Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Gabor Bunkoczi
- Astex Pharmaceuticals, 436, Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The discovery of new disease-causing genes and availability of next-generation sequencing platforms have both progressed rapidly over the last few years. For the practicing neurologist, this presents an increasingly bewildering array both of potential diagnoses and of means to investigate them. We review the latest newly described genetic conditions associated with dystonia, and also address how the changing landscape of gene discovery and genetic testing can best be approached, from both a research and a clinical perspective. RECENT FINDINGS Several new genetic causes for disorders in which dystonia is a feature have been described in the last 2 years, including ZNF142, GSX2, IRF2BPL, DEGS1, PI4K2A, CAMK4, VPS13D and VAMP2. Dystonia has also been a newly described feature or alternative phenotype of several other genetic conditions, notably for genes classically associated with several forms of epilepsy. The DYT system for classifying genetic dystonias, however, last recognized a new gene discovery (KMT2B) in 2016. SUMMARY Gene discovery for dystonic disorders proceeds rapidly, but a high proportion of cases remain undiagnosed. The proliferation of rare disorders means that it is no longer realistic for clinicians to aim for diagnosis to the level of predicting genotype from phenotype in all cases, but rational and adaptive use of available genetic tests can certainly expedite diagnosis.
Collapse
|
34
|
Abstract
Abstract
Purpose of Review
Whole exome sequencing (WES) and whole-genome sequencing (WGS) are frontline approaches for the genetic diagnosis of rare diseases. However, WES/WGS fails in up to 75% of cases. Transcriptomics via RNA-sequencing (RNA-Seq) is a novel approach that aims to increase the diagnostic yield in rare diseases.
Recent Findings
Recent publications focus on the success of RNA-Seq for increasing diagnosis rates in WES/WGS-negative patients in up to 36% of cases, across a range of different diseases, sample sizes, and tissue types.
Summary
RNA-Seq is beneficial for aiding prioritisation of causative variants currently not detected or often overlooked by WES/WGS alone. An improvement in diagnostic yields has been demonstrated using multiple source tissues, with muscle and fibroblasts being the most representative, but the more accessible blood still demonstrating diagnostic success, particularly in neuromuscular disorders. The introduction of RNA-Seq to the genetic diagnosis toolbox promises to be a useful complementary tool to WES/WGS for improving genetic diagnosis in patients with rare disease.
Collapse
|
35
|
Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism. Int J Mol Sci 2021; 22:ijms22073799. [PMID: 33917608 PMCID: PMC8038842 DOI: 10.3390/ijms22073799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD-/-) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.
Collapse
|
36
|
ATP reduces mitochondrial MECR protein in liver of diet-induced obese mice in mechanism of insulin resistance. Biosci Rep 2021; 40:224917. [PMID: 32440681 PMCID: PMC7273911 DOI: 10.1042/bsr20200665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial 2-enoyl-acyl-carrier protein reductase (MECR) is an enzyme in the mitochondrial fatty acid synthase (mtFAS) pathway. MECR activity remains unknown in the mechanism of insulin resistance in the pathogenesis of type 2 diabetes. In the present study, MECR activity was investigated in diet-induced obese (DIO) mice. Mecr mRNA was induced by insulin in cell culture, and was elevated in the liver of DIO mice in the presence hyperinsulinemia. However, MECR protein was decreased in the liver of DIO mice, and the reduction was blocked by treatment of the DIO mice with berberine (BBR). The mechanism of MECR protein regulation was investigated with a focus on ATP. The protein was decreased in the cell lysate and DIO liver by an increase in ATP levels. The ATP protein reduction was blocked in the liver of BBR-treated mice by suppression of ATP elevation. The MECR protein reduction was associated with insulin resistance and the protein restoration was associated with improvement of insulin sensitivity by BBR in the DIO mice. The data suggest that MECR protein is regulated in hepatocytes by ATP in association with insulin resistance. The study provides evidence for a relationship between MECR protein and insulin resistance.
Collapse
|
37
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
38
|
Abstract
Danny is the father of two boys with MEPAN syndrome and a member of Global Genes' RARE Foundation Alliance Leadership Council.
Collapse
|
39
|
Pietikäinen LP, Rahman MT, Hiltunen JK, Dieckmann CL, Kastaniotis AJ. Genetic dissection of the mitochondrial lipoylation pathway in yeast. BMC Biol 2021; 19:14. [PMID: 33487163 PMCID: PMC7831266 DOI: 10.1186/s12915-021-00951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lipoylation of 2-ketoacid dehydrogenases is essential for mitochondrial function in eukaryotes. While the basic principles of the lipoylation processes have been worked out, we still lack a thorough understanding of the details of this important post-translational modification pathway. Here we used yeast as a model organism to characterize substrate usage by the highly conserved eukaryotic octanoyl/lipoyl transferases in vivo and queried how amenable the lipoylation system is to supplementation with exogenous substrate. RESULTS We show that the requirement for mitochondrial fatty acid synthesis to provide substrates for lipoylation of the 2-ketoacid dehydrogenases can be bypassed by supplying the cells with free lipoic acid (LA) or octanoic acid (C8) and a mitochondrially targeted fatty acyl/lipoyl activating enzyme. We also provide evidence that the S. cerevisiae lipoyl transferase Lip3, in addition to transferring LA from the glycine cleavage system H protein to the pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGD) E2 subunits, can transfer this cofactor from the PDH complex to the KGD complex. In support of yeast as a model system for human metabolism, we demonstrate that the human octanoyl/lipoyl transferases can substitute for their counterparts in yeast to support respiratory growth and protein lipoylation. Like the wild-type yeast enzyme, the human lipoyl transferase LIPT1 responds to LA supplementation in the presence of the activating enzyme LplA. CONCLUSIONS In the yeast model system, the eukaryotic lipoylation pathway can use free LA and C8 as substrates when fatty/lipoic acid activating enzymes are targeted to mitochondria. Lip3 LA transferase has a wider substrate specificity than previously recognized. We show that these features of the lipoylation mechanism in yeast are conserved in mammalian mitochondria. Our findings have important implications for the development of effective therapies for the treatment of LA or mtFAS deficiency-related disorders.
Collapse
Affiliation(s)
- Laura P Pietikäinen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 5400, FI-90014, Oulu, Finland
| | - M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 5400, FI-90014, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 5400, FI-90014, Oulu, Finland
| | - Carol L Dieckmann
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, PO Box 5400, FI-90014, Oulu, Finland.
| |
Collapse
|
40
|
Coenzyme A levels influence protein acetylation, CoAlation and 4'-phosphopantetheinylation: Expanding the impact of a metabolic nexus molecule. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118965. [PMID: 33450307 DOI: 10.1016/j.bbamcr.2021.118965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Coenzyme A (CoA) is a key molecule in cellular metabolism including the tricarboxylic acid cycle, fatty acid synthesis, amino acid synthesis and lipid metabolism. Moreover, CoA is required for biological processes like protein post-translational modifications (PTMs) including acylation. CoA levels affect the amount of histone acetylation and thereby modulate gene expression. A direct influence of CoA levels on other PTMs, like CoAlation and 4'-phosphopantetheinylation has been relatively less addressed and will be discussed here. Increased CoA levels are associated with increased CoAlation, whereas decreased 4'-phosphopantetheinylation is observed under circumstances of decreased CoA levels. We discuss how these two PTMs can positively or negatively influence target proteins depending on CoA levels. This review highlights the impact of CoA levels on post-translational modifications, their counteractive interplay and the far-reaching consequences thereof.
Collapse
|
41
|
Liu Z, Shimura M, Zhang L, Zhang W, Wang J, Ogawa-Tominaga M, Wang J, Wang X, Lv J, Shi W, Zhang VW, Murayama K, Fang F. Whole exome sequencing identifies a novel homozygous MECR mutation in a Chinese patient with childhood-onset dystonia and basal ganglia abnormalities, without optic atrophy. Mitochondrion 2021; 57:222-229. [PMID: 33401012 DOI: 10.1016/j.mito.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022]
Abstract
Childhood-onset dystonia with optic atrophy and basal ganglia abnormalities is an extremely rare autosomal recessive mitochondrial disease caused by biallelic mutations in MECR. Using whole-exome sequencing, we identified a novel homozygous MECR mutation (c.910G > T, p.Asp304Tyr) in a Chinese patient with childhood-onset dystonia and basal ganglia abnormalities, without optic atrophy. With lipoic acid treatment, the disease progression was under control, and neither visual impairment nor optic atrophy was observed. To our knowledge, this is the first study about MECR-related mitochondrial disease in a Chinese patient and the first to report that supplementation with lipoic acid is a possible effective therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Masaru Shimura
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba 2660007, Japan
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba 2660007, Japan
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Junlan Lv
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Shi
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | | | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba 2660007, Japan.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
42
|
Early Onset Ataxia with Comorbid Dystonia: Clinical, Anatomical and Biological Pathway Analysis Expose Shared Pathophysiology. Diagnostics (Basel) 2020; 10:diagnostics10120997. [PMID: 33255407 PMCID: PMC7760948 DOI: 10.3390/diagnostics10120997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
In degenerative adult onset ataxia (AOA), dystonic comorbidity is attributed to one disease continuum. However, in early adult onset ataxia (EOA), the prevalence and pathogenesis of dystonic comorbidity (EOAD+), are still unclear. In 80 EOA-patients, we determined the EOAD+-prevalence in association with MRI-abnormalities. Subsequently, we explored underlying biological pathways by genetic network and functional enrichment analysis. We checked pathway-outcomes in specific EOAD+-genotypes by comparing results with non-specifically (in-silico-determined) shared genes in up-to-date EOA, AOA and dystonia gene panels (that could concurrently cause ataxia and dystonia). In the majority (65%) of EOA-patients, mild EOAD+-features concurred with extra-cerebellar MRI abnormalities (at pons and/or basal-ganglia and/or thalamus (p = 0.001)). Genetic network and functional enrichment analysis in EOAD+-genotypes indicated an association with organelle- and cellular-component organization (important for energy production and signal transduction). In non-specifically, in-silico-determined shared EOA, AOA and dystonia genes, pathways were enriched for Krebs-cycle and fatty acid/lipid-metabolic processes. In frequently occurring EOAD+-phenotypes, clinical, anatomical and biological pathway analyses reveal shared pathophysiology between ataxia and dystonia, associated with cellular energy metabolism and network signal transduction. Insight in the underlying pathophysiology of heterogeneous EOAD+-phenotype-genotype relationships supports the rationale for testing with complete, up-to-date movement disorder gene lists, instead of single EOA gene-panels.
Collapse
|
43
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
44
|
Nowinski SM, Solmonson A, Rusin SF, Maschek JA, Bensard CL, Fogarty S, Jeong MY, Lettlova S, Berg JA, Morgan JT, Ouyang Y, Naylor BC, Paulo JA, Funai K, Cox JE, Gygi SP, Winge DR, DeBerardinis RJ, Rutter J. Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria. eLife 2020; 9:58041. [PMID: 32804083 PMCID: PMC7470841 DOI: 10.7554/elife.58041] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cells harbor two systems for fatty acid synthesis, one in the cytoplasm (catalyzed by fatty acid synthase, FASN) and one in the mitochondria (mtFAS). In contrast to FASN, mtFAS is poorly characterized, especially in higher eukaryotes, with the major product(s), metabolic roles, and cellular function(s) being essentially unknown. Here we show that hypomorphic mtFAS mutant mouse skeletal myoblast cell lines display a severe loss of electron transport chain (ETC) complexes and exhibit compensatory metabolic activities including reductive carboxylation. This effect on ETC complexes appears to be independent of protein lipoylation, the best characterized function of mtFAS, as mutants lacking lipoylation have an intact ETC. Finally, mtFAS impairment blocks the differentiation of skeletal myoblasts in vitro. Together, these data suggest that ETC activity in mammals is profoundly controlled by mtFAS function, thereby connecting anabolic fatty acid synthesis with the oxidation of carbon fuels.
Collapse
Affiliation(s)
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Scott F Rusin
- Department of Cell Biology, Harvard University School of Medicine, Boston, United States
| | - J Alan Maschek
- Diabetes & Metabolism Research Center, Salt Lake City, United States.,Department of Nutrition and Integrative Physiology, Salt Lake City, United States.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities University of Utah, Salt Lake City, United States
| | | | - Sarah Fogarty
- Department of Biochemistry, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| | - Mi-Young Jeong
- Department of Biochemistry, Salt Lake City, United States
| | | | - Jordan A Berg
- Department of Biochemistry, Salt Lake City, United States
| | - Jeffrey T Morgan
- Department of Biochemistry, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| | - Yeyun Ouyang
- Department of Biochemistry, Salt Lake City, United States
| | - Bradley C Naylor
- Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities University of Utah, Salt Lake City, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard University School of Medicine, Boston, United States
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, Salt Lake City, United States
| | - James E Cox
- Department of Biochemistry, Salt Lake City, United States.,Diabetes & Metabolism Research Center, Salt Lake City, United States.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities University of Utah, Salt Lake City, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of Medicine, Boston, United States
| | - Dennis R Winge
- Department of Biochemistry, Salt Lake City, United States.,Diabetes & Metabolism Research Center, Salt Lake City, United States.,Department of Internal Medicine, Salt Lake City, United States
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| | - Jared Rutter
- Department of Biochemistry, Salt Lake City, United States.,Diabetes & Metabolism Research Center, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| |
Collapse
|
45
|
Kastaniotis AJ, Autio KJ, R Nair R. Mitochondrial Fatty Acids and Neurodegenerative Disorders. Neuroscientist 2020; 27:143-158. [PMID: 32644907 DOI: 10.1177/1073858420936162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fatty acids in mitochondria, in sensu stricto, arise either as β-oxidation substrates imported via the carnitine shuttle or through de novo synthesis by the mitochondrial fatty acid synthesis (mtFAS) pathway. Defects in mtFAS or processes involved in the generation of the mtFAS product derivative lipoic acid (LA), including iron-sulfur cluster synthesis required for functional LA synthase, have emerged only recently as etiology for neurodegenerative disease. Intriguingly, mtFAS deficiencies very specifically affect CNS function, while LA synthesis and attachment defects have a pleiotropic presentation beyond neurodegeneration. Typical mtFAS defect presentations include optical atrophy, as well as basal ganglia defects associated with dystonia. The phenotype display of patients with mtFAS defects can resemble the presentation of disorders associated with coenzyme A (CoA) synthesis. A recent publication links these processes together based on the requirement of CoA for acyl carrier protein maturation. MtFAS defects, CoA synthesis- as well as Fe-S cluster-deficiencies share lack of LA as a common symptom.
Collapse
Affiliation(s)
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| |
Collapse
|
46
|
Alves CAPF, Teixeira SR, Martin‐Saavedra JS, Guimarães Gonçalves F, Lo Russo F, Muraresku C, McCormick EM, Falk MJ, Zolkipli‐Cunningham Z, Ganetzky R, Vossough A, Goldstein A, Zuccoli G. Pediatric Leigh Syndrome: Neuroimaging Features and Genetic Correlations. Ann Neurol 2020; 88:218-232. [DOI: 10.1002/ana.25789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Cesar A. P. F. Alves
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Sara R. Teixeira
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Juan S. Martin‐Saavedra
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
| | | | - Francesco Lo Russo
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Colleen Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics The Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Giulio Zuccoli
- Division of Neuroradiology, Department of Radiology The Children's Hospital of Philadelphia Philadelphia PA USA
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), Children's Hospital of Pittsburgh of UPMC
| |
Collapse
|
47
|
Genomic sequencing highlights the diverse molecular causes of Perrault syndrome: a peroxisomal disorder (PEX6), metabolic disorders (CLPP, GGPS1), and mtDNA maintenance/translation disorders (LARS2, TFAM). Hum Genet 2020; 139:1325-1343. [PMID: 32399598 DOI: 10.1007/s00439-020-02176-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.
Collapse
|
48
|
The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med 2020; 22:1254-1261. [DOI: 10.1038/s41436-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
|
49
|
Dosekova P, Dubiel A, Karlowicz A, Zietkiewicz S, Rydzanicz M, Habalova V, Pienkowski VM, Skirkova M, Han V, Mosejova A, Gdovinova Z, Kaliszewska M, Tońska K, Szymanski MR, Skorvanek M, Ploski R. Whole exome sequencing identifies a homozygous POLG2 missense variant in an adult patient presenting with optic atrophy, movement disorders, premature ovarian failure and mitochondrial DNA depletion. Eur J Med Genet 2020; 63:103821. [PMID: 31778857 DOI: 10.1016/j.ejmg.2019.103821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/09/2019] [Accepted: 11/24/2019] [Indexed: 12/31/2022]
Abstract
POLG2 associated disorders belong to the group of mitochondrial DNA (mtDNA) diseases and present with a heterogeneous clinical spectrum, various age of onset, and disease severity. We report a 39-year old female presenting with childhood-onset and progressive neuroophthalmic manifestation with optic atrophy, mixed polyneuropathy, spinal and cerebellar ataxia and generalized chorea associated with mtDNA depletion. Whole-exome sequencing identified an ultra-rare homozygous missense mutation located at Chr17: 062474101-C > A (p.Asp433Tyr) in nuclear POLG2 gene encoding PolγB, an accessory subunits of mitochondrial polymerase γ responsible for mtDNA replication. The healthy parents and 2 sisters of the patient were heterozygous for the variant. To our best knowledge, this is the first case of homozygous variant in the POLG2 gene resulting in mitochondrial depletion syndrome in an adult patient and its clinical manifestations extend the clinical spectrum of POLG2 associated diseases.
Collapse
Affiliation(s)
- Petra Dosekova
- Dept. of Neurology, P.J. Safarik University, Kosice, Slovakia; Dept. of Neurology, University Hospital L. Pasteur, Kosice, Slovakia.
| | - Andrzej Dubiel
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Karlowicz
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Szymon Zietkiewicz
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Viera Habalova
- Dept. of Medical Biology, P. J. Safarik University, Kosice, Slovakia
| | - Victor Murcia Pienkowski
- Dept. of Medical Genetics, Medical University of Warsaw, Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Miriam Skirkova
- Dept. of Ophtalmology, P. J. Safarik University and University Hospital L. Pasteur, Kosice, Slovakia
| | - Vladimir Han
- Dept. of Neurology, P.J. Safarik University, Kosice, Slovakia; Dept. of Neurology, University Hospital L. Pasteur, Kosice, Slovakia
| | - Alexandra Mosejova
- Dept. of Neurology, P.J. Safarik University, Kosice, Slovakia; Dept. of Neurology, University Hospital L. Pasteur, Kosice, Slovakia
| | - Zuzana Gdovinova
- Dept. of Neurology, P.J. Safarik University, Kosice, Slovakia; Dept. of Neurology, University Hospital L. Pasteur, Kosice, Slovakia
| | - Magdalena Kaliszewska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michal R Szymanski
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Matej Skorvanek
- Dept. of Neurology, P.J. Safarik University, Kosice, Slovakia; Dept. of Neurology, University Hospital L. Pasteur, Kosice, Slovakia
| | - Rafal Ploski
- Dept. of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
50
|
Tucci S. Brain metabolism and neurological symptoms in combined malonic and methylmalonic aciduria. Orphanet J Rare Dis 2020; 15:27. [PMID: 31969167 PMCID: PMC6977288 DOI: 10.1186/s13023-020-1299-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
Combined malonic and methylmalonic aciduria (CMAMMA) is an inborn error of metabolism which has been proposed being a benign condition. However, older patients may present with neurological manifestations such as seizures, memory problems, psychiatric problems and/ or cognitive decline. In fibroblasts from CMAMMA patients we have recently demonstrated a dysregulation of energy metabolism with increased dependency on β-oxidation for energy production. Because of the inability of the brain to rely efficiently on this pathway to retrieve the required energy to a great extent, we hypothesize an alternative disease-causing mechanism that does not only include the accumulation of the metabolites malonic and methylmalonic acids. Here, we suggest a novel hypothesis on the possible pathophysiological mechanism responsible for the development of neurological symptoms in the long-run.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics and Adolescent Medicine, Laboratory of Clinical Biochemistry and Metabolism, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Mathildenstrasse 1, 79106, Freiburg, Germany.
| |
Collapse
|