1
|
Schmid CM, Gregor A, Ruiz A, Manso Bazús C, Herman I, Ammouri F, Kotzaeridou U, McNiven V, Dupuis L, Steindl K, Begemann A, Rauch A, Suter AA, Isidor B, Mercier S, Nizon M, Cogné B, Deb W, Besnard T, Haack TB, Falb RJ, Müller AJ, Linden T, Haldeman-Englert CR, Ockeloen CW, Mattioli F, Reymond A, Ibrahim N, Naz S, Lacaze E, Bassetti JA, Hoefele J, Brunet T, Riedhammer KM, Elloumi HZ, Person R, Zou F, Kahle JJ, Cremer K, Schmidt A, Delrue MA, Almeida PM, Ramos F, Srivastava S, Quinlan A, Robertson S, Manka E, Kuechler A, Spranger S, Nowaczyk MJM, Elshafie RM, Alsharhan H, Hillman PR, Dunnington LA, Braakman HMH, McKee S, Moresco A, Ignat AD, Newbury-Ecob R, Banneau G, Patat O, Kuerbitz J, Rzucidlo S, Sell SS, Gordon P, Schuhmann S, Reis A, Halleb Y, Stoeva R, Keren B, Al Masseri Z, Tümer Z, Hammer-Hansen S, Krüger Sølyst S, Steigerwald CG, Abreu NJ, Faust H, Müller-Nedebock A, Tran Mau-Them F, Sticht H, Zweier C. Further delineation of the SCAF4-associated neurodevelopmental disorder. Eur J Hum Genet 2024:10.1038/s41431-024-01760-2. [PMID: 39668183 DOI: 10.1038/s41431-024-01760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder. The molecular spectrum comprises 25 truncating, eight splice-site and five missense variants. While all other truncating variants were classified as pathogenic/likely pathogenic, significance of one C-terminal truncating variant, one splice-site variant and the missense variants remained unclear. Three missense variants in the CTD-interacting domain of SCAF4 were predicted to destabilize the domain. Twenty-three variants occurred de novo, and variants were inherited in 13 cases. Frequent clinical findings were mild developmental delay with speech impairment, seizures, and skeletal abnormalities such as clubfoot, scoliosis or hip dysplasia. Cognitive abilities ranged from normal IQ to severe intellectual disability (ID), with borderline to mild ID in the majority of individuals. Our study confirms the role of SCAF4 variants in neurodevelopmental disorders and further delineates the associated clinical phenotype.
Collapse
Affiliation(s)
- Cosima M Schmid
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anna Ruiz
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carmen Manso Bazús
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosciences, Boystown National Research Hospital, Boystown, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Farah Ammouri
- The University of Kansas Health System, Westwood, KS, USA
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Aude-Annick Suter
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | - Sandra Mercier
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Mathilde Nizon
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Benjamin Cogné
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Wallid Deb
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Thomas Besnard
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ruth J Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie J Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias Linden
- University Children's Hospital, Klinikum Oldenburg, Department of Neuropediatrics, Oldenburg, Germany
| | | | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nazia Ibrahim
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Elodie Lacaze
- Department of Medical Genetics, Le Havre Hospital, Le Havre, France
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | | | | | | | | | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marie-Ange Delrue
- Department of Genetics, Université de Montréal, Sainte-Justine University Hospital, Montreal, Canada
| | - Pedro M Almeida
- Medical Genetics Unit, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Fabiana Ramos
- Medical Genetics Unit, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Centro de Diagnóstico Pré-natal, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aisling Quinlan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Robertson
- Department of Pediatrics and Child Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Eva Manka
- Center for Rare Disease Essen (Essener Zentrum für Seltene Erkrankungen-EZSE), Universitätsmedizin Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | | | - Reem M Elshafie
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
| | - Hind Alsharhan
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
- Department of Pediatrics, Health science center, College of Medicine, Kuwait University, P.O. Box 24923, Safat, Kuwait
| | - Paul R Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Leslie A Dunnington
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center & Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Shane McKee
- Belfast HSC Trust, Northern Ireland Regional Genetics Service, Belfast, Northern, Ireland
| | - Angelica Moresco
- Division of Clinical Genetics, Pediatric Department, Children's Hospital, London Health Sciences Centre, Western University, London, ON, Canada
| | - Andrea-Diana Ignat
- Division of Clinical Genetics, Pediatric Department, Children's Hospital, London Health Sciences Centre, Western University, London, ON, Canada
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
| | - Guillaume Banneau
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Olivier Patat
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Jeffrey Kuerbitz
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Susan Rzucidlo
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Susan S Sell
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Patricia Gordon
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Sarah Schuhmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Yosra Halleb
- Le Mans Hospital, Department of Medical Genetics, Le Mans, France
| | - Radka Stoeva
- Le Mans Hospital, Department of Medical Genetics, Le Mans, France
| | - Boris Keren
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Zainab Al Masseri
- Department of Pediatrics, Medical Genetics Unit, Qatif Central Hospital, Eastern Health Cluster, Dammam, Saudi Arabia
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Hammer-Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sofus Krüger Sølyst
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Connolly G Steigerwald
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nicolas J Abreu
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helene Faust
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland.
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Feresin A, Spedicati B, Zampieri S, Morgan A, Magnolato A, Tesser A, Tommasini A, Bonati MT, Girotto G, Faletra F. Does It Run in Your Family? Inherited Truncating PSMD12 Variants Broaden the Phenotypic Spectrum of Stankiewicz-Isidor Syndrome. Am J Med Genet A 2024:e63953. [PMID: 39641441 DOI: 10.1002/ajmg.a.63953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Alteration in the ubiquitin-proteasome system results in human disorders with neurological and/or autoinflammatory presentation. Haploinsufficiency of PSMD12, which encodes a subunit of the core component of the proteasome, causes Stankiewicz-Isidor syndrome (STISS), characterized by intellectual disability, autism spectrum disorder, craniofacial dysmorphisms, with or without other congenital anomalies, and autoinflammation. We described six patients (four adults) from two unrelated families carrying a known p.(Arg289*) or a novel p.(Tyr111*) PSMD12 variant. Portraying a completely penetrant condition with inter- and intra-familiar clinical variability, all individuals presented with developmental delay, intellectual disability, craniofacial, and skeletal anomalies. Novel findings in our cohort included unilateral ectopic fingernail, cholesteatoma, oligodontia, and the occurrence of an ovarian teratoma. Most subjects had acne, short stature, and developed obesity since late childhood. Eating behavior was reported. Good sociality and behavioral concern emerged as well. None presented clinical manifestations of autoinflammation and the detected IFN-I signature perturbations were not specific. Together with a complete literature review, we expanded the clinical spectrum of STISS, highlighting the relevance of inherited variants, and discussing challenges in diagnosis and management. We finally consider the intriguing role of PSMD12 in human development and propose to index "onychoheterotopia" among the Human Phenotype Ontology terms.
Collapse
Affiliation(s)
- Agnese Feresin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Zampieri
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alessandra Tesser
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alberto Tommasini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- Institute of Medical Genetics, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
3
|
Gaillard L, Tjaberinga MC, Dremmen MHG, Mathijssen IMJ, Vrooman HA. Brain volume in infants with metopic synostosis: Less white matter volume with an accelerated growth pattern in early life. J Anat 2024; 245:894-902. [PMID: 38417842 PMCID: PMC11547220 DOI: 10.1111/joa.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Metopic synostosis patients are at risk for neurodevelopmental disorders despite a negligible risk of intracranial hypertension. To gain insight into the underlying pathophysiology of metopic synostosis and associated neurodevelopmental disorders, we aimed to investigate brain volumes of non-syndromic metopic synostosis patients using preoperative MRI brain scans. MRI brain scans were processed with HyperDenseNet to calculate total intracranial volume (TIV), total brain volume (TBV), total grey matter volume (TGMV), total white matter volume (TWMV) and total cerebrospinal fluid volume (TCBFV). We compared global brain volumes of patients with controls corrected for age and sex using linear regression. Lobe-specific grey matter volumes were assessed in secondary analyses. We included 45 metopic synostosis patients and 14 controls (median age at MRI 0.56 years [IQR 0.36] and 1.1 years [IQR 0.47], respectively). We found no significant differences in TIV, TBV, TGMV or TCBFV in patients compared to controls. TWMV was significantly smaller in patients (-62,233 mm3 [95% CI = -96,968; -27,498], Holm-corrected p = 0.004), and raw data show an accelerated growth pattern of white matter in metopic synostosis patients. Grey matter volume analyses per lobe indicated increased cingulate (1378 mm3 [95% CI = 402; 2355]) and temporal grey matter (4747 [95% CI = 178; 9317]) volumes in patients compared to controls. To conclude, we found smaller TWMV with an accelerated white matter growth pattern in metopic synostosis patients, similar to white matter growth patterns seen in autism. TIV, TBV, TGMV and TCBFV were comparable in patients and controls. Secondary analyses suggest larger cingulate and temporal lobe volumes. These findings suggest a generalized intrinsic brain anomaly in the pathophysiology of neurodevelopmental disorders associated with metopic synostosis.
Collapse
Affiliation(s)
- L. Gaillard
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. C. Tjaberinga
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. H. G. Dremmen
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - I. M. J. Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - H. A. Vrooman
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
4
|
Beric A, Sun Y, Sanchez S, Martin C, Powell T, Kumar R, Pardo JA, Darekar G, Sanford J, Dikec D, Phillips B, Botia JA, Cruchaga C, Ibanez L. Circulating blood circular RNA in Parkinson's Disease; from involvement in pathology to diagnostic tools in at-risk individuals. NPJ Parkinsons Dis 2024; 10:222. [PMID: 39557914 PMCID: PMC11574145 DOI: 10.1038/s41531-024-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
To identify circRNAs associated with Parkinson's disease (PD) we leveraged two of the largest publicly available studies with longitudinal clinical and blood transcriptomic data. We performed a cross-sectional study utilizing the last visit of each participant (N = 1848), and a longitudinal analysis that included 1166 participants with at least two time points. We identified 192 differentially expressed circRNAs, with effects that were sustained during disease, in mutation carriers, and diverse ancestry. The 192 circRNAs were leveraged to distinguish between PD and healthy participants with a ROC AUC of 0.797. Further, 71 circRNAs were sufficient to distinguish between genetic PD (AUC71 = 0.954) and, at-risk participants (AUC71 = 0.929) and healthy controls, supporting that circRNAs have the potential to aid the diagnosis of PD. Finally, we identified five circRNAs highly correlated with symptom severity. Overall, we demonstrated that circRNAs play an important role in PD and can be clinically relevant to improve diagnostic and monitoring.
Collapse
Affiliation(s)
- Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Yichen Sun
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Santiago Sanchez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Charissa Martin
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Tyler Powell
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ravindra Kumar
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jose Adrian Pardo
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
| | - Gauri Darekar
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Devin Dikec
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Bridget Phillips
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Juan A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Li HY, Jiang CM, Liu RY, Zou CC. Report of one case with de novo mutation in TLK2 and literature review. BMC Pediatr 2024; 24:732. [PMID: 39538191 PMCID: PMC11559194 DOI: 10.1186/s12887-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
TLK2 variants were identified as the cause for several neurodevelopmental disorders by impacting brain development. The incidence of mutation in TLK2 is low, which has common clinical features with other rare diseases. Herein, we reported a 5-year-old boy with TLK2 heterozygous mutation who presented distinctive facial features, gastrointestinal diseases, short stature, language delay, autism spectrum disorder, heart diseases, abnormal genitourinary system and skeletal abnormality. Moreover, we reviewed previous reported patients and our case in order to investigate more information on genotype-phenotype correlation and identify significant clinical characteristics for better diagnosis.
Collapse
Affiliation(s)
- Han-Yue Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Ruo-Yan Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
6
|
Huang H, Qian Y, Yang C, Li S. Case report: A novel TLK2 variant with a neuropsychiatric phenotype from a Chinese family. Front Genet 2024; 15:1419027. [PMID: 39296544 PMCID: PMC11408229 DOI: 10.3389/fgene.2024.1419027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Tousled-like kinase 2 (TLK2) gene variant-related neurodevelopmental disorder was recently described. The haploinsufficiency of TLK2 was considered the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. So far, only four studies, conducted on 49 patients from North America and Europe, have been reported. Case presentation In this study, we reported a Chinese family with a TLK2-related neuropsychiatric phenotype. The proband, a boy aged 2 years and 6 months, presented with temper tantrums, mood lability, aggressiveness, congenital astigmatism, and distinctive facial dysmorphism. Whole-exome sequencing identified a novel heterozygous variation in TLK2 gene (c.49dupG, p. E17Gfs*10) in them. His father carried the same TLK2 gene variant and exhibited anxiety and irritability. The parental grandparents and other family members had no such variation. Moreover, the proband was found to have global developmental delay, autism-like symptoms, and mild elevated homo-vanillic acid (HVA) and 2,3-dihydroxy-2-methylbutyric acid levels tested in urine. Conclusion Herein, we identified a novel TLK2 variant from a Chinese family and reported a new neuropsychiatric phenotype. This study also expanded the genotype profile of the newly defined TLK2-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hongmei Huang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Qian
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chenlu Yang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shijie Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
7
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O’Donnell-Luria A, Stracker TH. De novo TLK1 and MDM1 mutations in a patient with a neurodevelopmental disorder and immunodeficiency. iScience 2024; 27:109984. [PMID: 38868186 PMCID: PMC11166698 DOI: 10.1016/j.isci.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants underlie the neurodevelopmental disorder (NDD) 'Intellectual Disability, Autosomal Dominant 57' (MRD57), characterized by intellectual disability and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a heterozygous TLK1 variant (c.1435C>G, p.Q479E), as well as a mutation in MDM1 (c.1197dupT, p.K400∗). Cells expressing TLK1 p.Q479E exhibited reduced cytokine responses and elevated DNA damage, but not increased radiation sensitivity or DNA repair defects. The TLK1 p.Q479E variant impaired kinase activity but not proximal protein interactions. Our study provides the first functional characterization of NDD-associated TLK1 variants and suggests that, such as TLK2, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S. Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O’Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H. Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and optimization of narrow spectrum inhibitors of Tousled like kinase 2 (TLK2) using quantitative structure activity relationships. Eur J Med Chem 2024; 271:116357. [PMID: 38636130 PMCID: PMC11421834 DOI: 10.1016/j.ejmech.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and Optimization of Narrow Spectrum Inhibitors of Tousled Like Kinase 2 (TLK2) Using Quantitative Structure Activity Relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573261. [PMID: 38234837 PMCID: PMC10793458 DOI: 10.1101/2023.12.28.573261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was a potent off-target kinase. The oxindole has long been considered a promiscuous inhibitor template, but across these 4 specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different from narrow to broad spectrum coverage. We synthesized a large series of analogues and through quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, small-molecule x-ray structural analysis and kinome profiling, narrow spectrum, sub-family selective, chemical tool compounds were identified to enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Tooze RS, Miller KA, Swagemakers SMA, Calpena E, McGowan SJ, Boute O, Collet C, Johnson D, Laffargue F, de Leeuw N, Morton JV, Noons P, Ockeloen CW, Phipps JM, Tan TY, Timberlake AT, Vanlerberghe C, Wall SA, Weber A, Wilson LC, Zackai EH, Mathijssen IMJ, Twigg SRF, Wilkie AOM. Pathogenic variants in the paired-related homeobox 1 gene (PRRX1) cause craniosynostosis with incomplete penetrance. Genet Med 2023; 25:100883. [PMID: 37154149 PMCID: PMC11554955 DOI: 10.1016/j.gim.2023.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.
Collapse
Affiliation(s)
- Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sigrid M A Swagemakers
- Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J McGowan
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Odile Boute
- Univ. Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement Embryonnaire et du Métabolisme, Clinique de Génétique, Lille, France
| | - Corinne Collet
- Genetics Department, Robert Debré University Hospital, APHP, Paris, France
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fanny Laffargue
- Clinical Genetics Service and Reference Centre for Rare Developmental Abnormalities and Intellectual Disabilities, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Peter Noons
- Department of Craniofacial Surgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie M Phipps
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY
| | - Clemence Vanlerberghe
- Univ. Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement Embryonnaire et du Métabolisme, Clinique de Génétique, Lille, France
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Astrid Weber
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, United Kingdom
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Elaine H Zackai
- Clinical Genetics Center, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O'Donnell-Luria A, Stracker TH. Identification of a de novo mutation in TLK1 associated with a neurodevelopmental disorder and immunodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294267. [PMID: 37662408 PMCID: PMC10473813 DOI: 10.1101/2023.08.22.23294267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
13
|
Toni L, Plachy L, Dusatkova P, Amaratunga SA, Elblova L, Sumnik Z, Kolouskova S, Snajderova M, Obermannova B, Pruhova S, Lebl J. The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature. Horm Res Paediatr 2023; 97:40-52. [PMID: 37019085 DOI: 10.1159/000530521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION Among children born small for gestational age, 10-15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. METHODS Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <-2 SD for gestational age and life-minimum height <-2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. RESULTS The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. CONCLUSIONS The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling.
Collapse
Affiliation(s)
- Ledjona Toni
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lukas Plachy
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stanislava Kolouskova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Marta Snajderova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Barbora Obermannova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| |
Collapse
|
14
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang X, Sun D, Zheng H, Rao Y, Deng Y, Liang X, chen J, Yang J. Comprehensive analysis of transcriptome characteristics and identification of TLK2 as a potential biomarker in dermatofibrosarcoma protuberans. Front Genet 2022; 13:926282. [PMID: 36134026 PMCID: PMC9483842 DOI: 10.3389/fgene.2022.926282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Dermatofibrosarcoma protuberans (DFSP) is a rare cutaneous sarcoma characterized by local invasion and recurrence. RNA sequencing (RNA-seq) allows the qualification of cellular RNA populations and provides information on the transcriptional state. However, few studies have comprehensively analyzed DFSP transcriptional data. Methods: Fourteen DFSP samples with paired non-neoplastic soft tissue from Chinese patients undergoing Mohs micrographic surgery were used for RNA-seq analysis. Differential expression analysis and enrichment analysis for RNA-seq data were performed to identify fusion genes, biomarkers, and microenvironment characteristics of DFSP. Results: This study systemically describes the transcriptomic characteristics of DFSP. First, we performed gene fusion analysis and identified a novel FBN1-CSAD fusion event in a DFSP patient with fibrosarcomatous transformation. Then, we identified TLK2 as a biomarker for DFSP based on functional enrichment analysis, and validated its accuracy for diagnosing DFSP by immunohistochemical staining and joint analysis with public data. Finally, microenvironment analysis described the infiltration characteristics of immune and stromal cells in DFSP. Conclusion: This study demonstrates that RNA-seq can serve as a promising strategy for exploring molecular mechanisms in DFSP. Our results provide new insights into accurate diagnosis and therapeutic targets of DFSP.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqi Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun chen
- Department of Dermatology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jun Chen, ; Jun yang,
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Chen, ; Jun yang,
| |
Collapse
|
16
|
de Planque CA, Gaillard L, Vrooman HA, Li B, Bron EE, van Veelen MLC, Mathijssen IMJ, Dremmen MHG. A Diffusion Tensor Imaging Analysis of Frontal Lobe White Matter Microstructure in Trigonocephaly Patients. Pediatr Neurol 2022; 131:42-48. [PMID: 35483131 DOI: 10.1016/j.pediatrneurol.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Children with trigonocephaly are at risk for neurodevelopmental disorders. The aim of this study is to investigate white matter properties of the frontal lobes in young, unoperated patients with metopic synostosis as compared to healthy controls using diffusion tension imaging (DTI). METHODS Preoperative DTI data sets of 46 patients with trigonocephaly with a median age of 0.49 (interquartile range: 0.38) years were compared with 21 controls with a median age of 1.44 (0.98) years. White matter metrics of the tracts in the frontal lobe were calculated using FMRIB Software Library (FSL). The mean value of tract-specific fractional anisotropy (FA) and mean diffusivity (MD) were estimated for each subject and compared to healthy controls. By linear regression, FA and MD values per tract were assessed by trigonocephaly, sex, and age. RESULTS The mean FA and MD values in the frontal lobe tracts of untreated trigonocephaly patients, younger than 3 years, were not significantly different in comparison to controls, where age showed to be a significant associated factor. CONCLUSIONS Microstructural parameters of white matter tracts of the frontal lobe of patients with trigonocephaly are comparable to those of controls aged 0-3 years.
Collapse
Affiliation(s)
- Catherine A de Planque
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Linda Gaillard
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henri A Vrooman
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bo Li
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marie-Lise C van Veelen
- Department of Neurosurgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic, Reconstructive Surgery and Hand Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Marjolein H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genet Med 2022; 24:1283-1296. [PMID: 35346573 DOI: 10.1016/j.gim.2022.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.
Collapse
|
18
|
Woods E, Spiller M, Balasubramanian M. Report of two children with global developmental delay in association with de novo TLK2 variant and literature review. Am J Med Genet A 2022; 188:931-940. [PMID: 34821460 DOI: 10.1002/ajmg.a.62580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
We describe clinical details, including novel findings, of two further children with the newly defined TLK2-related disorder. One patient was recruited to the Deciphering Developmental Delay (DDD) Study to identify underlying etiology of global developmental delay. The other was detected on whole-exome sequencing as part of second line investigations following normal microarray. Both patients were found to have de novo heterozygous pathogenic TLK2 variants. A novel c.6del p.(Glu3Lysfs*) loss-of-function frameshift variant was found in Patient 1. A c.1121+1G>A splice-donor variant was detected in Patient 2. TLK2-related neurodevelopmental disorder is a specific syndrome that has been recently described. Global developmental delay, behavioral problems, gastrointestinal disorders, and typical facial dysmorphism are common features. Neuropsychiatric disorders, ophthalmic, musculoskeletal and cranial abnormalities, as well as short stature, have also all been described. The novel findings we describe include sleep disturbance, nondifferentiation of lateral semi-circular canals (where asymmetric semi-circular canals were a feature in the previous cohort), vesico-ureteric reflux, and bilateral periauricular skin tags. Here, we report a novel TLK2 variant and previously undescribed features of TLK2-related disorder, to expand the clinical phenotype and provide further genotype-phenotype correlation.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Alkelai A, Greenbaum L, Docherty AR, Shabalin AA, Povysil G, Malakar A, Hughes D, Delaney SL, Peabody EP, McNamara J, Gelfman S, Baugh EH, Zoghbi AW, Harms MB, Hwang HS, Grossman-Jonish A, Aggarwal V, Heinzen EL, Jobanputra V, Pulver AE, Lerer B, Goldstein DB. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol Psychiatry 2022; 27:1435-1447. [PMID: 34799694 DOI: 10.1038/s41380-021-01383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shannon L Delaney
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - James McNamara
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Anthony W Zoghbi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, Office of Mental Health, New York, NY, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hann-Shyan Hwang
- Department of Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Anat Grossman-Jonish
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vaidehi Jobanputra
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Cerebral Blood Flow of the Frontal Lobe in Untreated Children with Trigonocephaly versus Healthy Controls: An Arterial Spin Labeling Study. Plast Reconstr Surg 2022; 149:931-937. [PMID: 35171857 DOI: 10.1097/prs.0000000000008931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Craniofacial surgery is the standard treatment for children with moderate to severe trigonocephaly. The added value of surgery to release restriction of the frontal lobes is unproven, however. In this study, the authors aim to address the hypothesis that the frontal lobe perfusion is not restricted in trigonocephaly patients by investigating cerebral blood flow. METHODS Between 2018 and 2020, trigonocephaly patients for whom a surgical correction was considered underwent magnetic resonance imaging brain studies with arterial spin labeling to measure cerebral perfusion. The mean value of cerebral blood flow in the frontal lobe was calculated for each subject and compared to that of healthy controls. RESULTS Magnetic resonance imaging scans of 36 trigonocephaly patients (median age, 0.5 years; interquartile range, 0.3; 11 female patients) were included and compared to those of 16 controls (median age, 0.83 years; interquartile range, 0.56; 10 female patients). The mean cerebral blood flow values in the frontal lobe of the trigonocephaly patients (73.0 ml/100 g/min; SE, 2.97 ml/100 g/min) were not significantly different in comparison to control values (70.5 ml/100 g/min; SE, 4.45 ml/100 g/min; p = 0.65). The superior, middle, and inferior gyri of the frontal lobe showed no significant differences either. CONCLUSIONS The authors' findings suggest that the frontal lobes of trigonocephaly patients aged less than 18 months have a normal cerebral blood flow before surgery. In addition to the very low prevalence of papilledema or impaired skull growth previously reported, this finding further supports the authors' hypothesis that craniofacial surgery for trigonocephaly is rarely indicated for signs of raised intracranial pressure or restricted perfusion for patients younger than 18 months. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
|
21
|
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nat Commun 2022; 13:749. [PMID: 35136069 PMCID: PMC8826447 DOI: 10.1038/s41467-022-28427-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate. Tousled-like kinase 2 (TLK2) phosphorylates ASF1 histone chaperones to promote nucleosome assembly in S phase. Here, the authors show that TLK2 targets ASF1 by simulating its client protein histone H3, exploiting a primordial protein interaction surface for regulatory control.
Collapse
Affiliation(s)
- Bertrand Simon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Pavinato L, Villamor-Payà M, Sanchiz-Calvo M, Andreoli C, Gay M, Vilaseca M, Arauz-Garofalo G, Ciolfi A, Bruselles A, Pippucci T, Prota V, Carli D, Giorgio E, Radio FC, Antona V, Giuffrè M, Ranguin K, Colson C, De Rubeis S, Dimartino P, Buxbaum JD, Ferrero GB, Tartaglia M, Martinelli S, Stracker TH, Brusco A. Functional analysis of TLK2 variants and their proximal interactomes implicates impaired kinase activity and chromatin maintenance defects in their pathogenesis. J Med Genet 2022; 59:170-179. [PMID: 33323470 PMCID: PMC10631451 DOI: 10.1136/jmedgenet-2020-107281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Torino, Italy
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marina Villamor-Payà
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Maria Sanchiz-Calvo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Marina Gay
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Marta Vilaseca
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Pippucci
- Medical Genetics Unity, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valentina Prota
- Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Diana Carli
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Torino, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Kara Ranguin
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Cindy Colson
- Department of Genetics, Reference center for Rare Diseases and Developmental Anomalies, Caen, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Giovanni Battista Ferrero
- Department of Pediatrics and Public Health and Pediatric Sciences, University of Turin, Torino, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Travis H Stracker
- The Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Torino, Italy
- Unit of Medical Genetics, "Città della Salute e della Scienza" University Hospital, Torino, Italy
| |
Collapse
|
23
|
Al-Sarraj Y, Al-Dous E, Taha RZ, Ahram D, Alshaban F, Tolfat M, El-Shanti H, Albagha OM. Family-Based Genome-Wide Association Study of Autism Spectrum Disorder in Middle Eastern Families. Genes (Basel) 2021; 12:761. [PMID: 34069769 PMCID: PMC8157263 DOI: 10.3390/genes12050761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by abnormalities in language and social communication with substantial clinical heterogeneity. Genetic factors play an important role in ASD with heritability estimated between 70% to 80%. Genome-wide association studies (GWAS) have identified multiple loci associated with ASD. However, most studies were performed on European populations and little is known about the genetic architecture of ASD in Middle Eastern populations. Here, we report the first GWAS of ASD in the Middle eastern population of Qatar. We analyzed 171 families with ASD, using linear mixed models adjusting for relatedness and other confounders. Results showed that common single nucleotide polymorphisms (SNP) in seven loci are associated with ASD (p < 1 × 10-5). Although the identified loci did not reach genome-wide significance, many of the top associated SNPs are located within or near genes that have been implicated in ASD or related neurodevelopmental disorders. These include GORASP2, GABBR2, ANKS6, THSD4, ERCC6L, ARHGEF6, and HDAC8. Additionally, three of the top associated SNPs were significantly associated with gene expression. We also found evidence of association signals in two previously reported ASD-susceptibility loci (rs10099100 and rs4299400). Our results warrant further functional studies and replication to provide further insights into the genetic architecture of ASD.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Division of Nephrology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fouad Alshaban
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha 33123, Qatar;
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar; (Y.A.-S.); (E.A.-D.)
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha 34110, Qatar; (R.Z.T.); (D.A.); (F.A.); (H.E.-S.)
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
24
|
Segura-Bayona S, Villamor-Payà M, Attolini CSO, Koenig LM, Sanchiz-Calvo M, Boulton SJ, Stracker TH. Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Rep 2021; 32:107983. [PMID: 32755577 PMCID: PMC7408502 DOI: 10.1016/j.celrep.2020.107983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers. TLK-deficient cells have increased accessibility at heterochromatin regions TLK1/2 suppress spurious transcription and telomere hyper-recombination Extra-telomeric DNA generated upon TLK loss promotes innate immune signaling cGAS-STING-TBK1 signaling in TLK-deficient cells is independent of replication stress
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Maria Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
25
|
White SM, Bhoj E, Nellåker C, Lachmeijer AM, Marshall AE, Boycott KM, Li D, Smith W, Hartley T, McBride A, Ernst ME, May AS, Wieczorek D, Abou Jamra R, Koch-Hogrebe M, Õunap K, Pajusalu S, van Gassen K, Sadedin S, Ellingwood S, Tan TY, Christodoulou J, Barea J, Lockhart PJ, Nezarati MM, Kernohan KD, Kernohan KD. A DNA repair disorder caused by de novo monoallelic DDB1 variants is associated with a neurodevelopmental syndrome. Am J Hum Genet 2021; 108:749-756. [PMID: 33743206 DOI: 10.1016/j.ajhg.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
The DNA damage-binding protein 1 (DDB1) is part of the CUL4-DDB1 ubiquitin E3 ligase complex (CRL4), which is essential for DNA repair, chromatin remodeling, DNA replication, and signal transduction. Loss-of-function variants in genes encoding the complex components CUL4 and PHIP have been reported to cause syndromic intellectual disability with hypotonia and obesity, but no phenotype has been reported in association with DDB1 variants. Here, we report eight unrelated individuals, identified through Matchmaker Exchange, with de novo monoallelic variants in DDB1, including one recurrent variant in four individuals. The affected individuals have a consistent phenotype of hypotonia, mild to moderate intellectual disability, and similar facies, including horizontal or slightly bowed eyebrows, deep-set eyes, full cheeks, a short nose, and large, fleshy and forward-facing earlobes, demonstrated in the composite face generated from the cohort. Digital anomalies, including brachydactyly and syndactyly, were common. Three older individuals have obesity. We show that cells derived from affected individuals have altered DDB1 function resulting in abnormal DNA damage signatures and histone methylation following UV-induced DNA damage. Overall, our study adds to the growing family of neurodevelopmental phenotypes mediated by disruption of the CRL4 ubiquitin ligase pathway and begins to delineate the phenotypic and molecular effects of DDB1 misregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Newborn Screening Ontario, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
26
|
den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, Nellaker C, Amudhavalli SM, Banka S, Bena FS, Ben-Zeev B, Bonagura VR, Bruel AL, Brunet T, Brunner HG, Chew HB, Chrast J, Cimbalistienė L, Coon H, Délot EC, Démurger F, Denommé-Pichon AS, Depienne C, Donnai D, Dyment DA, Elpeleg O, Faivre L, Gilissen C, Granger L, Haber B, Hachiya Y, Abedi YH, Hanebeck J, Hehir-Kwa JY, Horist B, Itai T, Jackson A, Jewell R, Jones KL, Joss S, Kashii H, Kato M, Kattentidt-Mouravieva AA, Kok F, Kotzaeridou U, Krishnamurthy V, Kučinskas V, Kuechler A, Lavillaureix A, Liu P, Manwaring L, Matsumoto N, Mazel B, McWalter K, Meiner V, Mikati MA, Miyatake S, Mizuguchi T, Moey LH, Mohammed S, Mor-Shaked H, Mountford H, Newbury-Ecob R, Odent S, Orec L, Osmond M, Palculict TB, Parker M, Petersen AK, Pfundt R, Preikšaitienė E, Radtke K, Ranza E, Rosenfeld JA, Santiago-Sim T, Schwager C, Sinnema M, Snijders Blok L, Spillmann RC, Stegmann APA, Thiffault I, Tran L, Vaknin-Dembinsky A, Vedovato-Dos-Santos JH, Schrier Vergano SA, Vilain E, Vitobello A, Wagner M, Waheeb A, Willing M, Zuccarelli B, Kini U, Newbury DF, Kleefstra T, Reymond A, Fisher SE, Vissers LELM. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am J Hum Genet 2021; 108:346-356. [PMID: 33513338 DOI: 10.1016/j.ajhg.2021.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alexander J M Dingemans
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurens Wiel
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics of the Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Christoffer Nellaker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Shivarajan M Amudhavalli
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Frederique S Bena
- Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bruria Ben-Zeev
- Edmomd and Lilly Safra Pediatric Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Vincent R Bonagura
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ange-Line Bruel
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, 81675 Munich, Germany
| | - Han G Brunner
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands; Maastricht University Medical Center, Department of Clinical Genetics, GROW School for Oncology and Developmental Biology, and MHeNS School for Mental health and Neuroscience, PO Box 5800, 6202AZ Maastricht, the Netherlands
| | - Hui B Chew
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loreta Cimbalistienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Emmanuèlle C Délot
- Center for Genetic Medicine Research, Children's National Hospital, Children's Research Institute and Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20010, USA
| | - Florence Démurger
- Department of clinical genetics, Vannes hospital, 56017 Vannes, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Laurence Faivre
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Christian Gilissen
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Leslie Granger
- Department of Rehabilitation and Development, Randall Children's Hospital at Legacy Emanuel Medical Center, Portland, OR 97227, USA
| | - Benjamin Haber
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yasuo Hachiya
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Yasmin Hamzavi Abedi
- Division of Allergy and Immunology, Northwell Health, Great Neck, NY 11021, USA; Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Hanebeck
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | | | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Kelly L Jones
- Division of Medical Genetics & Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA 23507, USA; Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8666, Japan
| | | | - Fernando Kok
- Mendelics Genomic Analysis, Sao Paulo, SP 04013-000, Brazil; University of Sao Paulo, School of Medicine, Sao Paulo, SP 01246-903, Brazil
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alinoë Lavillaureix
- CHU Rennes, Univ Rennes, CNRS, IGDR, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 35033 Rennes, France
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Linda Manwaring
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | | | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Lip H Moey
- Department of Genetics, Penang General Hospital, Jalan Residensi, 10990 Georgetown, Penang, Malaysia
| | - Shehla Mohammed
- Clinical Genetics, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Hayley Mountford
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Sylvie Odent
- CHU Rennes, Univ Rennes, CNRS, IGDR, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 35033 Rennes, France
| | - Laura Orec
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada
| | | | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S5 7AU, UK
| | - Andrea K Petersen
- Department of Rehabilitation and Development, Randall Children's Hospital at Legacy Emanuel Medical Center, Portland, OR 97227, USA
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Kelly Radtke
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Emmanuelle Ranza
- Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Caitlin Schwager
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, 6202 AZ Maastricht, the Netherlands; Department of Genetics and Cell Biology, Faculty of Health Medicine Life Sciences, Maastricht University Medical Center+, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Lot Snijders Blok
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27713, USA
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center+, azM, 6202 AZ Maastricht, the Netherlands
| | - Isabelle Thiffault
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Linh Tran
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes Ginges Center for Neurogenetics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | | | - Samantha A Schrier Vergano
- Division of Medical Genetics & Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA 23507, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Hospital, Children's Research Institute and Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20010, USA
| | - Antonio Vitobello
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, 81675 Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Androu Waheeb
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Britton Zuccarelli
- The University of Kansas School of Medicine Salina Campus, Salina, KS 67401, USA
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands.
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
27
|
Bellott DW, Page DC. Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Res 2021; 31:198-210. [PMID: 33479023 PMCID: PMC7849413 DOI: 10.1101/gr.268516.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.
Collapse
Affiliation(s)
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Koelling N, Bernkopf M, Calpena E, Maher GJ, Miller KA, Ralph HK, Goriely A, Wilkie AOM. amplimap: a versatile tool to process and analyze targeted NGS data. Bioinformatics 2020; 35:5349-5350. [PMID: 31350555 PMCID: PMC6954648 DOI: 10.1093/bioinformatics/btz582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/01/2019] [Accepted: 07/22/2019] [Indexed: 11/12/2022] Open
Abstract
SUMMARY amplimap is a command-line tool to automate the processing and analysis of data from targeted next-generation sequencing experiments with PCR-based amplicons or capture-based enrichment systems. From raw sequencing reads, amplimap generates output such as read alignments, annotated variant calls, target coverage statistics and variant allele counts and frequencies for each target base pair. In addition to its focus on user-friendliness and reproducibility, amplimap supports advanced features such as consensus base calling for read families based on unique molecular identifiers and filtering false positive variant calls caused by amplification of off-target loci. AVAILABILITY AND IMPLEMENTATION amplimap is available as a free Python package under the open-source Apache 2.0 License. Documentation, source code and installation instructions are available at https://github.com/koelling/amplimap.
Collapse
Affiliation(s)
- Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie Bernkopf
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Geoffrey J Maher
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah K Ralph
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Goriely
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
30
|
Töpf A, Oktay Y, Balaraju S, Yilmaz E, Sonmezler E, Yis U, Laurie S, Thompson R, Roos A, MacArthur DG, Yaramis A, Güngör S, Lochmüller H, Hiz S, Horvath R. Severe neurodevelopmental disease caused by a homozygous TLK2 variant. Eur J Hum Genet 2020; 28:383-387. [PMID: 31558842 PMCID: PMC7028915 DOI: 10.1038/s41431-019-0519-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A distinct neurodevelopmental phenotype characterised mainly by mild motor and language delay and facial dysmorphism, caused by heterozygous de novo or dominant variants in the TLK2 gene has recently been described. All cases reported carried either truncating variants located throughout the gene, or missense changes principally located at the C-terminal end of the protein mostly resulting in haploinsufficiency of TLK2. Through whole exome sequencing, we identified a homozygous missense variant in TLK2 in a patient showing more severe symptoms than those previously described, including cerebellar vermis hypoplasia and West syndrome. Both parents are heterozygous for the variant and clinically unaffected highlighting that recessive variants in TLK2 can also be disease causing and may act through a different pathomechanism.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sunitha Balaraju
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Elmasnur Yilmaz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rachel Thompson
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Leibniz Institut für Analytische Wissenschaften, ISAS, Dortmund, Germany
- Pediatric Neurology, University Children's Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Diyarbakir Memorial Hospital, Diyarbakir, Turkey
| | - Serdal Güngör
- Department of Paediatric Neurology, Faculty of Medicine, Turgut Ozal Research Center, Inonu University, Malatya, Turkey
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
31
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Nellåker C, Alkuraya FS, Baynam G, Bernier RA, Bernier FP, Boulanger V, Brudno M, Brunner HG, Clayton-Smith J, Cogné B, Dawkins HJ, deVries BB, Douzgou S, Dudding-Byth T, Eichler EE, Ferlaino M, Fieggen K, Firth HV, FitzPatrick DR, Gration D, Groza T, Haendel M, Hallowell N, Hamosh A, Hehir-Kwa J, Hitz MP, Hughes M, Kini U, Kleefstra T, Kooy RF, Krawitz P, Küry S, Lees M, Lyon GJ, Lyonnet S, Marcadier JL, Meyn S, Moslerová V, Politei JM, Poulton CC, Raymond FL, Reijnders MR, Robinson PN, Romano C, Rose CM, Sainsbury DC, Schofield L, Sutton VR, Turnovec M, Van Dijck A, Van Esch H, Wilkie AO. Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative. Front Genet 2019; 10:611. [PMID: 31417602 PMCID: PMC6681681 DOI: 10.3389/fgene.2019.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.
Collapse
Affiliation(s)
- Christoffer Nellåker
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Institute for Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, and Genetic Services of Western Australia, King Edward Memorial, Subiaco, WA, Australia
- Telethon Kids Institute and School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Spatial Sciences, Science and Engineering, Curtin University, Perth, WA, Australia
| | - Raphael A. Bernier
- Department of Psychiatry & Behavioral Science, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Vanessa Boulanger
- National Organization for Rare Disorders, Danbury, CT, United States
| | - Michael Brudno
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | - Benjamin Cogné
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Hugh J.S. Dawkins
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health Government of Western Australia, Perth, WA, Australia
- Sir Walter Murdoch School of Policy and International Affairs, Murdoch University
- Centre for Population Health Research, Curtin University of Technology, Perth, WA, Australia
| | - Bert B.A. deVries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | | | - Evan E. Eichler
- Department of Genome Science, University of Washington School of Medicine, Seattle, WA, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States
| | - Michael Ferlaino
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Karen Fieggen
- Division of Human Genetics, Level 3, Wernher and Beit North, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Helen V. Firth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Dylan Gration
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Tudor Groza
- The Garvan Institute, Sydney, NSW, Australia
| | - Melissa Haendel
- Oregon Health & Science University, Portland, OR, United States
| | - Nina Hallowell
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, United Kingdom
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jayne Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein–Campus Kiel, Kiel, Germany
| | - Mark Hughes
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford, United Kingdom
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Peter Krawitz
- Institut für Genomische Statistik und Bioinformatik, Universitätsklinikum Bonn, Rheinische-Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Melissa Lees
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Gholson J. Lyon
- George A. Jervis Clinic and Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, United States
| | | | | | - Stephen Meyn
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Juan M. Politei
- Laboratorio Chamoles, Errores Congénitos del Metabolismo, Buenos Aires, Argentina
| | - Cathryn C. Poulton
- Department of Paediatrics and Neonates, Fiona Stanley Hospital, Perth, WA, Australia
| | - F Lucy Raymond
- CIMR (Wellcome Trust/MRC Building), Cambridge, United Kingdom
| | - Margot R.F. Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | - Catherine M. Rose
- Victorian Clinical Genetics Service and Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - David C.G. Sainsbury
- Northern & Yorkshire Cleft Lip and Palate Service, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Lyn Schofield
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Vernon R. Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | |
Collapse
|
33
|
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. Am J Hum Genet 2019; 104:721-730. [PMID: 30929742 PMCID: PMC6451933 DOI: 10.1016/j.ajhg.2019.02.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.
Collapse
|
34
|
Schluth-Bolard C, Diguet F, Chatron N, Rollat-Farnier PA, Bardel C, Afenjar A, Amblard F, Amiel J, Blesson S, Callier P, Capri Y, Collignon P, Cordier MP, Coubes C, Demeer B, Chaussenot A, Demurger F, Devillard F, Doco-Fenzy M, Dupont C, Dupont JM, Dupuis-Girod S, Faivre L, Gilbert-Dussardier B, Guerrot AM, Houlier M, Isidor B, Jaillard S, Joly-Hélas G, Kremer V, Lacombe D, Le Caignec C, Lebbar A, Lebrun M, Lesca G, Lespinasse J, Levy J, Malan V, Mathieu-Dramard M, Masson J, Masurel-Paulet A, Mignot C, Missirian C, Morice-Picard F, Moutton S, Nadeau G, Pebrel-Richard C, Odent S, Paquis-Flucklinger V, Pasquier L, Philip N, Plutino M, Pons L, Portnoï MF, Prieur F, Puechberty J, Putoux A, Rio M, Rooryck-Thambo C, Rossi M, Sarret C, Satre V, Siffroi JP, Till M, Touraine R, Toutain A, Toutain J, Valence S, Verloes A, Whalen S, Edery P, Tabet AC, Sanlaville D. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders. J Med Genet 2019; 56:526-535. [PMID: 30923172 DOI: 10.1136/jmedgenet-2018-105778] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.
Collapse
Affiliation(s)
- Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Flavie Diguet
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | | | - Claire Bardel
- Cellule bioinformatique de la plateforme NGS, Hospices Civils de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Lyon 1 University, Bron, France
| | - Alexandra Afenjar
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France.,GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | - Florence Amblard
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France
| | - Jeanne Amiel
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | - Yline Capri
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | | | | | - Christine Coubes
- Service de Génétique, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Benedicte Demeer
- Centre d'activité de génétique clinique, CLAD nord de France, CHU Amiens, Amiens, France
| | | | | | - Françoise Devillard
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France
| | | | - Céline Dupont
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Jean-Michel Dupont
- Laboratoire de Cytogénétique Constitutionnelle, APHP-HUPC site Cochin, Paris, France
| | | | - Laurence Faivre
- Centre de référence anomalies du développement et syndromes malformatifs, FHU TRANSLAD et équipe GAD INSERM UMR1231, CHU Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | | | | | - Marine Houlier
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Sylvie Jaillard
- Laboratoire de Cytogénétique et de Biologie Cellulaire, CHU Pontchaillou, Rennes, France
| | | | - Valérie Kremer
- Laboratoire de Cytogénétique, CHU Strasbourg, Strasbourg, France
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | | | - Aziza Lebbar
- Laboratoire de Cytogénétique Constitutionnelle, APHP-HUPC site Cochin, Paris, France
| | - Marine Lebrun
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - James Lespinasse
- Laboratoire de Génétique Chromosomique, CH Général, Chambéry, France
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Valérie Malan
- Service de Cytogénétique, Hôpital Necker Enfants Malades, Paris, France
| | | | - Julie Masson
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Alice Masurel-Paulet
- Centre de référence anomalies du développement et syndromes malformatifs, FHU TRANSLAD et équipe GAD INSERM UMR1231, CHU Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Cyril Mignot
- Département de Génétique; Centre de Référence Déficience Intellectuelle de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Chantal Missirian
- Laboratoire de Génétique Chromosomique, Département de Génétique Médicale, AP-HM, Marseille, France
| | - Fanny Morice-Picard
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Sébastien Moutton
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Gwenaël Nadeau
- Laboratoire de Génétique Chromosomique, CH Général, Chambéry, France.,Service de Cytogénétique, CH Valence, Valence, France
| | - Céline Pebrel-Richard
- Service de Cytogénétique Médicale, Hôpital Estaing, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU Rennes, Rennes, France.,CNRS, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, Université de Rennes, Rennes, France
| | | | | | - Nicole Philip
- Département de Génétique Médicale, Unité de Génétique Clinique, AP-HM, Marseille, France
| | | | - Linda Pons
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Marie-France Portnoï
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Fabienne Prieur
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | | | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Marlène Rio
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Rooryck-Thambo
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Catherine Sarret
- Service de Génétique Médicale, Hôpital Estaing, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Véronique Satre
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France.,Equipe Génétique, Epigénétique et Thérapies de l'Infertilité, IAB, INSERM 1209, CNRS UMR5309, Grenoble, France
| | - Jean-Pierre Siffroi
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Marianne Till
- Service de Génétique, Hospices Civils de Lyon, Bron, France
| | - Renaud Touraine
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | | | - Jérome Toutain
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Stéphanie Valence
- GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France.,Service de Neurologie Pédiatrique, Hôpital Armand Trousseau, APHP, GHUEP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Sandra Whalen
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | | | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| |
Collapse
|
35
|
Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS, Thomford NE, Gomez A, Mulder N, Chimusa ER. Host and Microbiome Genome-Wide Association Studies: Current State and Challenges. Front Genet 2019; 9:637. [PMID: 30723493 PMCID: PMC6349833 DOI: 10.3389/fgene.2018.00637] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
The involvement of the microbiome in health and disease is well established. Microbiome genome-wide association studies (mGWAS) are used to elucidate the interaction of host genetic variation with the microbiome. The emergence of this relatively new field has been facilitated by the advent of next generation sequencing technologies that enable the investigation of the complex interaction between host genetics and microbial communities. In this paper, we review recent studies investigating host-microbiome interactions using mGWAS. Additionally, we highlight the marked disparity in the sampling population of mGWAS carried out to date and draw attention to the critical need for inclusion of diverse populations.
Collapse
Affiliation(s)
- Denis Awany
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sian Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kilaza S Mwaikono
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas E Thomford
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andres Gomez
- Department of Animal Science, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|